The Early Development of Algebraic Topology

SOLOMON LEFSCHETZ

Introduction

This is not the first time, in recent years, that I find myself engaged in writing
about “early developments.” The motive power has come from the same direction
— from my friend Mauricio Peixoto. At first it seemed like a good idea but the more
I plunged into it the less it seemed like an ideal occupation for me. For one thing
I did not feel particularly possessed with the necessary historical sense. Besides
when and where did early algebraic topology start? I decided that the starting points
could be placed with Euler and the characteristic, perhaps also with Mobius and
his strip, more truly with Riemann and his surface. As far as the end point for me,
the mid thirties when the algebro-topological population began to augment most
appreciably, and I began to feel more and more swamped by brilliant new knowledge.
It was altogether indicated, at least for myself, as an apropriate “last station” and
so I more or less decided. Even so I had to leave out many first rate contributions,
mainly because they concerned me but little, and it was too late to learn!

The lack of historical sense has been the cause of my mentioning but few names,
and even fewer exact dates. For these I must refer to the extensive bibliographies
in two of my productions:

Topology, Am. Math. Soc. Colloquium publications vol. 12, 1930 New York
reproduced by Chelsea, New York. Hereafter referred to as LT.

Algebraic Topology, same Coll. Publ,, vol. 27, 1942 mostly complementary to
the preceding. Hereafter referred to as LAT.

I. EARLY HISTORY

The beginnings of algebraic topology share this with the beginnings of any
important chapter of mathematics that its roots are more or less obscure. Those
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of algebraic topology are tound mostly in geometry aud did not contain the promise
of a major field. Since my proposed excursion has nothing archeological and hardly
any historical aspect, I will concentrate on the following major points. First Euler’s
characteristic, then the Mobius strip and its signiticance for orientability. I will
conclude (for special reasons) with a section on knots. ;

1. Euler’s characteristic.

This is certainly one of the earliest manifestations of algebraic topology. Let
a convex polyhedron IT in a 3-space have F faces, E edges and V vertices. Euler’s
formula asserts that always

F-E+ V=2 (1.1)

The expression at the left is the characteristic y (IT) of TI.

Let 0 be an interior point of the polyhedron and S a sphere of center 0. Project
IT onto S from 0. This results in a partition of the sphere into F polygonal regions,
with E sides and V vertices and (1.1) still holds. It is interesting however to observe
that it is known to hold for any partition of a sphere into a finite number of polygonal
regions. In other words it represents actually a property of the sphere S itself: topo-
logical property. In fact it holds as well for example for an ellipsoid, or for any

“like” figure.

Fig. 1

In order to calculate this fixed value of y (IT) one may therefore take any simple
decomposition, for example: a great circle made into a polygon with one vertex
and 1 arc plus the two hemispheres. Thus there are one vertex, one edge and two
faces, so that y (IT) = 2. Euler’s proof was & la old geometry, but his proof is easily
topologized, as done much later by Poincaré (1895).
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2. The Mobius Strip (1850)

Let ABCD be a plane rectangle. Match AD with BC so that A coincides with
C and B with D. One sees then readily that one cannot match the orientation of

D C
: N
Y

A B

Fig. 3

AD with that of BC so that any side common to two triangles is oppositely oriented
to both. Intuitively one finds that a small oriented circuit on the strip may be so-
displaced as to return to its original position with reversed orientation. Poincaré
described this as the return upside down of a fly crawling on the strip.

A smooth surface is orientable when it contains no part like a Mébius strip,
and it is non-orientable when it does contain a part like this strip. Thus.a 2-sphere
is orientable, but the projective plane is not. The second statement is not quite obvious,
but is easily proved along the following lines. An open line L in an ordinary plane
is orientable (evident) and remains so when its two end points are made to coincide
turning the line into a circle C. Take now an origin 0 in a plane and a circular region
of center 0 bounded by a circle D (fig. 4). Let any diameter have the end points AA’
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on the circle D. The open interval (A, A’) is the perfect image of the line L. One
closes it by bringing the two points A and A’ into coincidence. The operation on
the circle D has for effect to bring all diametral pairs of points into coincidences
and then one has the perfect image of a projective plane. Let (A, A’) and (B, B’) be
two terminal pairs of points. Upon joining A to B’ and A’ to B one finds that the
projective plane contains the perfect image of a Mobius strip and so it is nonorien-
table.

3. On knots.

This is assuredly the most curious and most perplexing chapter of algebraic
topology. One may also say of it that while it has borrowed enormously from the
rest of algebraic topology it has returned very scant interest on this “borrowed”
capital. It is however full of problems sui generis with some of the simplest, in for-
mulation, as yet unsolved. In this respect it resembles considerably number theory.

Our main reason for placing “something about knots” in this early location,
is the impossibility to give more than a faint notion of this topic in a reasonable
space. We shall therefore merely indicate a very few salient points and refer for
knots to the highly interesting and thorough exposition given in the recent mono-
graph Introduction to Knot theory by R. H. Crowell and R. H. Fox, Ginn & Co.,
Boston, 1963. (Hereafter referred to as CF.) This book contains also a good guide
to the literature, an extensive bibliography and a wealth of figures. For the few
points to be discussed here, no better source of references can be found. It is not
possible to touch knot theory at any point without utilizing many advanced topo-
logical concepts. For most of these brief indications will be found in Chs. III and IV.

4

(3.1) Definition. A knot is merely a graph in 3-space €; which as a point-set
is the homeomorph of a circle.

As a graph then the knot K consists of a finite set of points A;, A,,..., A,,
which are joined consecutively by arcs (A, joined to A;). The arcs may be assumed
differentiable (the complications a la sophisticated Jordan curves are avoided).

We will assume that K, as a Jordan curve, is oriented. K designates the knot
with a definite orientation; — K will denote it with the opposite orientation.

Let K, K, be two knots in the same €, . We consider them as equivalent: K ~K ,
whenever there exists a homeomorphic deformation of €; into itself under which
K, goes into K.

To illustrate the perversity of knots, Trotter has proved recently (by an infinity
of rather simple examples) that there exist knots K not ~ —K (thus solving a long
outstanding problem).

A knot invariant is a knot character which is the same for all equivalent knots.

The central problem of knot theory is to find a collection of knot invariants
which guarantee that if they are the same for two knots K, K, then K ~ K, (K and
K, are assumed inbedded in the same €;). Although this central problem has been
attacked, in our century at least, by many very eminent mathematicians, it is doub-
tful if we are nearer to a solution than a century ago.

The most important invariant of a knot K is the group of paths IT(€; - K)
of its complement. However Trotter’s example shows that this is not a “decisive”
invariant.

The following “knottists” J. W. Alexander and R. H. Fox, will be mainly men-
tioned. Alexander attacked knots in the twenties, Fox belongs to the forties to date.
We owe to Alexander two noteworthy but related sources of invariants: Alexander
matrices and Alexander polynomials. Both center around the concept of projection
of a knot onto a plane. The projection is a planc graph whose sides may intersect,
but one may organize the situation so that (a) the self intersections are never nodes
of the graph; (b) they are always double points with distinct tangents.

The mere penetration of Knot theory requires a formidable amount of modern
algebra, far more than I can go into here. A little of it is however indispensable even
for a bare description of a few main concepts.

Let G = {g} be a multiplicative group. Let J be the ring of integers. With G
there is associated the goup ring JG, defined as the set of mappings v : G — J such
that v (g) = 0 except for at most a finite set of g's € G. Addition and multiplication in
JG are defined by

(vi+v)g=vig+v,8; (Vlvz)gzz("lh)("zhilg)

for any v, , v, of JG and any g of G. One may easily verify that JG is a ring under
these operations; also that if n is any integer then (nv)g = n(vg).

The free calculus, introduced by Fox, yields a most powerful technique for
calculating knot invariants. The basis of this calculus is this definition of a derivative
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D as the unique linear extension to JG of any mapping D : G - JG which satisfies
for g,, g, in. G:

D (g, g,) = Dg, + g, Dg,.

For further information see CF Ch. VIL

The weight of algebra in Knot theory is best indicated by this: in CF out of 8
chapters 5 are on pure algebraic questions (mainly general group theory). I should
like to recommend to the advanced reader and to any one interested in new and up
to date problems, the Guide to the literature at the end of CF.

On braids

If one severs a knot at one joint one obtains a braid (Emil Artin 1925). The group
of braids (Artin) is defined as:
01,03,...,0,;, 010,110, =0;+10;0;1,
1= 1, 2, Sy o n—l 5 o-iaj = Gjoia (1*.]) 7 1.

These groups have been completely classified by Artin — they do not offer the com-
plications of Knot groups.

II. RIEMANN AND RIEMANN SURFACES. CONSTRUCTION.
NUMBER OF INTEGRALS OF FIRST KIND.
THE WORK OF SCORZA.

1. Puiseux’s theorem

This is really the initial place of algebraic topology. Not that Riemann himself
thought of it that way, but this will cause no argument.

The problem attacked by Riemann, (around 1850) among many others, was
the nature, as geometry, of a complex plane algebraic curve

F(x,y)=0 (1.1)

where F is a complex irreducible polynomial. Much was known about the geometry
of real curves — since the period was post-Pliicker — but “as geometry” complex
curves remained obscure. Important information was contained in the
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(1.2) Theorem of Puiseux. But even this theorem did not offer any information
in the large about the curve F. However, we shall need the material provided by
Puiseux.

Let x = a be a value for which the roots of F = 0 in y remain finite. Let y, (x)
be such a root. As x describes a small circle around x = a in its complex plane the
root y, (x) varies continuously and at all times say around x = x, on C it is holo-
morphic around x, as a function of x. Hence as x describes C once y, (x) returns
to a value which is still a root of F in y but not necessarily the same root y, (x). Let
it return to a different root y, (x), etc. There arises a set of say q roots y; (x), ..., y, (x)
which are circularly permuted as x describes C. This implies that these g roots are
represented by q series in powers of (x—a)'/ or as

y(x) =b + a(x—a)’® +if (x—a)P¥? + ... (1.3)
The q roots of the circular system may be jointly represented by a unique series in t:
x=a+1, y=bd4at?r+ 2+ ..., |t]<p (1.4)

where q, p;, P2, ..., have no common factor.

Since the number of values x = a with true circular representations is finite
the points corresponding to 0 < |t| < p, are ordinary points of the curve. That is:
(a) to any such point there corresponds only one solution y (a); (b) the correspon-
ding q = 1.

We have assumed that a is finite. The points at infinity are taken care of by the
standard transformation

If m is the degree of F in y there are at most m such points and hence at most m
series {x'(t), y' (t)}. The transformation just introduced merely means that the true
space of the curve F is a projective plane. It was well known (as an analyt1cal artifice)
to the mathematicians precedlng Riemann: Abel, Jacobi, Pliicker, Weierstrass, and
many others.

The set © = {pair of series in t, point t = 0, number p} is called a place of F and
t = 0 is the center of the place. The number p, the convergency radius of the series,
is the extension of the place. It is agreed that the change in p, provided that it does
not reach another singular place, does not affect m. (Singular place is one which is
the center of several distinct places, or of a single place around which more roots
than one y;(x) are permuted).

(The concepts related to places have been clearly set down by Hermann Weyl
in the monograph: Die Idee der Riemannschen Fliche, Springer, Berlin (1913)).
However, there are well founded reasons to believe that “places” were no strangers
for Riemann. The main reason would go something like this. Let (a, b) be a center
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of several places &, , ..., m,. In his construction of the Riemann surface, Riemann
always represents the =, by s distinct points.

