On Isometric Immersions of Riemannian Manifolds in
Euclidean Space

by
R. H. SzczArga 1)

The purpose of this paper is to present complete proofs of the
existence and rigidity theorems? for isometric immersions announced
in [7]. (For earlier results on existence of isometric immersions, see
[1], [2], and [5].) Our existence theorem is an analogue of the result
of Hirsch [4] for smooth immersions and states that a simply connec-
ted Riemannian manifold M can be isometrically immersed in eucli-
dean space if and only if there is a suitably equipped candidate for a
normal bundle over M. The rigidity theorem asserts that the normal
bundle with its additional structure essentially determines the immer-
sion up to a rigid motion. These two theorems contain as special cases
the classical results for hypersurfaces. !

The idea of the proof of the existence theorem is based upon the
following observation. Suppose ¢ : M — R"** is an isometric immer-
sion of a Riemannian n-manifold M with normal bundle E. Then ¢
can be extended to an immersion ¢ of a tubular neighborhood W of
the zero section in E into R"**. Since W is immersed as open subset
of R*** the metric induced by ¢ on W is flat and, of course, induces
the given metric on M (as the zero section).

Conversely, suppose E is a k-plane bundle over M and that some
tubular neighborhood W of the zero section of E has a flat metric
inducing the given metric on M. It is then not difficult to prove (see
Lemma 2.3 below) that, if M is simply connected, W can be isometri-
cally immersed in R"** and thus so can M. What we do below is to find

1. During the prepartion of this paper, the author was partially supported by NSF grant GR7993.

2. It was pointed out to me recently that the existence theorem given here is a reformulation of (the ambient space
euclidean case of) Theorem 5, page 202 of Bishop and Crittenden, “Geometry on Manifolds,” Academic Press,
New York and London, 1964. The proofs are, however, quite different.
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conditions, in terms of structure on the bundle under which a tubular
neighborhood of the zero section has a flat metric.

The proof of the rigidity theorem uses the same ideas in that the
general case is reduced to the codimension zero flat case.

The organization of the paper is as follows. In section 1, we state
the principal results of the paper. In section 2, we show how additional
structure on a bundle can be used to define a metric on a tubular neigh-
borhood of the zero section of the bundle, state the important properties
of the metric, and derive the existence and rigidity theorems from
these properties. The last three sections of the paper are devoted to
proving that the metric defined in section 2 has the stated properties.

Finally, I would like to express my gratitude to Rolph Schwar-
zenberger for helpful conversations during the early stages of this
work.

1. Statements of results.

In this section, we state the principal results of the paper. Throu-
ghout the paper, all objects considered (maps, manifolds, bundles, etc.)
will be differentiable of class C* . :

Let ¢ : M — R"** be an isometric immersion of a Riemannian
n-manifold M into euclidean space, E its normal bundle, and T = TM
the tangent bundle of M. As the normal bundle of an isometric immer-
sion, E possesses additional structure consisting of a bundle metric
(,), a connection D, and a second fundamental form A (which is a section
in Hom (T ® E, T)). The bundle metric on E is induced from the usual
metric on R*** in the obvious way and the connection and second
fundamental form obtained by projecting the usual connection in
R*** onto the normal and tangent planes of M respectively. (For a
more complete description of this structure, see [7]) It is easily seen
that the connection D is compatible with the metric (,) so that

(il XN N9 '=(D, N, N'J5 (N Dy N}

and also that A is self adjoint in the sense that

(152) (AyN, Y) = (X, AyN)

where X, Y are tangent vectors at ue M, N, N’ normal fields. (Since
no confusion seems likely, we use the notation (,) both for the bundle
metric in E and for the Riemannian metric on M.)

We define the second fundamental tensor associated with A to be
the section B in Hom (T ® T, E) defined by

(1.3) (B(X, Y), N) = (AxN, Y)
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fqr tangent vectors X, Y on M and normal vector N. It follows imme-
diately from (1, 2) that B is symmetric.
As usual, we denote the Riemannian curvature tensor by R and

define R, the curvature of E relative to D, by the equation

R(X, Y)N = ByDyN-D,DyN-Dy yN.

