On direct systems of groups

by
PETER HILTON

1. Introduction

The notion of a direct limit of a direct system generalizes that
of a direct limit of a sequence, which in its turn may be regarded as
an outgrowth of the notion of limit as it is found in mathematical ana-
lysis. We may consider sequences in various mathematical categories;
thus, in the category of sets, we consider sequences
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of sets X, and functions f,: X, — X,,;n > 0. However we may
also study, e.g., the category of topological spaces, when the X, in
(1.1) are topological spaces and the f, are continuous functions, or
the category of groups, when the X, in (1.1) are groups and the f, are
homomorphisms. These are clearly just a few among the many possible
examples available.

The association of a direct limit with the sequence (1.1) is most
familiar in the case in which the functions f, are inclusions. Then the
direct limit is just the set-theoretic union

(12) x=U, X,;

this set is topologized in a natural way if the X, are topological spaces,
and it is given a natural group structure if the X, are groups. Moreover
the evident inclusion g, : X, — X is then a morphism of the appro-
priate category, that is, it is continuous in the topological case and
homomorphic in the case that the X, are groups.

It turns out to be possible to associate a direct limit with the se-
quence (1.1) even when the functions f, are not inclusions. Again the
direct limit X comes provided with functions g, : X, — X. Moreover,



it turns out that the direct limit may be characterized in terms of a
universal property enjoyed by the functions g, relative to the sequence
(1.1) — and this in any category in which we wish to consider direct
limits.

Thus a general developement of the theory of direct limits would
apply to any mathematical category; moreover, the duality principle
would enable us to derive properties of inverse limits standing in one-
one correspondence with the properties of direct limits adduced. In
this article we do not attempt any such generality, concentrating enti-
rely on the category of groups; however, we do introduce the essential
generalization which consists of passing from sequences to direct sys-
tems over arbitrary directed sets. By presenting this generalization, and
by laying emphasis on the universal property already referred to (see
Theorem 2.5 and Definition 2.12), we hope to prepare the reader for
a study of the abstract theory of direct and inverse limits in any category.
However we must emphasize that this article is preparatory and not
in any sense definitive. The theory of direct limits of groups, so far as
we take it, may be applied do direct systems over index categories much
more general than directed sets (see Definition 2.9); indeed we cannot
even apply our results as stated to the simple situation of the co-equa-
lizer of two homomorphisms
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that is, a homomorphism € with domain G, such that ey = €6 which
is universal for this property of “equalizing” y and 6. We have not how-
ever thought it worthwhile in this expository article to consider a
class of index categories (the so-called quasi-filtered categories) which
includes the directed sets and to which, in fact, all our results would
apply, at some cost in simplicity of demonstration.¥ Moreover, our
enunciations and demonstrations are by no means always the most
sophisticated, lending themselves naturally to further generalization
and abstraction; we have been concerned to make the arguments intel-
ligible to those to whom the actual material of this article is unfamiliar.

Although this article is basically expository, we have included a
new result which forms the content of the final section. This result
has been included in order to demonstrate that there are questions to
be asked and answered even within the very concrete and well-esta-

* A treatment is given in B. Eckmann and P. J. Hilton, Commuting limits with colimits, Jour. Alg. 11 (19%9),
116-144.

blished parts of the theory of direct systems of groups; in fact, the theorem
we prove in Section 5 plays a key role (in slightly, but very slightly,
generalized form) in a study of general cohomology theories with coeffi-
cients currently being undertaken by the author.

In Section 2 we develop the basic ideas relating to direct systems
of groups, emphasizing how the direct limit may be characterized by
means of a universal property. In Section 3 we apply the theory to
the study of tensor products of abelian groups, using direct limits to
obtain a complete characterization of the so-called flat abelian groups
(Theorem 3.14). In Section 4 we show that direct limits preserve exactness
(of sequences of groups). It is, of course, in Sections 3 and 4 that we
most conspicuously use special forms of much more general arguments;
we hint that we are really exploiting the facts that the tensor product
has a right adjoint (see Theorem 3.7) and that the direct limit also has
a right adjoint, but we do not develop this more basic point of view
any further in this article.

