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Introduction

In geometry there are, essentially, three points of view1

• the pointwise geometry, sometimes called linear (or multilinear) algebra,

• the local geometry, sometimes called analysis,

• the global geometry, usually called topology.

The interplay of the three points of view is one of the beauties of geometry. In these notes we want to

present, in the classical context of differential forms and their integrals, an example of such an interplay.

The result we will be focusing is the Theorem of de Rham, that states that integration gives an isomor-

phism between the de Rham cohomology and the dual of the singular homology (with real coefficients). We

will prove this Theorem in the case of open sets of Euclidean spaces, which is, really, the significant case.

The extension of the proof presented here to the case of manifolds is very simple. Naturally, on the way, we

will introduce all necessary concepts.

The choices we made for the subject and the presentation attend the basic needs

• relevance: it is a relevant theory both in classical and modern mathematics,

• prerequisite: just a basic knowledge of linear algebra and calculus of several variables,

• introduction to more advanced topics: we hope to give the reader a painless introduction to more

advanced topics as algebraic topology and partial differential equation between others.

These notes where prepared for a short course given by the second author at the “I Colóquio de

Matemática da Região Nordeste” that will take place at The Federal University of Sergipe, Brazil, from

28/02 to 04/03 of 2011, but they grow up from courses delivered by the authors at various levels. The

lectures where addressed to an audience of undergraduate students. We tank the organization for the invi-

tation.

1Quoting freely from A. Weinstein, Journal of Differential Geometry, 1970.
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CHAPTER 1

The de Rham cohomology for open sets of Rn

1. Exterior forms

Let E be a finite dimensional real vector space and E∗ its dual. We will identify, as usual, E with

(E∗)∗ := E∗∗.

1.1. Definition. A tensor of type (p, q) in E is a multilinear1 map:

t : E∗ × · · · × E∗︸ ︷︷ ︸×E× · · · × E︸ ︷︷ ︸ −→ R

p times q times

We will denote by E(p,q) the space of these tensors. This is a real vector space with the obvious operations

of sum of multilinear maps (summing the values) and product by a scalar (multiplying the values by the

scalar).

1.2. Examples.

• E(0,1) = E∗, E(1,0) = E∗∗ = E.

• A scalar product in E is an element of E(0,2).

• It is convenient to define E(0,0) := R.

We will be interested mainly in tensors of type (0, q). To simplify the notations we will set Eq := E(0,q).

Beside adding tensors, we can multiply them.

1.3. Definition. Given ω ∈ Ep, τ ∈ Eq, we define the tensor product ω ⊗ τ ∈ Ep+q as

ω ⊗ τ(x1, . . . , xp+q) := ω(x1, . . . , xp)τ(xp+1, . . . xp+q).

It is easy to see that the tensor product is associative and distributive (Exercise 9.1).

1.4. Proposition. Let {ω1, . . . , ωn} be a basis of E1 = E∗. Then the set {ωi1 ⊗ · · · ⊗ ωiq : i1, . . . , iq ∈
{1, . . . , n}} is a basis of Eq.

Proof. Let {e1, · · · , en} be the dual basis, i.e., ωi(ej) = δij . Then:
∑

ai1···iqωi1 ⊗ · · · ⊗ ωiq (ej1 , . . . , ejq ) = aj1···jq .

It follows, by a standard argument, that the the elements of the set in question are linearly independent.

Conversely, given ω ∈ Eq we define ai1···iq = ω(ei1 , . . . , eiq ). It is easy to check that ω =
∑

ai1···iqωi1⊗· · ·⊗ωiq ,

and this concludes the proof.

¤
1i.e. linear in each variable.
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We will be interested in special elements of Eq. Let Σ(p) be the group of permutation of {1, . . . , p} ⊆ N.

If π ∈ Σ(p), we will denote by |π| the sign of π, i.e. |π| = 1 if π is the product of an even number of

transpositions and |π| = −1 otherwise.

1.5. Definition. Let ω ∈ Ep. We will say that

• ω is a symmetric form if ω(x1, . . . , xp) = ω(xπ(1), . . . , xπ(p)), ∀ π ∈ Σ(p).

• ω is an exterior form 2 if ω(x1, . . . , xp) = |π|ω(xπ(1), . . . , xπ(p)), ∀ π ∈ Σ(p).

We will denote by Σp(E) the space of symmetric tensors in Ep and with Λp(E) the space of exterior

p-forms. These are subspaces of Ep. Clearly Λ0(E) = R = Σ0(E), Λ1(E) = E1 = E∗ = Σ1(E).

We will be mostly interested in exterior forms and we will describe now the basic examples.

1.6. Example. Let {e1, . . . , en} be a fixed basis of E and {φ1, . . . , φn} be the dual basis. Let us fix

indexes 1 ≤ i1 < · · · < ip ≤ n and define:

Φ(i1,...,ip)(x1, . . . , xp) := det(φij
(xk)).

In other words we consider the matrix whose kth column is given by the coordinates of xk in the fixed

basis, and compute the determinant of the sub matrix obtained considering only the lines (i1, . . . , ip) of the

original matrix. The Φ(i1,...,ip)’s are exterior p-forms since the determinant is multilinear in the columns

and, permuting the columns it changes sign according to the parity of the permutation. As we will see

(Proposition 1.22 and Remark 1.20), these forms are a basis of Λp(E).

1.7. Remark. By Example 1.6 p-forms are, essentially, determinants of p×p matrices and, therefore, “p-

dimensional (oriented) volume elements”. So they appear as the natural integrands of the multiple (oriented)

integrals. These statement will be made precise in the next chapter.

The tensor product of exterior forms is not, in general, an exterior form. But we can “alternate” the

tensor product in order to obtain an exterior form.

Define the linear operator

A : Ep −→ Ep, A(τ)(x1, . . . , xp) =
1
p!

∑

π∈Σ(p)

|π|τ(xπ(1), . . . , xπ(p)).

1.8. Proposition.

(1) If τ ∈ Ep, A(τ) ∈ Λp(E).

(2) If τ ∈ Λp(E), A(τ) = τ .

In particular A2 = A.

Proof. If p = 1 there is nothing to prove, so we will assume p > 1. For i, j ∈ {1, . . . , p}, we will denote

by (ij) the element of Σ(p) that interchanges i and j and leaves the other integers fixed. If π ∈ Σ(p), we set

π′ = π ◦ (ij). Then |π′| = −|π| and

A(τ)(x1, . . . , xj , . . . , xi, . . . , xp) =
1
p!

∑
π

|π|τ(xπ(1), . . . , xπ(j), . . . , xπ(i), . . . , xπ(p)) =

2The terms alternating tensor or skew symmetric tensor are also used in the literature.
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1
p!

∑
π

|π|τ(xπ′(1), . . . , xπ′(i), . . . , xπ′(j), . . . , xπ′(p)) =

1
p!

∑

π′
−|π′|τ(xπ′(1), . . . , xπ′(i), . . . , xπ′(j), . . . , xπ′(p)) = −A(τ)(x1, . . . , xi, . . . , xj , . . . , xp)

It is easy to see that the equation above implies that A(τ) ∈ Λp(E) (see Exercise ??). Moreover, if τ ∈ Λp(E),

A(τ)(x1, . . . , xp) =
1
p!

∑
π

|π|τ(xπ(1), . . . xπ(p)) =
1
p!

∑
π

|π|2τ(x1, . . . xp) = τ(x1, . . . , xp)

and this proves the second claim.

¤

Observe that, in general, A(φ⊗ ψ) 6= A(φ)⊗A(ψ). However we have

1.9. Lemma. If φ1, . . . , φp ∈ E∗, then:

A(φ1 ⊗ · · · ⊗ φp) =
1
p!

∑

σ∈Σ(p)

|σ|φσ(1) ⊗ · · · ⊗ φσ(p).

Proof.

A(φ1 ⊗ · · · ⊗ φp)(x1, . . . , xp) =
1
p!

∑

σ∈Σ(p)

|σ|φ1 ⊗ · · · ⊗ φp(xσ(1), . . . , xσ(p)) =

1
p!

∑

σ∈Σ(p)

|σ|φ1(xσ(1)) · · ·φp(xσ(p)) =
1
p!

∑

σ∈Σ(p)

|σ|φσ(1)(x1) · · ·φσ(p)(xp).

¤

Using the operator A we can define product of exterior forms.

1.10. Definition. The exterior (or wedge) product is defined as the map

∧ : Λp(E)× Λq(E) −→ Λp+q(E), ∧(ω, τ) := ω ∧ τ =
(p + q)!

p!q!
A(ω ⊗ τ).

(The reason for the coefficient
(p + q)!

p!q!
will be discuss in Remark 1.21.)

It is easy to prove that the exterior product is distributive (see Exercise 9.2). It is also true that it is

associative, but this fact is a little bit tricky. The proof involves a characterization of the kernel of A. For

this, although not strictly necessary3, we start introducing some algebraic concepts.

1.11. Definition. An algebra over the reals is a real vector space E together with a bilinear map, the

product, b : E⊕ E −→ E.

3We could hide those concepts in the proof, but we prefer to expose them, also to be free to use them in what follows.
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Examples of such a structure are

• The real or complex numbers with the usual multiplication. They are associative and commutative

algebras.

• The set of real (or complex) valued functions defined on an open set U ⊆ Rn, with the usual sum and

product of functions. This is an associative and commutative algebra.

• The spaces M(n,K) of n×n matrices with entries in K = R or C, with the usual product of matrices.

They are associative but non commutative algebras (if n > 1!).

• The tensor algebra E∗ = ⊕p≥0Ep with the tensor product (suitably extended).

• The exterior algebra Λ∗(E) = ⊕p≥0Λp(E) with the wedge product (suitably extended).

1.12. Definition. An algebras homomorphism h : E −→ E′ between the algebras E and E′ is a linear

map such that the image of the product of two elements in E is the product of the images (in E′).

1.13. Definition. An ideal I of an algebra E is a vector subspace of E such that if x ∈ I, y ∈ E, then

b(x, y), b(y, x) ∈ I

It is not difficult to see that if I is an ideal of E, the quotient vector space E/I has a natural product

(and hence a structure of algebra) such that the quotient map is an algebras homomorphism. Moreover,

given an algebras homomorphism h : E −→ E′, the kernel of h, kerh, is an ideal and, in fact, every ideal is

the kernel of an algebras homomorphism.

We go back now to the case of our interest. We want to characterize the kernel of the operator A

extended, by linearity, to the tensor algebra. The point is that A is not an algebras homomorphism, hence

we can not guarantee, a priori, that kerA is an ideal. Then we start by proving that kerA is, in fact, an

ideal.

Consider the ideal I ⊆ E∗ generated by φ⊗ φ, φ ∈ E∗. This is the vector subspace of E∗ generated by

elements of the form τ ⊗ φ⊗ φ, ψ⊗ψ⊗ η, φ, ψ ∈ E∗, τ, η ∈ E∗ or, alternatively, the intersection of all ideals

containing the elements of the form φ⊗ φ, φ ∈ E∗.

1.14. Theorem. kerA = I.

Proof. It is easily seen that I ⊆ kerA. We will prove that kerA ⊆ I. Consider the quotient algebra

E∗/I. Denote by · the product in this quotient and by π : E∗ −→ E∗/I the projection map, which is an

algebra homomorphism. First observe that, if φ, ψ ∈ E∗:

0 = π((φ + ψ)⊗ (φ + ψ)) = π(φ⊗ φ + φ⊗ ψ + ψ ⊗ φ + ψ ⊗ ψ) = π(φ⊗ ψ) + π(ψ ⊗ φ),

i.e. π(φ⊗ ψ) = −π(ψ ⊗ φ). Therefore, for φ1, . . . , φp ∈ E∗ and σ ∈ Σ(p), we have

π(φσ(1),⊗ . . . ,⊗φσ(p)) = π
(
φσ(1)) · · ·π(φσ(p)

)
= |σ|π(φ1) · · ·π(φp) = |σ|π(φ1 ⊗ · · · ⊗ φp).