In this context, the Gauss equations are

R(X, Y)Zi=AxB(Y, Z)~'A¢B(X,.Z)
and
R(X, Y)N = B(AxN, Y)-B(X, AyN)

and the Codazzi-Mainardi equation
VxAyN-VyAxN—- A yyN = AyDyN—-AxDyN.

In the above, V is the Levi-Civita connection on M, X, Y, and Z are
tangent vector fields on M and N is a section in E (a normal field).

It is well known (see, for example, Hicks [3], p. 76) that the Gauss
and Codazzi-Mainardi equations are satisfied in the above situation.
Thus, the existence of a k-plane bundle over a Riemannian manifold
with the additional structure described above for which the Gauss
an.d Codazzi-Mainardi equation hold is a necessary condition for the
existence of an isometric immersion in R"**. Our existence theorem
below asserts that, if M is simply connected, this condition is also
sufficient.

We call a k-plane bundle over a manifold a Riemannian k-plane
bundle if it is equipped with a bundle metric and compatible connection.
If E is any k-plane bundle over a Riemannian manifold M, a second
fundamental form in E is a section A in Hom (T ® E, T) satisfying
(1.2). If E is a Riemannian vector bundle with a second fundamental
form A, we define the associated second fundamental tensor B as in (1.3).

We can now state our main results:

Existence Theorem., Let M be a simplv connected Riemannian
n-manifold with a Riemannian k-plane bundle E over M equipped with
a second fundamental form A and associated second fundamental tensor
B. Then, if the Gauss and Codazzi-Mainardi equations are satisfied, M
can be isometrically immersed in R"** with normal bundle E.

Rigidity Theorem. Let @,¢' : M — R"** be isometric immersions
of a connected Riemannian n-manifold with normal bundles E, E' equipped
as above with bundle metrics, connections, and second fundamental forms.
Suppose there is an isometry f : M — M that can be covered by a bundle
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map f:E — E' which preserves the bundle metrics, the connections,
and the second fundamental forms. Then there is a rigid motion F of Rk
such that Fo@ = ¢ of. .

Suppose now that the normal bundle E to an isometric immersion
is trivial and choose an orthonormal framing # = {N;,..., N} of E.
(Thatis, N, ,..., N, are normal fields on M which form an orthonormal
base for the normal space at each pont of M.) Define 1-forms w*,
1<a B<k on M by

k
(1.4) DyN, = Y o*¥(X)N,
p=1

and 'sections ‘L', . VL, "in Hem"(T'T) by

(1.5) LoX A N

It follows immediately from (1.1) and (1.2) that
(1.6) %P B

and that

(1.7) (IOX 2NN (8REDY)

for 1 < «, B < k. Furthermore, the Gauss and Codazzi-Mainardi equa-
tions become

(1.8) R YV)Z = 3 [LpY, ZLeX ~ (LX) Z)L,Y],
p=1

(19 REYN. = 3 [LX L)~ LY L XN,
=1

k
(1.10) V4L, Y-VyLX-LJ[X,Y] = Y [0®(X)L,Y-0*(Y)LsX],
=1

where o ranges from 1 to k. Of course, in (1.9),

R(X, Y)N, = i [(dw™ - i 0 A w®)(X, Y)]N,
=1 y =

so (1.8), (1.9), and (1.10) invole only the forms o*, the section L,, and
invariants of the manifold M.

Conversely, suppose a Riemannian manifold M is equipped with
1-forms w* and sections L, in Hom (T, T), 1 < «, f < k, satisfying
(1.6) and (1.7). Then, we can define a metric, a compatible connection
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D, and a second fundamental form A in the trivial k-plane bundle E
over M by choosing a framing N, ,..., N, of E, specifying it as ortho-
normal, and using (1.4) and (1.5) to define D and A. These observations
lead to the following:

Corollary 1. A simply connected Riemannian n-manifold M can be
isometrically immersed in R"** with a trivial normal bundle if and only
if there are 1-forms @™ on M and sections L, in Hom (T, T), 1 < a, p < k,
satisfying (1.6) through (1.10).

