A note on Anosov flows

ALBERTO VERJOVSKY.

Let M be a compact, connected, C^{∞} -manifold with empty boundary. A C^r-vector field ($r \ge 1$) X with associated flow f, is called an Anosov flow (see [2]) if for some riemannian norm | | | the following conditions hold

- 1) $X(x) \neq 0$ for all $x \in M$
- 2) There exists an invariant and continuous splitting

$$TM = E^s \oplus E^u \oplus E^1$$

with dim E^s , dim $E^u \neq 0$ and $E^2 = \text{span } X$

- 3) there exist constants c, c', $\lambda > 0$ such that for every positive t

 $\begin{array}{l} \text{i)} \ \| \, Df_t \left(v \right) \| \geqq c e^{\lambda t} \, \| \, v \, \| \, , \ \| \, Df_{-t} \left(v \right) \| \leqq c' \, e^{-\lambda t} \, \| \, v \, \| \ \text{for all} \ v \in E^u \\ \text{ii)} \ \| \, Df_t \left(v \right) \| \leqq c' \, e^{-\lambda t} \, \| \, v \, \| , \ \| \, Df_{-t} \left(v \right) \| \geqq c e^{\lambda t} \, \| \, v \, \| \ \text{for all} \ v \in E^s \, . \end{array}$

An Anosov flow is called codimension one if either dim E" or dim E's is equal to one. For a vector field Y let $\Omega(Y)$ denote its non-wandering set. We announce the following

Theorem. If M is a compact, connected C[∞]-manifold without boundary of dimension greater than four and $f_t: M \to M$ an Anosov flow of codimension one, them $\Omega(X) = M$.

The proof of this theorem follows arguments similar to the ones used by S.E. Newhouse [1] for the case of diffeomorphisms.

Bibliography:

S. Newhouse. [1]. A note on Anosov Diffeomorphisms. To appear. [2]. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967).