2. Sequences and direct systems of groups

Suppose given a sequence of groups and homomorphisms
@D, . ., Gomdele Phulumta i Gar@isiinry

It is then customary to define the direct limit* of (2.1) as the group G
constructed as follows. On the set | J, G, we set up the equivalence
relation generated by the relation g, =¢,(9,), 0 <n < o, ¢g,€G,.
The set of equivalence classes is the underlying set of G and we write
g = [g,] for the element of G represented by g,,. Let g = [g,]. ¢’ = [¢'m]
be two elements of G; we may suppose without real loss of generality
that n > m and we set ¢,,, = @,_1-.-Qp+1Pm- We then introduce a
group structure into G by the rule

%) ‘ 99' = [9n" Omn (@'m)]-

The reader may verify that this rule is independent of the choice of
representatives and does indeed give to G the structure of a group;
moreover the function

0,: G, — G,

* The terms “‘inductive limit”, “colimit” are also used.



given by 0, (g,) = [g,] is then a homomorphism such that, for all n > 0,
(23) 0n+1 (pn 2 Bn %
We write (G, 0,) = lim (G,, ¢,) or, more briefly, G = lim (G,, ¢,)
Fin T

n
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or, even, G = lim G,. We may even omit the “n” under the arrow!
—_—
n

Example 2.4. Let G be the union of an ascending sequence of sub-
groups ‘Go sG-S 16y 1S o8 Gy £l sy & sois@=1 ), G, i Then G
is the direct limit of the sequence of inclusions and 6,: G, — G is
just the inclusion of G, in G.

Theorem 2.5. Let (G,0,) = l£>n (G,, @,) and let p,: G, — X be a

sequence of homomorphisms such that p,., @, = p,, n = 0. Then there
exists a unique homomorphism p: G — X such that p6, = p,,.

Proof. We set p[g,] = p.(g,)- We leave to the reader the verifi-
cation that p is well-defined and is a homomorphism; it is plain that
p satisfies pf, = p, and that this equation (for all n > 0) uniquely
determines p.

This simple theorem lies at the heart of the modern developments in
the theory of direct limits. We will immediately draw two consequences.

Corollary 2.6. Suppose given a commutative’diagram

GO& Gl—(p_l) R Gn&’ Gn+1_>
170 i 1 Yn et
OE’H1£’"'_“’HnL’Hn+1—*"'

and let (G,0,) = lim (G,, ¢,), (H,n,) = lim (H,, ¥,). Then there exists
— —

a unique homomorphism y: G — H such that y0, =1,7,, n > 0.
Proof. Let Pn = MNuVn : Gn w Hy Then Prn+1Pn = MNus+1Vn+1 Pn =
fMu+ 1 ¥nVn = NaVn = Pn- Apply Theorem 2.5.
The reader familiar with the language of category theory will ,e-
cognize that Corollary 2.6 is the essential step in establishing the fact
that 1_1_r13 is a functor from the category of sequences of groups to the

category of groups; the remaining steps are, indeed, very easy and we
will omit them.

Corollary 2.7. Suppose, in the notation of Theorem 2.5, that the
homomorphisms p, have following two properties:

(@) Every xe X is in the image of p, for some n;
(b) lf Pn (gn) =6, then* (o (gn) TS for some k =.n.

Then p: G — X is an isomorphism; that is, (X, p,) is then canonically
isomorphic to lim (G,, @,).
e

Proof. Since p[g,] = p.(g,), condition (a) asserts that p is onto
X. Likewise condition (b) asserts that p is one-one. For if p[g,,] =g,
then p,(g,) = €, 50 @, (9,) = e and [g,] = [¢u (9.)] = ¢ €G.

The force of this corollary is that it gives us a criterion for when
(X, p,) essentially is the direct limit of (G,, ¢ ). We will illustrate this
by an example.

Example 2.8. Consider the sequence

Zﬁol_,zipi,z__,...__,zip_,z__,...
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where ¢, _; is simply multiplication by n. We claim that the direct
limit of this sequence is just @, the group of rationals. For define p, :
Z—-Q by p,(1)=1/n!. Then p,0,_; = p,—1, 1 < 2. Property (a)
of Corollary 2.7 holds since p, (p(q — 1)!) = p/q; and property (b) holds
trivially since each p, is one-one. Notice that this example illustrates
one fact typical of direct limits: if each ¢, is one-one and lim (G,, ¢,) =

(G, 6,), then each 0, is one-one (the converse follows from_z2.3)).
We now proceed to generalize what has gone before, replacing
the notion of a sequence by that of a direct system, over a directed set.

Definition 2.9. A directed set A is a (partially) ordered set with
the property: for any a, o' € A, there exists o’ € A with o < o”, o’ < o”".

Definition 2.10. A direct system of groups over the directed set A
consists of

(i) A collection of groups {G,} indexed by A, and
(ii) to each pair a,, a, in A with a; < a, a homomorphism
Py s Ty 4l such that

(2.11) 0 =1: G,— G,
and @, ,, = @, ., ©q, o, Whenever a; < o, < 3.

* We use “e” for the neutral element of any group. Also recall that @, = @_1 ... @41 @,: G, — G, k = n.