Corollary 2. Let ¢, @ : M — R"** be isometric immersions of the
connected Riemannian n-manifold M with trivial normal bundles E and
E. Let f :M — M be an isometry and suppose we can choose framings
n of E, n,of E such that

f*o® =w”® dfL,=L,df

for 1 <o, B <k where 0*, L,, @, L, are defined as above in terms
of n and 7j. Then there is a rigid motion F of R*** such that Fo @ = @ o f.

If k = 1 in the above corollaries, they reduce to the classical exis-
tence and rigidity theorems for hypersurfaces.

2. The induced metric.

Let #:E— M be a Riemannian k-plane bundle with second
fundamental form A and TE ~ H® V be the decomposition into
horizontal and vertical subbundles determined by the connection in
E. As is well known, H ~ n* TM and V ~ n* E in a natural way so
H and V inherit metrics from TM and E (both of which are denoted
again by (, ) ). We define a (possibly singular) metric < , » on TE by setting
{,» =(,)on V, designating H and V orthogonal, and defining

2.1) (L F e L A 2N ey Y0

for Z, Z' horizontal tangent vectors at Y in E and A the section in
Hom (H ® E, H) determined by A. (Here we treat Y as both a point
in the manifold E and a vector in the vector bundle E.)

Now let ¢ : M — R"** be an isometric immersion with normal
bundle E equipped with its induced bundle metric, connection D and
second fundamental form A. Let ¢ : E — R"** be the obvious extension
of ¢ taking the fibers of E linearly into the normal spaces to M.
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Theorem 2.1. The (possibly singular) metric on E induced by @ from
the usual metric on R"** is the one described above in (2.1).

The proof of this theorem is given in section 3. We now derive
the rigidity theorem from it.

Let ¢, ¢’ : M — R"** be isometric immersions with normal bundles
E, E and f :E - E’ a bundle map convering an isometry f of M as
in the rigidity theorem. Let @ : E - R"**, @ : E' - R"** be extentions
of ¢ and ¢’ as above and W < E, W’ < E' tubular neighborhoods of
the zero sections on which ¢ and @’ are immersions and with fW = W
Since f preserves the additional structure in E and E', it follows from
Theorem 2.1 that 7 : W — W is an isometry extending f :M — M.
(Of course, W and W' are Riemannian flat in the induced metrics.)
Let U = W be a coordinate ball on which both @ and & . f are (iso-
metric) embeddings. Since U is flat, there is a rigid motion F of R"**
with Fo®|U = @' o J|U. It now follows easily that Fo$ = @' J so,
in particular, Fop = ¢’ f.

In order to prove the existence theorem, we need the following
result, the proof of which is given in the last two sections of the paper.

Theorem 2.2. Let E be a Riemannian k-plane bundle equipped with
a second fundamental form A and let W be a tubular neighborhood of the
zero section of E on which the metric < , ) defined in (2.1) is nonsingular.
Then, if the Gauss and Codazzi-Mainardi equations are satisfied, this
metric on W has curvature zero.

The existence theorem now follows from the observation that the
zero section M — W is an isometric embedding and the following lemma.

Lemma 2.3. Suppose W, and W, are flat Riemannian n-manifolds,
W, connected and simply connected and W, complete. Then there is an
isometric immersion of Wy into. W, .

As this lemma is essentially well known, we include only a rough
sketch of the proof.

Let U c W, be a flat coordinate neighborhood of x € W, small
enough so that it can be isometrically embedded in some flat coordinate
neighborhood of W,. For any ye W; choose a path « from x to y,
cover o by small flat coordinate neighborhoods, and extend the iso-
metric embedding to an isometric immersion along « to y. This extens-
tion can always be accomplished since W, is complete.

If o/ is another path from x to y which coincides with a except
on a flat coordinate neighborhood, it is easily seen that the immersion
defined in terms of o' agrees at y with the immersion defined in terms
of «. Now, since W, is simply connected, for any path B from x to ,
we can choose a sequence of paths & = ag, oy, ..., @, = f such that
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o; coincides with o;,,, 0 < i <r, except on a flat coordinate neigh-
borhood. This completes the proof of Lemma 2.3.

