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An optimization algorithm for the pile driver problem
M.A. Raupp, R. A. Feijéo and C.A. de Moura

Abstract.

In this paper we present the analysis of an algorithm of Uzawa type
to compute solutions of the quasi variational inequality

(QVI) Qu o u\ (ou v QPu) (u v Pu
A" ox ’ Ox _ oxot oxot’ 0x  oxor

+ |:u(1, t) S %(1, [)} |:l7(1) — %(1, t):| 4 J(u’ U) o J<u, %) >

> <f,v = Z?) + F() {0(0) L %(0, t):|, t>0, Yve H\0,1),

which is a model for the dynamics of a pile driven into the ground under
the action of a pile hammer. In (QVI) (.,.) is the scalar product in L*(0, 1)
and J(u;.) is a convex functional on H'(0,1), for each u, describing the
soil-pile friction effect.

1. Introduction.

Our purpose is to approximate the solution of an initial value problem
for a quasi variational inequality of evolution type, introduced in [4] as
a model of a problem appearing in Foundation Engineering. The general
idea is to discretize the time variable and solve at each time level a mathe-
matical programming problem for the approximate solution at that level

With the usual notation

Q=(0,1, HQ = {ve L3(Q) ‘ % € LZ(Q)}, ’
(u,v) = J u(x) v(x) dx,
Q

ou Ov
(u,v); = (u,v) + <E’ W)’

Recebido em dezembro de 1977.
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0 0
a(u;v) = a <%, 6—;2) + k,u(1) o(1),

bu;v) =b (Z_x g ) + k, u(1) v(1),

N

J(u;v)

if A<0

=c J H(x +u—1)(x +u — 1) ju(x)| dx,
Q
0
1 if A =10,

H(2) = {

L20, T; V) = { [0, T]-V

IUluﬂ(o V) [J gl dt:l 5 = OO} ,

0< T <00, 1°< pi= o0,

L0, T; V) { [0, T] > V|

Plpeao,rivy =955 SUD o], < OO}

te(0,T)

W?ere a, k,, b, k,, ¢, T are positive physical parameters and V can be either
L*Q) or H'(Q), the continuous problem is to find ue L®(0, T; H\(Q))
such that

(1.1) Z—L;EL“’(O T: H\(Q) A L0, T; H\(Q)),
0%u
(1.2) 3o e L*(0, T; L*(Q)) n L*0, T; H\(Q)),
I
(1.3) u(0) = 0,
ou
(1.4) 3 (0) = 0,

0%u ou 0 0 ou
<W,v—a[>+a<uv a?>+b<6~?;v 6t>+J( v) — (u;%)k
ou
(f v — >+F()[()—%(O,t):|, Yve HY(Q), ae.te(0,T),

with f and F given.
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The justification of (1.3)-(1.5) as a description of the motion of a one-
dimencional visco-elastic pile penetrating into the soil under the action
of the characteristic force of the pile driver, the resistance force of the soil
and the friction on the contact surface, is made in [4]. The unknown
function u(x,t) is the displacement field, which maps a “particle” x from
the initial configuration of the pile to its position x + u(x,t) at time t.

From the mathematical side, the basis for that justification is the
following theorem, quoted here for future reference:

Theorem 1.1. Given feL?*0, co; L3(Q)) and F e L*(0, oo; R) such that
%f € L?(0, oo; L%()), _?EELZ(O o0; R) and F(0) = 0, then, for any given
0 < T < oo, there exists a unique ue L®0, T;H'(Q)) satisfying (1.1)-(1.5).
Furthermore, the motion is stable and tends to rest as t — o, in the sense that

ou

|u|,(2) is bounded on [0, + ), — (t)—0 as t > oo, where |v|, = \/(v, v),.

Proof. See [4].

