A Version of Morse-Sard Theorem for Hilbert Spaces

J. SOTOMAYOR

1. Introduction: Let f:Q — F be a differentiable function defined on the open
subset Q of a Banach space E, into a Banach F. If Df,,, the derivative of f at p, is onto,
p is called a regular point of f ; otherwise it is called a critical point of f. C = C, will
denote the set of critical points of f.

Morse-Sard Theorem [1] states that if a) E, F are finite dimensional and b)
fis of class C*, k = {dim F-dim E + 1} [1] then f(C) has null (Lebesgue) measure.
When a) is not satisfied I. Kupka [2] has given an example where the above pro-
position fails. However, under convenient hypothesis — when f is a Fredholm map
— S. Smale [3] has proved a version of Morse-Sard Theorem when E, F are infinite
dimensional.

In this paper we restrict ourselves to the case where E is a Hilbert space and F
is the real line and announce the following.

Theorem 1. Let E be a separable Hilbert space. Let Q be an open subset of E.
Let f:Q — R be a C¥k > 2 function such that, for every pe C, D? f, is a Fredholm
bilinear form (defined below) with nullity n,.

If k> sup {n, + 1, 2; peC,}, then f(C) has null measure.

2: Outline of proof — The proof depends on the following two lemmas.

Lemma 1. Let E be a Hilbert space with inner product <, >. If § is a continuous
symetric bilinear form on E and E, is the null space of E; i.e. E; = ve E; B (v, W) = 0
for all weE}, then E; = Ker f§, where f is the continuous endomorphism of E
defined by < f(v), w> = B(v, w) for all v, weE.

Also, if E, = B(E) is closed, then E, is the orthogonal complement of E,,
E = E, @ E, (topological sum), and f|E, : E, — E, is a topological isomorphism.
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Definition. p is called a Fredholm bilinear form if B is a Fredholm operator.
Note that, for Fredholm bilinear forms f, dimension of B~ 1(0), equal to nullity
of B, is finite, and f(E) is closed.

Iemma 2: Let f as in Theorem 1. Each pe C has a neighborhood V, such that
CnV,is contained in a submanifold S, of E, of dimension n, and class k—1.

The proof of Theorem 1 follows from Lemma 2, taking into account that if
S ¢ Qis a submanifold of E then C, n' S C Cy,, and applying Morse-Sard Theorem
to f restricted to a countable subcovering of C by submanifolds S,. Lemma 1 is

important for the proof of Lemma 2.

3. Remarks and a Problem a) Theorem 1 is also valid when E is a Hilbert manifold
with countable basis. b) The counter examples to Morse-Sard Theorem (in infinite
dimension) known to the author-that of Kupka [2] and that shown in J. Eells
[4. p. 759] — are stated for C* functions which are not analytic (the reminder of
their Taylor expansions are not uniformily convergent to zero). It semms reasonable
to ask the following

Problem. To prove (or disprove) Morse-Sard Theorem when f : Q — R is analytic
and Q is open in an infinite dimensional Hilbert space.
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