Notice that the set of natural numbers is directed by size and a
direct system of groups over the directed set of natural numbers is
just a sequence of groups and homomorphisms.

We may now generalize the entire discussion from sequences to
direct systems. However, we prefer to introduce a change of outlook
since it is Theorem 2.5 that constitutes the definitive property of the
direct limit. With this new point of view the notion of direct limit plays
its right role as a concept of universal algebra, and the construction of
G given at the start of this section constitutes an existence proof for
the direct limit.

Definition 2.12. Let {G, ; ¢,, ,,} be a direct system of groups over
the directed set 4 and let {G;0,} consist of a group G and, for each
o ¢ A, a homomorphism 6, : G, — G such that, for all pairs a;, a,
in A with a; < a,

(2.13) O, Pay Paya, = s,

Suppose further that {G;6,} has the following universal prop-
erty: given {X;p,} where, for each a € 4, p, : G, — X is a homomor-
phism such that

Pas Pa, a3 = Pa, whenever o; < a,,

then there exists a unique homomorphism p: G — X such that
p0, = p,, o€ A. Then {G;0,} is called the direct limit (inductive limit,
colimit) of the system {G,; @, ,,}-

Theorem 2.14. The direct limit, if it exists, is unique up to canoncal
isomorphism.

Proof. Suppose that {G';¢',} also has the property ascribed to
{G;0,} in Definition 2.12. Taking {G’;¢',} for {X;p,} in that defi-
nition — legitimate since 6, ¢, ,, = 0, if o; < a, — we find a unique
w: G — G’ such that wf, = ¢',, x € A. We will show that w is an iso-
morphism, thus proving the theorem.

Now we may reverse the roles of {G;0,} and {G';#,} in the above
argument. Thus we also find a unique ': G’ — G such that 0’ ¢, = ',
a € A. But then

(2.15) o wl, =06, aeA.

Reverting to Definition 2.12, the uniqueness part of the statement
means that if pf, = p'6, for all a€ A, then p = p’; but (2.15) tells us
that o’ wb, = 10, for all a € A, so we conclude that ' w = 1. Again
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reversing the roles of {G;0,} and {G’;0',} we infer that wew’ =1, so
that w is indeed an isomorphism (with inverse w’).

This theorem establishes the essential uniqueness of the direct
limit; it does not, of course, prove that the direct limit exists. We now
imitate the construction given at the beginning of the section to esta-

blish existence. Given the system {G,, @,, ,,,} we form the set (] G,
aeA
and, on this set, set up the equivalence relation generated by the re-

lation.

(216) gau T (Pazl as (gal )’ 0y = a2 % gal € Gal 4

If we wish to describe this equivalence relation explicitly, we may do
so as follows:

(2.17) g. = g, if, for some o” such that « < a”; o' < a”,

we have @, (9,) = @u o (9a)-

We write [g,] for the equivalence class containing g,. We then intro-
duce a group structure into the set G of equivalence classes by the rule

(218) [ga] [g’a’] = [(paa” (ga) Py o (gla’)]
where «” is any element of A such that a’ > o, o > .

To show that (2.18) gives a well-defined binary operation in G,
we first show independence of the choice of a”. If also a; > a, a; > o/,
choose o’ = o', " > ay. Then

Paa (ga) R (g,a’) = @y ((paa” (ga) Oy (g/a'))
= Quq' (g:z) Qg (gla’)
and, similarly,
(Paal(ga) i (pa’an (g(a') = (paa”’ (ga) 8 (Pa' - 1A (g/a')'

We next show that the right-hand side of (2.18) is independent of the
choices of g, , g, Within their equivalence classes; it is plainly sufficient
to give the argument proving independence of the choice of g, . Suppose
then that @ > o and that o’ > &, a” > o/. But then @’ >, @' > o/,
so that, by what we have already proved

Poa (ga) TPy g (g’z’) = Qug (ga) R (g’a') = Oz ”(g;) Pyar (gla’)>

where ¢; = ¢z (g,). Since the equivalence relation is generated by
(2.16), this establishes our claim. We now leave to the reader the proof

7



that the operation (2.18) yields a group structure in G. Moreover there
is a homomorphism 0, : G, — G given by 0,(g,) = [g.] and plainly

00, Puya; = 0, if 0y < a,.

The reader may now readily supply the proofs of the following
results, generalizing Theorem 2.5 and Corollaries 2.6 and 2.7.

Theorem 2.19. The pair {G;0,} constructed above is the direct limit
of {G, ; @y, 4,1 in the sense of Definition 2.12.