We shall be concerned with approximations of the function u(x,t) and
its related fields with physical significance. To define the approximation
scheme we first introduce the discretizations

xj=jh’ h=7’ J=0’1’- aM’
t, = nk, k=%, =401 75, N,

where T is a fixed time level and M, N are given positive integers. After
that, take the basic functions

kiii512) 10 otherwise, j = 0,1,...,M — 1,

o(1) = 1 nk <t<@m+1)k,
ESST) 0 otherwise, n = 0,1,..., N —1,

that allow us to introduce the spaces of approximants



42 - M. A. Raupp, R. A. Feijéo and C. A. de Moura An optimization algorithm for the pile driver problem 43

M-1[ . _ ; ] 1.8 Uu'=0,
Vi = {re@u - % ¢ w0 (5 =) [ el b
A (19)  (2U"V —8,U" + a(U™; V — 8,U" + b(d,U"; V — 8,U") +

N-1
0 _ 2 e non n
Vk = {UEL (0, T) | U(t) e ,,;0 v Gk(t),v ER} J +J(U"; V) _ J(U";&tU") r (f;:’ 1% _51Un) + Fn[V(O)—(StU"(O)],
If we have a function S defined at the time levels t,, we denote by S" W eV, ne 1

the value of S at r,. and define
where f = f(x,t,), F, = F(t,). Such scheme is consistent with (1.1)-(1.5)

3 2!
grt1/2 _ 1 (51 + 5, with local error of order k2.

o)) We observe that in view of the relation
n+ 1 n n 2 n n—\
o5 = S_fk“_s BEU = ZE U U,
e gntl _ gn-1 N 38"+ 0,51 inequality (1.9) can be written in the form
t 2k 2 ’ k k k
(6,U"; VvV —46,U" + 7b(5lU"; V—-9,U" + TJ(U"; V) — 7J(U";5,U") >
Sn+l_2sn+sn-1 asn_asn-l

aztS" = = t t

k? k k k k
= j(f", Va—0.U%) = TQ(U"; V—90,U" + TF,,[V(O) —o,U0)] +
We shall need also the notation

N + QU LV —4,U", YV eV
Sl t) = Y S"(x)050),
=0 Hence, if we define

0,Syilx, 1) = 2 0,S"(x)0,(0), (1.10)  A: HY(Q) x H(Q) >R {uv} > wv) + %b(u;v),
5tsh’k(x’ ) Nil 5,S"(x)0t), bilinear, symmetric, continuous and coercive form on H'(Q),
n=1

s (1.11) L HYQ) - R,
328, (x.) = Y B2S"x)01), k

R P 0> () + A0 + QU — aUm),
where S"eV,, n=0,1,...,N.

The approximation we propose for the solution u of (1.1)-(1.5) is the lincar aiid: continnous fomms pn K,
function U, ,(x,t) = {U"(x)}N_,, characterized by the following conditions: k
(1.12) " HYQ) — R, v - 7J(U";v),
(1.6) UreVi, n=01,..,N
(1.7) Uo — 0 [ convex and continuous forms on H'(Q), the defining conditions (1.6)-(1.9)

are equivalent to
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(1.13) UeV, , n=0,1,..,N,
(1.14) IR =0,
(1.15) AUV —6,U" +j,(V) —j6,U" = L(V—6U", YV eV},
(1.16) Urtt.= U1 + 2ks,U", n="1,25. 50N =1
Two facts must be observed at this point:

(i) if we assume f e L%(0, co; L3(Q)) and F e L*(0, co; R), the families
of functions {L,} and {j,} are equicontinuous on H'(Q) by virtue of the
stability results we shall prove for U” and 6,U"""' in section 3.

(i1) At each time level we can uniquely solve the “stationary problem”
(1.15) for o,U", since A(-;-), j(-) and L (-) satisfy the hypothesis of a
theorem of Lions-Stampacchia’s. Furthermore, J,U" can be characterized
as the solution of the optimization problem

(1.17) inf {; A(v,;v,) — L(v,) +jn(Vh)} :

e VL
veV,

Hence equations (1.13)-(1.16) can give us an explicit algorithm to
compute step by step the approximations at the various time levels if we
are able to produce a numerical solution of the optimization problem (1.17)
at each step.

The objective of this paper is to analize a lower level scheme of compu-
tation coupling (1.13), (1.14) and (1.16) with an Uzawa type algorithm to
generate the solution of problem (1.17). We shall prove a convergence result
in section 4, but first we present and analize the optimization algorithm
in section 2, in a more general framework, and discuss two stability lemmas
in section 3.