3. The proof of Theorem 2.1.

Before giving the proof of Theorem 2,1, we introduce some nota-
tional conventions which will be used throughout the remainder of
the paper.

As above, 7 : E > M will be a Riemannian k-plane bundle equipped
with a second fundamental form over a Riemannian n-manifold M.
We let U be a coordinate neighborhood in M with local coordinates
u=@w',...,u") and Y, ..., Y, a system of orthonormal sections in
E over U. With this notation, the Levi-Civita connection V on M, the
connection D in E, and the second fundamental form A4 can be expressed
(over U) as

V0, = rf.,.a,,
D(’i.-Ya i ngYﬁa
Aa.-Ya = H{aaj’

0 S gen :
EWE the indices i, j, [, ... will
run from 1 to nand o, B, 7, ... from 1 to k. We also employ the Einstein
summation convention on repeated indices. In this context, equations

(1.1) and (1.2) become

where here and in what follows, 0; =

G.1 GL+G5=0
and
(3-2) glega = gilHj'az
where (0;, 0;) = g;;-
Using the local coordinates on U and the vector fields Y}, ..., Y,
we can define local coordinates (u, y) = (u', ..., u", y*, ..., V*) in

n~ 1 U by letting (u, y) correspond to y*Y,(u). In terms of these coordi-

; : 0 ; |
nates, the horizontal lifts of — on U to the point (u, y) in E are

o
the vectors
0 0
e BBl
(3.3) Z pw G -

0 . g
Of course, the 5,7 are vertical vector fields on n~' U.
y
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Now to the proof of Theorem 2.1. Let ¢(x) = (¢' (x),...,¢" " (x))

: A : do* 1
be the isometric immersion and 4;, = 6(5,. on U. (For the remainder
of this section, the indices a, b, ¢, ... will run from 1 to n + k.) Conside-
dering the sections Y, as normal fields, let B,, be defined by Y, =

Bmgf;; where x', ..., x"** are the usual coordinate in R"** and let
C,; be defined by

(3.4 CoiAip + ByyBy = 04p -

Then V,,0; is the tangential component of

5, e 7
aui Ox° i aui (CalAlb o BaaBab)

o
oxb

which is

Oy B0 Ol o &
By radng T T Y ‘Pauz

From this it follows that

04,
ng a9 6”11 Cal 3
In a similar fashion, we can show that
0B
(35) Gla 61.11 Bﬁa
and
0B
3.6 e .2 4o
( ) Hm aul Caj

Define ¢ : U x R¥ — R™* y(u, v) = (Wi, v), ..., ¥" *(u, v),
by ¥*(u, y) = ¢*(u) + y*B,,. Then

0 0B 0
dlp <w> i (Aia T yﬁﬁ>ﬁ’

0 0
dlp (W) T Baaﬁs
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so that, using (3.4) and (3.5),

6B, 0Bgy .. 0
=| A, B EBar o Bhys iy
d‘ljzl aiin |:Am s ¥ < out out (‘)ba CblAla)>:} ox°® &

Setting
(3.7) Py = (0, + .VBHﬁﬁ)
and using (3.6), we have

0
d‘//Zi = PizAlaw~

It now follows easily that
a5 e 0
<-6_.V~a, W> _oaﬂ’ <W’ Z[> ‘_“05

&y, Zj> = Py Py A1y Apma = Py Pimgim

and

which is exactly the local form of the metric defined in (2.1).

Remark. It should be clear now that the techniques of this paper
can be applied to study isometric immersions of Riemannian manifolds
in spheres and hyperbolic spaces. For example, the analogue of the
metric defined in (2.1) for isometric immersions in a sphere of radius
r is given in local form on TW at (u, y) by

2 in2

<Zi7 ZJ> =P;'1P;'mglm>

0
<Zi7 W> e 03

where |y|> = )"y and
P, =, cos|y| + |%lenysinh;l.

