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On structural stability of pairings of
vector fields and functions

Marcos Antonio Teixeira

Introdution.

1. In this paper we study manifolds on which both a vector field and a
function are defined. The case where there is only a vector field is extensely
studied in the theory of dynamical systems. The motivation for adding to
this structure a functions comes from general system theory: the function
can be considered as a “read out function”.

We consider various definitions of structural stability and investigate
whether they are dense, and if not, there are examples which are structurally
stable at all.

In this work we restrict ourselves to the case of C* two dimensional
orientable compact manifold, without boundary.

We shall refer to a pair (X, f) where X is a vector field and f is a real
function (both defined on the same manifold) as field-function.

2. In Section 1 we give preliminaries, definitions and establish the notation.
The main definition savs tnat two field-functions (X, f) and (Y,g) on a
manifold M are equivalent if there exists a homeomorphism h: M — M,
which is a conjugacy between X and Y, mapping level curves of f in level
curves of g.

In section 2 we characterize the local structural stability and prove
its “genericity”. A singularity of (X, f) is a point p in M which satisfies
X(f)(p) = 0. In this section the generic singularities are studied. It is
convenient to note that if (X, f) has only generic singularities then the set
of all singularities is an imbedded submanifold of M of codimension one;
in general this set is not a submanifold of M.

In Section 3 we show the existence of a structurally stable field-function
on S*. We construct a non trivial example of a structurally stable field-
function (X, f) on S?, where f is the height function and X is a small
pertubation of Grad f.

Section 4 contains some necessary conditions for a field-function to
be structurally stable.

In Secton 5 we investigate the qualitative behavior of a pair of diffeo-
morphisms on an interval. The main result obtained in this section has an
interesting application in Section 6.
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In Section 6 we show that the set of the struturally stable field-functions
is never dense.

Finally in Section 7 we define the concept of weak structural stability
and its “genericity” is shown. This proof is a variation of the one given
for the stability of the Morse Function.

Some results concerning structural stability of vector fields and singu-
larity of functions are assumed.

Is wish to thank F. Takens for being the source of many ideas deve-
loped in this paper. Finally I want to thank the Department of Mathematics
of the University of Groningen for the hospitality they offered me during
the time I prepared this paper.

1. Preliminaries.

Consider M a C* two dimensional orientable compact manifold without
boundary. :

Let X" = X"{M) be the space of the C" vector fields on M with the
C'-topology and F'*! = F'*{(M) be the space of C""* real valued function
with the C"*'-topology. We topologize W = X" x F'"! with the natural
product topology; we shall always assume the r > 1.

We will fix on M a Riemannian metric of class C*.

Definition (1.1). Two field-functions (X, f), (Y,g) in W are said to be
conjugate (or topologically equivalent) if there exists a homeomorphism
h:M — M mapping trajectories of X onto trajectories of Y and level
curves of f onto level curves of g.

Definition (1.2). A field-function (X, f)e W is structurally stable (in W)
if it has a neighborhood B(in W) such that (X, f) is conjugated to every
(Y, g)e B. We will denote by T the subset of W consisting of the structurally
stable (X, f).

Definition (1.3). Let pge M. We say that (X, f)eW at p is equivalent
to (Y,g)e W at q if there exist neighborhoods U of p and V of g, in M,
and a homeomorphism h:U — V which maps trajectories of X, onto
trajectories of Y, and level curves of f onto level curves of g,,. From
this. the Local Structural Stability in W is given in a natural way. Denote
by X' the subset of W consisting of the locally structurally stable (X, f).

Consider (X, f)e W and pe M. The following notation will be used
in the. text: A

i) X(f) (p) is the derivative of f along X at p;
i) L/p) is the level curve of f passing by p:
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iii) y4(p) is the trajectory of X passing by p;
V) @y(x, 1) is the solution of x = X(x) satisfying ¢(x,0) = x; 7,(x) =

= {@y(x, t)/t e R};
v) Df, is the derivative of f at p;

vi) For a subset S of M, 0S is the boundary of S; fis 18 the restriction of
fto S and M — S is the set of points ge M such that q¢S;

vii) If C is an oriented curve in M then (a%)c (resp. [a%]c) is the

open (respec. closed) are of C with extremes a and b, oriented from
a to b.