2. The optimization algorithm.

In this section we drop the lower indices from j, and L,. We consider
the “stationary” problem, equivalent to (1.17),

@.1) { ((i) ueVi,

i) A(u;v —u)+j(v) —ju) > Lo — u), veVi,

where A, j and L retain the properties assumed in section 1 and, in particular,
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o) j 20 19 |
Q

where g is assumed given, positive and bounded on Q.

Let us start proving the existence of multipliers for problem (2.1).
Defining

A= {qemm‘ 40 < g0 ae,
we have

Theorem 2.1. The solution u of (2.1) is characterized by the existence of
a multiplier p such that

uevsi,
2.2)
A(u;v) + f p(x) v(x)dx = L(v), Yve V],
Q

(2.3) {pEA’

pu = glu| ae.
Proof. Assume (2.1) and take v =0 to get A(u;u) + j(u) < L(n), and then
v =2u to get A(u;u) + j(u) > L(r), that is,
(2.4) A(u;u) + j(u) = L(u).
With ¢ > 0 we regularize j by j, defined by

i J S )
Q

Since j, is convex and continuous on V;, the regularized problem

{ (i) uceV,,

2.5
(Ge2) (i) Aw;v—u)+j®) —jw)=Lv—u), YveVl,

has a unique solution.

We clain that u, converges strongly to u in V), when & — 0. Taking
v=u, in (2.1), v =u in (2.5 and adding we get

(2.6) Alu, — w5 u, —u) + j(u) —ju) < ju) — j(u).

82

Now, from the inequality 0 < ,/x* zit® fle [%]" = ﬁ =
X = BT G

8’
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valid for any xe R, we deduce 0 <j(v)—j(v) < C,, YveV,, which, toge-
ther with (2.6), implies that

2.7) A(u, —u;u, —u) < Ce,

and thus the claim is proved.

The functional j, being differentiable on V;, problem (2.5) is equivalent
to the variational equation

(2:8)

(i) wueV,,
(i) A(u,;v) + (iu,), v) = L(v), YveV,,

where

(Uw), v) = jggﬁzz—Lf)l%%dx’ veV), weVl

If we define

gu,

SN

we have that p.e’A and from (2.8):

o [0 st

(i) A(u,;v) + (p,v) = L(v), veV).

The set A is bounded and closed in L%(Q), hence it is weakly compact
and we can extract from {p,} ., a sub-sequence, still denoted by {p,},. .
such that

(i) p,— p weakly in L*Q),
(&12) {(ii) peA.

The function p is the candidate for multiplier. Indeed, passing (2.11)
to the limit, in view of (2.12) and (2.7) we obtain (2.2). Now, if we take
v = u in this equation, we get A(u;u)+ (p,u) = L(u), which compared with

Q
and so pu = glu| ae in Q tha. is, (2.3) is satisfied.

(2.4) gives (p,u) — j(u) = j (pu — rlul)dx = 0. But peA, hence pu < glul

The converse implication results from a direct calculation: to obtain
(2.1) we just take v = w — u, any we V}, in (2.2),
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Au;w—u) + [

Q

pwdx — j pudx = L(w — u),
Q
and then use the information contained in (2.3) to get

Au;w—u) + J glwldx — J gluldx > L(w — ),
Q o

which is (2.1) (ii).
The proof of the theorem is ended.
At this point we recall that problem (2.1) is equivalent to (1.17), that is,

(i) ueVi,
(Bo13) { (ii) F(u) i inf_ ),
where
(2.14) ‘ F(v) = L A(v; v) + j(v) — L(v).

2
Now, since a continuous and convex function is the upper envelope

of all affine functions lying bellow it, we can represent j as

(2.15) j(v) = sup (g, v), veVi,

qen

in view of

J qudx < f lg| [v]dx < j g|vldx.
Q Q Q

Formulas (2.13)-(2.15) suggest us to introduce a Lagrangian function
1
(2.16) ZL(v, q) = 5 A(v; v) + (g, v) — L(v),

defined on V} x A (A = closed, bounded and convex in L*Q)). In this
situation problem (2.13) is equivalent to

{ (i) ueV;,
(il) F(u) = inf sup ZL(v,q).

