On Hyperbolic Linear $R^h \times Z^1$ actions

C. CAMACHO

Preliminaries: A linear action of a Lie group G on a vector space V is a continuos homomorphism $\rho: G \to \operatorname{Aut}(V)$ where $\operatorname{Aut}(V)$ denotes the group of automorphisms of V with the usual topology. The isotropy group of a vector $v \in V$ is defined as $G_v(\rho) = \{g \in G; \ \rho(g)(v) = v\}$. The orbit of v by ρ is the set $\mathfrak{D}_v(\rho) = \{\rho(g)(v); g \in G\}$. The compact-open topology is given to the space of linear actions. In what follows $G = \mathbb{R}^k \times \mathbb{Z}^1$. The space of linear actions will then be denoted by $\mathfrak{A}_v(k, 1)$.

The Splitting Process. Let ρ be as above. Given $v \in V$ such that $G_v(\rho) \neq 0$, a linear action $\varphi: G_v(\rho) \to \operatorname{Aut}(T_v V)$ is defined by $\varphi(g) = \operatorname{d}\rho(g)(V)$. Since G is abelian, two points in the same orbit by ρ have the same isotropy groups. So any vector in $T_v V$ lying on $T_v \mathfrak{D}_v(\rho)$ (the tangent space to $\mathfrak{D}_v(\rho)$ at v) is a fixed point of the action φ . We assumme there exists $g \in G$ such that $\rho(g)$ has only different eigenvalues. Then V splits as a direct sum of φ -invariant subspaces $T_v \mathfrak{D}_v(\rho)$ and $N_v(\rho)$, where $N_v(\rho) \approx T_v V / T_v \mathfrak{D}_v(\rho)$. Therefore φ induces a linear action $\chi_\rho: G_v(\rho) \to Aut(N_v(\rho))$ defined by $\chi_v(g)(\pi u) = \pi \varphi(g)(u)$ where $\pi: T_v V \to N_v(\rho)$ is the quotient map.

Definition: Let ρ be as in the splitting process. Suppose G is isomorphic to either Z or R. Then we say that ρ is hyperbolic if for any $v \in V$, $v \neq 0$, $\overline{\mathfrak{D}_v(\rho)}$ is not compact.

Suppose now that G is isomorphic to $R \times Z$ then we call ρ hyperbolic if .he following conditions hold:

- (i) For any $g \in G$, $\rho(g)$ has only real eigenvalues
- (ii) For any $v \in V$, $v \neq 0$, $\overline{\mathfrak{D}_{v}(\rho)}$ is not compact

Moreover, for any non zero $v \in V$ for which $G_v(\rho) \neq 0$ the induced action χ_v is hyperbolic.

Let now $G \sim \mathbb{R}^k \times \mathbb{Z}^l$; $k \ge 2$, l = 0,1. Proceeding by induction on k, suppose we have already, defined hyperbolic linear actions for s > k, l = 0,1. We then call ρ hyperbolic if for any $v \in V$, $v \ne 0$, we have:

- (j) $G_v(\rho)$ is not isomorphic to $\mathbb{R}^s \times \mathbb{Z}^j$, $j \ge 2$
- (jj) $\overline{\mathfrak{D}_{v}(\rho)}$ is not compact

Moreover, for any non zero $v \in V$ for which $G_v(\rho) \neq 0$, the induced linear action χ_v is hyperbolic.

Definition: A linear action $\rho \in \mathfrak{A}_v(k, 1)$ is called locally structurally stable in $\mathfrak{A}_v(k, 1)$ if for any $\varepsilon > 0$ there exists a neighborhood \mathscr{U} of ρ in $\mathfrak{A}_v(k, 1)$ such that for any $\psi \in \mathscr{U}$ there exist a neighborhood W of zero in V and a homeomorphism $h: W \to V$ satisfying:

- (1) h is &-close to the identity map
- (2) h maps orbits of ρ onto orbits of ψ
- (3) For any $v \in V$, $G_v(\rho)$ is isomorphic to $G_{h(v)}(\psi)$

Theorem A. Let $\rho \in \mathfrak{A}_{\nu}(k, 1)$ satisfying any of the following items:

- (a) There exits $v \in V$ $v \neq 0$ such that $\overline{\mathfrak{D}_{v}(\rho)}$ is compact
- (b) k = 1 = 1 and there exists $g \in \mathbb{R} \times \mathbb{Z}$ such that $\rho(g)$ has non real eigenvalues.
- (c) $1 \ge 2$ and dim $V \ge k + 2$.

Then ρ is not locally structurally stable in $\mathfrak{A}_{\nu}(\mathbf{k}, 1)$.

Theorem B. Any hyperbolic linear action $\rho \in \mathfrak{A}_v(\mathbf{k}, 1)$ is locally structurally stable in $\mathfrak{A}_v(\mathbf{k}, 1)$

Theorem C: The set of hyperbolic linear actions of $\mathbb{R}^k \times \mathbb{Z}^l$ on a vector space V is open and dense in $\mathfrak{A}_v(k, 1)$.