Hence

π(A(φ1⊗· · ·⊗φp)) = π(
1
p!

∑

σ∈Σ(p)

|σ|π(φσ(1) ⊗ · · · ⊗ φσ(p))) =
1
p!

∑

σ∈Σ(p)

|σ|2π(φ1 ⊗ · · · ⊗ φp) = π(φ1 ⊗ · · · ⊗ φp).

So any element in kerA is in I := ker π. ¤
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1.15. Corollary. Let ω ∈ Ep, τ ∈ Eq. If A(ω) = 0, A(ω ⊗ τ) = 0 = A(τ ⊗ ω).

Proof. It follows from the fact that kerA is an ideal. ¤

At this point we can prove the announced result

1.16. Proposition. The wedge product is associative.

Proof. First we observe that:

A(A(ω ⊗ η)⊗ θ)) = A(ω ⊗ η ⊗ θ) = A(ω ⊗A(η ⊗ θ)).

In fact, by 1.8, A(A(η ⊗ θ)− η ⊗ θ) = 0 and, by 1.15, we have that:

0 = A(ω ⊗ [A(η ⊗ θ)− η ⊗ θ]) = A(ω ⊗A(η ⊗ η)− ω ⊗ η ⊗ θ) = A(ω ⊗A(η ⊗ θ))−A(ω ⊗ η ⊗ θ),

which proves the second equality. The first one is proved in a similar way.

Therefore, if ω ∈ Λk(E), η ∈ Λl(E), θ ∈ Λm(E), we have:

(ω ∧ η) ∧ θ =
(k + l + m)!
(k + l)!m!

A((ω ∧ η)⊗ θ) =
(k + l + m)!
(k + l)!m!

(k + l)!
k!l!

A(ω ⊗ η ⊗ θ),

and the associativity follows from the associativity of the tensor product. ¤

1.17. Example. Let φ1, φ2 ∈ E∗, x1, x2 ∈ E. Then:

φ1 ∧ φ2(x1, x2) = 2
1
2
(φ1(x1)φ2(x2)− φ1(x2)φ2(x1)) = det[φi(xj)].

More generally, an induction on p gives:

1.18. Proposition. Let φi ∈ E∗, xj ∈ E i, j = 1, . . . , p. Then:

φ1 ∧ · · · ∧ φp(x1, . . . , xp) = det[φi(xj)].

In particular if σ ∈ Σ(p), φ1 ∧ · · · ∧ φp = |σ|φσ(1) ∧ · · · ∧ φσ(p).

1.19. Remark. Observe that, by 1.16, the form φ1 ∧ · · · ∧ φp is well defined.

1.20. Remark. In the Example 1.6 the form Φi1,...,ip is just φi1 ∧ · · · ∧ φip .

1.21. Remark. The coefficient
(p + q)!

p!q!
in 1.10 is convenient both for avoiding coefficients in 1.18 and

for a geometric reason: let E be an inner product space, {e1, . . . , en} an orthonormal basis and {φ1, . . . , φn}
the dual basis (so φi(ej) = 〈ei, ej〉 = δij). Given vectors x1, . . . , xn ∈ E, φ1 ∧ · · · ∧ φn(x1, . . . , xn) is the

“volume” of the parallelepiped of edges the x′is. The coefficient above is such that the “unit cube”, i.e. the

parallelepiped spanned by the ei’s has volume 1. We will be more precise at the end of this section (see

Definition 1.26).

The following Proposition is proved, essentially, as Proposition 1.4.

1.22. Proposition. Let {φ1, . . . , φn} be a basis for E∗. Then

{φi1 ∧ · · · ∧ φip : 1 ≤ i1 < · · · < ip ≤ n}

is a basis of Λp(E). In particular Λp(E) has dimension
(

n

p

)
and Λp(E) = {0}, if p > n.
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1.23. Proposition. The algebra Λ∗(E) is graded commutative4 , i.e. if ω ∈ Λp(E), τ ∈ Λq(E)

ω ∧ τ = (−1)pqτ ∧ ω.

In particular the square of a form of odd degree is zero.

Proof. It is easily seen that the claim is true for products of decomposable elements (i.e. elements of

the form φi1 ∧ · · · ∧ φip). The general case follows from the fact that such forms span, by Proposition 1.22,

the exterior algebra. ¤

1.24. Remark. There is a restriction, in Proposition 1.22, on the set of indexes with respect to Propo-

sition 1.4 and this is due to the graded commutativity of the exterior algebra.

Let L : E −→ F be a linear map. Recall that the transpose of L is the map

L∗ : F∗(= F1) −→ E∗(= E1), L∗(φ)(x) := φ(Lx).

This map extends to a linear map

Ep(L) : Fp −→ Ep, Ep(L)(ω)(x1, . . . , xp) = ω(L(x1), . . . , L(xp)).

It is simple to see that if ω ∈ Λp(F) then Ep(L)(ω) ∈ Λp(E). So we get, by restriction, a linear map

Λp(L) := Ep(L)|Λp(F) : Λp(F) −→ Λp(E),

and, by additivity, a linear map Λ∗(L) : Λ∗(F) −→ Λ∗(E).

When clear from the context we will write L∗p, or just L∗, for Λp(L) and Λ∗(L).

1.25. Proposition. L∗(ω ∧ τ) = L∗(ω)∧L∗(τ). This means that L induces a graded algebra morphism

L∗ : Λ∗(F) −→ Λ∗(E). Moreover we have the following properties, called the funtorial properties5

(1) (11E)∗ = 11Λ∗(E).

(2) If L : E −→ F and T : F −→ G are linear maps, then (T ◦ L)∗ = L∗ ◦ T ∗.

Proof. To prove the first assertion, we just observe that, if φi ∈ E∗, xj ∈ E, i, j = 1, . . . , p, we have:

L∗p(φ1 ∧ · · · ∧ φp)(x1, . . . , xp) = det[φi(Lxj)] = det[L∗(φi)(xj)] = L∗(φ1) ∧ · · · ∧ L∗(φp)(x1, . . . , xp).

Since Λp(E) is spanned by elements of the form φ1 ∧ · · · ∧ φp (see 1.22), the conclusion follows by linearity.

The functorial properties are obvious. ¤

Let E be a finite dimensional real vector space with an inner product 〈·, ·〉 : E×E −→ R. Then we have

a canonical isomorphism6

[ : E −→ E∗, [(x)(y) = 〈x, y〉,
and therefore an inner product in E∗ that makes [ an isometry.

4An algebra E, with product b : E ⊕ E −→ E is a graded algebra if there is a sequence of vector subspaces Ei such that

E = ⊕Ei and b(Ei⊕Ej) ⊆ Ei+j . Such an algebra is said to be graded commutative if for ω ∈ Ep, τ ∈ Eq , b(ω, τ) = (−1)pqb(τ, ω).
5In the language of category theory this means that the low that associate to a finite dimensional real vector space E

the graded algebra Λ∗(E) and to a linear maps L : E −→ F the map L∗ is a contravariant functor from the category of finite

dimensional real vector spaces and linear maps, to the category of algebras and their morphisms.
6Sometimes called the musical isomorphism. It inverse is often denoted by ].
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We define an inner product in Λp(E) declaring orthonormal a basis of the type {ωi1∧· · ·∧ωip
: i1 < · · · < ip}

where {ωi} is an orthonormal basis of E∗. Observe that:

〈φ1 ∧ · · · ∧ φp, ψ1 ∧ · · · ∧ ψp〉 = det(〈φi, ψj〉).

In fact, the formula above, extended by bi-linearity, defines the inner product with respect to which {ωi1 ∧
· · · ∧ ωip : i1 < · · · < ip} is orthonormal.

We recall that two bases of a n-dimensional real vector space E are equioriented if the matrix that gives

the change of bases has positive determinant. This relation is an equivalence relation and the set of bases of

E is divided into two equivalence classes. The choice of one of these classes is the choice of an orientation

on E. E is oriented if such a choice has been made and the bases in the chosen class will be called positive.

Naturally an orientation in E induces an orientation on E∗, declaring positive the bases that are dual of

positive bases of E.

1.26. Definition. Let E be a n-dimensional oriented inner product space and {ω1, . . . , ωn} a positive

orthonormal basis of E∗. The volume form of E is the n-form v = ω1 ∧ · · · ∧ ωn.

1.27. Lemma. The volume form is well defined, i.e. does not depend on the choice of the basis.

Proof. Let {ωi}, {φj} be bases of E∗ and A = (aij) such that φk =
∑

akjωj . Then

φ1 ∧ · · · ∧ φn =
∑

σ∈Σ(n)

|σ|a1σ(1) · · · anσ(n)ω1 ∧ · · · ∧ ωn = det(A)ω1 ∧ · · · ∧ ωn.

If the bases are orthonormal and positive, A ∈ SO(n). In particular det(A) = 1. ¤

1.28. Definition. Let E be a n-dimensional oriented inner product space. The Hodge (star) operator

is the operator

∗p : Λp(E) −→ Λ(n−p)(E), ∗p(η)(x1, . . . , x(n−p)) := 〈η ∧ [(x1) ∧ · · · ∧ [(x(n−p)), v〉,

where v is the volume form. When clear from the context, we will write simply ∗ instead of ∗p.

1.29. Remark. Let {ωi} be a positive orthonormal basis for E∗. Then the Hodge operator may be

defined extending by linearity the map:

∗(ωi1 ∧ · · · ∧ ωip) = ωj1 ∧ · · · ∧ ωjn−p ,

where {i1, . . . , ip, j1, . . . jn−p} is an even permutation of {1, . . . , n}.

The following properties are easily established

1.30. Proposition. ∗ is a linear isometry and ∗n−p ◦ ∗p = (−1)p(n−p)11Λp(E).

2. Vector fields and differential forms

2.1. Definition. Let U be an open set of Rn. A vector field on U is a smooth7 map X : U −→ Rn. We

will denote by H(U) the space of vector fields on U .

7By smooth we will always mean C∞.
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2.2. Remark. Let X be a vector field. We want to think of X(x) as a vector based at x. This is the

reason why we use different names for the same thing8. We can make this point more precise as follows:

• The tangent space of U at x ∈ U is the vector space

TxU = {(x, v) : v ∈ Rn}

with the obvious operations on the second component.

• The tangent bundle of U is

TU = ∪x∈UTxU = U × Rn.

A vector field on U should be defined as a smooth map X̃ : U −→ TU of the form X̃(x) = (x,X(x)), X :

U −→ Rn. Naturally, in our context, we are just complicating notations, but this point of view, that seems

silly now, will come in handy when the concepts we are discussing in this chapter are extended to the case

of differentiable manifolds.

An other approach to vector fields that will be useful later is the following.

Let F(U) be the algebra of smooth real valued functions defined in U (with the usual operations of sum

and product of functions).

2.3. Definition. A derivation of F(U), (resp. a derivation at x ∈ U) is an R-linear map Y : F(U) −→
F(U) (resp. Y (x) : F(U) −→ R), such that:

Y (fg) = Y (f)g + fY (g) (resp. Y (x)(fg) = Y (x)(f)g(p) + f(p)Y (x)(g)) ∀ f, g ∈ F(U).

Both the set of derivations and the set of derivations at x have a natural structure of real vector space.

We will denote by Der(U) and Derx(U) these spaces. Observe that Der(U) is infinite dimensional (if n > 0!)

while, as we will see soon, Derx(U) is n-dimensional.

2.4. Example. Let v ∈ Rn, x ∈ U . Given f ∈ F(U), we will denote by v(x)f the usual directional

derivative of f , at x, in the v direction, i.e.

v(x)(f) :=
d
dt

f(x + tv)|(t=0).

Then v(x) : F(U) −→ R is a derivation at x. When v = ei, the ith vector of the canonical basis of Rn, we

will use the standard notation

ei(x)f :=
∂f

∂xi
(x).