Theorem 2.20. Let {G,;@,, ,,} and {H,;,, ,,} be two direct systems
of groups over the directed set A, and let y,: G, — H,, o€ A, be a col-
lection of homomorphisms such that, whenever a; < a,, the diagram

Doy ay

5 = a8

Va die

H, —— H,
: l//al az 5
commutes. Let im {G,; @y, o} = {G;0,}, im {H, ¥, o,} = {H;n,}.
Then there exists a unique homomorphism y: G — H such that y0, = 1,7y, ,
e A.
(We call the collection (y,) a morphism of direct systems.)

Theorem 2.21. Let {G, ; @, ,} be a direct system of groups over A
and let {X;p,} be a pair, where p, : G, — X satisfies p,, P, o, = Pa,
if o, > a,. Suppose the homomorphisms p, hare the following two pro-
perties: :

(a) Every xe X is in the image of p, for some o;

(b) if p,(g,) = e, then there exists o/ > o such that @, (g,) = e.
Then {X;p,} = lim {G, ; @,, 4,}
W

(Of course, the direct limit does have properties (a) and (b).)

We will henceforth adopt the notational abbreviations indicated
following (2.3) but now applying to our more general situation; thus
we may even use the very abbreviated symbol h_r,n {6} =G

Example 2.22. Let G be a group and let 4 be a set in a given one-
one correspondence with the set of finitely-generated subgroups of G,

thus a < G,. We declare o < o if G, < G,.. Then A4 is a directed set;

for given G,, G, finitely-generated subgroups of G, then the union
of a (finite) set of generators of G, and a (finite) set of generators of G,
is a finite set of elements of G generating a finitely-generated subgroup
G, of G such that G, < G, G, < G,.. If @, : G, — G, is the inclu-
sion when o < o, then it is easy to see that

G= lim {Ga ; (Paa’}'
ey

Briefly, every group is the direct limit of its finitely-generated subgroups.
We will see in the next section how we may use this fact to transfer
certain properties from finitely-generated groups to arbitrary groups.

We close this section by introducing an important notion. It is
clear that the direct limit of a sequence is unaffected if we throw out
some of the groups G,, provided only that we retain an infinite sub-
sequence*. The notion of a cofinal subset of a direct set provides us
with the appropriate generalization.

Definition 2.23. A subset B of a directed set 4 is said to be cofinal
in A if, given any o€ 4, there exists fe B with a < B.

Notice that a cofinal subset is certainly itself directed; for if
B € B, there exists a € A with ' < «, f” < « and then, B being cofinal,
there exists § with o < B, so that §’ < B, B’ < B. The converse is plainly
false — a directed subset of a direct set may well fail to be cofinal (it
is sufficient to take B to be a singleton where A is the set of natural
numbers).

Given a direct system {G,; ¢,,} of groups directed by A4, and
given B cofinal in A, then we plainly have the direct system {Gg 5 ©pp}
directed by B, obtained simply by restriction of the indices.

Theorem 2.24. If lim {G,; @u} = {G; 0,}, then lim {Gg; @gp}
e >
= {G; 8,}.
Proof. We apply Theorem 2.21; thus we must show (a) every g € G
is in the image of 6, for some e B, and (b) if O5(gp) = €, then there

exists B/ > B such that ¢g, (gs) = e.
Now sihce {G; 0,} = lim {G,; ¢,.}, each ge G is expressible as
——

g = 6,(g,) for some a€ A, g,€G,. Choose p > a; then 65 9,5 = 0, s0

g = 05 (@44 (9,)), proving (a). As to (b), if 04(gp) = e, then there exists

* This corresponds to the familiar fact that if a sequence (of real numbers, say) converges to x, then every infi-
nite subsequence also converges to x. .



o > B such that g, (gs) = €. Choose ' > o ; then @z = @, 5 Ppor
SO @gp (gp) = €.

A very special example of a cofinal subset is furnished by the case
in which A possesses an upper bound, that is, an element a such that
o < u for all « € A. If B is the singleton (&), then B is cofinal in A. Thus,
in this case, lim {G,; ¢,.} = G;.

s

3. Direct limits and tensor products

The notion of the tensor product of two abelian groups is crucial
in homological algebra. Here we will show how the direct limit inter-
acts with tensor products; in particular, Theorem 3.10 below enables
us to obtain a completely general theorem from a rather obvious result
on free abelian groups (Proposition 3.12). Since we will only be con-
cerned in this section ‘with abelian groups, we will write the group
operation additively.

Definition 3.1. Given two abelian groups G and H, their tensor
product G ® H is the abelian group generated by the symbols g ® h,
subject to the relations

32) 91 +9,)®h=9,®h+9g,®h, g,,9,€G, heH,

gy +h)=g®h; +g®h,, geG, hy ,h,eH.