1
veV,

(2.17)
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We can say more about the characterization of the solution u in terms
of Z(v,q) :(u, p), where p is the multiplier of theorem 2.1, is a saddle point
of L(v,q). In fact we shall prove now the following

Theorem 2.2. The solution u of (2.1) is characterized by

(2.18) Fu) = inf sup Z(v,q) = sup inf ZL(v,q).

veVy gen qen veV}

Proof. The first relation is already clear, and since we have in general
sup inf < inf sup,

(2.19) _ sup inf Z(v,q) < F(u).

geA veV)

The claim is: equality holds. For this we calculate explicitly inf #(v, q),

veV,
which is reached at v(gq), the solution of
(i) vigeV,,
2.20 :
220 { (i) A(v(g);w) — L(w) + (W) =0, ¥ weV,.
The last equation implies Z(v(g),q) = — %A(v(q);v(q)), and then

sup inf #(v,q) = sup {—%A(v(q);v(q))}'

qgeA veV, geA

Now if we take ¢ = pe A, a multiplier from theorem 2.1, and v(p) = u,
we have

Fu) = — %A(u;u) < sup inf Z(v,q),

qeA ve V)

which together with (2.19) proves the theorem.

Those two thorems put us in position to define the algorithm for the
computation of the solution of problem (1.17) or (2.1). We are in the
general framework considered by Glowinski, Lions and Trémoliéres in [1]
(Chapter 2, section 4) for the searching of saddle points of functions of the
type Z(v, q), satisfying

(2.21) P, q) < Lu,p) < L, p), VoeV,, Y qgeA.

In this situation we define the following procedure:
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(i) initialize with p°eA; p'e A, | > 0, known;
(2.22) (i) minimize Z{v,p') in V, to obtain u'e V};
L1

(i) p'*' =P, + pu)

Here P, is the projector operator from L*(Q) onto A and p, is a parameter
to be conveniently chosen for convergence.
We must remark that:

1 — Problem (2.22) (ii) is equivalent to solve the Neumann problem
() {] Vl.
5 i) veVy;
(222 { (i) A@w';v) = L(v) — (', v), VveVl.

2 — The projection operator P, is given by the explicit formula

+(2.23) Po(x) = g L pag)

sup {g(x); [v(x)[}

3) = After theorem 4.1 of [1], procedure (2.:22) is convergent, in the sense
that u' — u strongly in V} as | - co. For this we have to take p, in between
two bounds defined in the proof of this result.

4 — The sequence {p'} may have more than one limit point, and each of
them, together with u, is a saddle point of $(v q) on V} x A.

We end this section with the final version of the complete algorithm:

(4) UreV,, n=0,1,..,N;

(B)-U? =Ul =03

(C) for n=1,2,...,N—1, 6,U"x) = u,(n;x)e V} (I sufficiently
large) is obtained by the convergent iterative procedure
(C-1) p)eA given, p; known, [ =0, 1, ...,
(C-2) Aluyn;-);v,) = Lv,) — (ppv,),  Vu,eVy,

2.24) <

; (x) + pul(n;x))
C-3 I+ 1 X) = X (pn(x) 1*a\""> ,
(G 270 = 00 10,001 709 + pasln: 0]

=005 5F
where g,(x) = cH(x + U"(x) — 1) (x + U"(x) — 1);
(D) U"*Y(x) = U Y(x) + 2kd,U"(x), n=12..,N=1




50 M. A. Raupp, R. A. Feijéoo and C.‘A. de Moura

3. Stability of the -evolutionary scheme.

In this section we establish some stability properties of scheme (1.13)-
(1.16). We shall have to impose a stability condition for k in terms of the
stability function S(h) associated with the space H'(Q) and L*(Q) (see [3]).