If X ∈ H(U), we define a derivation X ∈ Der(U), by X(f)(x) := X(x)(f). It is easily seen that

X(f)(x) ∈ F(U) so X is, in fact, a derivation in Der(U).

Some simple but basic facts are the following:

2.5. Lemma. Let f ∈ F(U) and Xx ∈ Derx(U).

• If f vanishes on an open neighborhood V ⊆ U , then Xx(f) = 0. In particular, if two functions

f, g ∈ F(U) coincide in a neighborhood of x, Xxf = Xxg.

8B. Russel used to say that “Mathematics is the art of calling different things with the same name and the same thing

with different names”.
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• If f is constant in a neighborhood of x, Xxf = 0.

• If f is (locally) a product of functions vanishing at x,Xxf = 0.

Proof. Let φ ∈ F(U) be a function vanishing in a neighborhood V1 of x and identically 1 outside V

(see Lemma 7.3 for the existence of such functions). Then f = φf and

Xx(f) = (Xxφ)f(x) + φ(x)Xxf = 0.

The second claim follows from 1·1 = 1 and the definition of a derivation. The third one is also immediate. ¤

Let x ∈ Rn. Consider the set

F̃x := {(f, V ) : V is a neighborhood of x, f ∈ F(V )}.

2.6. Definition. The algebra of germs of smooth functions at x, Fx, is the quotient of F̃x by the

equivalence relation (f, U) ∼ (g, V ) ⇐⇒ f = g in a neighborhood of x (contained in U ∩V ). The operations

are the usual sum and product of functions (which are defined in the intersections of the domains).

We will denote by Dx the space of derivations of Fx. Lemma 2.5 imply, in particular, that an element

of Derx induces a derivation of Fx. The advantage of this point of view is that we do not have to worry

about the domain of definition of a function.

As we have seen, a vector defines a derivation at x and hence an element of Dx. We will see next that

all derivations in Dx are of this type.

2.7. Theorem. Given p ∈ Rn and a derivation Xp ∈ Dp, there exist a unique vector v ∈ Rn such that

Xp = v(p). In particular Dp
∼= TpRn ∼= Derp(U).

Proof. Let f ∈ Fp. Consider, in a suitable neighborhood of p, the Taylor formula

f(x1, . . . , xn) = f(p) +
n∑
1

∂f

∂xi
(p)(xi − xi(p)) + Φ(x),

where Φ(x) is product of two functions vanishing at p.

Applying Xp to both sides and using Lemma 2.5 we have:

Xp(f) =
n∑
1

Xp(xi)
∂f

∂xi
(p).

Therefore:

X =
n∑
1

X(xi)
∂

∂xi
(p),

and the map that associates to ei the derivation
∂

∂xi
(p) extends to an isomorphism of Rn (or, better TpU)

onto Dp. ¤

In what follows we will identify TpU with Dp and H(U) with Der(U).

The composition of two derivations is not, in general, a derivation. However the commutator of two

derivations is a derivation (see Exercise 9.22). This fact suggest the following
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2.8. Definition. Let X, Y ∈ Der(U). The Lie product of X and Y is the commutator [X,Y ] :=

X ◦ Y − Y ◦X.

The following properties are easy to prove and we will leave the details to the reader (Exercise 9.23).

2.9. Proposition. The Lie product [ ·, · ] : H(U)×H(U) −→ H(U) is a R-bilinear map. Moreover

(1) [X, Y ] = −[Y,X],

(2) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0 (Jacoby identity).

2.10. Remark. An algebra which satisfies the properties in Proposition 2.9 is called a Lie algebra.

2.11. Definition. A differential p-form on an open set U ⊆ Rn is a smooth map ω : U −→ Λp(Rn) ∼=
R(n

p). When clear from the context we will just say that ω is a differential form or simply a form.

2.12. Remark. According to Remark 2.2 we can complicate the definition in order to have one that

make sense in the context of smooth manifold. Consider the bundle of exterior p-forms

Λp(U) := ∪x∈UΛp(TxU)

that can be identified with U × Λp(Rn). Then a differential p-form is a smooth map ω̃ : U −→ Λp(U) such

that ω̃(x) ∈ Λp(TxU), i.e, ω̃(x) = (x, ω(x)), ω(x) ∈ Λp(Rn), modulo the identification.

We will denote by Ωp(U) the set of differential p-forms on U . Ωp(U) has an obvious structure of real

vector space. Moreover we can multiply a differential form by a function and this operation is associative

and distributive, in the appropriate sense, i.e. Ωp(U) is a module over F(U).

A differential form ω ∈ Ωp(U) induces a F(U)-multilinear map, denoted by the same symbol,

ω : H(U)× · · · × H(U) −→ F(U), ω(X1, . . . , Xp)(x) = ω(x)(X1(x), . . . , Xp(x)).

Conversely, we have

2.13. Theorem. A R-multilinear map

ω : H(U)× · · · × H(U) −→ F(U),

is induced by a differential form if and only if it is F(U)-multilinear.

Proof. Clearly, if ω is induced by a form, it is F(U)-multilinear. Suppose that ω is F(U)-multilinear.

Let x ∈ U,Xi ∈ TxU . Extend the Xi’s to vector fields X̃i ∈ H(U), X̃i(y) =
∑

j aij(y)ej , and define:

ω(x)(X1, . . . , Xp) := ω(X̃1, . . . , X̃p)(x).

In order to show that the above equality defines a form it is sufficient to show that it does not depend on

the extensions. In fact, by F(U)-multilinearity,

ω(X̃1, . . . , X̃p)(x) =
n∑

i1,...,ip=1

a1i1(x) · · · apip(x)ω(ei1 , . . . , eip).

¤

2.14. Example. Since Λ0(Rn) = R, Ω0(U) = F(U).
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The basic example of a differential form is the following. Let f ∈ F(U). Then the differential of f is

the the 1-form

(df)(x)(X) := X(x)(f), X ∈ Der(U).

In particular, we can consider the coordinate functions xi : Rn −→ R. At each point x ∈ U , the

differentials at x, dxi(x) 9 are a basis of Λ1(Rn). Therefore {dxi1(x)∧· · ·∧dxip
(x) : 1 ≤ ii < · · · < ip ≤ n}

is a basis of Λp(Rn). So we have

2.15. Proposition. Let ω ∈ Ωp(U). Then ω can be written in a unique way as:

ω =
∑

i1<···<ip

ωi1,...,ipdxi1 ∧ · · · ∧ dxip ,

where ωi1,...,ip
∈ F(U).

2.16. Example. If f ∈ F(U), df =
n∑
1

∂f

∂xi
dxi.

2.17. Remark. As a real vector space, Ωp(U) is infinite dimensional (if n > 0 !), but as a F(U)-module,

it is a free module of dimension
(

n

p

)
.

Let U ⊆ Rn, V ⊆ Rm be open sets and F : U −→ V a smooth function, F (x) = (F1(x), . . . , Fm(x)).

Then dF (x) : Rn −→ Rm is a linear map and we have an induced map F ∗ : Λp(Rm) −→ Λp(Rn). This map

induces a linear map:

F ∗ : Ωp(V ) −→ Ωp(U), F ∗(ω)(X1, . . . , Xp)(x) := ω(dF (x)(X1), . . . , dF (x)(Xp)).

If x1, . . . , xn, y1, . . . ym are the canonical coordinates in Rn, Rm respectively, we have

(1) F ∗(dyi) =
n∑

i=1

∂Fi

∂xj
dxj ,

and therefore, if ω =
∑

i1,...,ip

ωi1,...,ipdyi1 ∧ · · · ∧ dyip ,

F ∗(ω)(x) =
∑

i1,...,ip

ωi1,...,ip(F (x))F ∗(dyi1) ∧ . . . ∧ F ∗(dyi1).

We have the functorial properties:

• 11∗U = 11Ωp(U),

• If F1 : U1 −→ U2 e F2 : U2 −→ U3 are smooth maps, (F2 ◦ F1)∗ = F ∗1 ◦ F ∗2 .

In particular, if F is a diffeomorphism, F ∗ is an isomorphism.

2.18. Example. Let U ⊆ Rn and j : U −→ U × Rm, j(x1 . . . , xn) = (x1 . . . , xn, 0 . . . , 0), be the in-

clusion. If ω = f(x1, . . . , xn+m)dxi1 ∧ · · · ∧ dxip , i1 < · · · < ip, j∗ω = 0, if ip > n, and j∗ω =

f(x1, . . . xn, 0, . . . , 0)dxi1 ∧ · · · ∧ dxip is ip ≤ n.

9Since dxi = xi, dxi is the form that associate to a vector its ith coordinate, in the canonical basis.
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3. The de Rham cohomology

Differentiating a function can be viewed as a R-linear map:

d : Ω0(U) = F(U) −→ Ω1(U).

We will extend now this operation to higher dimensional forms.

3.1. Theorem. There exists a unique family of R linear operators dp : Ωp(U) −→ Ωp+1(U), p =

0, . . . , n, such that:

(1) d0 = d (the usual differential).

(2) dp+1 ◦ dp = 0.

(3) If ω ∈ Ωp(U), τ ∈ Ωq(U),dp+qω ∧ τ = dpω ∧ τ + (−1)pω ∧ dqτ.

Moreover, if F : U −→ V is a smooth map and ω ∈ Ωp(V ), dpF ∗ω = F ∗dpω.

When clear from the context we will write simply d for dp.

Proof. Let us suppose that such a family exists. If ω = f(x) dxi1 ∧ · · · ∧ dxip , we have:

dω = (df) ∧ dxi1 ∧ · · · ∧ dxip + f d(dxi1 ∧ · · · ∧ dxip).

Now, from (1), df =
n∑

i=1

∂f

∂xi
dxi, and, from (2) and (3)

d(dxi1 ∧ · · · ∧ dxip) =
∑

i1<···<ip

±dxi1 ∧ · · · ∧ ddxij ∧ · · · ∧ dxi+p = 0.

Therefore, if ω =
∑

i1<···<ip

ωi1...ipdxi1 ∧ · · · ∧ dxip ,

dω =
∑

k

∑

i1<···<ip

∂ωi1...ip

∂xk
dxk ∧ dxi1 ∧ · · · ∧ dxip .

This shows that if such a family exist, it is unique. Conversely, if we define dp by the formula above we

obtain a family of operators that, as it is easily seen, has the desired properties.

The last claim follows from

F ∗(dyi) =
∑

j

∂Fi

∂xj
dxj = d(yi ◦ F ) = d(F ∗(yi))

and the fact that F ∗ is an algebras morphism. ¤

The operator d is called the de Rham differential or exterior differential or simply the differential.

3.2. Remark. The following facts are useful and easy to verify:

(1) d is a local operator, i.e. if ω ≡ τ in an open set U , then dω = dτ in U .

(2) d may be defined, without the use of coordinates, by the formula:

dω(X0, . . . , Xp) =
p∑

i=0

(−1)iXi · ω(X0, . . . , X̂i, . . . Xp) +
∑

i<j

(−i)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).

It is easily seen that the expression on the right hand side of (2) is F(U)-multilinear and so, by Theorem

2.13, it is a differential form (see Exercise 9.25).
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So we have a sequence of vector spaces and R-linear maps:

0 −→ Ω0(U) d0

−→ Ω1(U) d1

−→ · · · dn−1

−→ Ωn(U) −→ 0

which is a cochain complex, i.e. dp+1 ◦ dp = 0, or, equivalently, Imdp−1 ⊆ ker dp (see next section the

definition and basic properties of cochain complexes). This sequence is called the de Rham complex of U .

We define

• Zp(U) := ker dp, the space of p-cocycles or closed p-forms.

• Bp(U) := Im dp−1, the space p-coboundaries or exact p-forms.

• Hp(U) := Zp(U)/Bp(U), the p-dimensional (de Rham) cohomology of U .