Definition (1.4). A point pe M is a regular point of (X, f)e W if X(f)(p)#
#0. It X(f)(p) =0 then p is a critical point or a singularity of (X, f).
The critical set of (X, f) (denoted C(X, f)) is the set of the critical points
peM of (X, f).

Definition (1.5). A point pe C(X, f) is said to be a critical point of (X, f)
of type:

. I — if i) X(p)=0; ii) p is a hyperbolic critical- point of X; iii) the
eigenvalues of DX are distinct; iv) p is a regular point of f; v) the eigens-
paces of DX are transversal to L (p) at p.

II — if i) X(p) # 0; ii) p is a non-degenerate critical point of f;
iii) X(X(f) (p) # 0.

III — if i) X(p) # 0; ii) p is a regular point of f; iil) X(X, 1)) (p) # O.

v — if i) X(p) # 0; ii) p is a regular point of f; iii) D (X(f)) # 0;
iv) X(X(f))(p) = 0 but X(X(X(f)) (p) # 0.

We will refer to the critical point of (X, f) of type J as G,-singularity
of X,f), J =1, II, III and IV.

D.efinit.ion (1.6). A poeint pe M is said to be a generic point of (X, f) if
either it is a regular point of (X, f) or it is a G,-singularity of (X, f), J =1,
II, III, and IV.

Remark (1.7). Let p be a non degenerate note of X (this means that
if 4,, A, are the eigenvalues of DX, with X(p) =0, then 1,4, >0 and
A, # A,). We shall refer to a strong trajectory of X at p as that trajectory

of X tangent to the eigenspace of DX, associated to the eigenvalue of larger
absolute value.
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2. Local theory.
We have tne following result:

Theorem 2.

a) If C(X, }) contains only generic critical points (i.e.G,-singularities, -

J = I, II III and IV) then it is a C* imbedded sub-manifold of M o f dimension
one; .

b) (X, f)eX' (locally structurally stable field-function) if and only if
any point of M is a generic point of (X, f);
c) X! is open dense in W.

The proof of Part a) is essentially a consequense of the Implicit
Function Theorem.

Assuming 2.b) is true, then 2.c) follows immediately.

Finally 2.b) is shown by using a direct and tedious calculation.

We now give a list of generic singularities for a field function (X, f);
the broken lines represent the level curves of f, continuous lines the trajec-
tories of X and thick continuous lines represent the critical set of (X, f)):

Figure 2 — Example of a G-singularity.
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Figure 5 — Example of a Gy-singularity.
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Figure 6 — Example of a G y-singularity.

3. Existence of a structurally stable field-function.

Our goal in this section is to find a field-function (X, f) in W which
is structurally stable.

Example (3.1). M = S? (two-dimensional sphere) and F : M — R a C"-Morse
function (Height Function) having exactly two critical points: a sink p,
(south pole) and a source (north pole). The next step is to construct a suitable
C"-vector field X on M.

In order to make the construction of X more amenable we give the
idea of it:

At first, we construct suitable vector fields X, and X, on small
neighborhoods of p, and p, (say in ¥V, and V, respectively). Then we
extend X, and X, (getting X) imposing that field is transversal to the
level curves of f out ¥, U V,; other global additional imposition to X will
be considered too. It is convenient to note that each X, is a small pertuba-
tion of Grad fin V,, i = 1,2.

Assume V, NV, = ¢.

Let (x,y) be a system of coordinates around p, (say on V)) satisfying
x(p,) = ¥py) = 0, fx,)) = (x* + y?)/2.

Consider the following vector field on V,:Y/(x,y) = (x —a,y —b)
where a,b are small positive numbers.

The critical set of (Y}, f) is:

C; = {(x, yyeW i ="a2)? A b/2)? = (a/2)* + (b/2)*}.
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If ge C, is distinct from p, and ¢ =(a, b) then it is a G;-singularity of
(Y5, f).
Let U, be a small neighborhood of ¢ contained in V, and disjoint from

p,; by using a bump function and a elementary technique we get a field
Z, on V, satisfying:

i) Z; is C'-close toY,,

i) 23 =Y eub 'of U

iii) ¢ is a non-degenerate node of Z, such that its strong stable manifold
is tangent to C, at c,

iv) Z,(q) = 0 only if g =c (see fienre N

Figure 7 — The fields Y, and Z,.