Proposition 3.3. Ip G ® H, we have
ng ®h) =ng ® h =g ® nh, for any neZ.

Proof. That g ® 0 = 0 ® h = 0 follows trivially from (3.2). Again,
an easy induction on n, based on (3.2), establishes the proposition
if n is positive. Finally, (3.2) establishes that

-GN =0-9)@h=9g®(-h)
and hence the proposition holds for all integers n.
Example 34. Let G = Z. Then a generator of Z @ H has the form
n® h =1 nh. It follows now from (3.2) that every element of Z ® H

is expressible as 1 ® h, h € H, and we thus obtain a natural isomorphism
Z@®H ~ H.
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Example 3.5. Let G be a finite group and H = Q. Then a generator
of G® Q has the form g ® 4, ge G, A€ Q. Let ng =0, n > 0. Then

gRA=ng@An) =ng@in=0@ i/n=10. Thus G ® Q = 0.

We do not propose to go into a detailed discussion of all the pro-
perties of the tensor product. The theorem below is, however, crucial
in any significant application of tensor products. We first note that,
given abelian groups M, N, then the set of homomorphisms from M
to N, written Hom (M, N), is an abelian group under the binary ope-
ration given by

(3.6) @+ ¥) (x) = ¢(x) + Y(x), xeM, ¢, y: M — N.

Theorem 3.7. Given abelian groups G,H,K, there is a natural iso-
morphism

n:Hom (G ® H, K) ~ Hom (G, Hom (H, K)).

Proof. Given ¢: G ® H — K, define ¢’ = n(¢): G — Hom (H, K)
by ¢'(9) (h) = (g ® h), g€ G, he H. The second relation in (3.2) shows
that ¢’(g) is a homomorphism from H to K and the first relation in
(3.2) shows that ¢’ is a homomorphism from G to Hom (H, K). That
1 is-a homomorphism follows immediately from (3.6). Plainly we may
go in the other direction; that is, given ¥: G — Hom (H, K), we may
define ' =n'(y): G® H— K by Y'(g ® h) = y(g)(h). Then n' is
inverse to 7 and 5 is an isomorphism.

The reader familiar with the language of category theory will
know what to understand by the word “natural” in the statement of
this theorem. We will be content to explain what it means to say that
n is natural with respect to G.

We first observe that, given homomorphisms ¢:G; — G,,
Y:H, — H,, there is a well-defined homomorphism

(p®l// G1®H1 —’G2®H25
given by
(@ ®Y)(g®h =0lg Y(h), geG,, heH,.

Let us write @ for ¢ ® 1: G; ® H — G, ® H. Then plainly ¢’ ¢ = ¢'¢
for ¢': G, — G;. We also notice that ¢ induces

¢*:Hom (G, , X) — Hom (G, , X),

for any abelian group X, where ¢* is given by
oSO =00y 0:G,~— X,
and again it is plain that ¢*@'™* = (p'p)*.

11



With these preliminaries we may describe the naturality of n in
Theorem 3.7 with respect to G in the following way. Given ¢:G;, — G,
we have ¢: Gy ® H — G, ® H and hence
- ¢*: Hom (G, ® H,K) — Hom (G, ® H, K)

¢*: Hom (G, , Hom (H, K)) — Hom (G, , Hom (H, K)).

Then the diagram

M2
Hom (G, ® H, K) ~ Hom (G,, Hom (H, K))
(39 l@* : lfp*
N1 '

Hom (G, ® H, K) ~ Hom (G, , Hom (H, K))

commutes; the proof is an easy and immediate consequence of the
definition of .

We are now ready to demonstrate the relation of direct sums to
tensor products. Our main theorem is the following.

Theorem 3.10. Let lilll {G.; @u} ={G; @,}. Then

lim {G,® H; ¢..} = {G®H; 8,}.

In other words, direct limits commute with tensor products.
Proof. Let us first recast Definition 2.12 in slightly different form.
Then to say that lim {G,; ¢,.} = {G; 0,} is to say, first, that
ey

@i 0,) = 0,, for all « < o, and, second, that if, for any X and any
pagHom (G,, X), xe A, we have ¢X. (p,) = p,, then there exists a
unique p € Hom (G, X) such that 6*(p) = p, .