Let U ⊆ Rn, V ⊆ Rm be open sets and F : U −→ V a smooth function. As we already observed, F

induces a map F ∗ : Ωp(V ) −→ Ωp(U). Since, by Theorem 3.1, F ∗ ◦ d = d ◦ F ∗, F ∗ maps closed forms to

closed form and exact forms to exact forms. Therefore it induces a R-linear map, that we will still denote

by F ∗:

F ∗ : Hp(V ) −→ Hp(U).

The basic functorial properties are easily verified:

• 11∗U = 11Hp(U),

• If F1 : U1 −→ U2 and F2 : U2 −→ U3 are smooth maps, then (F2 ◦ F1)∗ = F ∗1 ◦ F ∗2 .

In particular, if F is a diffeomorphism, F ∗ is an isomorphism. So the de Rham cohomology is a

(differential) topological invariant of U .

4. Algebraic aspects of cohomology

The construction of the de Rham cohomology fits into a general algebraic setting called homological

algebra. In this section we will discuss some elementary facts that will be used in these notes. For simplicity

we will restrict to the case of real vector spaces (not necessarily finite dimensional) although most of the

matter could be extended to the case of modules over commutative rings (see Remarks 4.9 and 4.20 ).

The objects we will study are sequences of (real) vector spaces and linear maps of the type

E := {(Ep,dp) : dp : Ep −→ Ep+1}.
When we introduce “objects” it is a good strategy to introduce “morphisms” between such objects, i.e.

maps that preserves the structure of the objects.

4.1. Definition. A morphism φ : E −→ F , between two sequences is a sequence of linear maps φp :

Ep −→ Fp such that the diagrams

· · · −→ Ep dp

−→ Ep+1 −→ · · ·
↓ φp ↓ φp+1

· · · −→ Fp dp

−→ Fp+1 −→ · · ·
commute, i.e. dp◦φp = φp+1◦dp (we are using the same symbols dp for the linear maps in the two sequences).

The morphism is an isomorphism if all φp are vector spaces isomorphisms.

We have some special sequences.
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4.2. Definition. A sequence E = {Ep,dp} is exact at Ep if Imdp−1 = ker dp. The sequence is an exact

sequence if it is exact at all Ep.

4.3. Examples.

(1) A sequence of the type {0} −→ E φ−→ F is exact at E, if and only if φ is injective.

(2) A sequence of the type E φ−→ F −→ {0} is exact at F if and only if φ is surjective.

(3) A sequence of the type {0} −→ E φ−→ F −→ {0} is exact if and only if φ is an isomorphism.

4.4. Definition. A sequence of the type:

{0} −→ E −→ F −→ G −→ {0}

is called a short sequence.

4.5. Proposition. A short exact sequence

{0} −→ E φ−→ F ψ−→ G −→ {0}

is isomorphic to the sequence

{0} −→ E i−→ E⊕G π−→ G −→ {0},
where i(v) = (v, 0) and π(v, w) = w.

Proof. Let G̃ be a complement10 of Im φ = kerψ, i.e F = ϕ(E) ⊕ G̃. The map ψ |G̃ : G̃ −→ G is an

isomorphism. Therefore the map k : F −→ E ⊕ G, k(v + w) = (ϕ−1(v), ψ(w)) (v ∈ ϕ(E), w ∈ G̃) is the

required isomorphism. ¤

The following result appears often in the applications

4.6. Lemma. [The five Lemma] Consider the diagram:

E1
f1−→ E2

f2−→ E3
f3−→ E4

f4−→ E5

↓ φ1 ↓ φ2 ↓ φ3 ↓ φ4 ↓ φ5

F1
g1−→ F2

g2−→ F3
g3−→ F4

g4−→ F5

If the squares commute, the lines are exact and the φi’s are isomorphisms for i = 1, 2, 4, 5 then φ3 is an

isomorphism.

Proof. Suppose φ3(e3) = 0. Then φ4(f3(e3)) = g3(φ3(e3)) = 0. Therefore f3(e3) = 0 and, by exactness

of the first line, e3 = f2(e2). Now g2(φ2(e(2)) = φ3(e3) = 0, and therefore φ2(e2) = g1(µ1), for some µ1 ∈ F1,

by exactness of the second line. Since φ1 is surjective, there exists e1 ∈ E1 such that φ1(e1) = µ1. Finally

0 = f2(f1(e1)) = f2(φ−1
2 g1φ1(e1)) = f2(e2) = e3

and therefore φ3 is injective. We will show now that φ3 is surjective. Let µ3 ∈ F3, µ4 = g3(µ3) and

e4 ∈ φ−1
4 (µ4). Now φ5(f4(e4)) = g4(µ4) = 0 and therefore f4(e4) = 0, since φ5 is injective. In particular

there exists e3 ∈ E3 such that f3(e3) = e4. Let µ3 = φ3(e3) and ω = µ3 − µ3. Now g3(ω) = 0 and

10Recall that a complement of a subspace is obtained starting from a basis {eα} of the subspace and completing it to a

basis of the ambient space with elements {fβ} and considering the subspace spanned by the {fβ}.
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therefore ω = g2(µ2). Let e2 = φ−1
2 (µ2). We have φ3(f2(e2)) = g2(φ2(e2)) = ω = φ(e3) − µ3 and therefore

µ3 = φ3(e3 − f2(e2)) ∈ Im φ3.

¤

4.7. Remark. We observe that in the proof of Theorem 4.6 we use only that φ2, φ4 are isomorphisms,

φ1 is surjective and φ5 is injective. However, in general, the lemma is used as it is stated.

A more general and very important class of sequences is the class of cochain complexes.

4.8. Definition. A sequence E = {Ep,dp} is semiexact or a cochain complex if Im dp−1 ⊆ ker dp, ∀p.

Equivalently, it is a cochain complex if dp ◦ dp−1 = 0.

If E is a cochain complex we define:

• Zp(E) := ker dp, the group of p-dimensional cocycles,

• Bp(E) := Im dp−1, the group of p-dimensional coboundaries,

• Hp(E) := Zp(E)/Bp(E), the p-dimensional cohomology group.

4.9. Remark. Naturally Zp(E), Bp(E), Hp(E) are vector spaces. The use of the term “group” is due

to the fact that they can be defined in the more general context of complexes of Abelian groups, or modules

over a commutative ring.

The cohomology gives a measure of how much the complex is not an exact sequence.

4.10. Example. The de Rham complex · · · −→ Ωp(U) dp

−→ Ω(p+1)(U) −→ · · · is a cochains complex

whose cohomology is the de Rham cohomology Hp(U).

Consider now a morphism between two cochain complexes, φ : E −→ F . The commutativity condition

implies that cocycles are sent to cocycles and coboundaries to coboudaries. In particular φ induces linear

maps

φ∗p : Hp(E) −→ Hp(F).

When clear from the context we will write simply φ∗.

The following “functorial” properties are easily verified:

• 11∗ = 11,

• (φ ◦ ψ)∗ = φ∗ ◦ ψ∗,

It is convenient to consider also sequences with “decreasing indexes”, i.e. a sequence of the type:

E := {(Ep, ∂p) : ∂p : Ep −→ Ep−1}.
If such a sequence is semiexact, we will call it a chain complex. For such a chain complex we define:

• Zp(E) := ker ∂p, the group of p-dimensional cycles.

• Bp(E) := Im ∂p+1, the group of p-dimensional boundaries.

• Hp(E) := Zp(E)/Bp(E), the p-dimensional homology group.

As in the case of cochains, a morphism φ : E −→ F , between two chain complexes sends cycles to cycles

and boundaries to boundaries, so it induces a sequence of maps φ∗,p : Hp(E) −→ Hp(F) and the functorial

properties are easily verified. When clear from the context we will write simply φ∗.
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4.11. Remark. Naturally chain and cochain complexes are, essentially, the same objects. For example,

changing the index p by −p we pass from a chain complex to a cochain complex. But a more interesting

approach is duality and we will discuss this now.

Let E := {(Ep, ∂p) : ∂p : Ep −→ Ep−1} be a chain complex. We define the dual complex E∗ = {(Ep,dp)}
where Ep := (Ep)∗ is the dual space, and dp = (∂p)∗ is the transpose of ∂p. It is simple to show that

dp ◦ dp−1 = 0 so E∗ is, in fact, a cochain complex. We will denote with Hp (resp. Hp) the homology of E
(resp. the cohomology of E∗). Consider the bi-linear map

b : Ep × Ep −→ R, b(φ, c) = φ(c).

It is easily seen that this map induces a bi-linear map

b̃ : Hp ×Hp −→ R, b̃([φ], [c]) = φ(c),

and therefore a linear map

K : Hp −→ [Hp]∗, K([φ])([c]) = φ(c).

4.12. Theorem. The map K is an isomorphism.

Proof. We start observing that we have two short exact sequences

(2) {0} −→ Zp −→ Ep
∂p−→ Bp−1 −→ {0}, {0} −→ Bp−1 −→ Zp−1 −→ Hp−1 −→ {0}

where the non labeled maps are the obvious ones. By Proposition 4.5, we have the decompositions

(3) Ep
∼= Zp ⊕Bp−1, Zp−1

∼= Bp−1 ⊕Hp−1

Claim: K is surjective. Let [φ] ∈ [Hp]∗. Consider the map φ ◦ π : Zp −→ R, where π : Zp −→ Hp is the

quotient map. Using the first decomposition in (3), we can extend this map to a map φ̃ : Ep −→ R with

φ̃ = 0 on Bp−1. Let e ∈ Ep. Then dφ̃(e) = φ̃(∂(e)) = 0, hence φ̃ is a cocycle and K([φ̃]) = [φ].

Claim: K is injective. Let ψ ∈ Zp be such that ψ(c) = 0 ∀ c ∈ Zp. The map φ = ψ ◦ ∂−1 : Bp−1 −→ R is

well defined since, by the first sequence in (2), the difference of two elements in ∂−1(Bp−1) is a cycle. Using

the decompositions in (3), we can extend φ to a map φ̃ : Ep−1 −→ R. Now, ∀e ∈ Ep, we have:

dφ̃(e) = φ̃(∂e) = ψ ◦ ∂−1(∂e) = ψ(e).

Hence [ψ] = [dφ̃] = 0. ¤

We will study now when two maps between cochain (resp. chain) complexes induces the same map in

cohomology (resp. homology).

4.13. Definition. An algebraic homotopy between two morphisms φ, ψ : E −→ F of cochain (resp.

chain) complexes is a family of maps Kp : Ep −→ Fp−1 (resp. Kp : Ep −→ Fp+1), such that:

φ− ψ = d ◦K + K ◦ d (resp. φ− ψ = ∂ ◦K + K ◦ ∂).

If there exists such an algebraic homotopy, we will say the the two morphisms are (algebraically) homo-

topic.
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From the very definition of induced morphisms we have:

4.14. Proposition. Two algebraically homotopic maps induce the same morphism in cohomology (resp.

in homology).

Consider now a short exact sequence of cochain complexes:

{0} −→ E φ−→ F ψ−→ G −→ {0}.
In particular φi is injective and ψi is surjective. In general, at cohomology level, φ∗ is not injective and

ψ∗ is not surjective. In any case, we still have a good relation between the cohomology groups of the three

complexes.

4.15. Theorem. [Algebraic Mayer-Vietoris Theorem] In the situation above there exists a family of

linear maps ∆∗
p : Hp(G) −→ Hp+1(E) such that the sequence:

· · · −→ Hp(E)
φ∗−→ Hp(F)

ψ∗−→ Hp(G)
∆∗p−→ Hp+1(E) −→ · · ·

is a (long) exact sequence.