We again perturbe Y, around c(say in U,) obtaining a new C'-vector
field X, on V,, such that:

i) X, is C'-close to Y,
i) X, =Y, out of U,
iii)  X,(g) =0 if and only if ¢ = ¢, and q, is a G-singularity of (X, f)
nearby c¢. As ¢, is a non-degenerate node of X, call by S, and R, the
strong trajectories of X, associated to it; we know from 2 that S, n C, = ¢
and R, nC, = b, (we are also calling by C, the critical set of (X, f)).
Impose that b, # p, and b, # u, where u, is the point of C, N L(q,)
different from gq,. ' '

Call by «,(respc. B,) the subregion of V, where X(f,) is negative
(respec. positive).

Fix on C, the counter clockwise. orientation and impose the following
order on it:
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Dby << gy

We use the notations ¢,(q,1) = ¢, and yy (9) = 7,(9)

As the eigenspaces of DX (q,) are transversal to C; and L (q,) at g,
we deduce that:

a) if qe(q[-\bl)C1 then ¢,(q,t)ea, for any t > 0.

b) for each ge(b, ¢,). there is a number t(q) > 0 such that ¢,(q,t)ep,
for any t > ty(q)

From [9] X, can be obtained such that:
iv) there is a point w, E(lhm‘h)cl such that t (w,) = 0; furthermore w,
is a Gy-singularity of (X, f) and it is close to ¢. Observe that L, = L (w,)
bounded a region f, which contains «, and:

if qe(blf\'wl)c1 (respec. qe(wlmql)cl) then there is t,, 0 <t, < ©
(respec. — oo < t, < 0) such that ¢,(q,t))e(®, q,),

(respec. ¢,(q,t)e(b, ;) and ¢,(g,t)ea, only if t€(0,z,) (respec.
te(ty, 0)).
Consider the following points: 4, = y,(p;) N L,, B, =8, nL, and

D, an arbitrary point in (a)lf\'Bl)L1 (see figure 8).

\
\
\
\\B
\ \
\ \\/
\/Q‘E

1

Figure 8 — The vector field X,

By a simmetric procedure we find a vector field X, on V, and obviously,
the following similar objects associated to it: Lo, Cow B, @y, Wos By Dy

Choose an arbitrary point E, e.(DszZ)LZ.
Define a C'-vector field X on S? satisfying:

a) XW1 =X,,
b) X”,2 =X,,
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¢) X y—_w, Uy, Is transversal to L,

d) Each one of the following pairs of points (of M) belongs to the same
trajectory of X: (4,, E,), (B,,D,), (D, B,). This assertion is possible since
they preserve the same order in C,; and C,.

The condition d) implies that there is no connection between C, and
C, by the trajectories of X or level curves of f.

Proposition (3.2). The field-function (X, f) above constructed is structurally
stable in W.
Proof. According to (3.1) it seems clear that for each (X, f) close enough
to (X, /) in W we can find the similar objects p,, V,, C,, §,, W,, i, b, &
to p,, V., C;, q;, W;, u;, by, o, respectively, with i = 1,2. (see example (3.1)).
Our attention has to be fixed on the critical sets of (X, f) and (X, f).
Roughly speaking, if we have already defined homeomorphisms h; : o, — &,
conjugating (Xlai’ i "i) and (X i it 5i), i =12 then we can easily extend
those mappings to one homeomorphism h:M — M conjugating (X, f)
and (X, f); this follows since any trajectory of X or level curve of f passing
by points of @, does not meet a, and similarly to X, f, @,, &,.

Let us now construct the above named homeomorphism h, :a, —d;
(the construction of h, is similar).