2. Construction of the Riemann surface.

Suppose that m is the degree of F in y. Take the sphere S of the variable x and
mark on it two diametral points A and B so disposed that no great circle through
them contains more than one of the critical points a, , a,, ..., a, which are centers
of singular places. Mark on S arcs of great circles Aa, and cut S along these arcs.
Choose now one sphere S, for each root y, (x) of F. Mark on S, the cuts Aa, which
do permute y, (x). The complement €, of the cuts on S, is a 2-cell and the value
v, (&) at &€ Q, is uniquely determined by the value y, (£ (B)). We look now at the
2-cell Q, and at its boundary the polygon 7, . Let all the 7, be positively oriented,
that is let the Q, all be oriented in the same way. It follows at once that if A;; and
A}; are the two sides of a cut A,; then in that cut their orientations are opposite.

Suppose then that A,; is a cut permuting y, with y;. Then there correspond
to it two cuts Ay, in , and A;; in Q; and those two are oppositely oriented. Hence
if we bring them back into coincidence, and similarly for all permuted pairs y,, y,
the result is a closed surface ® (F): the Riemann surface of the curve F. The cons-
truction has obtained these fundamental consequences:

(a) ® (F) is covered by a finite collection of 2-cells E, ,..., E,,, one for each
root y;(x) of F = 0.

(b) If the polygons E,, E, have a common side then they are oppositely oriented
relative to it.

(c) (less evident) Each point P of @ (F) has a neighborhood in the surface which
is a union ‘of closed polygonal regions each making up a 2-cell.

(d) The surface @ (F) is connected. This is a ready consequence of the irreduci-
bility of the polynomial F. For if @ (F) is not connected the roots y; (X), ..., ¥, (X)
may be divided into at least two collections say y,,...,y,and y,.q, ..., ¥, Whose
elements are not permuted under the variation of x. Hence the symmetric functions
of the y,, h < r are meromorphic in x and so satisfy a relation F, (x, y) = 0, where
F, is like F, but of smaller degree in y, and hence it is a proper factor of F. Since
this contradicts the irreducibility of F, the surface ® (F) is connected;

(e) Property (b) implies that ® (F) is orientable.

Conclusion. The preceding properties imply that @ (F) is an orientable compact
two dimensional manifold (in the sense of modern topology).

We notice also:

(f) Under an appropriate definition of place-continuity the collection of places
{n} is turned into a surface homeomorphic with @ (F).

The statement just made implies the following important result:

Theorem. The Riemann surface is a birational invariant.

For the places have birational character and hence this holds also for their
surface.

Characteristic. A particular case of a very general property (Euler-Poincaré
characteristics) asserts the following property: Let the polygons of the decompo-
sition of @ (F) consist of &, polygons, with o, sides and ®o vertices then whatever
this decomposition we have the relation

X((D):(xO_al +OC;,=2—2P (21)

This is a classical formula due to De Jonquitre.

The number p is the well known genus of the curve F. It will be shown later
that the characteristic has topological character. Hence the genus p is a topological inva-
riant of the Riemann surface and therefore of the curve F.

A direct calculation of X (®) is of interest. Let f,, f;, B, be the analogues of
the o for @. Evidently if «; are the same numbers for a 2-sphere, then from Euler's
result

Op =04 + 0y = 2.

Also B, = ma,, B, = ma, . But for each place with q permuting roots y (x) we lose
q -1 vertices. Hence if N = £ (q—1) then B, = ma,—N. From this follows

Bo—By + B, =2m-N.=2-2p
Hence this formula due to Riemann

N=2(p+m-1). (2.2)

3. Topological models of a surface.

After Riemann, in the latter part of the 19th century, his surfaces, or more gene-
rally their topological type was deeply studied by a number of geometers (Klein,
Clifford and others). Clifford showed that a surface of genus p was homeomorphic
&cg a 2-sided disk with p holes. This model is identical to a sphere with p-handles

12. 5). :

From the Clifford model one may obtain with little difficulty the most signi-
ficant model of all: a polygonal region with sides matched in a certain way (fig. 6).
Draw on a plane a 4p-sided regular polygonal region whose boundary polygon IT
is to be described so that the successive sides are labelled (with their orientations)
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Fig. §
a B gt b ey T,

(4p-sides). Let the 2-cell bounded by IT be Q.

The labels are such that for instance d ! means d descrlbed in the opposite
direction. Let now all the 4p vertices be brought into coincidence, and match for
instance d with d~! so that d™! is merely d described in the opposite way.

From the new polygonal boundary, still called I, say to the Clifford model is
but a step and conversely. Hence the new model is a general model for a surface
of genus p.

4. Analytical application.

One might get the impression from what precedes that the Riemann surface
is a pure gometrical instrument without further ado. This would be entirely mis-
leading. For Riemann, like all his mathematical contemporaries was strongly under
the influence of the theories created and developed by Cauchy. His surfaces show
this plainly: it is at least through analysis that he obtained some of his most beautiful
results. However in expounding them I shall not endeavor to follow in Riemann'’s
footsteps and shall not hesitate to utilize later results especially if they come under
“early algebraic topology”.

Consider then a function f(z) on the Riemann surface @ (F) which is uniquely
defined on @ (F) or perhaps on a region £ C @ (F). We assume this property: If
P is a point of £ there is a place = of center P and parameter t (|t| < p) whose points
are all in £. On I1 the function f(t) is holomorphic in t. One defines f as holomor-
phic in # whenever it is holomorphic throughout £.

5. Extended Cauchy theorem.

Let R be a 2-cell with boundary T1. Let f(z) be holomorphic at all points of #

(2 plus TI). Then
J‘ f(z)dz = 0.
I

Let L be a line dividing # into two similar regions #; and £, with boundaries

[T, and II,. Then
L
I Iy Hz’

It is sufficient therefore to prove the theorem for IT; and II,.

Consider the original decomposition of @ (F) into polygons (one for each sheet
of the surface). Let A be a vertex of one of the polygons. The set U consisting of
all the open polygons and edges together with A, with vertex A — called the star
of A, written St A, is an open set of @ (F). In fact it is a place of center A and say
parameter t (t = 0 at A). The collection = {U} of all St A, is a finite open covering
of @ (F). We recall that such a covering has a Lebesgue mumber A (%) > 0 with the
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property that if a set H on @ (F) is of diameter < 1 (%) then H is contained in some ] gl ieotiginned sy B,
sefsild:
Now upon carrying the subdivision process far enough we shall obtain sets 970 Then we have this all important
all of diameter < A. hence each contained, with its boundary I, in a set U, of %. s1) Th - Ri ;
Let t be the uniformizing parameter of U,. In U, the function f is holomorphic (5.1) Theorem of Riemann.
in t. Hence by Cauchy’s theorem
j f{t)°= 0O
o
and this implies the theorem.

In the preceding proof it has been implicitly shown that an integral

= 0.

Z wlu? wl,p+u
wlua wz,p+u

The proof is very simple.
Since u; and u, are holomorphic throughout ® (F) we have

juldu2=0
n

J s This integral is the sum of p terms each of the same type as the sum
Zo

of a holomorphic function f(z) at all points of a path y in a region of holomorphism (*) + J‘ + ag J

of the function is well defined. ; a b =1 L

Let Q (z) be a rational function on the surface @ (F): a function represented at all

points of the curve by a rational function The first and third term combine to

[u; (P)—(u; (P + @;,)]du, = —w,; 0y,
Sty AL e i

o g The second and fourth term combine like
where locally the function is always represented by a convergent power series

t“(« + Bt + ...), k a positive integer. The integral along any path of @ (F) i J [u; (Q)—(u, (Q)— ;)] du, = wy; @
1 A1 — W11 2 S 9%
b
e JS(X’ ¥) fix Hence the sum (*) is
is then uniquely defined and represents a holomorphic function on the entire Riemann Wy Oy,
surface. Such an integral is said to be of the first kind. We refer to it briefly as (ifk). Wy Wy

Let y be a closed path on @ (F). The value

Jdu=f S, y)dx = »

is then uniquely defined and called a period of u.
Going back to the model of a 4p sided polygonal plane region plus its boundary
aba™!, b lcd..., set

J‘du=wu, Jduszh“ WeSaD-
ay bu

Take now two (ifk) u; and u, and define their periods as This proves Riemann's equality.
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The u-th set of four terms has the sum

D1y Ot ptp

Way W2 pty
Hence
W1y D1, p+p

=0

P
J B dlg i
I

p=1

Wy D3, ptp



Let now u = u’ + iu” be a non constant (ifk) and let w;,, w, 0 < u<2pbe
the respective periods of the real integrals u’, u”. By Cauchy’s inequality over
® (F) we have

J u du” > 0.
n

Hence if we reason as before we obtain Riemann's inequality:

>0, p <RI (52)

(5.3) Consequence. There are at most p linearly independent (ifk) mod constants.
For if say there were p + 1:uy, ..., u,,, then there would exist a linear com-
bination

u=/11u1+...+/1p+1up+1

such that every w, = 0, u < p. That is w, = w,, = 0, which contradicts the ine-
quality.

(5.4) Digression. Theorem. There are exactly p linearly independent (ifk) modulo
constants.

That is one may find p linearly independent {du,}, u, is an (ifk) but no more.

We have already seen that the number p’ in question is < p. Ther¢ remains
to prove that p’ = p.

There are two distinct approaches to this property:

(a) A proof by Riemann using highly complicated analytical properties of the
well known theorem of existence of potential functions. See Hermann Weyl loc. cit.

(b) A proof of a more algebraic nature based upon a reduction of singularities
theorem of much more geometric nature, due in part to Max Nother (around 1870)
which states:

(5.5) Theorem. An irreducible plane curve ¥ may always be birationally trans-
formed into a plane curve G whose only singularities consist of a finite number of double
points with distinct tangents.

We have already seen that the genus p has birational character. It is also evident
from the definition of the (ifk) that each of them has individual birational character.
Hence the number p’ of linearly independent (ifk) mod constants has the same
character. Therefore to study their linear dependence we may freely replace the
curve F by the curve G. That is we may assume that F has only the singularities
just ascribed to G. This is the procedure that we shall follow.
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Consider the most general curve of degree m — 3 passing through all the double
points: adjoint of degree m -3, also called canonical curve.

(m-1)(m-2)
2
passing through the 6 double points satisfy that many linear equations. Hence

they have at least

The curves of degree m—3 have arbitrary coefficients. Those

(m-1)(m-2)
=

arbitrary coefficients.. Now from an earlier Riemann formula
N=2(p+m-1)

since N is the class of F and it has only double points with distinct tangents

N =m(m-1)-20. (5.6)
Thus
_m-Hm-2)
> - 0.

