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Estimation of the spectrum and of the covariance
function of a dyadic-stationary series

P. A. Morettin
1. Introduction.

Let {y,(x), neN, 0<x<1} be the orthonormal system of Walsh
functions in the sense of Fine (see [1] and [3]), where N = {0,1,2,...}.
Extend these functions periodically to the nonnegative real numbers. Let
{X(t), te N} be a real-valued, weakly dyadic-stationary process with

(L.1) E[X()] = ¢y,

(1.2) By (1) = Cov{X(t + u), X(1)}

t, ue N. Here + denotes addition modulo 2 defined for any two real
numbers in terms of their dyadic expaisions (see [5], for example).

If we assume

(1.3) i 1B, /)| < o0,

u=0

we then define the Walsh spectrum of X(t) as
(1.4) fxx(A) =Y By (), 0<i<ox.
u=0

The relation (1.4) may be inverted to give
1
(15) Bxx(u) = f wu(l)fxx(;“)d/L
0

1
and in particular B, ,(0) = Var[ X(1)] = f S xx(A) dA.
0

In [4] we discussed the problem of estimating f ,,(4) through the Walsh
periodogram and the smoothed periodogram. Here we consider another
class of estimates and derive some of their properties. The smoothed
periodogram weights all periodogram ordinates equally. The estimates
considered here allows differential weighting. We also consider the pro-
blem of estimating the dyadic auto-covariance function By, (u).
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For details on Walsh functions, dyadic-stationary processes and related
topics see [3], [6] and [7]. We shall consider the discrete case here. The
continuous case is handled similarly.

In the next section we introduce the finite Walsh transform and the
periodogram, and we state for reference the discrete versions of the results
in [4]. We add a result (Theorem 2.3) which will be used latter.

2. The finite Walsh transform and the periodogram.

We have values X(0), X(1), ..., X(T — 1) from the series {X(t),teN}
and we consider the finite Walsh transform

(2.1) i)=Y XOud,  0<i<o,
t=0

where we suppose that T = 2", which is suitable for computational purposes,
in order -to use a _fast-Walsh-transform algorithm and also for theoretical
reasons, since simple results are available when Tis a power of 2. See (2.5)
below, for example. If T # 2" consider S as the next power of 2 and
complete with zeros.

It is known (see [3]) that d{" (1) is asymptotically normal with mean
zero and variance Tf ,,(4), under certain regularity conditions. This
suggests that f,,(4) may be estimated by the (Walsh) periodogram

(2.2) IDA) = T dP W] =T [Til X(t)lpt(l)jlz, 0<4i< o0
t=0

The following theorems are known (cf. [4]).

Theorem 2.1. If

o0

(2.3) Y u[Byyu)| < oo
u=0
then
(2.4) E[I} (V] = fxx(d) + T

That is, (2.2) is an asymptotically unbiased estimate of fy,(4)
Let

Yot (on 5e[0,277) (mod 1)
23 D@ =D,m= ¥ ¥ —{ 0, otherwise

be the Dirichlet Kernel.
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Theorem 2.2. Let 1{)(4) be given by (2.2) and (2.3) be satisfied. Then
26)  Coo{I® (M), I ) = 2| Btits

3 ovy XX ), XX(H)’ = 2z _T— fXX(/ +O(T )

In particular if 4 = p, the theorem gives
(2.7) Var[ I} ()] = 2175(A) + O(T 1),
which shows that the periodogram is not a consistent estimate of the

spectrum.. A way to improve the stability of (2.2) is to consider the smoothed
periodogram (cf. [4]). Let Z be a standard normal variable.

Corollary 1. Under the conditions of the theorem, I\}) () is an as}mplotl( ally
fyx (AZ* variable. Moreover, ‘1'7'(/ ) are asunptotl(allv indepedendent.

The following result is useful.

Theorem 2.3. [f E[X(t)] = ¢ and (1.3) holds, then
1

(28) sR IS W= T j [D (4 + a)]? feladdo+ T [DUA)]? 2.
0

Proof. We have

Tr-1 T-1

29)  E[18A)] = *‘Z lem By u+0v)+ T [DT(H] 2.