It is obvious that ¢} (0,) =0, if ¢*. (6,) = 0,, so we take an
arbitrary abelian group* X and homomorphisms p.€ Hom (G, ® H, X)
such that @3, (p,) = p,. Let p, = n(p,) € Hom (G,, Hom (H, X)). In
view of (3.9) we infer that ¢}, (p,) = p,, so that there exists a unique
p € Hom (G, Hom (H,~ X)) such that 6*(p) = p,. Define p € Hom
(G ® H, X) by n(p) = p. Then since 7 is an isomorphism, we may again
invoke (3.9) to conclude that p is the unique homomorphism from G ® H
to X such that 6} (p) = p,. This proves the theorem.

e : % s
It is easy to see that, for a direct system of abelian groups, it is sufficient to take X abelian in Definition 2.12.
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We will give an application of this theorem. It is fairly easy to
see that

(3.11) G, ®G6G,)QH=G6G,dH® G, ® H.

From this observation and Example 3.4 it follows that if G is a free
abelian group of rank n (where, in fact, n may be any cardinal), then

G ® H is isomorphic to the direct sum of n copies of H. Now let
1:H, — H, be an inclusion — or, more generally, any monomorphism.
We then have

1®1:6® H, — G® H,

and the remarks above immediately lead to the

Proposition 3.12. If 1 : H; — H, is a monomorphism and G is free
abelian, then 1 ® 1:G® H; — G ® H, is also a monomorphism.

For 1 ® 1 can be regarded as the direct sum of n copies of the mo-
nomorphism 1. However, 1 ® 1 need not be a monomorphism for
every G. Take, for example, G = Z, and 1 the embedding of the even
integers 27 in Z. Then G ® 2Z ~ G = Z,, but, if g generates G, then

1®)VY®)=9®2=29®1=01=0,

so that 1 ® 1 is the zero homomorphism. Thus it is important to find
out for just what abelian groups G is it true that 1 ® : is always a mono-
morphism. We use Theorem 3.10 to prove

Proposition 3.13. If 1: H, — H, is a monomorphism and G is a
direct limit of free abelian groups, then 1® 1:GQ Hy — G ® H, is
a monomorphism.

Proof. Let {G;0,} = lim {G,; @.} With each G, free abelian. By

Theorem 3.10
{GRH;; 0,1} =Ilim {G,® H;; ¢, ®1}, i=12

Let xe G ® H, and let (1 ® 1)(x) = 0. Then x = (6, ® 1) (x,) for some
index o, x,€ G, ® H,, so that (6, ® 1)(1 ® 1)(x,) = 0. It thus follows
(see the parenthetic remark following Theorem 2.21) that, for some

(Z’ 2 a, ((paa’ ® 1) (1 ® l) (xa) i 0 or
(1@ 1) (Par ® 1) (x,) = 0.
But G, is free so that, by Proposition3.12,1 ® 1 : G, @ H; — G, ® H,
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is a monomorphism. Thus (@, ® 1)(x,) =0. But §,® 1 =(0, ® 1)
((paa’ ® 1)7 SO

x =0, ®1)(x) =0y ®1)(Por ® 1 (x;) =0,

and the proposition is proved.
It is now easy to prove the following general theorem.

Theorem 3.14. The abelian group G has the property that 1 ® 1:
G® HA — G ® H, is a monomorphism for all monomorphisms
1:H, — H, if and only if it is torsion free.

Proof. An abelian group is the direct limit of its finitely-generated
subgroups. Now a finitely-generated torsion free abelian group is free
abelian, so that Proposition 3.13 implies that 1 ® 1 is a monomorphism.
Conversely, suppose G is not torsion free and let ge G be an element
of finite order n > 1. Let 1 : Z — Q be the embedding. Now G ® Z ~ G
under the isomorphism g ® 1«<>¢g. Thus g® 1 # 0 in G ® Z. But in
G®AQ,

gR®1=ng®1/n=0® 1/n = 0.

Thus 1 ® 1 is not a monomorphism.

Abelian groups enjoying the property, above, that tensor products
preserve monomorphisms, are also called flat. This concept, applied
to the more general algebraic structures called modules (over some
ring A), plays a crucial role in modern algebraic geometry.

4. Direct limits and exactness
One of the most important concepts of modern algebra is that of
an exact sequence. We say that a sequence of groups and homomor-
phisms
E.mﬁl _&n j it
4.1) .G, =5 G, 75 Gy ...,—0<N< O
is exact at G, if

4.2) Image &, , = Kernel §,.

It is a very important feature of direct limits (and distinguishes
them from inverse limits) that they preserve exactness. Precisely, this
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means the following. Let A be a directed set and suppose that, for each
o« e A, we have a sequence of groups*

a -2

4.3) o, SE LR e L,

suppose further that, for each n, we have a direct system {G%; ¢}

n

over A such that each collection (&%), a € A, is a morphism of direct
systems (see Theorem 2.20). This means that, for all n and all o < o,
we have a commutative diagram

a
o n o
Gn e Gn+ 1

(4.4) Lot Lot
G = Gheq

Let lim {G%; ¢} = {G,; 6%}. Then, by Theorem 2.20, we have ho-
—
momorphisms §,: G, — G,,, such that

4.5) E Q=i it B s LA i 0012 << 00,

We assert

Theorem 4.6. If each sequence (4.3) is exact at G, then the limit
sequence

is exact at G,.