This expression is actually the classical definition of the genus by Plicker.
Let us ask now for the dimension u of the system of adjoints of degree m — 3.
Since they are merely the curves of degree m—3 through the double points

s s L)
- 2

Now given such an adjoint Q,,_; we may write the integral

me 3(X y) dx

and we prove easily that it is an (ifk). It follows that the
p=p Zp

But we have already proved that u < p. Hence p = p. This proves the theorem.
Let thenu, , ..., u, be a system of p linearly independent (ifk). Form their period
matrix

Q=lw,)i=L2..,pv=L2..,p

Let #=2;u; + ...+ 4,u,, #,, f,+,, v=p. Owing to Riemann’s inequality
the 5 cannot all be zero, whatever the choice of the A's. Hence
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[wju]’ js H é p

is of rank p. We may therefore apply a linear transformation such that this matrix
becomes a unit matrix. That is

[wj,u] = [15 [Tju]]’ u § p.
The corresponding (ifk), written usually v; are the normal (ifk).
Let
=gt arh.
From Riemann's equality and inequality we infer at once that

(a) the matrix 7 is symmetrical;
(b) it is the matrix of a positive definite quadratic form

Y Ta XX,

6. Scorza’s theory of Riemann matrices (1915).

The preceding results have been strongly generalized and at Scorza’s hand
given rise to a very interesting new theory. We will say a few words about it.
. The basic scheme of Scorza was not to take special bases for the cycles and the
(ifk). We take then p linearly independent (ifk) and 2p independent one-cycles
Y15 ---» V2, and write down their period matrix as a p x 2p matrix Q, . We then

define
N

A more or le§s simpie calculation shows then that the Riemann equality and ine-
quall.ty combined are equivalent to the existence of a unimodular skew symmetric
matrix C(|C| = 1) such that i*? Q' CQ = M is of the form

2[00 A
A* 0

wherf: A is a p x p matrix, A* = (A), |A| # 0, so that M is a hermitian positive
definite matrix.

. h'SO far we only have a “clever” reformulation of Riemann. Scorza’s departure
is this: '

(2.17) Definition. A Riemann matrix is a p x 2p matrix of type lig‘jl such
2|
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that there exists a skew-symmetric rational matrix C such that

o - &
QCQ—[A* 0}

No condition is placed on A. Whenever

. 0 A
IZP[A* 0} =M

Q is said to be a principal matrix.

Given a Riemann matrix Q there may be many matrices C which merely satisfy
the definition (no hermitian matrix condition imposed). The number k of linearly
independent matrices C is the singularity index of Q (Scorza had 1 + k where we
have k, but the latter yields much simpler formulas).

Still another index h: multiplication index was introduced by Scorza, when
the only condition imposed on C is that C need not be skew symmetric. Both indices
have highly important applications in the theory of algebraic varieties.

III. HENRI POINCARE AND ALGEBRAIC TOPOLOGY
1. Poincaré: the founder of algebraic topology.

Presentday topology consists of two distinct parts: point set topology and alge-
braic topology. The first has mainly been the prerogative of Poland plus a strong
American component: the school of R. L, Moore (of Austin, Texas). At all events,
I shall only deal with algebraic topology.

The enormous impetus given by Poincaré to our field deserves to call him its
founder. His contribution is contained in his paper Analysis Situs (1895) together
with its five complements (till 1909), two on applications to algebraic surfaces.

Incidentally Poincaré did not say “topology” but “Analysis Situs,” a beautiful
but awkward term at best. Since the midtwenties “topology” has been generally
adopted (much earlier I believe in Germany).

My purpose in this chapter is to develop Poincaré’s basic concepts, but as seen
by a modern: with algebra, especially group theory, in evidence. No doubt Poincare
himself, had he lived long enough, would have adopted this mode of exposition.
Where simpler proofs than his have appeared, I do not hesitate to outline them.
It must be said that simplifications have largely been due to the injection in topology
of group theory by Emmy Noether (through Alexandroff).
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A few post Poincaré relevant contributions will be indicated by*.
In conformity with modern usage I generally omit the term “dimensional”
and say: n-space, n-manifold, etc. for n-dimensional space, manifold, etc.

2. Manifolds in the sense of Poincaré.

The whole of Poincaré’s first Analysis Situs paper is devoted to manifolds.
However, as is often the case with him, he is never too precise about what meaning
he attaches to the term (in French, variété). I have therefore endeavored to extract
a more precise meaning from his description.

Let €, denote a real Euclidean r-space referred to coordinates x = (x;,X,,...,X,).
By an absolute n-manifold M,, C €, , (n < r) I shall understand a compact, connected
subset of €, without boundary, represented by the equations

f,(x)=0 2.1)

where the f, (x) are of class Ck, k = 2, and Jacobian rank r—n in some bounded
set D M, . It is then known that any point ¢ of M, has in M,, a neighborhood
U (¢) which is an n-cell differentiably parametrized by n local coordinates u,, ..., u,
with the condition that if two such neighborhoods say U ({), U’ ({) overlap at (
with respective parameters u,, u; then each set is differentiable in the other with

0w
d (u)

Notice that compactness of M, implies that it has a finite open convering {U ({)}.
If the Jacobians J have a fixed sign over M, then M, is orientable, otherwise non-
orientable. '

One may equally define M, directly as possessing a finite open covering by
parametric n-cells {U} with the above overlapping property. This is the modern
definition of “differentiable manifold.” However, while Poincaré indicates its equi-
valence with the definition by the system (2.1), it is the latter upon which he always
falls back.

I called “absolute” the manifolds just defined. This mention, however, will
usually be omitted.

Suppose that M,, is orientable so that the Jacobians have a fixed sign. We may
then orient M,, by choosing a given order of the parameters u, in some U ({) and
use that ordering, modulo an even permutation, as determining the Jacobian signs
and hence the orientation of M,,. One refers then to U ({) as indicatrix of M,, .

Some examples of absolute M,, . In €5 , a sphere, a torus, in €, a Riemann surface
are examples of orientable M,,. On the other hand a projective plane is a nonorien-
table M, .

(2.2) Relative or open manifolds. In an M,, let M, be a connected and compact
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a Jacobian say J =

subset contained in an open subset W of M,,. Thus W is a neighborhood of M,
in M,,. Set V=Un M,. The collection {V} is a finite open covering of M, and
M, C W. The set M M = 0M,, is the boundary of M,. We will assume that
every point{ of M, has a nerghborhood V () parametrized by p parameters v, , ..., v,
with the same overlapping property as for M, . Orientability, indicatrices, etc.
are defined as for M,.

An additional hypothesis is

(2.3) OM,, consists of a finite set of closures of manifolds M},_

(2.4) Let C eM)_, and let v, ..., v, be local parameters for { on Mh_
Since { is a point of a parametric p-cell of Mp , whose intersection with M, _; contarns
a small parametric (p — 1)-cell X,_, , one may choose the parameters x; of the latter
so that together with one local parameter v of M, at {, they make up a set of p local
parameters of M, at {. We shall use this property in a moment.

We refer to M as an open p- -manifold.

Example. Let S3 be a sphere in €, . A solid cube in S; is an open M;. Here
0M; consists of the surface of the cube. The faces of the cube are manifolds M, C dM;.
Together with the edges and vertices of the cube they make up dM;.

3. Boundary relations. Homologies.

The situation remaining the same write for the present M,_, for Mj_, . Let
8y (Vo Xy 5oees Xp_y) B0 £ann (Xi, 1 oo Kpao)s (61804 2, ¢ = T 1) Tepresent indica-
trrces for M, and M, - The product [M :M,_,] =¢,¢,_; = * lis the incidence
number of M and M,,_, .
More generally if M{, and M%_, are all oriented p— and (p - 1)-manifolds in
M, then one defines the incidence number [M? : M%_ ] as 0 or + 1 :0 when M} _,
is not in OM?, and + 1 according to the preceding rule when Mj_, is in dMj,.
Call for the present (temporarily) p-chain of M, a finite expression

Gy = ZayMJ, .
(The felicitous term “chain” is due to Alexander.) I define a chain-boundary
dc, under the rule
(@) oMJ =X m;[M] : M}_,IM;
(b) dc, = Zm; oM}, ;
(c) if in the last sum MJ_, occurs with a total coefficient y, we define

dc, =Zu, Mh_,

oM, = 0(M, is a point);

pla

Following Poincaré, if one is not interested in the special dc, at the right then one
expresses it by a homology

Sy Mh_, ~ 0.
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Such homologies do combine like linear equations. We also note:
Definition. A chain ¢, such that dc, = 0 is called a p-cycle.
One proves that
(3.1) M, is a (p—1)-cycle; hence every dc, is a (p—1)-cycle: boundary cycle.
In operator symbolism

80 = 0. (3.2)

A set of p-cycles y, , ..., 7} is independent whenever they satisfy no homology.
The maximum number of independent p-cycles is the p-th Betti number R% (M,).

Remarks. 1. R% has no topological pretension since it depends strictly upon
the differential structure of M,,. No such distinction was ever made by Poincaré.

II. The notation [:] is taken from Tucker's thesis (Princeton, 1931) and will
be widely utilized later.

III. The notion of cobordism, developed by Thom, and in full vogue nowadays
finds its origin in the ideas of Poincaré.

IV. Poincaré said “one or two sided (unilatere or bilatere)” where one says
today “nonorientable or orientable,” suggested by Alexander. His just criticism of
Poincaré’s terminology was that it referred really to a relationship with the ambient
space, whereas orientability or nonorientability characterize an intrinsic property
of the space (of the manifold M,).

4. Complex analytic manifolds.

These are the M,, whose 2n-cells are “complex analytic”, that is parametrized
by n complex variables {x,|1 < h < n} with the condition that if U (x) and U (y)
are two of the 2n-cells overlapping at the point { then near { the complex variables
y are holomorphic functions of the x.

Let x, = x, + ix; . (The x’, X" are real.) Agree to orient U (x) by naming the
Oy, ooy Xy
(155 Ya)
all positive. Hence analytic manifolds are all orientable, and this in a unique manner.

parameters in the order (X, Xi, ..., X;). Then the Jacobians are

Example. A nonsingular algebraic variety is always an orientable M,, .

In M,, the analytic manifolds M,, are likewise oriefited by the scheme just
given. However, the arbitrary differentiable submanifolds have perfectly arbitrary
orientations.

5. Intersection of orientable manifolds.

Let M, and M,,_, be orientable submanifolds of an orientable M,,. Let £ be
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a common isolated intersection of the two with parameters {x,|1 <h = p} and
{x;|1 <j £ n-p}, and such that {x, ; X} is a set of parameters for M, at ¢.

Suppose now that ¢ {x,}, & {x;} and &, {x, ; X} all in their proper natural order,
with &, & & = + 1, are indicatrices of M,,, M,, M,_,. Then we assign to & the
coefficient ¢, ¢ = + 1 to be counted as algebraic intersection of M, M,,_, in M,,.
Let ¢ be described as a simple intersection of M, and M, _,.

Let M,, M, _, have only isolated intersections &, , ..., & all simple with coef-
ficient ¢, for &,. By the intersection number, (M,, M, _,) is meant the sum

M,, M,_,) = Z&,. (5.1)
Note that
(Mn—-p > Mp) =7 (‘ 1)p(n+l) (Mpa Mn-p) (52)

By approximations one may extend the meaning of (M,,M,_,) when oM,
and 0M,_, are disjoint. By a far from simple argument Poincaré proved:

(5.3) Theorem. N.as.c. in order that M, [M,_,] ~ 0 is that

(54) M,, M,_,) =0 for every M,_, [(M,].

(5.5) Remark. All the preceding results were obtained by Poincaré in his first
paper Analysis Situs (§9). However, he had recourse to his first definition of a
manifold together with a very subtle analytical argument.

The treatment which I have given is essentially parallel to that of chain intersec-
tions in a manifold, of LT., Ch. 4.

6. Duality in manifolds.

Let now {M"|1 = h < R%} and {Mj_,|1 <j < Rj_,} be maximal indepen-
dent sets relative to ~ of M,’s and M,,_, s of M, Let p be the rank of the intersection
matrix [(M:, Mi_))].

Applying (5.3) we find at once that R} = p = R;_,. This is the

(5.6) Duality theorem of Poincaré. The Betti numbers Rj (M,) and RS, (M,)
for an orientable M, are equal.

As we shall see later (Ch. V) I have greatly generalized this fundamental property.