It is important to call attention to the following order on'C, (respecting
the pre-fixed orientation):

p, <b, <u, <w, <gq, <p, (and similarly on C)).
= - Y
The curve L (b,) (respc. Ly(b,)) meets C,(respec. C,) at v, €(q, Py,
PPt
(respec. 7, €(q, P,)¢,)
Y
We recall that (X, f) induces a homeomorphism @ = [u, w ] —
Y Y Y
—[u, w], as follows: for each ge[u;, w ], L,(q) meets [w, q,]c,

Y :
at R, and y,(k,) meets [u, w,]. in ® (q); we notice that @(w,) = w,
and © contracts to w,.

Y Y
Define an arbitrary homeomorphism h, :[p, q,]¢, = [4, P, le, satis-
fying h1(p1) = 51,h1(q1) = q1 and h1(U1) = ﬁ’1'
We extend the last homeomorphism to h, : C, — C, as follows:

T y f\ ; 5§ e
i) if ge(p, wu,);, then L (q) meets (¢, p,), in q,; we do hy(f) =4, q

Y
being the point where L(hy(q,)) meets (p, i)z, ; this implies, in particular,
that h,(b,) = b, and h (u,) = 4,.
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ii) using the above defined mapping ® we immediately construct h, on

Y
(“1 ql)cl-

Finally we apply a direct process to get the required homeomorphism
30 s

h

1
This completes the proof.

4. Necessary condition for stability.

In this section we establish a necessary condition for structural
stability in W, The result of this section will not be used in the sequel. The
proofs here, will be omitted since either they come up from known techniques
and results (see [4], [5], [8]) or they are trivial.

We begin by considering the following subsets of C(X, f) for (X, f)e W:

C, = {peC(X, f):p is a Gp-singularity of (X, f)}

C, = {peC(X, f):p is a Gy-singularity of (X, f)}

C, = {peC(X, f):p is a Gy-singularity of (X, f)}

C, = {pe C(X, f): there is a saddle separatrix of X tangent to L, at p}.
C, = {pe C(X, f): there is a strong trajectory of X tangent to L, at P}
Cy, = {peC(X, f): there is a closed trajectory of X tangent to L, at p}.
C, = {peC(X, f): p is a regular point of f, X(p) # 0, f(p) is a critical

value of f}.
Call by C* the union of C, i=1,...,7.

Proposition (4.1). If (X, f) is structurally stable in W, then:

(1) X is structurally stable in X",

(2) f is a Morse Function,

(3) (X, [f)eX,

4) C,nC;=¢ fori#]

(5) Each trajectory of X meets C* at most at one point,

(6) Each level curve of f meets C* at most at one point,

(7) No saddle separatrix of X is a strong trajectory of X,

(8) Let S, be a strong trajectory of X associated to p, and S, be a strong
trajectory of X associated to p,. If p, # p, then S, #S,, |

(9) Each trajectory of X is tangent to one level curve of f at most at one
point.
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5. Pair of real diffeomorphisms.

The result of this section will be used in the sequel.

Let J = [0, 1] be the closed interval contained in the reals with extremes
0 and 1.

We denote by D" the set of pairs ¢ = (¢,. ¢,) such that:

a) ¢,:J —»J is a C'-diffeomorphism (not necessarily onto) i =0, 1,

b) ¢,0) =0 and ¢,(1) = 1: furthermore O (respec. 1) is the unique

fixed point ¢ (respec. ¢,),
¢) ¢ (respec. ¢,) contracts to O (respec. 1).
We topologize D" by the C’-tonology.

Definition (5.1). Two pairs ¢ = (¢, ¢,), ¢ = ($,. $,) in D" are equivalent
(denoted ¢ ~ @) if there exists a homeomorphism h: J —J such that
pooh=hog, and ¢, oh = hod,.

By the relation ~ the structural stability in D" can easily be stablished.

Proposition (5.2). If ¢,(0) < ¢(1) then ¢ = (¢,, ¢,) 15 not structurally
stable in D"

Before the proof of the Proposition (5.2) be given, we need some pre-
liminaries:

Let ¢ = (¢,, ¢,)eD" be given such that ¢,(0) =a, < ¢(1) =b,.
Denote by ¥, ¥, the inverse diffeomorphisms ¢, ¢, respectively obviously
¢, (respec. ¢,) is an expansion in O (respec. 1).

Define a function «:J — J by

o { Yox) for x<a,

Yy(x) for x>a;

It is clear that « is a piecewise C'-diffeomorphism, a, is the unique
discontinuity point of o and o' =oc°......... og has 2" ! discontinuity
points.