Theorem 3.1. If k and h satisfy

3.1) K2S(hY < (a + k)Y,
then

(32) 16,U, Lo miaay S constant,
(33) Uy Loy S constant,
(3.4) |5tUh’k’L2(O,T;H‘(Q)) < constant,

where the constants depend only on the data, but not on T, which can be
even T = + oo. :

Proof. We take V = 0 in (1.9) and multiply by (— 1). Since J(U";4,U") >0,
we have

1 2 n—1|2 n n n n
55 (U7} = 0,U" [} + a(U™ 8,07 + b@,U™ 8,7 <

(3.5)
< (f,8,U" + F,5,U"0),

where [o], = /v, 1)

.~ By the Cauchy-Schwarz inequality and Sobolev’s embedding theorem
we can bound the right hand side of (3.5) by (|f,|, + |F,)|6,U"|,- Now,

a(U"; Un+1 s e Un-—l) e %[a(U'ﬁl; Un+1) y o a(Un—l; Un—l)] _

__é_[a(Un+1 Ay U", Un+1 oo Un) o a(Un I Un—l; = Un—.l)]’
so that if we multiply (3.5) by 2k and sum from 1 to j, we get

|6,U°]5 + %a(Uj“; Uitly + %a(U"; U’y — %a(Uf“ — Ui, Uit — U9+
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Jj J ;
+ 2k Y b(6,U";6,U" < Y k(S + |Fn|)|5tU"’1.
n=1 n=1
or

; C | i \
|6IU1|(2) + a(U’; UY) + 2 Z kb(5,U";5tU") < — Ui Ut
=1

(36} j j }
+e ) KO UL+ Cl) X k(ff5 + I
n=1 n=1

T L”) +_

where ¢ is any positive number to be chosen conveniently.

We have the following norm equivalences:

1
PR a(u;u) < |u]} < 2max(a;k,)a(u; u),

mb(u; u) < |u]} < 2max (b;k,)b(u; u).

Hence, the first term in the right of inequality (3.6) is estimated as

7

—a(U%; Uit — UY) < 5 a

A

1 Tl 1 )
~2—a(U1; Ud) + Tkz(a + k) |o,U <

IA

—%a(U"; U’y + %(a +ky) K2S(h)* |0,U73.

If we choose ¢ carefully, we obtain from (3.6):

1 . I
[1 -5+ kl)kZS(h)z} lo,UI2 + ;—a(U’; U) + %

< constant i'k(]fnﬁ) + |F. P
n=1

This inequality, together with (3.1), implies

(UJ; UY) + %kz a(0,U?; 0,U) <

Y Ko,UE <
=7

51
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i
10,U7]2 + a(U7; U%) + Y k|6,U"|} < constant,
n=1

that is (3:2), (3,3) and (3.4).
Theorem 3.2. [f k and h satisfy (3.1) then

(3.7 |o2U constant,

i L®(0,T;L(Q))
<
(3.8) |2, Uh,le ooy S constant,

(3.9 |2U < constant,

"”‘ILZ (0,T;H! (@)
where the constants depend on the data, including T.
Proof. We write (1.9) at the levels n and n + 1:

(Q2U" V — 6,U™ + a(U™; ¥V —6,U" + b,U V —6,U" + J(U™; V) —
(3.10)

= J{U"8,UM = (f,, V —o,U") + F,[V(0) —6,U"0)],
(82tU"“, ) 5tU"+1) 1 a(U"“; V—(StUn+1) o

(3.11)  +b(, ULV —5,U Y + JUL V) — J(U Y 6,U Y >

2 (fregs V= 8,U"Y) + F,,,[V(O) - 5,U" (0]

Now we take V = 5,U"“ in (3.10), ¥ =46,U" in (3.11) and add to get
(AUt —2Um, 6, U — .UM + a(U"*! — U™ 8,U" ! — 6,U™) +
+ b, Ut — 6, U6, U —8,U" < (f,,q — f,, 6,U"" 1 —8,U%) +
(3.12)
+(F,,, — F)(6,U""(0) — 6,U0)) + J(U"; 6,U"* ") — J(U"; 6,U") +

P J(U"+1;5tU") i9) J(U"+1;5’U"+1).