7. Group of paths.

Let X be an arcwise connected metric space and let A be a given point of X.
Let [ be the directed segment o < x < B, ¢ < B, and let ¢ map | — X so that ¢ (x) =
= ¢ (B) = A. The image 1 = ¢ (I) is a loop from A to A. Take the collection A = {2
with the following conventions: (a) if 4 is homotopic to A in X. write A = 1; (b) 2
described in the opposite sense is written A~' ; (c) if Y maps I in a second loop 4’
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then 4 followed by A’ is a loop written A’ 1. Under these conventions A is a group
g(A). If Bis a second point of X and u = BA a directed arc from B to A the operations
of g (B) may be represented by {u~' Au} where 1 is any operation of g. Hence the
groups g(A) and g (B) are similar. Upon identifying the operations A and T
for all points Be X, there results an abstract group = (X), the Poincaré group, or
group of paths of X. It is generally non-commutative. It is also (obviously) a topological
invariant of the space X. In the ulterior investigations of Poincaré this group plays
a very important role. For a reason to appear in a moment its general designation
is  X), and it is also called first homotopy group of the space X.

8*. Homotopy groups and homotopy type of Hurewicz.

The group =; has been generalized (around 1935) in a very fortunate way.
Let X, A be as before and let S, be an n-sphere (generally n > 1) on which a certain
point P is designated as fixed. Let y be a map S, — X such that YP = A. The col-
lection of the maps (yS,, A, P) may be made into a group, more or less as done by
Poincaré for 7, . The only point, not obvious, is the mode of combination of these
operations. Let me merely say that y, and y, are combined additively, as the combi-
nation is commutative, except for the Poincaré group 7, . The new groups are freed
from dependence upon A and P and called n-th homotopy groups of X, written =, (X).
This explains the 7, designation for the Poincaré group.

Hurewicz groups have occupied a central position in modern algebraic topology.
Although they are commutative, they do not have the rather simple properties of
homology groups. This has greatly enhanced their importance.

Homotopy type. This is another noteworthy concept introduced by Hurewicz.

Two topological spaces X, Y are of the same homotopy type whenever there exist

mappings ¢ : X —» Y and ¢ : Y — X such that ¢ is homotopic to the identity as
a mapping X — X and ¢y is homotopic to the identity as a mapping Y — Y. This
is not quite homeomorphism, but the closest approach to it and assuredly much
more elastic. This is why it has been in much favor among modern topologists.

9. Examples.

In Analysis Situs Poincaré constructed 8 examples of 3-spaces by. matching
appropriate faces of a cube (first four examples) or of a regular vectahedron. His
purpose was to obtain explicit 3-manifolds whose Betti numbers and groups 7,
could be computed. The second example is to be rejected as not corresponding to
an M;.

Of particular interest is his 5th example for this reason. Poincaré desired to
settle the question whether Betti numbers alone were sufficient to characterize an
M, , n > 2. The examples in question enabled him to answer in the negative. For
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he obtained a whole family of 3-manifolds with the same Betti numbers but different
groups rr; and hence topologically distinct. In fact a careful study of these manifolds
have produced R, =R; =1, R, =R, = {1, 2, 3} and yet there are an infinity of
distinct groups m, (see Analysis Situs, p. 83).

10. Complexes.

Soon after Poincaré's first Analysis Situs paper the Danish mathematician He-
egard criticized his approach, more particularly for having missed torsion. In the
Introduction to his first Complement Poincaré answered in part Heegard, but
perhaps did not realize that his general “homology” description failed to cover a
variety of cases. It was also clear to him that his general method was far from suitable
for deriving for example his very general formula for the characteristic.

The upshot was that he introduced an entirely new approach to algebriac
topology: the concept of complex and the highly elastic algebra going so naturally
with it.

While Poincaré’s complexes were formally only applied by him to manifolds,
they have a far broader range. Moreover his complexes were made up of quite general
cells. It has been found more and more expedient to base everything on simplicial
complexes, and their easy proofs. :

(10.1) Simplexes. Take (n + 1) linearly independent points (= vectors) in
€..p. Pp=n,5ay Ay, A, ..., A,. The set of points,

A =T Ao Pl Al 0 B N 0 e Ry 1 Bl = 1,

constitutes an n-simplex ¢,. It is, and will always be, assumed oriented, by the
order of naming the A,, modulo an even permutation.

By replacing n—p of the “< 1” by “= 0” one obtains a p-face o, of g, with a
suitable orientation. Given 6, let¢,, ¢,_; = + 1 be such that ¢, { A,...A } =0,
and ¢,_; {A;,... A, _,} =0, ;. Then ¢,¢,_, = + 1 = [0,:0,_,] is the incidence
number of the two simplexes.

(10.2) Simplicial complex: K = {c} is a finite collection of disjoint simplexes
such that if €K then every face of e K.

For any ¢, and o,_, of K there is an incidence number [6,:6,-,]=00r + 1,
0 when o,_, is not a face of 6,, and + 1 according to the above rule when Gp_q
is a face of g,.

I will now follow the modern treatment, rather than the very details contained
in the second and third Complements. Let a, denote the number of p-simplexes of K.

A p-chain is a linear integral expression

c,=Xmuoh, l<h=<a

23

p-



One defines a boundary (p-— 1)-chain of 6p as

05, = 2 [0y 10, 11051

and the boundary of c, by linear extension as

h

6CD — thaO'p.

It is then easily shown that
00 = 0. (10.3)

A ¢, with dc, = 0 is a p-cycle. Hence:
(10.4) Every oc, is a (p—1)-cycle called a bounding cycle. .
(10.5) Evidently the collections C,, Z,, B, of chains, cycles, bounding cycles are

additive groups. Moreover
C.0Z, 0B,
where each term is a subgroup of its predecessor. .
From this follows that H, = Z /B, is likewise an additive group: integral p-th

homology group of K. . '
From a fundamental result of Frobenius, rediscovered by Poincaré (2nd Com-

plement) we have: .
(10.6) Theorem. The group H, has the following structures:

H>2LdL®...0ly@T,
where the 1, are infinite cyclic and T, is finite. More precisely
T, 48 @... §E,

ik . et
where the ®, are finite cyclic. If t is the order of ©, then t;', divides ™" . .
The t" are the torsion coefficients of Poincaré and R, is the p-th Betti number

of K. '
By a fairly simple calculation one obtains the relation

R,=0a,~-T,,1-1, (10.6)
where 1, is the rank of the incidence matrix
f, = [0} : 0p-1].

Hence : o
(10.7) Theorem of Poincaré. The characteristic y (K) = X (- 1) a, satisfies the

relation
Y K)=2Z(-1¥R,.

(10.8) Barycentric subdivision. A subdivision K; = {¢} of K, with simplexes (,
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is defined by the condition that every ¢ € K is a union of {’s. The barycentric type
is particularly simple.

Let n = dim K.

Let the derived of K to be defined, be denoted by K'. If n = 0 (a finite set of
points) let K’ = K. If K has v simplexes suppose that K’ has been defined for v— 1.

Let ¢ be an n—simplex of K and let K, = K —¢. Thus K is known. Call P
the barycenter of ¢. Join P by arcs to all the points of (dg) . Replacing o by the resulting
new simplexes, including P yields ¢’. The orientations are defined by the condition
that in ¢ they are determined so that

0(o) = (o) .

Once K’ is defined, one determines the derived sequence K, K.« K® ...,
by the condition K”*" = K®'. One proves then easily

MeshK™ — 0 with 1/n. (10.9)

This is the most important property of {K®}.

(10.10) Special case of manifolds. When K is an M, one may construct a dual
complex KX which has the same Betti numbers and torsion coefficients as K, itself
but with complementary dimensions.

The construction of K¥ is simple enough. Let K, be the first derived of K,
and let {{} be its simplexes. Given g, € K, the simplexes { with a single vertex (centroid)
of ¢, and all others exterior to o, make up an (n— p)-cell o*_ p and Ki = {g¥_ 1.

The relation between K, and K* leads to Poincaré’s famous duality relations

(a) for Betti numbers

R,(M,) =R,_,(M,) (10.11)
(b) for torsion numbers
t; b t:lt—p—l

[For details see LT Ch. 1].

(10.13) Remark. We recall again the origin of “homology.” When two chains
c,, €, differed by a boundary dc?*!, Poincaré wrote Cp, ~ C, or €,—C, ~ 0. These
relations, called homologies combined like linear relations. In other words they
form groups: homology groups.

(10.14)* Various types of coefficients. While Poincaré only dealt with integral
chains, cycles, etc., wide extensions were soon made to other types. I just mention:
mod 2, Tietze; mod m (m prime) Alexander; rational coefficients, Lefschetz; (these
are the same as Poincaré’s: ~ with division allowed: my later homologies ~ );

s

any number system (real or complex) which is a field, Pontrjagin. These last led
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Pontrjagin to his famous duality: simultaneous in the complex and the coefficients.
(10.15)* Wide extensions to infinite complexes will be found in LAT.

11. Subdivision invariance.

In the first Complement Poincaré dealt at length with subdivision and bary-
centric subdivision of a complex and proved that under them his Betti numbers,
characteristic relation, torsion numbers, and for manifolds the manifold property
and duality relations were subdivision invariant. He seems never to have attacked

topological invariance. )
Problems posed by Poincaré will be discussed at the end of Ch. 4.

IV. ALGEBRAIC TOPOLOGY AFTER POINCARE

1. A touch of topological history.

After 1904 roincaré turned his attention to some arduous problems suggested
by his previous work. He attacked applications to algebraic geometry (see my
note “A page of mathematical autobiography”) and to dynamics, more particularly
to the famous theorem of Poincaré-Birkhoff discussed below.

Three important events mark the period before 1910 and immediately after:
(a) the introduction by Tietze (1909) of chain coefficients mod 2, the first departure
beyond Poincaré; (b) the advent on the scene of the powerful figure of L. E. J. Brouwer
the advocate par excellence of strict rigor. Curiously in his early years the Poincaré
concepts played little role in his work; (c) the definition by Lebesgue of dimension
for compact metric spaces. Finally the most salient features of the period before
1923 (I omit my own work on algebraic geometry) are the appearance of Oswald
Veblen and J. W. Alexander at Princeton.

Beyond 1923 we find my extensive work on coincidences and fixed points toge-
ther with their extensive and necessary ramifications; the related work of Hopf
(Berlin); various contributions by Alexander notably on knots already mentioned;
the contributions of Morse on critical points and applications to the calculus of
variations; the research of Alexandroff (Moscow) on compact and dimension theory.
This will take us more or less to 1930: roughly my intended terminal point.
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2. The Poincaré-Birkhoff theorem

This is the last partly topological question that occupied Poincaré. In a long
meémoire (Circolo di Palermo) he stated the theorem, exposed his unsuccessful endea-
vors to prove it and motivated his publication with the expressed hope that perhaps
a younger man would be more successful. This hope was fulfilled with the solution
of young Birkhoff which appeared in the Transactions (1912) soon after Poincaré’s
death! In a sense this marked the entrance of the U. S. into the new world of topology.

The problem consists in this: — Let T be a topological mapping, area preserving
o_f a plane closed annular ring between two circles sending the two into opposité
directions. To prove that T has at least one fixed point. Birkhoff's solution (1912
Transactions of the Am. Math. Soc.) is not only brilliant but very short. It marks
the beginning of his extensive work on celestial mechanics: his later research. Birk-
hoff not only proved the theorem but completed it by showing that if T is not area
preserving then either there is a fixed point or else some Jordan curve in the ring
sur.rounding the inner circle is mapped by T into its interior or else into its exterior.
This is a strictly topological property — which is not the case for the theorem itself

The initial theorem has many applications to dynamics, notably in the study
of the various periodic solutions near one such solution.