Proof. We have the commutative diagram

0

²²

0

²²

0

²²
· · · // Ep

dp

//

φp

²²

Ep+1
dp+1

//

φp+1

²²

Ep+2 //

φp+2

²²

· · ·

· · · // Fp
dp

//

ψp

²²

Fp+1
dp+1

//

ψp+1

²²

Fp+2 //

ψp+2

²²

· · ·

· · · // Gp
dp

//

²²

Gp+1
dp+1

//

²²

Gp+2 //

²²

· · ·

0 0 0

where the columns are exact and the rows are the cochain complexes under consideration. The idea is to

construct a map from Gp to Ep+1. A natural choice would be (φp+1)−1◦dp ◦ψ−1
p . The fact is that this map is

not well defined. Let see how we can overcome this problem. Consider a cocycle c ∈ Gp. Since ψp is surjective,

there exists b ∈ Fi such that c = ψp(b). The element dp(b) ∈ Fp+1 is in kerψp+1 since the diagrams commute

and c is a cocycle. Since kerψp+1 = Imφp+1 we have dp(b) = φp+1(a) for some a ∈ Ep+1 and this a is unique

since φp+1 is injective. Observe that dp+1(a) = 0, since φp+2(dp+1(a)) = dp+1(φp+1(a)) = dp+1 ◦ dp(b) = 0

and φi+2 is injective. Therefore a is a cocycle. We define: ∆∗
p : Hp(G) −→ Hp+1(E), ∆∗

p([c]) = [a]. We

have to show that [a] is well defined. The first choice we made was b ∈ Fp. If b′ is an other choice, i.e.

ψp(b′) = ψp(b), then b− b′ ∈ kerψp = Im φp. Therefore b′− b = φp(a′), for some a′ ∈ Ep, and b′ = b+φp(a′).

So, changing b by b + φp(a′), we change a by a + dp(a′) and this does not change [a]. Next we shall show

that [a] does not depend on the choice of c ∈ [c]. Consider c + dp(c′). Since c′ = ψp−1(b̃), for some b̃ ∈ Fp−1,
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we have c + dp−1(c′) = c + dp−1(ψp−1(b̃)) = c + ψp(dp−1(b̃)) = ψp(b + dp−1(b̃)). Therefore b is substituted by

b + dp−1(b̃), and this does not change dp(b) and, therefore, [a].

It is easy to see that ∆∗
p is linear. We leave to the reader the task of proving exactness. ¤

4.16. Remark. The map ∆∗
p is well defined in cohomology but not at cocycles level.

4.17. Definition. The sequence in Theorem 4.15 is called the (algebraic) Mayer-Vietoris sequence. The

maps ∆∗
p, often denoted just by ∆∗, are the Mayer-Vietoris coboundaries.

4.18. Remark. Naturally we have a similar sequence in homology, associated to a short exact sequence

of chain complexes. The similar maps ∆p
∗ are called the Mayer-Vietoris boundaries. We leave the details to

the reader.

An important aspect of the Mayer-Vietoris (co)boundaries is that they are “natural” in the following

sense ( Exercise 9.19)

4.19. Proposition. A map between short exact sequences of (co)chain complexes induces a morphism

between the associated Mayer-Vietoris exact sequences, i.e. the Mayer-Vietoris (co)boundaries commutes

with the induced maps.

4.20. Remark. As suggested in Remark 4.9, instead of chain and cochain complexes of vector spaces

we could consider chain and cochain complexes of Abelian groups (or modules over a commutative ring).

Almost all we have done in this section extends to the case of complexes of abelian groups. The “almost”

refers to two exceptions:

• Proposition 4.5 does not hold in this more general setting. For example the sequence of abelian groups

{0} −→ Z ·2−→ Z −→ Z2 −→ {0}, ·2(a) := 2a,

is a short exact sequence, but it is not isomorphic to the sequence

{0} −→ Z −→ Z⊕ Z2 −→ Z2 −→ {0}.
A short exact sequence of Abelian groups that verify Proposition 4.5 is called a split short exact sequence.

A sufficient condition for splitting is given by the following simple fact

4.21. Proposition. A short exact sequence of Abelian groups

{0} −→ A
φ−→ B

ψ−→ C −→ {0}
splits if and only if there is a map r : C −→ B such that ψ ◦ r = 11C . This always happens if C is free 11.

• We can consider “duality” in the context Abelian groups. If G is such a group, G∗ := Hom(G,Z) is

the group of homomorphisms of G in Z. Therefore we can define the dual of a chain complex of Abelian

groups. However Theorem 4.12 does not holds in this context. In fact, one of the points in the proof was

that the sequence of vector spaces

{0} −→ Bp−1 −→ Zp−1 −→ Hp−1 −→ {0}
11A free Abelian group G is an Abelian group that admits a basis, i.e. a subset B ⊆ G such that for any Abelian group H

and map φ : B −→ H, there exists a homeomorphism φ̃ : G −→ H, extending φ.
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splits. As observed above, this is not the case, in general, for short exact sequences of Abelian groups.

However, if Hp−1 is a free Abelian group, then the sequence splits, by Proposition 4.21, and the Theorem

holds true. In the general case there is still a relation between the homology of a chain complex of Abelian

groups and the cohomology of the dual complex, known as the Universal Coefficients Theorem.

5. Basic properties of the de Rham cohomology

The natural problem that cohomology attacks is the problem of (indefinite) integration, i.e. the problem

of solving the equation dω = β, for a given β ∈ Ωp+1(U). A necessary condition for the existence of a solution

ω is dβ = 0. In general the problem has two aspects:

• The local problem: given x ∈ U, β ∈ Ωp+1(U) do there exist a neighborhood V ⊆ U of x and a solution

ω ∈ Ωp(V ) of the equation dω = β|V ? In this case, as we will see, the condition dβ = 0 is also sufficient.

• The global problem: given β ∈ Ωp+1(U), does there exist a solution ω ∈ Ωp(U) of the equation dω = β?

In this case, the condition dβ = 0 is not any more sufficient and the answer will depend on the particular β

and/or on the topology of U .

We will start with some simple examples.

5.1. Example. For U = R0 we have:

Hp(R0) '
{
R if p = 0

{0} if p > 0

5.2. Example. Let U =
∐

α Uα be the union of disjoint open sets Uα. Then Ωp(U) =
∏

α Ωp(Uα) (direct

product) and the differential preserves the decomposition, i.e. if ω = {ωα}, dω = {dωα}. It follows that:

Hp(U) ∼=
∏
α

Hp(Uα).

5.3. Example. Let us analyze the 0-dimensional cohomology. In this case, the only exact 0-form is the

zero form so H0(U) is the space of closed 0-forms, i.e. functions in F(U) with zero differential. Such a

function is locally constant, in particular constant on the connected component of U . It follows that H0(U)

is the direct product of copies of R, as many as the connected components of U .

Let us give a further look at the 0-dimensional cohomology. Let U ⊆ Rn, V ⊆ Rm be open connected

sets, and F : U −→ V a smooth map. As we observe in 5.3, the zero dimensional cohomology of U is the

space of constant functions, and the same for V . Given a 0-form f ∈ Ω0(V ) = F(V ), F ∗(f) = f ◦ F and

therefore F ∗ : H0(V ) −→ H0(U) is an isomorphism. Modulo the identification of the zero dimensional

cohomology groups with R, F ∗ = 11 : R −→ R.

We want to look now at the induced maps in higher dimensional cohomology groups. The question is

the following: When two smooth maps Fi : U −→ V, i = 0, 1 induce the same morphism in cohomology?

We will give a sufficient condition in terms of homotopy.

5.4. Definition. Let U ⊆ Rn, V ⊆ Rm be open sets and Fi : U −→ V, i = 0, 1 be smooth functions.
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• A homotopy between the two functions is a smooth map12

H : U × [0, 1] ⊆ Rn+1 −→ V,

such that H(x, i) = Fi(x), i = 0, 1.

• We will say that the two functions are homotopic if there exist a homotopy between them. In this

case we will write F0 ∼ F1.

• We will say that U and V are homotopy equivalent if there exist functions F : U −→ V, G : V −→ U ,

such that G ◦ F ∼ 11U , F ◦G ∼ 11V .

• We will say that U is contractible if U is homotopy equivalent to R0.

5.5. Remark. Given an homotopy H : U × [0, 1] −→ V , there is a smooth function H : U × R −→ V ,

such that H(x, i) = Fi(x), i = 0, 1. In fact, if λ : R −→ [0, 1] is a smooth function such that λ(t) = 0 if t ≤
0, λ(t) = 1 if t ≥ 1, just take H(x, t) = H(x, λ(t)) (see Lemma 7.3 for a proof of the existence of such λ).

A homotopy between two functions may be viewed as a curve in the space of smooth maps joining the

two functions. Also may be viewed as a “smooth deformation” of one function to the other.

5.6. Theorem. [Homotopy invariance for cohomology] If Fi : U −→ V, i = 0, 1 are two homotopic

smooth function, then F ∗0 = F ∗1 : Hp(V ) −→ Hp(U), for all p.

Proof. By Remark 5.5 we can suppose that there is a homotopy H : U × R −→ V . Let ji : U −→
U × R, i = 0, 1, ji(x) = (x, i), be the canonical inclusions. We claim that it is sufficient to prove that

j∗0 = j∗1 . In fact, if so, we have:

F ∗0 = (H ◦ j0)∗ = j∗0 ◦H∗ = j∗1 ◦H∗ = (H ◦ j1)∗ = F ∗1 .

To prove that j∗0 = j∗1 we will construct an algebraic homotopy between j∗0 and j∗1 (at the cochain level,

see Definition 4.13 and Proposition 4.14), i.e. an R-linear map H̃ : Ωp(U × R) −→ Ωp−1(U) such that:

(4) H̃dω + dH̃ω = j∗1ω − j∗0ω.

Let us construct such a map. If ω ∈ Ωp(U × R), ω = dt ∧ α + β, with:

α =
∑

i1<...<ip−1

αi1,...,ip−1(x, t)dxi1 ∧ · · · ∧ dxip−1 , β =
∑

j1<···<jp

βj1,...,jp(x, t)dxj1 ∧ · · · ∧ dxjp .

We define:

H̃(ω) =
∑

i1<...<ip−1

( ∫ 1

0

αi1,...,ip−1(x, t)dt

)
dxi1 ∧ · · · ∧ dxip−1 .

Then:

dω = −dt ∧ dα + dβ = −dt ∧
∑

j,i1<···<ip

∂αi1...ip−1

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 +

+dt ∧
∑

j1<···<jp

∂βj1,...,jp

∂t
dxj1 ∧ · · · ∧ dxjp + γ

12A map f : V ⊆ RN −→ RM , defined in a non necessarily open subset V ⊆ RN is smooth, if for all p ∈ V, f extends to

a smooth map defined in an open neighborhood of p.
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where γ does not contain terms with dt. So:

H̃dω =
∑

j1<···<jp

( ∫ 1

0

∂βj1,...,jp

∂t
dt

)
dxj1 ∧ · · · ∧ dxjp

−

∑

j,i1<···<ip

( ∫ 1

0

∂αi1...ip−1

∂xj
dt

)
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 ,

dH̃ω =
∑

j,i1<···<ip

( ∫ 1

0

∂αi1...ip−1

∂xj
dt

)
dxj ∧ dxi1 ∧ · · · ∧ dxip−1 .

Therefore (see also Example 2.18):

H̃dω + dH̃ω =
∑

j1<···<jp

( ∫ 1

0

∂βj1,...,jp

∂t
dt

)
dxj1 ∧ · · · ∧ dxjp

=

=
∑

j1<···<jp

[βj1,...,jp
(x, 1)− βj1,...,jp

(x, 0)]dxj1 ∧ · · · ∧ dxjp
= j∗1ω − j∗0ω.

¤

From 5.6, and the funtorial properties, we have:

5.7. Corollary. If U ⊆ Rn, V ⊆ Rm are homotopically equivalent open sets, then they have isomorphic

cohomology.

In particular we have the so called Poincaré Lemma:

5.8. Corollary. [Poicaré Lemma] If U is a star shaped 13open set in Rn, every closed p form, p ≥ 1,

is exact.