But

(e BN 0 n—1 k
51Un+1 _ 5tUn = 6tU 3 tU —

(@20t + 82U,

N|
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so that if we multiply (3.12) by —i— We obtain:

B2Um12 — [2U2 + a(8,Um; Q,Ut — o,UnY) +

+ 2% b 2U™ ! 4+ 02U 92Ut + P2U” .
2 : 2 <
27mm+1 277n ~27n+1 277n
< oo frl, | FUTLA BNy | BU (0)+6tU(0)‘+
2 i ]
2 5 Un 5 n+1 5 n
7 Q{g(x, )[6, U™ = [o,U"[] +
(3.13) +g(x; UM Y[|8,U" — [8,U*1[]} dx,

where g is defined after the notation introduced in section 1 as
gx;A) =cH(x+A-1)(x+1-1).

The last term in the right of (3.13) can be estimated as follows:
2
TL {gCe; UN[|o,U" | = [0,U"]] + g(x; U H[|8,U"| — [8,U" " ![1} dx =

-5 f [gx: U") = gle; U D] [|8,U777] — [8,U" ] dx <
Q

U 4 U

< %lU"” — U, |8,Un* = 8,U"|, = 2k |0,U" >

lo

0

Hence if we put this result into (3.13) and add from 1 to j — 1, taking into
consideration Sobolev’s embedding theorem,

i—-1
|2UI — |02U + Y a(, U™ 0,U ! —o,U"Y) +
n=1
J=1 = "
(14)  + 2 Y kb@3U"TYVE2U ) < cle) Y. K[|o /"] + |0, F] +
n=1 ; n=1

J=: J=1
+ (4 +20)emax (b;ky) Y kb@U V22U + o) Y, K|o,U",
1

n=1 n=

where 92U"*'/? = 1/2(02U"*! + 0%U") and & > 0 is any number.
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By (3.2) and a proper choice of ¢ we have

j =1

J
207 + Y a(@,U";0,U"! — 9,U" 1) +

n=1
Ji=1
(3.15) 33 k@RS Zatyrriizy o
n=1
of OF ,
= <—ar T Dbk C) + 30,

Now we focus our attention on the second term in the left hand side
of (3.15). We have the splitting

a(d,U"; 8,U — U 1) = %[a(@tU"“; QU™ Y) — a(d,U""1;0,Um 1] —

1 n n n n n n— n s
= 5 [a@ U™ —3,Un 0,U" ! — .U — a(d,U" — 8,U"*; 9,U" — 3,U" Y],

Hence if we sum and consider (1.7) and (1.8):
=il '
Y, a@UnoUurtt —o, Ut =

n=1

= 5 [0,V 0,U") + a@,U7*;8,U7" ") — a(d,U’ — 8,U~; 6,U7 - 0,U'~ 1] =

= a(a,Uf—l;ath—l) + a(0,U’ 1, o,U —o,Ui™).
Moreover, the second term can be bounded as

la(@,U71;0,U7 — 0,U"™Y)| = |ka(d,U’1; 82U <

IA

1 : . ’ .
?a(atU’_lgatU’_l) + %kza(aztU’;éztU’) <

IA

1 - at 1 :
5 a@Um .U + 7]62,U1|z,

where we made use of the stability condition (3.1).
Carrying this information into (3.15) we reach the following inequality:
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i|aZUf|2 + Lagurta vty +
listt=alo ) ao, b )

j—-1
+ Y kB@UT 22U 12) < |2U'f + const,

n=1

so that to complete the proof of the present theorem we must bound [02U*|,
in terms of the data of the problem.

For this we write inequality (1.9) for n = 1, considering the initial
conditions: ,

@2UL, V = 8,UY) + b,U'; V —8,U" = (f,, V — 8,UY).

Then we take V = 0,U° =0 and observe that

V—6U'=9,U°-6U' = — —’;—aiUl.
e ! : 2
We shall get, multiplying the inequality by — T

U + 2 bEUNSUY < o (A1 + [2UNE + F,P + U,

and this implies, by using the stability condition, that

03U o < |Ailo + IFs

)

ending the demonstration of the theorem.

4. Convergence analysis.

In this section we shall go through the convergence analysis of the
algorithm, establishing the adequate setting for the limit process. The
following theorem summarizes the question.