3. Henri Lebesgue and his definition of dimension

- Let X be a compact metric space and let F = {F,} be a finite closed covering
of X. The order of F, written o (F), is the least number of sets F, minus unity
which have a common point. Lebesgue defines the dimension of X, written dim X
as the least order of F of mesh < ¢ as ¢ — 0, and this for all possible F. This is thé
ﬁ.rst appearance of the concept of “order of a covering”, found so useful later. This
dimension was identified later with the Menger-Urysohn classic by Brouwer.

4. The early work of L. E. J. Brouwer

This work was done around 1910. One of his early contributions was a rather
short proof of the Jordan curve theorem (the second accurate proof; the first was
given several years earlier by Veblen). He also gave a proof of the invariance of
regionality. That is if Q,, Q, are two Euclidean regions, with m # n, then they
could not be homeomorphic. In more modern language assuming that Q, and Q,
could correspond under an homeomorphism T,, of Q,, and Q,, their local Betti
numbers (defined later) would have to be equal. But those R, of Q,, are zero for
0 <h <m, with R, = 1; similarly for Q,:R, =0 for 0<h<n and R, = 1,
which contradicts m # n.

The more striking result of Brouwer coming a lot closer to our topic is this:
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— Let M,,, M/, be two absolute orientable, manifolds. Let T be a mapping M,, - M;,..
Assuming the two manifolds simplicial a suitable subdivision of M, has its n-simplexes
covered the same algebraic number y of times by images of those of M, and u is
a topological invariant of the triple (M,,, M;,, T). In terms of more modern topology
the result is readily obtained. For if y,, , are the fundamental n-cycles of the mani-
folds: Ty, ~ uy, in M, and u is known to be a topological invariant. It is called
degree of the mapping.

Noteworthy corollaries for mappings of spheres were obtained by Brouwer.

Many other striking topological results are due to Brouwer but we cannot
deal with them here.

5. Oswald Veblen as topologist.

He really began his work in the early part of the century. He was as much a
rigorist as Brouwer, but operated first out of Chicago with E. H. Moore as mentor
(under whom he took his doctorate). Moore was likewise given to full rigor, but less
exclusively than the early Veblen. At any rate Veblen, perhaps under Moore's
influence, or under the appearance of David Hilbert's (Gottingen): Uber die Grund-
lagen der Geometrie, was early launched into geometry. For some years he studied
polyhedra — source of his proof (first correct) of the Jordan curve theorem. He
then launched into his major work: Projective geometry: 2 volumes, close to 1000
pages, first volume coauthored by J. W. Young. The second volume already shows
leanings towards topology. This occupied him till about 1913. As a professor at
Princeton he was fortunate to have as a disciple J. W. Alexander the outstanding
topologist. Their collaboration led to a significant but short paper in the Annals
of Mathematics of 1913 in which their aim — fully accomplished — was to present
Poincaré’s main ideas in Analysis Situs and complements, in strict rigorous manner.
This led to Veblen's monograph “Analysis Situs” (Colloquium Lectures 1921;
lectures given in 1916), which had the same objective as the short note, but with far
more details. Noteworthy in it is a proof of the invariance of the homology groups
for an n-complex (first for a 3-manifold is due to Alexander).

6. J. W. Alexander as topologist

As a mathematician and above all as topologist Alexander was distinguished
by exceptional originality. At first he was attracted by the many questions left pending
by Poincaré. Thus in 1915 when he was still a graduate student he gave the first
proof of the topological invariance of the Betti numbers of a 3-manifold M; . During
a one-year visit to Italy he also showed that the algebraic invariant of Zeuthen-Segre
had really topological character (proof by extension of the Riemann surface concept).
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The invariance proof of the numbers R; introduced the first ideas of the future
classical deformation theorem.

Thereupon World War I produced a 3-years interruption. In the early postwar
period Alexander produced several noteworthy results. I mention particularly:

(a) Poincaré had already produced two orientable M ;'s with equal Betti numbers
but with different group of paths hence topologically distinct. Therefore homology
groups were insufficient to characterize 3-manifolds. Alexander went further anc
produced a very simple example of two topologically distinct M5's but with the
same group of paths and therefore equal Betti numbers (and no torsion). Hence
homology and group of paths identity were insufficient to distinguish two M,’s.
The example is simple enough. Two solid tori (in €;) could be identified at their
bounding surfaces so that the characters just mentioned be the same. However
this could be done so that one obtains two topologically distinct M;'s (so-called
lense spaces.)

(b) The generalized Jordan curve theorem. One may presume that a 2-sphere
S, in €; has for (bounded) complement a 3-cell. Alexander gave an example where
the complement has an infinite group of paths. On the other hand he proved also
that if S, is analytical then the complement was effectively a 3-cell.

(c) A remarkable result of Alexander was his famous duality theorem (1922),
the first beyond Poincaré. Given a complex immersed in an n-sphere S, the Betti
numbers satisfy:

Rp (Sn‘K) N Rn—p—l (K) An 6p0_5

Py =1y

where the d's are Kronecker indices: 6; = 1, §;; = 0 for i # j. As an application
Ry (S,=K) =R, 1 (K)+1

which expresses the number of components of S,— K (the number R,) in terms
of the Betti number R,_, (K).

Actually Alexander’s result holds for any, say compact subset of S, . It is also
a special case of my, more general duality theorem proved several years later.

(d) From 1926 on Alexander dealt at considerable length with an improved
Qrganization of complexes and in particular obtained a new proof of the topological
invariance of homology groups of a complex. Given two homeomorphic simplicial
complexes K, K, he interprojected their derived sequences (using his deformation
theorem). He then showed that the limit of the corresponding homology groups
of the sequence is merely the corresponding ones of K, K, so that the two are the
same. (It is actually not necessary to pass to the limit — one may show that

H(K) = H?” (K) = H? (K,) = H(K,)

where H stands for homology groups of same type: equal dimension and same
coefficient system.
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(e) Singular Theory. This scheme is actually implicit in part in Alexander’s first
topological invariance proof of a Betti number (for an M;). I have since organized
it into a highly elastic theory, which, together with a deformation theorem of Ale-
xander (see LT) is applicable to a large number of topological invariance properties.
I will say a few words about this singular theory.

Let X be an arcwise connected metric space and let ¢p map a rectilinear closed
p simplex ¢, into X. The pair (¢, ¢,) is, by definition a singular p-simplex in X. One
agrees however that if 7, is another rectilinear p-simplex and f is a rectilinear homeo-
morphism 7, — g, then (¢f, 0,) = (¢, o))

Orientation of (¢, 6,) is copied from that of 5,. Hence if 5,_, € do, one defines
(¢, 6,—1) €0 (¢, 0,) with the same incidence number. Hence if

C, =X m, (Pn» GZ)
then
oc, =X m,d (P, op).

The definitions of singular cycles, bounding cycles, homology groups is then auto-
matic.

I merely metion that one may prove:

(6.1) Theorem. The collection of singular p-cycles, is isomorphic with the special
subcollection (identity, cycles of K).

Corollary. Since the singular cycle collection has obvious topological character
this holds also for the homology groups of K.

For Alexander’s central contributions to knot theory see Ch. 1.

7. Marston Morse: Critical point theory.

In the twenties and later Morse initiated his classical work based on the study
of critical points of functions and applications, most particularly to the calculus
of variations. The results for the period in question are developed in his Colloquium
Lectures, vol. 18, 1934. The particular point of interest for us is Ch. 6. This volume
contains also an extensive bibliography. :

The results of Morse are far more general than what we describe, but it seems
preferable for the short space at our disposal to lean more to clarity than to generality.

Let then R be a real (closed) bounded region on an analytical manifold referred
to Euclidean coordinates X, , ..., x,. Consider also on R another analytic function
g(x) = g(xy, ..., X,), likewise analytic and such that on R:a= g = b.sai<2b:The
critical points in R of g are its extreme points and the points where

og .
7% O3 e=giy= n. (7.1)

Assume that they are all isolated. Moreover grant that at the critical points
all the hessians
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ol 7.2
0%, 0%, T $izd

These are all simplifying assumptions, which Morse has abandoned.

Let b,, by, ..., (b; = g(a;) be the successive critical values. The problem
dealt with by Morse is to find the variation of the Betti numbers of the region b, <
< g < b, with increasing h as g crosses b, . This has been determined in terms of
certain integers, the type numbers t; which are defined in the following manner.

Corresponding to the critical point b, the hessian H (b,) determines a non-dege-
nerate quadratic form

¢ (x)=ZThyx;x,. (7.3)

This quadratic form reduced to normal form has say m negative roots. The number
t, is the total number of critical points where (7.3) has m negative signs in its canonical
form. As Morse showed the Betti numbers R, of the region and the type numbers
satisfy

to 2 R,

A

to—t; < R,-R,

=

D' =2 DEE(-1)R,

h=1

(7.4)

M=

1Yt =ZC1PR,.

]

h=1

The last relation for n = 2 is due to Poincaré.

As given by Morse these relations were proved by him only for coefficients mod
2, but the proofs far integral coefficients or coefficients in a field is the same.

In his book Morse deals directly with the most general case but the proof for
the simpler case is found in his paper.

In the same book Morse treats a great many applications, which cannot be
discussed here as they usually involve a large amount of analytical technique, espe-
cially of the Calculus of Variations type. I merely mention by way of example:

(a) information about the number of normals to a variety V in Euclidean space
from a point of the space; (b) the number of chords to V normal at both end points;
(c) information about closed geodesics on V.

In all this research Morse rarely imposes analyticity and freely accepts C!
or C? classes of functions. This of course adds considerably to the difficulties.
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8. The work of A. W. Tucker

In his thesis (Princeton 1932) Tucker algebraized the Poincaré scheme to the
last degree, yet preserving a strong contact with algebraic topology. Briefly speaking,
he considered a complex as a finite collection of unspecified elements and assigned
“dimensions” from o to p. Let az , 1 £h £ a, be the g-elements. There were intro-
duced incidence numbers [¢?*! : 4] under the sole condition that there takes place
the general matrix relation

. [[agﬂ :ag]H[a; :03_1]] o

One may define chains, their boundary relations, cycles and homology groups
in the standard way. The boundary relation is given by

oot ="T{ob tal y] ol ,

and for a chain c, by standard linear extension. This leads to the usual functional
relation 00 = 0. Betti and torsion numbers arise in the usual way. Briefly then
the whole theory of complexes follows. The same holds for manifolds and their
duality provided one specifies that every St ¢ has the homology groups of a point.
What attracted me most to Tucker’s work is an extremely simple derivation
of my fixed point formula (see the next chapter). Tucker’s attack was not to be excelled
for single-valued transformations. It did not seem to go over to multiple valued
transformations. Here my early intersection method had the best of it.

9. The work of Walter Mayer.

This author went to the extreme of abstraction. His first contribution was
simply to take a finite sequence of additive groups: chain groups G, G;,...,G,
with homomorphism 7, : G,.; > G, (boundary relations) satisfying 7,,, 7, = 0.
One may then define the boundary subgroups 7, G,.,; C G,, cycle subgroups,
homology groups. I will not enter into a description save to say that Mayer’s scheme
has had quite a vogue later.

Another contribution of Mayer was most curious. Having defined the boundary
operators — call them just t for simplicity — he had the interesting idea of subjecting
them to a relation 7> = 0. It was proved later by Spanier (Michigan Thesis) that
the resulting scheme was reducible to the standard type.