5.9. Remark. Theorem 5.6 allows to define the map induced in cohomology by a continuous map. In

fact, as we will see in the Appendix, a continuous map F : U −→ V is homotopic, via a continuous homotopy

H : U × [0, 1] −→ V , to a smooth map F̃ : U −→ V and if there is a continuous homotopy between two

smooth maps, there is a smooth one. So F ∗ := F̃ ∗ is well defined and invariant by continuous homotopies.

A basic method to compute the cohomology of an open set U ⊆ Rn is to write U as union of two,

possibly simpler open sets U1, U2, and look for relations between the cohomology of U,Ui and V := U1∩U2.

5.10. Lemma. Consider the sequence :

{0} −→ Ωp(U)
(j∗1 ,j∗2 )−→ Ωp(U1)⊕ Ωp(U2)

(k∗1−k∗2 )−→ Ωp(V ) −→ {0},

where ji : Ui −→ U and ki : V −→ Ui are the inclusions. Then the sequence is a short exact sequence of

cochain complexes.

13A subset U ⊆ Rn is star shaped if there exists p ∈ U such that, for all q ∈ U , the segment joining p and q is contained

in U . Star shaped subsets are contractible since the map H(q, t) := tp + (1− t)q is a homotopy between 11U and the constant

map F (q) = p.
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Proof. Observe that j∗i ω = ω|Ui
and, if (ω1, ω2) ∈ Ωp(U1) ⊕ Ωp(U2), (k∗1 − k∗2)(ω1, ω2) = ω1|V − ω2|V

(see Example 2.18). So the exactness of the sequence is obvious, except for the surjectivity of (k∗1 − k∗2). To

prove that (k∗1 − k∗2) is surjective we consider a partition of unity dominated by the covering {U1, U2}, i.e.

smooth functions φi : U −→ [0, 1], i = 1, 2 such that:

φ1(x) + φ2(x) = 1 ∀x ∈ U, supp(φi) := {x ∈ U : φi(x) > 0} ⊆ Ui

(see Theorem 7.2 for a proof of the existence of partitions of unity).

Given ω ∈ Ωp(V ), we define:

ωi(x) =

{
φj(x)ω(x) if x ∈ V

0 if x ∈ Ui \ V

where i 6= j. ωi is well defined since φj vanishes outside Uj , j 6= i. Moreover,

(k∗1 − k∗2)(ω1,−ω2) = ω1|V + ω2|V = φ1ω + φ2ω = ω.

Therefore (k∗1 − k∗2) is surjective. ¤

At this point Theorem 4.15 gives:

5.11. Theorem. [Mayer Vietoris sequence for de Rham cohomology] There exists a sequence of linear

maps ∆∗
p : Hp(V ) −→ Hp+1(U), such that the sequence below is exact:

· · · −→ Hp(U)
(j∗1 ,j∗2 )−→ Hp(U1)⊕Hp(U2)

(k∗1−k∗2 )−→ Hp(V ) ∆∗−→ Hi+1(U) −→ · · ·

5.12. Definition. The sequence above is called the Mayer-Vietoris sequence for the de Rham cohomology

and the maps ∆∗
p are called the Mayer-Vietories coboundaries.

5.13. Example. Let us apply the Mayer-Vietoris sequence to compute the cohomology of Rn \ {0}.
Rn \ {0} is homotopy equivalent to Σn := Rn \ {x = (x1, . . . , xn) ∈ Rn : |xi| ≤ ε}. Hence the cohomology of

the two spaces are isomorphic, by Corollary 5.7. We will compute the cohomology of the latter.

Consider the open sets:

U1 = {(x1, . . . , xn) ∈ Σn : xn > −ε/2}, U2 = {(x1, . . . , xn) ∈ Σn : xn < ε/2}.

The following facts are easy to prove:

• Σn = U1 ∪ U2.

• Ui is contractible, i = 1, 2.

• U1 ∩ U2 is homotopy equivalent to Σ(n−1).

We will proceed by induction on n. If n = 1, Σ1 is the disjoint union of two contractible sets, hence by

Corollary 5.7 and Example 5.3 we have:

Hp(Σ1) ∼=
{
R⊕ R if p = 0

{0} if p > 0
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Consider n = 2. Since Σ2 and the Ui’s are connected, H0(Σ2) ∼= H0(Ui) ∼= R. Consider the Mayer-

Vietoris sequence:

{0} −→ H0(Σ2) −→ H0(U1)⊕H0(U2) −→ H0(Σ1) −→ H1(Σ2) −→ H1(U1)⊕H1(U2) −→
−→ · · · −→ Hp−1(Σ1) −→ Hp(Σ2) −→ Hp(U1)⊕Hp(U2) −→ · · · .

The first row reduces to:

{0} −→ R −→ R⊕ R −→ R⊕ R −→ H1(Σ2) −→ {0}.

Hence H1(Σ2) ∼= R. 14 From the second row we get Hp(Σ2) = {0} if p > 1.

For the general case we work by induction. Suppose n ≥ 3 and

Hp(Σn−1) =

{
R if p = 0, n− 2

{0} if p 6= 0, n− 2

Consider again the Mayer-Vietoris sequence:

Hp−1(Σn) −→ Hp−1(U1)⊕Hp−1(U2) −→ Hp−1(Σn−1) −→ Hp(Σn) −→ Hp(U1)⊕Hp(U2) −→

If p > 1 we have Hp(Σn) ∼= Hp−1(Σn−1), and, for p = 1 we get

{0} −→ R −→ R⊕ R −→ R −→ H1(Σn) −→ {0}.

Hence

Hp(Σn) =

{
R if p = 0, n− 1

{0} if p 6= 0, n− 1

5.14. Remark. For further reference, we observe that Σn is homotopy equivalent to the unit sphere

Sn−1 ⊂ Rn.

6. An application: the Jordan-Alexander duality Theorem

It is convenient, as we will see, in order to avoid special arguments for the 0-dimensional case and to

have cleaner statements, to introduce the reduced cohomology. Define:

Ω−1(U) := R d(−1) : Ω−1(U) −→ Ω0(U), d(−1)(a) := a ∈ Ω0(U).

Then the sequence:

{0} −→ Ω−1(U) d(−1)

−→ Ω0(U) d−→ Ω1(U) −→ · · ·
is a cochain compex called the augmented de Rham complex.

6.1. Definition. The reduced de Rham cohomology of U, H̃p(U), is the cohomology of the augmented

de Rham complex.

6.2. Remark. It is clear that H̃−1(U) = {0}, H0(U) ∼= H̃0(U) ⊕ R and H̃p(U) = Hp(U), if p > 0. In

particular H̃p(U) = {0}, ∀ p ≥ 0, if U is contractible.

14The first arrow is injective so the kernel of the second one, as well as the image, are 1-dimensional. Hence the kernel of

the third one is also 1-dimensional and the conclusion follows.
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The basic properties, as homotopy invariance and the Mayer-Vietoris exact sequence, continue to hold

for the reduced cohomology and we will leave the proof to the reader (see Exercise 9.20).

We will discuss now a nice application of the Mayer-Vietoris argument, the so called Jordan-Alexander

duality principle, that has, as a simple consequence, the celebrated Jordan closed curve Theorem. We will

follow closely [?] and [?].

Let Fi, i = 1, 2 be closed subsets of Rn. Suppose that there exists a homeomorphism φ : F1 −→ F2.

It is natural to ask if there exists some relation between the complementary sets Rn \ Fi. The illusion

that they are homeomorphic or, at least, homotopy equivalent is soon frustrated. For example consider

F1 = {x ∈ R2 : ‖x‖ = 1} ∪ {x ∈ R2 : ‖x‖ = 2} and F2 = {x ∈ R2 : ‖x‖ = 1} ∪ {x ∈ R2 : ‖x − (3, 0)‖ = 1}.
The complement of F1 is homotopy equivalent to the disjoint union of a point and two circles, while the

complement of F2 is homotopy equivalent to the disjoint union of two points and the wedge 15 of two circles.

It is easily seen that those space are not homotopy equivalent.

6.3. Remark. The fact that the complements of two homeomorphic closed set are not homotopy equiv-

alent is important in several contexts. For examples in Knot Theory. Recall that a knot in R3 is a function

γ : S1 −→ R3 which is an homeomorphism onto its image. Two knots are equivalent if there exists an iso-

topy, i.e. a homotopy through homeomorphisms, which takes one into the other. One of the most important

invariants for equivalence classes of knots is the fundamental group of the complement of the image. Now,

the images of two knots are homeomorphic and if the complements would be homotopy equivalent, they

would have isomorphic fundamental group and so the invariant would be trivial.

There is, however, an interesting relation between the complements of homeomorphic closed set:

6.4. Theorem. [Jordan Alexander duality Theorem]. Let Fi, i = 1, 2, be closed sets in Rn and φ :

F1 −→ F2 an homeomorphism. Then:

H̃k(Rn \ F1) ∼= H̃k(Rn \ F2).

Proof. We will consider Rn as the subspace of vectors in Rn+k with the last k coordinates zero. The

proof of the Theorem will be an easy consequence of the following two Lemmas.

6.5. Lemma. Let F ( Rn be a closed subset. Then H̃i+1(Rn+1 \ F ) ∼= H̃i(Rn \ F ), i ≥ −1.

Proof. Consider the subsets of Rn+1:

• Z+ := Rn+1 \ F × {t ∈ R : t ≤ 0}.
• Z− := Rn+1 \ F × {t ∈ R : t ≥ 0}.
• Z := Z+ ∪ Z− = Rn+1 \ F.

• Z+ ∩ Z− ∼ Rn \ F.

The orthogonal projection of Z+ onto the hyperplane xn+1 = 1 is an homotopy equivalence. Hence the

reduced cohomology of Z+ vanishes in all dimensions. The same is true for Z− and the Lemma follows from

the Mayer-Vietoris sequence for the reduced cohomology:

H̃i(Z+)⊕ H̃i(Z−) = {0} −→ H̃i(Z+ ∩ Z−) −→ H̃i+1(Z) −→ H̃i+1(Z+)⊕ H̃i+1(Z−) = {0}.
15Recall that the wedge of two topological spaces is the space obtained from the disjoint union identifying a fixed point in

the first space with one in the second one.
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¤

6.6. Corollary. If F ⊆ Rn is a closed set, then H̃i+k(Rn+k \ F ) ∼= H̃i(Rn \ F ), ∀ i ≥ −k.

6.7. Lemma. Let Fi ⊆ Rn, i = 1, 2 be closed subsets and φ : F1 −→ F2 an homeomorphism. Then

R2n \ F1 × {0} is homeomorphic to R2n \ {0} × F2.

Proof. Let ψ = φ−1. The homeomorphisms φ, ψ extend, by Tietze’s Theorem, to continuous maps

Φ,Ψ : Rn −→ Rn. Define:

• L : R2n −→ R2n, L(x, y) = (x, y − Φ(x)).

• R : R2n −→ R2n, R(x, y) = (x−Ψ(y), y).

The maps L,R are homeomorphisms. In fact L−1(x, y) = (x, y + Φ(x)), R−1(x, y) = (x + Ψ(y), y). Consider

Γ := {(x, y) ∈ R2n : x ∈ F1, y = φ(x)} = {(x, y) ∈ R2n : y ∈ F2, x = ψ(y)}. We have L(F1 × {0}) = Γ =

R({0} × F2) and therefore a homeomorphism:

R2n \ F1 × {0} L−→ R2n \ Γ R−1

−→ R2n \ {0} × F2.

¤

The proof of the Theorem is, at this point, immediate:

H̃i(Rn \ F1) ∼= H̃i+n(R2n \ F1) ∼= H̃i+n(R2n \ F2) ∼= H̃i(Rn \ F2).

¤

As an immediate consequence of the Jordan-Alexander duality we have get the celebrated Jordan curve

Theorem:

6.8. Theorem. [Jordan curve Theorem] Let γ : S1 −→ R2 be a homeomorphism onto its image16. Then

R2 \ γ(S1) has exactly two connected components.