Associated with each ¢ = (¢,, ¢,) € D" satisfying ¢,(0) < ¢(1), there
exists the countable set S(¢) of points peJ such that «" is discontinuous
at p for some n > 0.

Lemma (5.3). S(¢) is dense in J.

Proof. Suppose that there exists an open interval contained in J — S(¢):
call by J, the biggest such interval. Note that:

0¢S(¢), 1¢S(¢), a,eS and J0$'¢O(JO)U¢I(JO)
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Moreover, ¢,(J,) U ¢,(J,) still is an open interval contained in J — S;
but this is a contradiction since J,, has been supposed to be the biggest open
interval in J — S. This proves the lemma.

Proof of (52). If ¢ =(¢,, P, is a small perturbation of ¢ = (¢, ¢,)
in D" we have d, = ¢,(0) < §,(1) = b, and consequently there exists the
corresponding set S(¢).

For any conjugacy (if there~exisj[s) h:J — J between ¢ and ¢, necessarily
it satisfies h(a,) = a,, h(b,) = b, and h(S(¢)) = S(¢):

Now, pick a sequence ¢,(¢, . #,,)€ D" converging to ¢ = (¢,, ¢,) in
D" satisfying:

do(x) if x <yYyla,)

(]50’”(36) = : 1
Pol0) + - i Yola)+—-<x

¢, ,(x) = ¢,(x) (see figure 9).

Po.%
A

Figure 9 — The grafic of ¢,.

We can easily deduce that S(¢) = S(¢,) for every n; furthermore if
there exists a conjugation h, between ¢ and ¢, then it must satisfy h,s., =
= identity and h,(¢(1)) = ¢, ,(1). As 1¢S5, these two last conditions are
contradictory; this follows immediately from the density of S in J.
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Remark (5.4). We can say more about the structural stability in D"; i.e.
the following result is true: “¢ = (¢, ¢,) is structurally stable in D" if and
only if ¢,(0) > ¢,(1)”. ’

Sketch of Remark (5.4) ‘s proof: Observe that, when ¢,(0) =b, > ¢ (1) =a,
the iterates

¢0’0¢2’_10 .................. °¢'(])1 °¢1(0)

and

for n, m; =0,1,...,n,... determine a cantor set I < J.

Let ¢ =($,, &,) be a small perturbation of ¢ in D’ with ¢,(0)=5>
> ¢ = a,.

Define an arbitrary homeomorphism h:[a,,b,] - [d,,b,] imposing
that h(a,) = d, and h(b,) = b,.

The next step is to extend h to J in such way that a conjugacy between
¢ and ¢ in D" is obtained. In order, associated with each geJ — I there
is one unique set of non negative integers {n,,...,n} such that

(o Loy 20 °p, ") =q,€(ab,)

with n,>0if i=2,...,n,_,.

We define: h(g) = (¢ o ......... o¢")(h(g,) if qeJ —I and if gel
then h(q) = lim h(q,) where (g;) is a sequence in J — I converging to g.

Obviously h is well defined and it is a conjugation between ¢ and ¢
in D".

6. An example.

In this section we show the non density of X in W.
We begin with:

Example (6.1). Take a C®-Morse Function f:M — R and I = (a,b)
an open interval in f(M) disjoint from the critical values of f. Call by Va
small neighborhood of some point pef ~*(I).

We now define a C"-vector field X on M by requiring:

(1) There are in V a pair y,,7, of stable closed trajectories of X;
those trajectories bound two disjoint (plane) regions in V (see figure 8).
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@ fo=rf,, (tespec. f, = f,) is a Morse Function. Call by M,
(respec. M) the point of maximum of f (respec. /1) such that (M) < f(M,).
For simplicity, impose that ge V and f(M,) < f(M )

(3) The condition (2) implies that M, i =0,1, is a Gy-singularity
of (X, f); we can find imbeddings o, :(—e&¢) — V (i = 0, 1), transversal to
X and L, with «((0) = M, and «,(0) = M,. We impose that fMy)ef(L,)
and f(M,)ef(L,) where L, = o(—¢,¢), i = 0,1 are lines of contact between
X and L,.