10. Some open problems left by Poincare.

(10.1) One of the problems that evidently occupied Poincaré was to what
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extent the integral Betti numbers plus the group of paths 7 sufficed to characterize
a manifold (let alone a complex). He actually showed by an example that a sphere
S; and an M3 with the same homology groups but with different 7 could be distinct.
Furthermore, we have already observed that Alexander showed by an example
that two M, with the same homology theory and same = need not be homeomorphic.

(10.2) There the question has rested, except that nowadays one expects much
more, namely identity of all homotopy groups in addition to the identity of the
homology groups. In fact whenever a new topological character is discovered one
asks if it suffices to distinguish two given complexes. No such character has been
discovered at the present time.

(10.3) Let our discourse be limited to compact differentiable manifolds. An
absolute M, is differentiable whenever it admits a finite open covering % = {U,}
such that: (a) each U, is parametrizable by variables x,;, 1 < j < n, (b) whenever
U, and U; overlap say at a point P then about P the x" are differentiable functions
of the x{ with a nowhere zero jacobian.

Now the question arises for a given M,,, with one system of differentials, is it
unique? This has been answered in the negative, in 1956, by John Milnor, by exhibi-
ting a 7-sphere S, with two distinct (unrelated) differential systems. This has been
extended by Stallings and Smale up to Ss. Several authors have even computed
for some of these spheres the exact number of “disjoint” differential systems.

(10.4) One may also raise this question: given a polyhedron IT with two covering
complexes K, K, (say simplicial), do they possess subdivision K* , KT with the same
(algebro-geometric) structure? In 1960 Milnor gave an example which showed that
in general this did not hold.

V. ABSOLUTE AND RELATIVE COMPLEXES
AND MANIFOLDS.

DUALITY, COINCIDENCES AND FIXED POINTS.
1. General program

The goal of this chapter is the treatment of coincidences and fixed points of
transformations. The importance of this question not only for topology but for
analysis is well known. When I first attacked this problem (1923) very little had been
done on it. There was mainly the classic of Brouwer and a noteworthy result of Ale-
xander on fixed points for 2-manifolds (surfaces). My earlier major interest had
attracted my attention to the question of coincidences dealt with by algebraic geo-
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meters solely for algebraic transformations between algebraic curves. There were
in existence two highly interesting contributions: an analytical one by Adolph
Hurwitz (around 1890) and a more geometric one by Francisco Severi (1902), even
with a certain topological flavor where products of curves were considered. In this
general research the main concern was the evaluation of numbers of coincidences.

Now moved by the elementary geometry of Rolle’s theorem it occurred to me
that the existence of fixed points in a mapping f of an n-manifold M, into itself could
be dealt with as follows. Take a copy M, of M, and in the product 2n-manifold
M, x M, represent f by an n-cycle y,, the identity by another d,. The intersection
number ¢ (f) = (y,, d,) would give the number of signed fixed points, and ¢ # 0
would guarantee the existence of a fixed point. More generally if M/, is just another
manifold and f: M, -» M, g : M;, > M,,, the same reasoning relative to their cycles
in M, x M, would lead to a number V (f, g) which if # 0 would guarantee the pre-
sence of coincidences (a novel point of view in topology).

What was required then was first the creation of a theory of cycle intersections
in a manifold. Next Brouwer’s result showed the value of extending the investigation
to open manifolds again a theory to be created.

All this creation was essentially terminated about 1928, when a result of Hopf
(communicated by wrltlng) extended my results on mappings (single-valued) to
complexes. I succeeded in deriving them by a new duality in complexes. This appeared
in LT (1930). Within 2 years (Princeton 1932 thesis) A. W. Tucker had indicated
a major shortcut to fixed elements in algebraic transformations of complexes. By
1935 I extended his method to strict mappings (single valued transformations) of
complexes. Here more theory was needed and was provided.

The object of this chapter is now clear: (a) to provide this novel theoretical me-
thod; (b) to apply it to coincidence and fixed points of transformations of complexes
and manifolds (absolute or relative). In the process I found (1969) a novel approach
to complex duality (cotheory) related, but more complete than my partial treatment
of LT.

While I accepted throughout familiarity with standard finite complex theory,
I could not feel so certain about manifolds and their intersection theory. This has
moved me to present this theory as a short resumé in § 2.

2. Compact Manifolds (without boundary).

Let K = {g} be a finite simplicial complex and let K’ be its derived. Take any
o,€ Kand let {,_, be the (point set) collection of all the simplexes of K’ with a vertex
at the barycenter 4, of g, but, except for &, exterior to ¢,. By definition K is an
n-manifold M, , whenever: (a) dim K = n; (b) K is cell-wise connected; (c) every

{u—p 1s a closed (n - p)-cell.
Notice the following properties: (d) every a,_, is the face of exactly two o, ;
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(e) K" is also the (formal) derived of the collection K* = {{} . K* is the “dual complex”
of K; (f) when it is possible to orient every o, so that the two with common face o, _,
are oppositely oriented to it then M, is “orientable”, otherwise it is “nonorientable”.
(g) the incidence relations in K, K* may be so disposed that

[Gp ; Gp—l] = (_ 1)p+1 [CnAp+1 :Cnfp]‘ (21)
Hence the related incidence matrices (n, and n,_,) satisfy
’1p = (7 1)p+1 11;1—17 o ) (22)
This leads to Poincaré's duality relations:
R, (K) =R,_,(K*)
1 £ (2.3)

0, (K) = 9,, p—1(K¥)

where the s are torsion coefficients. (h) The homology groups of K and K* are topo-
logically invariant. Hence (2.3) implies

Rp( n) = n—p(Mn)

. 24
6 (M,) = 0, (M) 8

Notice this special property: —

(2.4a) When M, is orientable the sum of the o, properly oriented is an n-cycle v, .
All the integral n-cycles, or cycles any modulo except 2 are given by Ay,. For this
reason 7y, is called “fundamental n-cycle”. Another choice for such a cycle is —y, .
One may orient M,, by the choice of one or the other + y, as fundamental n-cycle.
When M, is nonorientable the only n-cycle is T o, taken mod 2.

(2.4b) In view of (h) orientation or nonorientation of M, is a topological property.

I conclude with this important proposition due to van Kampen:

(2.5) Theorem. N.a.s.c. in order that K define an M, is that every point possess
an arbitrary small neighborhood which is an n-cell.

Finally the following intersection property holds:

(2.6) Theorem. The geometric intersection of a, and {,_ q IS either vacuous or else
a (p —q)-cell. One may define for it a unique orientation and the cell is then represented
by ¢,(,—,. This cell is actually a subcomplex of K'. For chains c,, ¢

n—gq
&) —Ex,ap, =2y G_,,
the intersection is defined as

CpCu-g = XX Y0, {5y
Note also that
— (— 1\n—p) (n—q)
c,¢,=(-1) CriCye
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Special case: q = p. The intersection is a zero-chain. The sum of the coefficients
(Cp > Cn*p) =X X; Yj

is the “intersection-number” of the two chains.
(2.7) Boundary relations. One proves

dc,c,) = ¢,0c, + (-1)7(0c,) c,
In particular for @ = n—p and since the zero-chain is a cycle:
(Cp-}-l ’ aCn—p) -+ (_ 1)11 ((acp-.LIL cn—p) =0. (28)

From (2.7) we may infer:

(2.7a) If say c, is a cycle the intersection with ¢, _, is + ¢,0¢,—,. Similarly the
other way around. When both ¢, and c,_, are cycles the lntersecnon is a (p—q)-cycle.
Similarly when the chains do not meet one another’'s boundaries.

(2.7b) When Ac, = 0c,, ; not intersecting 0c,_, then (¢, , C,—,) = 0. In particular
this holds when c,_, is a cycle.

Finally we have the all important:

(2.9) Theorem. N.a.s.c. to have vy,[y,-,] a zero-divisor is that the intersection

number
(Vo2 ¥o=p). =0

whatever the cycle y,_,[7,]- .
(2.10) Theorem. All the elements considered and their properties as between orien-

table manifolds concordantly oriented are topologically invariant.
For details and proofs regarding §2 see LT, chapter 4.

3. Relative theory

Let L be a closed subcomplex of K. The theory mod L merely aims to “neglect”
everywhere chains in L. Thus a p-cycle y, of K mod L or relative L is a chain such
that dy, C L. If there exists a c,,; such that

0cp4e1 =7, +d,, d,CL

then we write
7, ~ 0 mod L.

One may define this new @ as 0, , generally omitting the subscript since it is
otherwise clear. In any case

0,0, = 0.
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‘Hence the usual groups (mod L) C, Z, B, H may be defined and the usual homo-

-logy theory mod L follows.

Take now the derived K', L', ... and form the succession
G=K-StL, G =K'-StL’,

One verifies readily that the homology groups of the G® are the same. We call
them: homology groups of K —~L, written H, (K —L). By means of singular chains
one may prove:

(3.1) The homology groups of K mod L and of KL are topological invariants
of the pair (K, L) (i.e. of the polyhedra |K| ; |L|)

(3.2) Local groups. Instead of the homology theory mod L one may well consider
the homology theory mod (K — L) that is relative to an open subset of K, or more
generally relative to an open subset of the polyhedron |K|. I shall not dwell exces-
sively upon this “dual” theory, but only consider the theory modulo a point P of
|K|. This theory was the basis of van Kampen'’s proof of the topological invariance
of a manifold.

We may so construct the derived K’ that P is a vertex -of K’. One may as well
assume then that it is a vertex of K. Topologically a p-cycle of P (= mod K — P)
is any chain ¢, passing through P with dc, C K~ P. We write ¢, ~ 0 mod K- P
when ¢, = 0(C,4+; +d,.;), d,4; C K—P. The definition of the homology groups
of P is clear.

Example. 1f K is any closed n-cell then the Betti numbers R, = 0 for p < n,
and R, = 1.

In a complex one may identify the homology theory of P with that of St P-and
hence (via singular chains) prove it topologically invariant.

(3.3) Open manifolds. We call K —L an open M,, or an M, relative L, or mod L,
or even an n-circuit mod L (old terminology) whenever every o, C K — L satisfies
the basic n-manifold condition: if & is the barycenter of ¢, then the cells of K’ with
vertex & but exterior to ¢, have a closure which is a closed (n —p)-cell written ¢, _
Denote again K* = {{,_,}. The various properties of § 2 hold with these modlﬁ-
cations: replace K by K mod L and K* by K- L. In theorem (2.5) replace K by
K-L.In (2 7a) ¢, must be a cycle mod L and ¢,_, a cycle of K—-L (= M, mod L).
In (2.7b): Ac, = 6cp+1 mod L; c,_, is an absolute cycle. Finally in (2.9) y,, is a cycle
mod L and y,_, an (absolute) cycle of K-L.

The arguments leading to (2.4) yield also the general duality

R,(M,-L) =R,_,(M,, L). (3.4)

(3.5) Duality theorem of Alexander. This is a special duality for an n-sphere
S, : the first beyond Poincaré. The exact statement is this:

(3.6) Theorem. Let L, be a simplicial complex and let p map L, into a set L of
S,, n > 0. Then there takes place the duality relation
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Rp (Sn i L) —= Rn—p—l (L) + apO = 611" S

(a) Let first L be a subcomplex of S, (i is the identity). Then (3.4) holds. From
the fact that in S,:Ry =R, =1 (no torsion) and that R, =0:0 < p < n one
infers at once that

Rn-—p(sniL) o Rn—p‘l (L) + 5p0‘5pn’ (373)

so that in this case (3.7) holds.