Proof. Consider the unit circle S1 ⊆ R2. It is clear that the complement of S1 in R2 has exactly two

connected components and therefore H̃0(R2 \ S1) ∼= R. By the duality principle H̃0(R2 \ γ(S1)) ∼= R and

therefore the complement of γ(S1) in R2 has also exactly two connected components. ¤

6.9. Remark. It is clear that the argument in the proof of Theorem 6.8 may be extended to the case

of a closed hypersurface Mn ⊆ Rn+1 any time we have a “model”, i.e. a close hypersurface homeomorphic

to Mn and information on the complement of the model. For example this happens in the case of closed

oriented surfaces in R3 or for the case of closed hypersurfaces of Rn+1, homeomorfic to a sphere.

7. Appendix A: partitions of unity and smooth approximations of continuous functions

Partitions of unity is a basic tool that allows to glue together locally defined objects (such as functions,

forms etc.) to obtain a globally defined one. In this appendix we will prove the existence of partitions of

unity and apply the result to to prove that continuous functions may be approximate by smooth ones. We

start with the basic definition.

16Such a map is usually called a Jordan curve.
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7.1. Definition. Let U ⊂ Rn be an open set and Vα an open covering of U . A partition of unity

dominated by the covering Vα is a family of smooth functions λi : Rn −→ [0, 1] such that:

(1) For all i there exist α such that supp(λi) := {x ∈ Rn : λi(x) 6= 0} ⊆ Vα.

(2) For all x ∈ U there exist a neighborhood Ux of x such that Ux ∩ supp(λi) = ∅ for all but finitely

many of the λi’s.

(3) For x ∈ U,
∑

i λi(x) = 1 (observe that, by (2), the sum is finite).

Our aim is to prove the following result:

7.2. Theorem. Let U ⊂ Rn be an open set and Vα an open covering of U . Then there exist a partition

of unity dominated by Vα.

Proof. We will use the following notations:

B(p, r) = {x ∈ Rn : ‖x‖ < r}, D(x, r) = {x ∈ Rn : ‖x‖ ≤ r} = B(p, r) .

We will start with some preliminary results.

7.3. Lemma. Given δ1, δ2 ∈ R, 0 < δ1 < δ2,and p ∈ Rn, there exist a smooth function φ : Rn −→ [0, 1]

such that φ(x) = 0 in B(p, δ1) and φ(x) = 1 in Rn \B(p, δ2).

Proof. We can suppose, up to a translation, p = 0. Consider the function f : R −→ R,

f(t) =

{
e−

1
t if t > 0

0 if t ≤ 0

It is easily seen that, at t = 0, the left and right derivatives of f , of any order, vanish. So f is a smooth

function. The the function

φ(x) =
f(‖x‖2 − δ2

1)
f(‖x‖2 − δ2

1) + f(δ2
2 − ‖x‖2)

is well defined, since the denominator of the right hand side never vanishes, it is smooth since it is a

composition of smooth functions, has values in [0, 1], vanishes for ‖x‖ ≤ δ1 and it is identically 1 for

‖x‖ ≥ δ2. ¤

7.4. Corollary. Let K ⊆ Rn be a compact set and V ⊆ Rn an open set with K ⊆ V . Then there exist

a smooth function ψ : Rn −→ [0, 1] such that ψ(x) = 1, if x ∈ K and ψ(x) = 0 if x 6∈ V .

Proof. For any p ∈ K consider δ(p) such that D(p, 2δ(p)) ⊆ V . Then there is a finite number of

points, p1, . . . , pr ∈ K, such that K ⊆ ⋃
D(pi, δ(pi)). By Corollary 7.4, for each i we have a function

φi : Rn −→ [0, 1] such that φi(x) = 0, x ∈ D(pi, δ(pi)) and φ(y) = 1, y 6∈ D(pi, 2δ(pi)). Then the function

ψ(x) = 1− φ1(x) · · ·φr(x)

has the required properties. ¤

7.5. Lemma. There exist a continuous proper function17 φ : U −→ [0,∞).

17A function is proper if the inverse image of a compact set is compact.



CHAPTER 1. THE DE RHAM COHOMOLOGY FOR OPEN SETS OF RN 31

Proof. Since Rn is homeomorphic to the open ball B(0, 1), we can suppose that U is bounded. For

x ∈ U , define d(x) to be the distance of x to the boundary of U . Then d : U −→ R is a positive continuous

function. Consider φ : U −→ [0,∞), φ(x) = d(x)−1. Then φ is continuous and for all n ∈ N, φ−1[0, n] is a

closed bounded set in U , hence compact. So φ is proper. ¤

We will prove now Theorem 7.2. Consider a proper function φ : U −→ [0,∞) and set

An = φ−1[n, n + 1], Vn = φ−1(n− 1
2
, n +

3
2
).

Then An is compact and may be covered with a finite number of balls Bk,n such that each disk Dk.n := Bk,n

is contained in some Vα ∩ Vn. For each such disk we have a smooth function φk,n : U −→ [0, 1] vanishing

outside Vα ∩Vn and identically 1 in Dk,n. It is clear from the construction that the An’s cover U and so, for

all x ∈ U , there is at least one of the φn.k’s not vanishing at x. Also Vn ∩ Vn+2 = ∅ so the supports of the

φn,k are a locally finite covering and
∑

k,n φk,n(x) < ∞, ∀x ∈ U . So the family of functions

λn,k =
φn,k∑
i,j φi,j

is a well defined partition of unity dominated by the covering Vα. ¤

We will prove now that continuous functions may be approximate by smooth functions, a fact that we

already mentioned in Remark 5.9. The proof is a good example of how to use partition of unity.

7.6. Theorem. Let U ⊆ Rn, W ⊆ Rm be open sets, F : U −→ W a continuous function and ε : U −→ R
a continuous, positive function. Suppose that F is smooth on a closed set A ⊆ U . Then there exists

a smooth function G : U −→ W such that ‖F (x) − G(x)‖ < ε, ∀x ∈ U and F (x) = G(x) if x ∈ A.

Moreover we can choose such a G such that there exist a homotopy H : U × [0, 1] between F and G, with

H(x, t) = F (x), ∀x ∈ A.

Proof. Let us suppose, first, W = Rm. We recall that F smooth on A means that for all x ∈ A there

exists a neighborhood Vx of x and a smooth extension hx of F |Vx∩A. For x ∈ U we consider a neighborhood

Vx of x and a function hx : Vx −→ Rm with the following conditions:

(1) If x ∈ A, hx is a smooth extension of F |Vx∩A.

(2) If x 6∈ A, Vx ∩A = ∅ and hx(y) = F (x), ∀y ∈ Vx.

(3) ∀y ∈ Vx, ‖F (y)− F (x)‖ < ε(x)
2 , ‖hx(y)− F (x)‖ < ε(x)

2 , ‖x− y‖ < ε(x)
2 .

Consider a smooth partition of unity, λα, dominated by the covering Vx. Then ∀ α there exists x = x(α)

with supp(λα) ⊆ Vx(α). For every α fix such a x(α) and set

G(z) =
∑
α

λα(z)hx(α)(z).

Then G is a smooth function since in a neighborhood of a point is a finite sum of smooth functions. If

z ∈ A, let λα1 , . . . λαk
be the functions of the partition non vanishing at z. Then the hx(αj)(z) = F (z), by

condition (1) and (2) on the covering Vx. Therefore G(z) =
∑

λαj (z)F (z) = F (z) and G is an extension of

F |A. In general we have:

‖G(y)− F (y)‖ ≤ ‖
∑

λα(y)hx(α)(y)−
∑

λα(y)F (x(α)‖+ ‖
∑

λα(y)F (x(α))−
∑

λα(y)F (y)‖ ≤
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≤
∑

λα(y)‖hx(α)(y)− F (x(α))‖+
∑

λα(y)‖F (x(α))− F (y)‖ < ε.

Hence G is an ε approximation of F .

Finally H(x, t) = tF (x) + (1− t)G(x) is the required homotopy.

If W ⊆ Rm the same argument works, choosing the Vx with the additional condition that F (Vx) is

contained in an open disk contained in W . ¤

7.7. Corollary. If two smooth maps are homotopic via a continuous homotopy, then they are homotopic

via a smooth one.

8. Appendix B: tensor product of vector spaces

We can take a slightly different approach to tensors and we will discuss this approach now.

8.1. Definition. Let E,F be two real vector spaces (not necessarily finite dimensional). Consider the

vector space freely generated by {(x, y) : x ∈ E, y ∈ F} and the subspace generated by the elements of the

type:

• (x1 + x2, y)− (x1, y)− (x2, y), (x, y1 + y2)− (x, y1)− (x, y2), xi ∈ E, yi ∈ F.
• r(x, y)− (rx, y), r(x, y)− (x, ry), x ∈ E, y ∈ F, r ∈ R.

The quotient space is called the tensor product of E and F and will be denoted by E⊗ F. The class of (x, y)

in E⊗ F will be denoted by x⊗ y.

In other words we can think of E ⊗ F as the space of finite (formal) linear combinations of elements of

the type x⊗ y with the “calculus rules”

• (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

• r(x⊗ y) = rx⊗ y = x⊗ ry.

The following facts are easily verified

8.2. Proposition.

(1) E⊗ F ∼= F⊗ E, E⊗ R ∼= E.

(2) (E⊗ F)⊗ P ∼= E⊗ (F⊗ P).

(3) E⊗ (F⊕ P) ∼= E⊗ F⊕ E⊗ P.
(4) If {ei}, {fj} are bases for E,F respectively, then {ei⊗fj} is a basis for E⊗F. In particular, if E, F

are finite dimensional, dim(E⊗ F) = dim(E) dim(F).

(5) If E is finite dimensional, E∗ ⊗ E∗ ∼= E2.

Let π : E× F −→ E⊗ F the bi-linear extension of π(x, y) = x⊗ y.

8.3. Proposition. The following universal property of the tensor product holds:

• (UP⊗) If K is a vector space and b : E× F −→ K, is a bilinear map, there exists a unique linear map

l : E⊗ F −→ K such that l ◦ π = b.

Proof. Set l(x ⊗ y) = b(x, y). By the “calculus rules”, l extend to a linear map of E ⊗ F into K such

that l ◦ π = b. If l′ : E ⊗ F −→ K is a linear map with l′ ◦ π = b, then l′(x ⊗ y) = b(x, y) = l(x ⊗ y). Since

the elements of the type x⊗ y spans E⊗ F, l = l′. ¤
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Objects defined by universal properties are unique

8.4. Proposition. If H is a vector space and π̃ : E × F −→ H is a bi-linear map such that UP⊗ is

verified for (π̃,H), then H ∼= E⊗ F.

Proof. From the universal property for π : E × F −→ E ⊗ F it follows that there is a unique linear

map l : E⊗ F −→ H such that l ◦ π = π̃. By the universal property of π̃ : E× F −→ H it follows that there

is a unique map l′ : H −→ E ⊗ F such that l′ ◦ π̃ = π. Now, l ◦ l′ : H −→ H is such that π̃ ◦ (l ◦ l′) = π̃.

But also π̃ ◦ 11 = π̃. Hence, by uniqueness, (l ◦ l′) = 11. Analogously l′ ◦ l = 11, hence l and l′ are inverse

isomorphisms. ¤

The important feature of the tensor product is that it allows to transform a bi-linear problem in a linear

one, which is, in general, easier to solve.

9. Exercises

9.1. Prove that the tensor product of tensors is associative and distributive.

9.2. Prove that the exterior product is distributive with respect to the sum.

9.3. Prove Proposition 1.22.

9.4. Prove that φ1, . . . , φp ∈ E∗ are linearly independent if and only if φ1 ∧ · · · ∧ φp 6= 0.

9.5. Prove that two sets of linearly independent elements of E∗, {φ1, . . . , φp} and {ψ1, . . . , ψp} span the

same subspace of E∗, if and only if φ1 ∧ · · · ∧ φp = d ψ1 ∧ · · · ∧ ψp, d ∈ R. In this case, d is the determinant

of the matrix that gives the change of basis.