Theorem 4.1. Let u the exact solution of the pile driver problem with proper-
ties specified in theorem 1.1. Let also U, be its approximation calculated
through algorithm (2.24). Then, if h and k go to zero satisfying the stability
condition (3.1) and F(k) = 0, we have that

4.1) U,, — u strongly in L*Q,),
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(4.2) G, = —%'[L strongly in L*(Q,),
2 0%u .12 1
(4.3) Uy, = e weakly in L0, T; H'(Q)),

where Qp = Q x (0, T).

Proof. Taking a finite T > 0, theorems 3.1 and 3.2 say that the sequences
{Uys)> {0,U,,} and {03U, } remain bounded in L*(0, T;H'(Q). Hence
we can take sub-sequences such that

(i) U,, — U weakly in L*0, T; H(Q)),

(44) )y o0, — %]— weakly in L*(0, T; HY(Q)),

02U
(i) 0U,, —

weakly in L0, T; HY(Q)).

0 0? :
The convergences 0, — a0 and 0% — e result from the relations

/B
OU, o 0> = — KU, ,, 0,0 = —j U, 0, dt,
0

T

<€21‘Uh.k*/¢> = <Uh,k’ 621¢> = J Uh,lc 82:¢ dr,

0
valid for any ¢ e 2(0, T), k sufficiently small, and the fact that
a9 LoD
0 — A strongly in L*(0, T'; R),
2

¢
i ot?

strongly in L?(0, T; R),

together with (4.4) (i).

Here we understand 2(0, T') as the space of test-functions for vector-
valued distributions on (0, T).

Now we apply Frechet-Kolmogorov’'s Theorem on compactness in

LP?, and Tychonov’s Theorem on product of compact spaces to conclude
that we have
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(i) U,, ~— U strongly in L*(Q,),

(4.5) oU
(i) B, i strongly in L*(Q,),

where we are again taking sub-sequences.

Our ohjective is to show that Ue L*Q,) is the solution of the conti-
nuous problem, that is, U = u. This would imply our theorem by (4.5) (i),
(4.5) (ii) and (4.4) (iii).

Let us take a test function ve L?0, T;HYQ)) and approximations
V"eV; such that V" — u(-,t,) strongly in H 1(Q). We have, in the notation
of the Introduction,

(4.6) V,x — v strongly in L*(0, T; H'(Q)).
Well, if we take V = V" in (1.9), multiply by k and sum from 1 to
N — 1, we get

Ne= 1. N-1
KO2U" Vr=8,U" + ¥ ka(U™ V" —8,Um +
=1 =

n n

N-1 N—=1

+ kb@ U V" —=3,U" + Y kJU" V") —
n=1 n=1
N

= 1. N=1 7
- kJU™8,UM = Y k(f,, V"=98U" +
=1 n=1

n

s Nf k F (V"(0) — 6,U"0)], ¥ v € L0, T; H\(Q)).

n=1

Now,

I

T Nl N =L T:
f (2U, o Vi — 0,U, ) dt = zl Zl @2U", vm — 5,Um) L 007 dt =
0 n= m=
N—=1 5
Y k@2U", v —8,Um,

n=1

a3 N=1
J AU, Vey—8U, 0 dt = Y ka(U"; V" —3,U",
I =1

0 n=

0 n

T N-1
J BB,U, 4 Vix — 0,U, Jdt = 3. kb(@,U"; V" —5,U",
=
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rr N-1
JWU, sV, )dt = Y RISV +alk),
n=1

Y

rT N-1
(fk’ Vh,k i ‘stUh,k) dt = Z k(f;n hE = 5rU")’
R0 n=1
rT N-1
k[ k(O 5,Uh,k(0)]dt = Z k Fn[V"(O) — 5tU"(O)],
JO n=1
where -

i, ) = Z £,(x) 6x(0),

F () = Z F, 6(2),
and, as k —> 0,

(4.8)

i » f strongly in L*0, T; L3(Q)),
F, »> F strongly in L*(0, T; R).

Hence inequality (4.7) can be written as

~T rT
(aZU,,k, Ve —0,U, Jdr + a(Uy s Viw — 0,U, Dt +
B, JO
~T T
- b(5 Uhk,th 5,Uh’k)dt + J(Uhk,th)dt —
0 Jo
(4.9) .
rT °T
— J(Uh,k; 5tUh,k) dt + o (k) > e Vh’k - 5,Uh,k) dt +
0 B 0

T
+ | FV.0-06U,,0]d, VuvelLX0,T;HQ).