Proof. Let ge G, _, . Then g = 6%_, (¢*) for some x € 4, g>€ G*_, .
Thus

E.vn gn—l (q) = én énfl %,1 (ga)
=6+188_1(07), by(4))
= e, since the a-sequence is exact at GZ*.

Conversely, let ge G, with &,(g) = e. Then g-= 6% (g% for some
ae A, g€ G5. Then

e=2E,(9) =8,0,(¢") = 6.1 5. (¢") Dby (4.5)
* We write o superscript in this section for notational convenience.
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It then follows (compare the proof of Proposition 3.13) that, for some
o >a, 2%, E*(g%) = e or, in view of (4.4),

& o (@) =e
Since the o’-sequence is exact at G*, we conclude that ¢* (9% =
¥ 1 (g%) for some g* € G} _,, so that

g=0:(g =0 o= () =0 & 1 (g") =8, _1 0% 1 (g"),

by (4.5), and the theorem is proved. v
This theorem has important applications; e.g., to Cech cohom-
ology theory.

5. A new result

In this final section we consider a possible converse to Theorem
2.20. In that theorem we saw how a morphism of direct systems of
groups induces a homomorphism of their direct limits. We may there-
fore ask whether every homomorphism of the direct limits is induced
in this way. Precisely if {G,} — G, {H,} — H and y: G — H, does
there exist a morphism (y,) where y, : G, — H, such that (y,) induces y?

One quickly convinces oneself that the answer is negative. For
example, we have the constant sequence {Q} tending to Q and the se-
quence of Example 2.8 tending to @. Now the only homomorphism
Q —> Z is the zero homomorphism, so that only the zero homomorphism
Q@ — Q is induced by a morphism of the constant sequence {Q} into
the sequence of Example 2.8.

However this negative answer does not destroy the interest of the
question, it merely forces us to modify it. We consider throughout
a fixed but arbitrary directed set and prove the following.

Theorem 5.1. Let lim {G,} =G, lim {H,} = H and let y: G — H.

Then there exists a direct system {K,} such that lim {K,} = G and
morphisms (B,): {K,} — {G,}, (6,): {K,} — {H,} such that

(i) (B,) induces 1; G — G and (3,) induces y: G — H; and
(ii) given lim {K.} =G and (B,): {K;} —{G.}, (0): {K} — {H,}

such that (B',) induces 1: G — G, (¢',) induces y: G — H, there exists

16-

a unique morphism (x,) : {K',} = {K,} such that (x,) induces 1 :G —» G
and B, x, = B, 6, K, = 0, for all e A.

Before proving the theorem we illustrate it by a diagram, where
the wavy arrow indicates passage to the limit,

(G b MR > G
7|
W
B! / \
* By “ \\
RLer =0 fE ] M B =6
A
é'a \/6oa VY‘/(

A Y

Proof of Theorem 5.1. Consider, for each a, the diagram
G,
(5.2) 170,
H 1y
Here we adopt the usual notation, lim {G, ; ¢,,.} = {G;0,},1im {H, ; ¥, }
T 2

= {H; n,}. We now form the pull-back of (5.2); that is, we construct
from (5.2) the commutative square

xfug
653 )

. Jey gr

where K, < G, x H, consists of pairs (g,, h,) with y0,(g,) = n,(h,)
and B,, J, are the restrictions to K, of the projections G, x H, — G,,
G, x H, — H,. We may define, for o < ', a homomorphism

Oy’ (ga ) ha) o (q’aa’ s (ga)a lprza’ (ha))
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For ’))Ha, Poar (ga) a yea (ga)’ Mo l//aa' (ha) =iy (haz)' It iS then plain that
if a <o <o, then

O'a, a” Ogyt = L

so {K,; 0,,} is a direct system over the directed set A. Moreover, it
is plain that (8,) and (J,) are then morphisms of direct systems. Let
p.: K, — G be given by

(5.4) Pa(9as h) = 0,(g0)-

Then if a < o

(5'5) pa & pa’ aaa”

fOI' Pa Oy’ (gaz s ha) = Pu ((Pau’ (ga)a lpaa’ (ha)) = 01' (% (ga)
= 0,(92) = Pa(9a> ho)-

We now use Theorem 2.21 to prove that
(56) 11_1'1;1 {Ka; o-aa'} = {G’ pa}'

First,let ge G. Theng = 6, (g,) for some o € 4, g, € G, , and y(g) = 7, (h,)
for some o' € A, h, € H,. Choose o” > a, o' ; then, if g, = @y (9,),
hy = Yy, (hy), We have

Y0, (Ga) = 70, (9s) = Y(g) = Ny (By) = Ny (hyr).