We may assume further that p{(M,) # 1 where p; is the C'-Poincaré
map associated to X, y,, L, and M., i =0, 1.

)

» b
f(My)

f(Mg)

Figure 10 — L'he vector field X on /™ '(q, b).

Remark (6.2). The field X above defined could rigorously be cons-
tructed by using a elementary mathematical technique.

For simplicity, consider f(M,) = 0 and f(M ) = 1. Then the Poincaré
mappings above named, determine the element ¢ = (¢, @) € D" (vide 5)
given by:

¢(t) = f(p(x,(t)) where x,(t) = L, nf~'(t), i =0,1 and t€[O0, 1].

Of course, if ¢ is not structurally stable in D" then (X, f) is not structu-
rally stable in W; this follows immediately from the definitions (1.1) and
(5.1).

Under the above considerations, the following result is a corollary of
Proposition (5.2):

Theorem (6.3). X is never dense in W,
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7. The weak structural stability.

The concept of weak structural stability in W is reached from the
following definition:

Definition (7.1). Two field functions (X, f) and (Y.g) (in W) are said
to be weakly conjugate if there is a homeomorphism h : M — M such that:

(1) h carries level curves of f to level curves of g:

(3) for each xe M, (X. /) (at x) is germ equivalent to (Y, g) at h(x)
(up definition (1.3)).
Definition (7.2). Let X be the set of elements (X, f)e W such that:

a) (X, f)eX!

b) if p,q are G, G, or G,,-singularities of (X, f) with p # g, then
f(p) # f(q)

It follows directly from (7.2) that “X* is open and dense in W”.

Lemma (7.3). If (X,, f,)eXZ" then (X, f,) is weakly structurally stable
in W. V

Proof. Because X" is open in W there is a neighborhood U of (X,. f,)
in W such that for each (X,, f)eU and rel =[0,1], (X, f,) = (tX, +
+(1—1) X, tfy +(1=0f)eU AZ"

Now consider the following subsets of M x [:

P = {m1t): X(f)(m) =0},

Q = {(meP:(m1)is a G, G, or G-singularity of (X,, f)}
P, = Cy, x I where C, is the critical set of (X, f,).

Qo = [(Co x {0}) nQ] x L

We know from definition (1.5) that P is a union of a finite number of
smooth curves which are transversal to M x {¢} for each ¢, Q is a union of
a finite number of smooth curves which are transversal to M x {t} for
each r.

It is important to observe that:

Remark (*). for each rel and for each connected component S, of
the critical set (X,, f,), £(S)=[a,b] with a+#b, f~'a) nS,eQ and
f7b) nS,eQ.
Define F: M x I - R x I by F(m,t) = (f(m,1),t) where f(m,?t) = f(m).
It is clear that Q = F(Q) consists of a finite number of smooth curves
joining R x {0} with R x {1} which are transversal to R x {t}. From this,
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one can take a one parameter family of difffomorphisms th t: R-R, tel,

]

satisfying:

th[Q AR x 0)] = 0 Nn(R x t) and such that (u, t)—»(hlR t(u), 1) is a diffeo-
mo’rphism.

The remark (*) and continuity arguments show that
hPt[ﬁ A(R x {0)] = P n(R x't) where P = F(P).

We may of course replace h_ by identity.

Before we construct a suitablé diffeomorphism a«:M xI - M x 1, it
is convenient to note that critical set of (X,, f,) is C'-close (as submanifold
of M) to the critical set of (X, f,) for each tel.

We start defining o on Q:

We know that, it S is any connected component of Q and (m,f)eS
then a(m,t) = (b,t) where b = [f~'(f(m),0)] N S.

Let A be any component of P; assume on A n[M x t], for example
the counter clockwise orientation for each tel. As A contains a finite
(non zero) number of components of Q, one may, by continuity, consider
them oriented as follows S, S,,...,S,.