(b) General case. Take a small enough ¢ and a derived S, of S, of mesh < e.
Choose then L, of mesh so fine that the deformation theorem applied to L yields a
subcomplex L’ of S’ e-homotopic to L. Hence the singular homology groups of
L are isomorphic to the (natural) groups of L’. That is

Rn—p—l (L) R Rn—p~1 (L/) (38)

Given s independent p-cycles of S,—L we may choose (deformation theorem)
as many independent cycles of S,—L which are absolute cycles and, for suitably
chosen ¢, farther than 2¢ from L. They may also be chosen to be independent for
S, — L’ . Hence for these cycles and L' formula (3.7) will be satisfied. Therefore from
the result just obtained and (3.8) the proof of (3.7) is completed.

Application. For p = 0, we find R, = R,_; (L) + 1 = the number of component
regions of S,—L.

This is one of the main applications of Alexander’s theorem.

4. Duality in complexes (co-theory)

In 1928-30 I introduced a complex-duality but limited to cycles, which I labeled
pseudo-cycles. 1 needed this theory for fixed point purposes. Some years later (1935)
Alexander, Cech and Whitney introduced (independently) a more direct method
labeled co-theory by Whitney. This term has generally been accepted and will be
followed here.

I have just found (1969) a way to extend my earlier argument to a full duality
and this will be described here.

LetK = {o},dim K = n, be our usual complex. One may immerse it isomorphi-
cally as a subcomplex of an absolute M,, r—n > 0 and even. For example M,
might be do,, .

Denote by o? the dual of ¢, of K in M, . This avoids any true reference to M, .
The collection {67} = K* is the dual of K.

We refer to ¢? as p-cocell, and p-cochains, cocycles, etc. will have their obvious
meaning. Duality will be recognized for example by denoting by R” the Betti numbers
ofi ¥

It is immediate that all the properties of § 2 are applicable provided {,_, is
replaced by o?. However one must replace (2.3) and (2.4) by
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R, (K) = R""7 (K*)
g, (K) = 777~ 1 (K*),

both relations being topologically invariant. It is also advisable to write “6” for K*
as 0%, since its basic property is to raise dimensions by one unit. The remaining
properties are either unchanged or else readily adaptable. Exception:
From the relation (with the only reference to r):
CrepCrg=2C

P Pt r—(ptq)

we infer
cPcl = cPta

and hence for cocycles
yp yq i yp+q i
That is

(4.1) The cocycles generate by intersection an intersection ring. This ring is a topo-
logical invariant of the complex K.

(4.2) Duals of open and closed subcomplexes. Let L be a closed subcomplex of
K and J = K-L its open complement. By dualization “open” and “closed” sub-
complexes are interchanged. Thus L* is open in K* and J* is closed in K* . We may
note this duality between Betti numbers (stated without proof)

R, (L) = R?(J*) (4.3)

5. Chain-mappings

This is a remote algebraic analogue of continuous linear transformations.
Continuity will be replaced by a commutation between the boundary operator 0
and a new linear chain-transformation.

Let K = {0}, K; = {{} be two finite simplicial complexes. A chain-mapping
f:K — K, is merely a linear transformation from the group C, (K) to the group
C,(K,) (for all p) which commutes with the boundary operator 0. That is

" fol, =X aJ ) ; aJ an integer; of = fo. (5.1)

Evidently f sends the groups C, Z, B, H of K into the same for K .

For later purposes it is convenient to make use here of matrix-vector notations.
If {u;,u,,...,} is a base for example for the p-chains of K we just write it U, . The
context will usually tell what the u are.

Since {0}} and {{}} may be replaced by any bases for p-chains we denote them
by A, and B,. The matrix [a}] will be written a,.
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As we shall make an extensive use of these matrix notations we state explicitly
some of their meanings:

Transpose of a matrix C,:CF.

Dual of complexes: K*, K} . Their incidence matrices are 1, for K and n*
for K*, likewise 0, and 67 for K, and K¥ . Boundary operators 0 for K, K, , and
0* for K*, K¥ . Collections of elements are A,, A? for K, K* and B,, B for K,
K¥. Thus

A, =n,A,_;, O*AP"l=nPAP,

p

With these general conventions the basic chain-mapping takes the form

fA,=4a,B,. (5.2)
By comparing of and f6 we obtain the n.a.s.c. for f to be a chain-mapping K — K, as
a,8,~n, a8, y =0 (5.3)

Consider now the dual f* : K¥ - K* defined by
PEB? = a? AP * (54

The chain-mapping condition ¢* f* = f* 3* reduces to a?~'n?—0?a? = 0. This
follows from (5.3) by mere dualisation. Hence if one of f, f* is a chain-mapping so
is the other.

6. Coincidences and fixed elements of chain-mappings

Let A,, D,, C, be a minimum base for p-chains of K such that:
A, = minimum base for non p-cycle chains;

D, = minimum base for zero-divisors or ~ 0 p-cycles;

C, = minimum base for independent p-cycles.

If p is a chain-mapping K — K then

fA,=a,A,+a,D,+a,C,,

p

fD, = i s Ml T 8 (6.1
iC, = Gy
where the coefficients a,, ..., are integral matrices.
Set
p()=Z(1)(tra, + trd, + trc,) (6.2)

where tr = trace. .
Now if say tr d, = 0 then fd, has no fixed d, element. Therefore
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(6.3) (@) @ # O implies that ¢ has some fixed element; (b) when f has no fixed
element then v = 0. ;
From the definitions one infers that b, = a,,, . Hence

pf)=Z(1ytrc,. (6.4)

Let now f be a chain-mapping K — K, and g one K; — K. Then gf is a chain-
-mapping K — K. Its fixed elements correspond to coincidences of f and g, that
is to pairs ¢, , ¢, of chains ¢, ¢; of K, K, such that ¢, meets fc and ¢ meets gc, . The
integer

Yy, g =Z(1Ptrc,c,, (6.5)

leads to an analogue of (6.3) for coincidences of elements.

7. Coincidences and fixed points for complexes.

Let first |[K| be a polyhedron and let F be a mapping |[K| - |K|. Suppose
that F has no fixed point. Since |K | is compact there is an & > 0 such that if x e |K |
then d (x, Fx) > ¢ whatever x. Let K™ be a derived whose mesh < 1¢. It follows
that if {} are the simplexes of K™ no { meets F{. Hence the chain mapping f : K™ —
— K resulting from F has no fixed element. Thus if the c,’s refer to f

o) =Z(10trc,=0. (7.1)

But the matrices ¢, are manifestly functions of F. In fact they represent also the
effect of F on a base for the p-cycles of K. Hence we may write

¢ (F)=X(1ytrc, = 0. (7.2)

We may therefore state:

(7.3) Theorem. To |K| there corresponds an integer ¢ (F), a function with values
on any F such that:
(a) @ (F) # O implies the existence of a fixed point of F;
(b) the absence of a fixed point implies that ¢ (F) = 0.

(7.4) Applications. Let F be a deformation of |K| into itself. Then every c, is
the identity. Hence tr ¢, = R, and

¢ (F)=Z(1FR, =x(F),
the characteristic of K. Thus for an n-sphere S,
Ro=R,=1, R,=0, O0<p<n
Hence X = 2 and so every deformation of S, has a fixed point. Similarly for a closed
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n-cell E,: X = 1, and so every mapping E, — E, (deformation) has a fixed point.
This is Brouwer’s theorem.

On the other hand let |K| be the ring of the Poincaré-Birkhoff theorem and
F the homeomorphism of the theorem. Again F is a deformation but ¥ = 0. Hence
one cannot decide (by the formula) that there is a fixed point: a special method was
required for the proof and it was given by Birkhoff.

Now let K, K, be as before with F a mapping |K| — |K,| and G a mapping
|K,| = |K|. A coincidence (x, y) is a pair of points x€|K| and ye|K,| such that
ye Fx and xe Gy. We may now state

(7.5) There is attached to every pair of mappings

F:|K|-|K,| and G :|K,| - |K]|

an integer  (F, G) = Y (G, F) such that: (a) if there are no coincidences Y = 0, (b) if

Y # 0 there are coincidences.
(7.6) When K and K, are absolute, orientable 2-manifolds one may show that
F and G may both proceed in the same direction, say |K | - |K|. (See LAT page 320.)

8. Coincidences and fixed points of an open complex

Let K, L be a simplicial complex and let L be a closed normal subcomplex
of K. We are concerned with our problem for mappings of the open subcomplex
K —-L into itself.

Observe that K — L is not altered if we suppress in L simplexes which do not
belong to the boundary d (K — L). That is we may freely assume that L = ¢ (K —L).
This being done let K; be another copy of K and let the image L; of L in K, be
brought into coincidence with L, each simplex of L, to coincide point for point
with its image in L. Let K; be the resulting closed simplicial complex.

There are now two possibilities: — It may be that F has fixed points on L.
Then we are through. Suppose now that L is without fixed points of F. Then we
extend F to a mapping F, :|K,| - |K| without fixed points on L. Finally we replace
F, by a new mapping F, : K; —» K with the same fixed points as F, by assigning to
x; € K| — L the same transform Fx as to the image x of x; in K — L. Thus F, answers
the question.

Clearly the analogue for K, of the matrix c, for K is merely a matrix of type

)

where ¢, is the same as c, for K. Hence its ¢, representation in the sum (7.2) is (- 1)?
trace ¢, where c,, is the part of c¥ corresponding to the p-cycles of (K —L), that is
to the p-cycles of K mod L. In other words this time ¢ (F,) = ¢ (F), where F is the
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given mapping |[K-L|— |K-L|. That is for our present F and fixed points the
earlier result for K holds unchanged.

The method just utilized holds also for coincidences but with considerably
larger complications. I will merely refer the reader to my paper: Manifolds with
a boundary and their transformations, Trans. Am. Math. Soc., vol. 29, (1927), pp.
429-462. See notably page 440.

VI. VARIOUS QUESTIONS CONCERNING CERTAIN SPACES

1. General Program

In this last chapter we discuss certain problems on spaces not too remote from
polyhedra. We shall first extend coincidence and fixed point results to certain mode-
rately restricted compacta. These provide an easy access, without excessive technique,
to more advanced questions.

2. Retraction

There is no reason to believe that the results of the preceding chapter have
universal application even to all compacta. Some limitation will have to be imposed.
One of the simplest is based upon the concept of retraction, due in its very general
form to the Polish topologist Borsuk.

Let X be a compactum and let Y be a closed subset of X. Borsuk calls Y a retract

of X whenever there exists a mapping R : X — Y such that R|Y = 1. Then R is a
retraction X - Y.
Borsuk distinguished several noteworthy special cases:

(@) Y :an absolute retract, that is a retract for every X D Y.

(b) Y: a neighborhood retract like (a) but Y merely a retract of a neighborhood
N(Y) in X.

(c) Y: absolute neighborhood retract (= ANR) whenever it is one for a neighborhood
N (Y) in every X D Y.

(d) Y: deformation retract, absolute deformation retract, etc. whenever R is always
a deformation in X, N (Y), etc.
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3. Coincidences and fixed points for certain compacta

Let X be a compactum deformation ANR. Let it also have a topological image
in an Euclidean space €,. Then we may as well assume that X C €,.

Since X is compact it is bounded in €, . We may then assume that it is in some
closed square Q of €,. One may cover Q with a closed n-complex K. Let N (X)
be a neighborhood of X in Q deformation retracted into X. There isa derived K'” ¢ N
for p high enough and hence K is deformation retractable into X.