JO

We have now that

. T » ; ig azUV
(4.10) f (03U, , V, ) dt - j <—2— v>dt,
: & i o \ Ot
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by (4.4)(iii) and (4.6);

4.11) ra(u v Vi dt - jTa(U;u)d'i,
0 0

by (4.4)(i) and (4.6);

(4.12) JTb(cStUhk;th)dt - f%(%ﬂ; v)dt,
0 ’ ’ 0 t

by (4.4)(ii) and (4.6);
T T

(4.13) f JWU, 5V, ) dt - J J(U; v dt,
0 0

y (4.5) (1) and (4.6);

(4.14) fTJ(Uh’k;étUh,k)dt it JTJ<U;60—?> dt,
0

0

by (4.5);

T (T ou
(4.15) f Vs At ) dt — f <f,v T >dt,
0

0

by (4.5)(ii), (4.6) and (4.8);

(4.16) JT F [V, 0 —6,U, (0] dt — f F(t)[u(O ) — 6 (0 t):,
0

by (4.4) (ii), (4.6), (4.8) and the trace theorem in H(Q).

On the other hand,

T T T
J (52tUh’k, o U, )dt + J‘ aU,,;0,U, )dt + f b(,U,,;0,U, ) dt =
0 0

0
= 2 e 1 N-1 ¥ )
—2— Z [l@tU"L) i |6tU'l 1lo] + 7 ; a(U"; U e 1) +

1

18
+f b(6,U,:8,U,,0) di = latUN‘llz+%a(UN;UN)+7ka(UN;6tUN)+
0
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=
S } b(0,U, s 6,U, ) dt,

0

so that if we pass to the limit k — 0, we get

) ) T 5 T T

lim 1nf{j (07U, 6,U, at + J a(U, ,;6,U, Jdt + J b(,U,, ;0,U, k)dt} >
0 0 i )

k—0 0
1 2 T
+ 5 a(U(T); U(T)) + Jr b<a—U' a—U> dt,
0

2

ou

(4.17) > &
ot

(T)

o ot 7 ot

where we used the weak lower semi-continuity property of the norm in a

Banach space and the fact that a(UY;8,U") is bounded independently of
U" or k.

Hence, writing (4.9) in the form

rT T
] (3U, 0V, dt + f i Pl M J b(o,U, i V,, . dt +
J 0
~T rT
+ i JU,, 3V de — Jo Uy 0Uy dt + o (k) > f (foo Vi — U dt +

T ) T T
+ F[V,0) —46.U, (0)]dt + J (@3 Uy 0,U, Jdt + f aU, .;0,U, Jdt +

JO 0 0
rT
+ | BOU,,;8U, )dt,  Vve L0, T; HYQ)),
JO

passing to the limit k— 0 and considering the results (4.10)-(4.17), we get

qr T
< preal )dt—kL a(U;v)dt-i—f b<i‘§]; v>dt+fTJ(U;v)dt_
0 = 0
T ou T ou
)dz > L <f,v — F) dt + L F(t)[u(o, t) — W(O’ l):ldt-i-

2o T (90U oU
+ —a(U(T); U(T ot T
) ()HLb(at’ar)dt’

Yve L*0, T; H\(Q)),

— ilim

* ot

that is
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Fefit 020 oU ot T U  aU
L {<Tz2 ’”’7> *“(U’”‘W> " b(az L [> -
@418y 4 J(U;v)—J(U; %)}dr >
z ou oU )
B L {(f,v — dt>+F()|:U(0,t)—7(0,t)J}dl

YveL*0, T; H(Q)).

In the proof of theorem 1.1 in [4], it is shown that inequality (4.18) is
equivalent to (1.5), and so the conclusion is U = u, by the uniqueness pro-
perty of the problem.

To conclude, a final remark: (4.4)(i) and (ii) give us also information
on the convergence of the computed strains and stresses of the physical
problem.
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