A similar expression holds in the hyperbolic case.

As above, the rigidity theorem is a direct consequence of the form
of this metric. (Of course, rigid motion is replaced by isometry for spheres
and hyperbolic spaces.) Although we have not carried out the compu-
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tations, it seems reasonable to expect that, with suitably modified
Gauss and Codazzi-Mainardi equations, an analogue of Theorem 2.2
can be proved for immersions in spheres and hyperbolic spaces.

4. The Levi-Civita connection on W.

In this section, we define an affine connection on the tubular
neighborhood W of the zero section in E and prove that it is the Levi-
Civita connection associated with the metric of (2.1) when the Gauss
and Codazzi-Mainardi equations hold. The proof of Theorem 2.2 will
then be complete when we prove, as we do in the next section, that the
curvature of this connection is zero.

It might be worth mentioning here that, whereas we define the
connection below in terms of local coordinates, it could easily have
been done globally. This would involve defining it directly only on
those vector fields on W which are induced from séctions in TM and
E via the equivalences H ~ n* TM, V ~ n* E (using the lifts of the
connections V and D via these same equivalences) and extending to
arbitrary vector fields in the obvious way. Our reason for adopting
the local approach rather than the global is that the proofs in this and
the next section seem to be far easier in the local context.

Before defining the connection, we introduce a bit of notation.
As in the previous section, we will be working with local coordinates
(u, y) in W. Since no confusion seems likely, we will denote }367 by
Y, and use the symbol V for the connection described below. (The Levi-
Civita connection on M will occur from now on only in the form i)
Let P;; be defined as in (3.7) and let Q;; be the inverse for P;; so that

(4-1) QilPlj = PilQlj fi 5ij

We can now define the connection V on W as follows:
Vy. Y3 =0
VYaZi = HganmZm
VoY= HoQumZn + GL Y,
Vz,v Zj o (rngjm 2t Zi(le))QtrZr_Hf'aglijm 4 5

where Z; (defined in (3.3)) span the horizontal subbundle locally and
Y, span the vertical subbundle locally.
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Remark. This connection was obtained originally by pulling back
the usual connection on R"** to W via the map  defined in the pre-
vious section.

Note that, since we prove below that the connection defined above
is the unique Levi-Civita connection associated with the metric of (2.1),
the local formula above do actually define a global connection.

We now prove V symmetric. This involves three cases:

Vy‘,Yﬂ‘VYﬂYa = [Y:z’ YB]’

VYmZi~Vzi = [Yaz > Zi]»
and

V2.2;-V, 2, =[Z;, Z].

In the first of these all terms vanish and the second follows from the
easily checked fact that

[Yaa Zl] T “GﬂuxY;f
In order to prove the third equation, note that

(0GE, 9GE,
[Z;, Z]=v (W el G,YaGer}aGf’y> Y,

)

and

l
2py) = (Y-t H}B)

by direct computation so that, using the definition of P, and the fact
that T}, =T, we have

ji»
1 ; 1
Vo Z;-Vifi= v <5—Pﬁ e T - GLH + GLH 5ﬂ>erZr

out oW

“(Héaglmpjm_Hl'aglmPim) Ya 7

J

Now, the coefficient of Z, vanishes by the Codazzi-Mainardi equation
and the term in Y, is exactly [Z;, Z;] if we use the definition of P,,,,
equation (4.1), and the second of the Gauss equations. Thus V is sym-
metric.

- In order to prove V is compatible with the metric {, ), we must
show that

(4.2) XY, Z) =<V Y, Z) + (X, VyZ)
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where each of X, Y, and Zisa Y, ora Z;. If X = Y, and at least one
of Y or Z is a Y, all terms of (4.2) vanish. If X = Z; and at least one
of Y or Z is a Y,, both sides vanish by an easy computation. We con-
sider in more detail the two remaining cases.