The collection of all closed simplexes of K® which meet X form a closed neigh-
borhood N1 (X) of X retractable by deformation into X. Hence (easily proved), N, (X)
has the same homology groups as X. In particular one may select for N; a max1ma1
set of independent q-cycles which are also such cycles for X.

Upon recalling that X C €, implies that dim X < n, we may state:

(3.1) Theorem. The coincidence and fixed point results of (V, § 8) are valid for a
compactum of finite dimension, which is a deformation ANR.

4. Some results of Alexandroff on compacta

Let X be an unrestricted compactum. Let 2l = {U,} be a finite open covering
of X. Consider each set U, as a point, each pair of intersecting sets U, , U, as an
abstract segment, each triple U,, U,, U, with a common intersection as a 7, etc.
The various simplexes thus obtained give rise to an abstract simplicial complex
N (U) called the nerve of U. In a sense the nerve is the intersection diagram of the
sets of 1.

At times it will be found necessary to carry in the nerve a type of operation na-
tural in a geometric, but less so in an abstract complex. For this purpose it is conve-
nient to construct a geometric isomorph of the nerve. This is done as follows: To
each set U, of U let there correspond in a suitable €, a point u, , the space €, being
so chosen that the u, are linearly independent. Then to each abstract simplex U, ... U,
of N () one associates the geometric simplex u, ... u, in €, . This clearly gives rise
to a geometric isomorph N? of N. Incidentally its metric may be assigned to N.

Recall that the order w of U is one less than the largest number of overlapping
sets of 2. Hence dim N (U) = w. Let U, denote a U of mesh < &. Essentially also by
the result of Lebesgue-Brouwer we have:

(4.1) Theorem. The least order w (¢) of any U, — dim X as ¢ — 0.

Here and later the dimension is understood in the classical Menger-Urysohn
sense.

Alexandroff has proved:

(4.2) Theorem. If dim X = n is finite, X 'may be arbitrarily closely approximated
by an n-dimensional polyhedron.

Spectral sequences. Let U be as before and let U, = {U,,} be a refinement of
U: every U,, is contained in some U,.
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Let 6, = Uy,...U;, and let U, C U,., where the U, need not be distinct.
Since the U, determine a o, the sets U, have a non-void intersection. Hence this
holds likewise for the U, of U. It follows that they are the vertices of a ¢’ € N ().
Hence the assignment U,, — U,. is a simplicial mapping p' : N (U;) - N ). As
a consequence ' is a chain-mapping N(U,) - N(U). Since u' depends upon the
choice of a set U, D Uy, it need not be unique. Suppose that u” is a second chain-
-mapping such as ', defined by choices U, > Uy . Then the sets {U,., U,.} all
contain the intersection of the sets U,,. Hence they are the vertices of a 51mp1ex
ce N ). In N? the pair Uy, Uy~ may be joined by a segment. Hence x’ and u”
are homotopic in N? U,). It follows that they determine the same homomorphism
of the images under x' and u” of the homology groups N (2,) into those of N ().

Conclusion. If y, is any cycle of N (,) its images 'y, and u”y, in N (U) are
~ in N (). Choose therefore one of the two operations, say ', and call it projection
n : N @) > N Q). The possible cycles ny will all be ~ in N ().

Take now a sequence U, , U, , ..., of finite open coverings of X determined
(not necessarily uniquely) as follows. Let mesh U, = ¢,, and let 4, be the Legesgue
number of U,. Choose U, so that mesh U,,, < 4,. In addition one imposes
that ¢, — 0 with & . The sequence {,} is a spectral sequence (Alexandroff).

Remark When dim X is finite one may choose the sequence {U,} so that order
U, = dim X.

Since U, refines U, there exists a projection m,, ; :W,,, — U,.

Let now G designate the additive group of integers or the ficld mod m, m prime.
It is convenient to call the integers: numbers mod 0, and thus to allow m to be a
prime or zero. A sequence y, = {y%}, where y';, is a cycle of U, mod m, defines a p-cycle
of X mod m. If Vo7 {yy} define Ay,"+ A'y,,, A and 2’ numbers mod m, as {Ah +
+ A"y}, This gives a perfectly consistent definition of a homology group H, (X)
mod m.

By passing to the dual mappings one obtains a definition of the cohomology
group H?” (X), mod m. (Details in (5.4)).

5. The Cech theory

While Alexandroff's spectral sequences are not topological the more general
Cech scheme not only remedies this but also produces a theory with much wider
applications.

Let X be this-time any topological space, i.c with a topology based on open
sets. Let 2 = {2} be the collection of all the finite open coverings of X with the
property that any pair, hence any finite collection of coverings. of the collection
have a common refinement in the collection.

Let then U, be refined by 1, . One may introduce the nerves, as in Alexandroff s
scheme, define the projection nf : 2, — U, and the cycle projections nf 7%, etc. A
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cycle y, of X is then defined as a collection y, = {y}}, y5 C U,, such that if [, refines
U, then y5 ~ nf 9% in U, . The rest is defined as with Alexandroff.

It is now evident that homology groups and related characters are topological.

A subcollection B = {B,} of U and behaving like it is cofinal with 2l whenever
any U, has a refinement B,. One may define cycles and their groups in terms of
B alone. By the evident property

(5.1) Any finite set {U,,, ..., W,} has a common refinement in 1L

One proves readily:

(5.2) The homology groups determined by means of B are isomorphic with the
corresponding groups determined in terms of 1L

(5.3) Application. Let K = {g} be our usual finite complex. Let K™ = {{} be
its n-th derived and B, = {St {} the finite open covering of |K | by the stars of K.
Let also U be the same as defined for the space X. If 1 is the Lebesgue number of
U, one may choose n so that mesh B, < A. Thus B, will refine 2, and B = {B,}
is cofinal in 2. Hence it has the same homology groups as M, and they are topo-
logical. However these groups are precisely those of K itself. Hence the homology
groups of K have topological character. This is a second proof of the property.

(5.4) Cohomology theory. Since the projections are chain-mappings they have
chain duals. We write them 7}* and consider them as chain-mappings of duals written
U*and U¥ . That is 7}* : U* — WP . Their cycles are designated as cocycles and written
y% . Such a cocycle defines a p-cocycle of X. The addition and product is automatic.
The cocycle is the same as 7 y5 = y5. It is also the dual of y, = {y3}.

Notice that y? ~ 0 if any n}*y2 ~ 0 in UP.

We have thus a clear cut definition of cohomology classes and therefore also of
cohomology groups.

(5.5) Relative theory. For this theory it is convenient, for the sake of simplicity,
to limit the argument to X a compactum.

Let then A be a closed subset of X and hence also a compactum. Under the
circumstances the intersections A N U, = {A n U} determine a finite open co-
vering of A. Since mesh A N U, < mesh U, the Lebesgue number of A N 2, < Lebes-
gue number 1, .

We now refine U, by U, by the condition Lebesgue number A N 2, > mesh
A N 2,. Hence A N U, will refine AN, . It follows that n? is also a projection
for the finite open coverings {A n U,} of A. This will enable us to introduce the
subcomplexes U, — A n U, and so to define the relative cycles of X mod A as those
of U, mod A n U, under the same projections n¥ as the absolute cycles. As for the
relative cocycles, we leave them as exercises.

For references to the relative theory see LAT p. 248.

6. The Vietoris theory

Although this theory is formally implied by the Cech theory, it is actually more
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direct and for this reason well suited for applications. In any case we restrict its
development to compacta.

Consider the points of X as vertices of all possible simplexes. This gives rise to
an ever so infinite complex K. This need not confuse us for actually only finite chains
and cycles will be utilized.

By an & p-chain ¢;, of K we understand a chain whose mesh < ¢. A p-cycle Vp
of X is a sequence y, = 1,},} of p-cycles of K such that for any ¢ there is an N such
that if n’, n” > N there is an ¢ chain c}, ; such that y = dc,,, . Addition
and /1 multiplication are defined in the obvious way. This implies that y, = {y2} ~0
whenever under the above conditions for n > N then y} = 0¢,+ - Thus all the ele-
ments for the definition of Vietoris homology groups are at hand. Observe that
these groups are topological as between compacta.

7. Some special homology theories

About 1935 Alexander, Kolgomoroff and Kurosh developed rather similar
theories closely related to Cech’s. The principal difference was the use of finite
closed instead of finite open coverings. Let me give a few details about the Alexander
grating theory. For further information see LAT, Ch. 7.

According to Alexander an open set U of X is regular whenever it is the interior
(largest open subset) of U. A grating is a finite closed covering U = { U,,} by closures
of regular open sets. Some interesting special properties are:

(@ fU = {U,} and W = {U;} are gratlngs sois U + W = {U,} + {Uy}.

(b) Every grating M = U, n U, n... N U, where all the I, are binary (composed
of two elements).

(c) Gratings give rise to a Cech type homology theory which is the same as the Cech
theory by finite closed coverings.

Alexander has also brought out a close parallel between these theories and
Elie Cartan’s theory of differential forms. De Rham has shown that the parallel
becomes an identity when X is an absolute differentiable manifold (see loc. cit.).

8. Relations between algebraic topology and dimension theory

It is a worthwhile observation that the impulse to “topologize dimension” is
due to Poincaré. In fact I believe that he was the one to introduce the basic and
early concept that, roughly speaking, an n-dimensional space was characterized
by “walls” of dimension n—1 plus the property that o-dimensional space has no
walls (walls understood in the topological sense). This general idea, carried out
with due mathematical rigor, was at the root of the definition (obtained indepen-
dently) by Menger and Urysohn (early twenties). Lebesgue on the other hand intro-
duced an entirely different idea: dimension = order of a finite covering (open or
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closed), altogether close to (future) by arbitrarily small sets. This concept is of alge-
braic topology and was exploited with marked success by Paul Alexandroff and
his Moscow students. A short description follows.

Calculations relating to cycles will more or less follow the Vietoris scheme
but with this modification. Let y, = {y, , 77, ...} denote a Vietoris sequence repre-
senting a p-cycle of X. The only question to be raised about y, is whether it does
or does not bound. It is not planned however to combine such cycles by homology
relations. Therefore it is not necessary to restrict particularly the moduli. We have
then two possible cases:

(a) The modulus m is the same for all cycles. That is y% is a chain mod m. The
number m may be any integer = 0 and is not restricted to being a prime. Conven-
tionally one agrees to consider integral cycles as cycles mod 0. Let A (m) denote
the largest dimension (p for y,) for which there exists a nonbounding cycle y (m).
We call A(m): dimension of X mod m, written dim,,X.

(b) The modulus of each cycle y% (of the sequence of 7,) is a variable positive
integer and we denote the corresponding A as A (v), or merely A dimension by
dim,X. It is defined as before as the largest dimension of a nonbounding cycle of
the same type.

Notice that the deviations from the Vietoris definitions (imposed by Alexan-
droff) are entirely logical. His main result is:

(8.1) Theorem. (a) dim, X < dim X; (b) dim, X = dim X.

Following immediately the Comptes Rendus Note (190 (1930), pp. 1105-1107)
in which Alexandroff described his result there appeared a note by Pontrjagin in
which he directed attention to this problem: Given a second compactum Y, does

dim X x Y = dim X + dim Y? (8.2)

He outlined the following results:

(a) the relation (8.2) holds for all dim,, X when m = 0O (integral domain) or m
is prime;

(5) for m composite or for the classical dimension the relation (8.2) may fail;

(c) the failures of (8.2) recur only when dim X x Y = 4, more precisely when
dim X = dim Y = 2 (shown by examples);

(d) for compacta in €,, n < 3, all the dimensions whatsoever are equal.
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