Using (1.5), we find that (2.9) is equal to

1 T-1 2
o J[ NIV cx)} fxx(@da+ T '[DUA)]? ¢}
0 u=0

and (2.8) follows from (2.5).

In particular, if A1¢[0,27") (mod 1) or if ¢y =0, (2.8) shows that
E[I{}(A)] - fyx(4) as T — co.

3. A class of estimates.

First, let the Walsh functions be extended to the whole real line in
the usual manner (see [2]). Let W, be weights such that ) w, =1,

j=-m

and let s(T) be an integer such that s(T)/T ~ A, as T — 0.
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We define the estimate

S(T) +j
(3.1) x (4 ,_Z_,.. W, I8 [ T ]
With
(3.2) Ad) = Y W, T D]
j=—m

we have the following result.

Theorem 3.1. Under the conditions of Theorems 2.1 and 2.3,

1

(3.3) E[fm (D)= J‘ T |: S(YT) + “:| fxx(“
0

and

(3.4) E[fD(A) = fyx(A) + 0(T™Y.

Proof. This is an immediate consequence of (3.1), (3.2) and Theorems 2.3
and 2.1.

From Theorem 2.2 we have

Theorem 3.2. Under the conditions of Theorem 2.2, the variance of f\}) () is

(3.5) Var[ £ (1] = 22 (4) i W2+ O(T ™).

j==m

The asymptotic distribution of £/} (1)) is obtained directly from Coro-
llary 1.

Theorem 3.3. The estimate (3.1) is an asymptotically fy(2) - Z W, Z:

variable. The variables Zj (chi-squared variables with 1 degree offreedom)
are independent.

It may be difficult to use this approximating distribution in practice.
A standard procedure is to-approximate the distribution of such a variate
by a multiple 6x> of a chi-squared variable, whose mean and degrees of
freedom are determined by equating first-and second-order moments. It
follows that
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m
pe: . 72 pid
v—l/lz W2 and 0 = 1)v.
j=-m

4. Estimation of the dyadic auto-covariance function.

Let {X(t), te N} be a dyadic-stationary series with mean 0 and dyadic
auto-covariance funtion given by (1.2). As an estimate of By,(u) we consider

4.1) Blw).= T by X®)X(t+u), ueN.

0<t,t+u<T-1

We consider the integral

Jol IR @y, (@) da = T™1 Ll fids" (06)]2%(50 do =
4.2) 1 [UY Y x0x6)w 0w @ da.
0 t=0 s=0

1
But J Y ()doa = 0, unless u = 0, hence (4.2) is equal to

0

: Y XOX(t +u).

o<t t+u<T-1

Hence,
(4.3) (T) )= Ll g} (o, (o) dor.

Theorem 4.1. [f (2.3) is satisfied, we have

(4.4) E[BE) )] = By, () + O(T 1),

45) Cov{B) (u,), BE) (u,)} = 2T Ll Vo, +u, () (0ot + O(T ™).

Proof. (4.4) 1s a consequence of (2.4). Now

Cov{B{) (u,), B&) (u,)} —J J G (@, (B)Cov{I$ (), I (B)} dodp.



88 P. A. Morettin

By Theorem 2.2, the right-hand side becomes

1
-2 f V@) 2 @)l (@) j U@+ BDXa + BB] + (T
0
1 1
5 e L Voot (@ fEy(a)o j Vo (BIDXBMB + AT Y).

& 1 1
Here, we have used the invariance relation j f(a + B)dp =j f(Bydp.
0 0

By (2.5 we have finally that the covariance in question is

1 b =k
o= j n/zm;u2<a>.f;x<a)da[rz f ) wuz(ﬁ)dﬁ] + oY
0 0

and (4.5) is proved.
In particular, (4.5) gives

(4.6) Var[B{) (u)] = 2T Ll f,gx(a)dél + (T Y).
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