Suppose X =Y,, Y=2,, and Z = Z;. Then

Y.<{Z,, Zj> &g Y;(Pilemglm)
VAP D P i + P AP 50) U1
5 Hf'anmglm i H';;Pilglm'

On the other hand,
<VYaZi’ Z1> i <H£anmZma ZJ>
== Hi'anumersgrs
e Hﬁansgls

using (4.1). Similarly <{Z;, Vy Z;> = H',P.g,, so (42) holds in this
case.

Finally, we check the case when all three of X, Y, and Z are hori-
zontal. First of all,

Zi<Zj’ Zl> s Zi(Perlsgrs)
= Zi(Pjr)Plsgrs = Peri(Pls)grs i PerlsZi(grs)
and, using (4.1), we see that
<Vz‘-st Zy + <Zja Vzl-Zz/\ = (r;:ijm i Zi(Pjr))Plsgrs
37 (r:mle =+ Zi(Plr))Pjsgrs'
The equality of these two expressions follows from the equation

m

0
Zi(grs) b "a?grs = rlrgms + r?.;gmr

which holds since the I'j; define a connection compatible with the
metric ¢, .

This concludes the proof of the fact that the connection defined
above is the Levi-Civita connection associated with the metric on W.

5. The curvature of the connection on W.

We now complete the proof of Theorem 2.2 by showing that the
curvature of the connection defined in the previous section is zero when
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the Gauss and Codazzi-Mainardi equations hold. This will be done
by showing

R(X» Y)Z = VXVYZ‘VYVXZ_V[X, Y]Z

is zero when each of X, Y, and Z isa Y, or a Z;. (We use R for the cur-
vature here since no confusion seems likely.)

For convenience, we list here the symmetry properties of R needed
in this section (See, for example, Milnor [6], p. 53).

(5.1) R PR

(52) RIR, V) s ROYTZ)X $RZ! X)¥=0
(5.3) (R(X, Y)Z, W) + (R(X, Y)W, Z) =0

(5.4) (R(X, Y)Z, W> = (R(Z, W)X, Y).

Now to the proof. First note that R(Y,, Y)Y, =0 trivially and
R(Y,, Z)Y, =V, V. Y
= Hiy(Y,(Qum) + QuH}. Q) Zin -
Since @, Proi— 01cs
Y,(Qim Pms) = 0 = Yo(Qum) Prus + Qi Yo(Prms)
= Y(Qi) Prus + Qi H7ea

from which it follows that R(Y,, Z;)Y; = 0. Using (5.1) and (5.2), we
see that R(X, Y)Z = 0 wherever one of X, Y, Z is a Z; and the other
two Y, and Y.

We now compute R(Z;, Z)Y,. First note that, using (5.4) we

have .
<R(Zi’ Zj)Ya» Yp\/ = (R(Y,, Y[})Zia Zj> =0

s0, in computing R(Z;, Z)) Y, , we can and will ignore the vertical com-
ponent. Proceeding, we have

R(Z;, Zj) Y, = Vz.-Vz,- Y;z_VZjVZ,- Y.
= VZ.-(Hj‘qurZr an G?a Yﬁ)‘vzj(HﬁanrZr o+ Gga Y/;)
= Zi(Hi'a er)Zr*Zj(HliaQtr)Zr
+ Hiy Qun(Tl Prp + Zi(Pyp) Qe Z,
— Hio Qi3 Prp + Zj(Prp) Qi Z,
= G?GH'{;;QM,Z,*G?GH%QWZ,.
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Again, using Q, P, = 6,,, we have
Zi(er) R le Zi (Pms) er
SO

OH!
Zi (Hi'az er) T au{ er e H;az le Zi (Pms) er

with a similar expression for Z,(H!,Q,). Thus, using the Codazzi-
Mainardi equation, the above expression vanishes and R(Z,+Z)Y —10,

Again from the symmetry of R we conclude that R(X, JY)% =0
whenevgr two of X, Y, Z are Z; and Z; and the other Y, and also that
the vertical component of R(Z;, Z)Z, is zero. The computation of
the horizontal component of R(Z;, Z,)Z, is tedious but straight forward
and much like those given above. It vanishes as a consequence of the
two Gauss equations. We leave the details as an exercise for the reader.
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