Thus (ga" o) ha”) € Ka” > and Pa (ga” ’ ha”) 70 Ba” (ga”) i ea (ga) =d- This
proves that condition (a) in Theorem 221 is satisfied. To establish
condition (b), let p,(g,,h,) =e. Thus 6,(g,) =e so that, for some
o > a, Q. (g, = e But also n,(h,) = 0,(g,) = e, so that, for some
o > o, Y,y (hy) = €. Choosea, > o,a”. It then follows that ¢, (g,) = €,
Vs, (h) = €, so that

Ouy, (Ga o) = €.

Thus (5.6) is established. Now (5.4) asserts that 0, B, = p, so that (B,)
induces 1: G — G; and

Na 0y = V0, By = VPa>

so that (8,) induces y: G — H. Thus assertion (i) of the theorem is com-

18

pletely established. It remains to establish assertion (ii). Consider, for
each o, the diagram

KL
(6.7 19, 176, .
H, e g
Since (f',) induces 1: G — G, it follows (see Theorem 2.20) that
Po=10,8,
where lim {K',; ¢,,.} = {G; p',}; and, similarly, since (&’,) induces
y: G ——>—,H, it follows that
PP'a = Na0's-
Thus y0,6', = yp's = 1,9, and (5.7) commutes. Those familiar with

the pull-back will expect the immediate inference that. there exists a
unique x,: K, — K, such that

B woy= iy o, =10y
but, in any case, this is easily deduced, with

K, (V) = B (¥), 0, (V), veK,.
We show that (x,) is a morphism of direct systems. Let a; > o; then

Ouay Ko (V) = Ouay Bz (v), 8, (V) = @o, B (V) Yo, 02 (V)
= 4B, Oaa, V) 02, 05, (V)
=ac oy (V) e Ky,

ay Yoy

Finally we show that (x,) induces 1: G — G; but this is an immediate
consequence of the relation p,k, = p,, which holds since p,k,(v)
= p. (B (¥), () =0,8.(»)=p.(y), yeK',. Thus the theorem is
completely proved.

We offer some commentary on this theorem. If one compares it
with Definition 2.12 (or with Theorem 2.5) one finds a close resem-
blance. The collection

(58) (g} O Ty o

has the same type of universal property, relative to y: G — H, as the
direct limit has relative to a direct system of groups. Indeed, part (i)
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of Theorem 5.1 asserts that (5.8) possesses a certain property and part
(ii) asserts that it is universal for this property. Thus we can regard the
proof of Theorem 5.1 as demonstrating the existence of such a universal
solution (5.8) just as we provided in Section 2 a construction of a direct
limit (see Theorem 2.19). It is thus possible to imitate the proof of Theo-
rem 2.14 to show the uniqueness of (5.8) satisfying the requirements
of Theorem 5.1; it is, in fact, a characteristic feature of all definitions
by means of universal properties that such definitions automatically
imply the uniqueness (up to canonical equivalence) of the objects being
defined. The reader should refer to texts on category theory for further
discussion of this type of definition in universal algebra.

The uniqueness of (5.8) allows us to refer to it as the canonical
realization of y : G — H. It is possible to make this realization functorial;
this will be described in a subsequent paper*. It is of some interest
to note that if (y,) : {G,} — {H,} induces y : G — H, then

6} — {6}V (my

is not necessarily the canonical realization of y. For this to be true it
is necessary and sufficient that, for each o, n,: H, — H is one-one.

Thus in this last case, when 7, is one-one, a realization (y,) : {G,} — {H,},
y:G — H, is unique (if it exists) and is the canonical realization.

Remark. The pull-back (see (5.2), (5.3)) is, of course, another example
of a definition by means of a solution of a universal problem. Indeed,
the pull-back may be regarded as the inverse limit of a system (of groups)
over the directed set consisting of 3 elements, which may be represented
diagrammatically by

© >

where the arrow means that the domain precedes the range in the
given order. It is thus a feature of the proof of Theorem 5.1 that we
demonstrate a special case of the remarkable fact that pull-backs com-
mute with direct limits in the category of groups. The general problem
of when direct limits (colimits) and inverse limits (limits) commute is

discussed in B. Eckmann and P. J. Hilton (loc. cit.).
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Center, USA.

* Peter Hilton, The category of direct systems and functors on groups (Battelle Research Report).
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