If p=(m,,t,)e A—Q then there exists i, such that S, <p <S§, ;.
The set B,[f, ' (f,,(P)].n(S;S;,,) consists of a finite union of points,
oriented as follows

Di>D;s ~--,Pj =D -5 D,

We do a(p) = (g, t,) where g is the j-th term of the sequence ¢, ..., g,
where

C*:

7 [fc;l(ftl(p))] N (Sia Si+ 1)'

I

i=1

Now, as P is a compact set in M x I, we use standard techniques to
get o satisfying the following conditions: i) a(m, t) = (a(m), ?), ii) & is C"-close
to identity, iii) by« p-y = identity where U is a small neighborhood of

pin M x I, iv) 6 (f; o a™ ') (am, 1)) = O for (m,t)e P.

We are still denotlng by f, the function (f,ca™").

Next we want to find a one parameter family of diffefomorphism
hy, M — M, tel, such that foh, , = f, and (m,1)— (hy (m)1) is a
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diffeomorphism. We shall construct h,,, by integrating on M x I a vector

' 0 1 3
field on the form — + s where s is a vector field on M x I such that

Ot
for each (m,t)e M x I the projection of (m,t) on I is zero and s(g) = 0 for
ge P. 1t is clear that s must satisfy the equation s(f) = — %—{ For sim-
.. . . af
plicity, we use the following notation g = — 7

Let’s go to construct s.

Around each point in M X I, choose an open neighborhood U, as
follows:

a) if p¢ K, choose U, so smalt that X,(f)(q) # 0 for every qeU,.
Choose a vector field r” on U, such that r”(f) # 0 on U, and the projection
to I in zero, _

b) If p=(m,ty)eK and it is a G, Gy, or G-singularity of (Xto, £
then one can choose coordinates (x,, x,) on a small neighborhood V' of m
in M and ¢ >0 such that f(x,,x,,t) = C,(t)x, + C,(t) x, + h(t) with
(C,(®)* + (C5(t)* #0 and —e& <t <e¢; this follows essentialy from the
fact that p is a regular point of p.

¢) When p = (m,t;)e K and it is a G-singularity of (X, f,) we need
the following auxiliar computation:

(1) Let xe M be a G-singularity of (X, f)e W. From 1 we can get
coordinates (x,, x,) around x such that x,(x) = x,(x) =0 and f(x,, x,)
= ¢,x? + g,x} with ¢ = +1; furthermore C(X, f) can be described by
a C'-function x, = «(x,) such that «'(0) = — X'(0)/X 2(0) which is different
from + 1. The function F(x,) = f(x,, a(x,)) satisfies F'(0). = 0 and F"(0) # 0.

(2) For the same x above we know that X is transversal to C(X, f)
on a nelghborhood ‘of x in M. Consider C(X f) parametrized by u (with

ux) = 0).

For ¢ > 0 and small enough, consider the following family of functions:

fui(—&8 >R given by f (1) = f(dylu 7).

From the definition of G-singularity we get f(0) = 0 and f7(0) # O
Hence 7 can be choosen such that f (1) = er? with ¢ = =+ 1; this implies that
f(u,t) = b(u) + er>. But the above computation shows that p can be
choosen such that f(u,t) = nu® + et® with n = + 1. In fact, u and 7 are
normal coordinates around x in M satisfying (u,7)e K only if t = 0.

Returning to casc ~), wec are uow able to choose a neighborhood U
ofp in M x I and coordinates (1, 7) on U, n (M X 1) such that f(u,t,t) =
nu® + et? + h(t) with n = +1, e = +1 and (0, 0,t0)—p

p
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Let U,,...,U, be a finite subcovering of {U,} .« corresponding
t0 Py, ... Dy Let oy pyy be a partition of unity subordinate to that
covering. Choose vector fields s; on M x I(1 <i < m) as follows:

case a)
s(q) = 9@p " @)/ (f) (@) on U,
i 0 off U,
case b)
c, 2+, \goji€, +C)  on U
1 ox, 2 ax, gpi\t-yq 2 n u;
s; =
0 off U,
case ()

as pi(g|K) = 0 then p,g = tG(p,1,1t) for selected function G defined on U,

Let =1/, eh% on U, and extend it to be zero off U,

Finally the required vector field is given by
S = 80 el adi v ot
It is now easy to prove the following result:

Theorem (7.4). The set of weakly structurally stable field functions (X, f)
in W coincides with Z".
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