9.6. Let ω ∈ Λ∗(E), ω =
∑n

0 ωi, ωi ∈ Λi(E). Prove that ω is invertible in Λ∗(E)18 if and only if ω0 6= 0.

9.7. Let E be a n-dimensional vector space. Let π : E∗ × · · · × E∗ −→ Λp(E) the p-linear extension of

(φ1, . . . , φp) −→ φ1 ∧ · · · ∧ φp. Prove that the following universal property of the exterior algebra holds:

• (UP∧) If K is a vector space and b : E∗ × · · · × E∗ −→ K is an alternated p-linear map, then there

exists a unique linear map l : Λp(E) −→ K such that l ◦ π = b.

9.8. Prove that the universal property (UP∧) characterizes Λp(E) i.e., given a vector space ÃL and a

p-linear map π̃ : E∗ × · · · × E∗ −→ ÃL such that (π̃, ÃL) verifies UP∧, then ÃL ∼= Λp(E).

9.9. Prove that Λp(E∗) ∼= [Λp(E)]∗.

9.10. Let v ∈ Λn(E) \ {0}. Define a map:

bv : Λp(E)× Λ(n−p)(E) −→ R, bv(ω, τ)v := ω ∧ τ.

Prove that bv is non degenerate and hence defines an isomorphism b̃v : Λp(E) −→ [Λ(n−p)(E)]∗.

9.11. Let φ1, . . . , φr ∈ E∗ be linearly independent. Let ψ1, . . . , ψr ∈ E∗ be such that
∑

i φi ∧ ψi = 0.

Prove that ψi =
∑

j aijφj with aij = aji.

18i.e. there exists ω−1 ∈ Λ∗(E) such that ω ∧ ω−1 = 1.
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9.12. A form ω ∈ Λp(E) is decomposable if ω = φ1 ∧ · · · ∧ φp, φi ∈ E∗. By Proposition 1.22, any p-form

is sum of decomposable forms.

(1) Show that, if dim(E) = n, any (n− 1)-form is decomposable.

(2) Show that, if dim(E) = 4 and {φ1, . . . , φ4} is a basis of E∗, then φ1∧φ2+φ3∧φ4 is not decomposable.

9.13. Let E be a n-dimensional vector space. A vector space G(E) with an associative product19, denoted

by ∧, is called a Grassman algebra for E if:

(1) G(E) contains a subspace isomorphic to R⊕ E and is generated, as an algebra, by this subspace.

(2) 1 ∧ x = x, x ∧ x = 0, ∀x ∈ E,

(3) dim(G(E)) = 2n.

Prove that G(E) is isomorphic to Λ∗(E∗).

9.14. Let φ ∈ E∗ \ {0} and ω ∈ Λp(E). Show that, if φ ∧ ω = 0, then there exists τ ∈ Λp−1 such that

ω = φ ∧ τ . Conclude that the sequence:

· · · −→ Λp−1(E)
φ∧−→ Λp(E)

φ∧−→ Λp+1(E) −→ · · ·

is exact. (Hint: choose a basis containing φ.)

9.15. Let L be a finite dimensional real Lie algebra, i.e. a finite dimensional real vector space with a

bi-linear map [ , ] : L× L −→ L, (X,Y ) −→ [X, Y ] such that, ∀ X, Y, Z ∈ L we have:

(1) [X, Y ] = −[Y,X],

(2) [[X,Y ]Z] + [[Y,Z], X] + [[Z, X], Y ] = 0 (Jacobi identity).

Define a map dp : Λp(L) −→ Λp+1(L),

dp(ω)(X1, . . . , Xp+1) =
∑

i<j

(−1)i+jω([Xi, Xj ], X1 . . . , X̂i, . . . , X̂j , . . . , XP+1).

Show, at least for p = 1, that dp+1 ◦ dp = 0.

In particular the sequence above is a cochain complex and its cohomology is called the cohomology of

the Lie algebra L.

9.16. Let L be a Lie algebra. ω ∈ Λp(L) is said to be Ad-invariant if, ∀ Y, X1, . . . , Xp ∈ L, we have:
∑

i

(−1)i−1ω([Y,Xi], X1, . . . , X̂i, . . . , Xp) = 0.

(1) Show that if ω ∈ Λp(L) is Ad-invariant, dpω = 0.

(2) Show that span {[X,Y ] : X, Y ∈ L} = L if and only if the only Ad-invariant 1-form is the zero

form.

(3) Show that if the only Ad-invariant 1-form is the zero form, the only Ad-invariant 2-form is the zero

form.

Remark: Under suitable hypothesis the cohomology of the Lie algebra is isomorphic to the space of Ad-

invariant forms.

19i.e a bilinear map ∧ : G(E)×G(E) −→ G(E),∧(v, w) := v ∧ w such that (v ∧ w) ∧ z = v ∧ (w ∧ z).
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9.17. Let E = {0} −→ En −→ · · · −→ E0 −→ {0} be a chain complex. Assume that the Ei’s are finite

dimensional and let Hi be the homology groups of the complex. Prove that:
n∑
0

(−1)i dim(Ei) =
n∑
0

(−1)i dim(Hi).

The number above is called the Euler characteristic of the complex.

9.18. Let E ,F be chain complexes as in Exercise 9.17, and φ : E −→ F be a morphism. Prove that:
∑

(−1)itrace(φi) =
∑

(−1)itrace(φ∗,i).

The number above is called the Leftchetz number of φ.

9.19. Show that the (algebraic) Mayer-Vietoris sequence (Theorem 4.15) is exact and the (co)boundaries

are natural (Proposition 4.19).

9.20. Show that the Mayer-Vietoris sequence for the reduced cohomology (see Definition 6.2) is exact.

9.21. Consider the algebra Fp and Ip = {[(f, V )] ∈ Fp : f(p) = 0}.
(1) Prove that Ip is an ideal and, in fact, the unique maximal (non trivial) ideal of Fp (a ring with a

unique maximal ideal is called a local ring).

(2) Let I2
p be the ideal generated by products of elements of Ip. Prove that the quotient Ip/I2

p is

isomorphic, as a vector space, to (Rn)∗.

9.22. Prove that the composition of derivations is not, in general, a derivation but the commutator (Lie

product) of derivations is a derivation (see Proposition 2.9).

9.23. Prove Proposition 2.9.

9.24. Let U ⊆ Rn be an open set, and

X =
∑

k

ak(x)
∂

∂xk
, Y =

∑

k

bk(x)
∂

∂xk

be smooth vector fields in U .

(1) Compute [X, Y ] (:= X ◦ Y − Y ◦X) in the basis
∂

∂xk
.

(2) Let f : U −→ V ⊆ Rm be a smooth map, X̃, Ỹ vector fields in V such that df(x)(X) =

X̃(f(x)), df(x)(Y ) = Ỹ (f(x)). Prove that [X̃, Ỹ ](x) = df(x)([X,Y ]).

(3) Let X1, . . . , Xp be linear independent vectors in Rn. Show that there exist smooth vector fields

X̃1, . . . , X̃p in Rn such that, for a fixed x ∈ Rn, X̃i(x) = Xi and [X̃i, X̃j ] = 0 in Rn.

9.25. (see Remark 3.2) Let U be an open set in Rn and ω ∈ Ωp(U). Prove that:

dω(X0, . . . , Xp) =
p∑

k=0

(−1)kXi(ω(X0, . . . , X̂k, . . . Xp)) +
∑

i<j

(−1)i+jω([Xi, Xj ], . . . X̂i, . . . , X̂j , . . . , Xp).

9.26. Let U ⊆ Rn be an open set and v = dx1 ∧ · · · ∧ dxn be the volume form. We will identify vectors

fields and 1-forms via the “musical isomorphisms” [ : H(U) −→ Ω1(U) and its inverse ] : Ω1(U) −→ H(U).

Also ∗ will denote the Hodge operator. We define the classical differential operator of calculus:
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• The gradient ∇ : F(U) −→ H(U), ∇f := ]df =
∑ ∂f

∂xi

∂

∂xi
.

• The divergence div : H(U) −→ F(U), div
(∑

Xi
∂

∂xi

)
=

∑ ∂Xi

∂xi
.

• The (geometers) Laplacian ∆ : F(U) −→ F(U), ∆f = −div∇f .

• The rotational rot : Ω1(U) −→ Ωn−2(U) rot ω = ∗dω.

.

Prove that:

(1) (∆f) = −d ∗ (df) = −
n∑
1

∂2f

∂x2
i

.

(2) ∆(fg) = g∆f + f∆g − 〈∇f,∇g〉.
(3) ω is closed if and only if rot ω = 0.

(4) rot ∇f = 0.

(5) If n = 3 compute rot
∑

Xi
∂

∂xi
and show that div rot ω = 0.

9.27. Let U ⊆ Rn be an open set. Show that Hn(U) = {0} if and only if ∀ f ∈ F(U) there exists a

vector field X ∈ H(U) such that div X = f .

Remark: It can be shown that the Laplacian ∆ : F(U) −→ F(U) is surjective (this a non trivial fact). In

particular the equation div X = f has solutions ∀ f ∈ F(U). In particular Hn(U) = {0}.

9.28. Identify R2 with the complex line C, (x, y) −→ x + iy, i =
√−1. If U ⊆ R2 is an open set and

f : U −→ C, we will write f(z) := f(x, y) = u(x, y) + iv(x, y), u, v ∈ F(U). f is said to be holomorphic if it

is C1 and
∂u

∂x
=

∂v

∂y
and

∂v

∂x
= −∂u

∂y
(Cauchy-Riemann equations).

It can be shown that an holomorphic function is smooth, and, more than that, complex analytic, i.e. it is

locally the sum of its (complex) Taylor series.

(1) Show that the Cauchy-Riemann equations just say that the differential df(z) : R2 −→ R2 is C-linear

(i.e. commutes with multiplication by i =
√−1).

(2) Define complex 1-forms:

dz := dx + idy, fdz := (u + iv)dz := (udx− vdy) + i(udy + vdx).

and the complex derivative f ′(z) by the identity f ′(z)dz = df . Prove that f is holomorphic if and

only if the real and imaginary parts of df are closed. In this case f ′(z) =
∂u

∂x
− i

∂u

∂y
.

(3) Prove that if f = u + iv is holomorphic, then u, v : U −→ R are harmonic functions (i.e. ∆u =

∆v = 0).

(4) Show that, if U is star shaped, given an harmonic function u : U −→ R, there exist an harmonic

function v : U −→ R such that f(x, y) = u(x, y)+ iv(x, y) is holomorphic. The function v is defined

up to an additive constant and is called the harmonic conjugate of u.

9.29. Use Example 5.13 to prove the Theorem of invariance of dimension:

Theorem: If h : Rn −→ Rm is a homeomorphism, then n = m.



CHAPTER 2

Integration and the singular homology of open sets of Rn

In Remark 1.7 of Chapter 1, we observed that p-forms are “p-dimensional (oriented) volume elements”

and hence, the natural integrands for the (oriented) multiple integrals. In this Chapter we will make this

statement precise, we will introduce the singular homology of open sets in Rn and see how integration gives

a duality between homology and the de Rham cohomology.

1. Integration on singular chains and Stokes Theorem

1.1. Definition. Let U ⊆ Rn be an open set and ω = f(x)dx1 ∧ · · · ∧ dxn ∈ Ωn(U). Let D ⊆ U be the

closure of an open bounded set. We define
∫

D

ω =
∫

D

f(x1, . . . , xn)dx1 · · · dxn,

where the integral on the right hand side is the usual Riemann integral.

1.2. Remark. The integral defined above is “oriented” in the sense that if ωσ = f(x)dxσ(1) ∧ · · · ∧
dxσ(n), σ ∈ Σ(n), then

∫

D

ω = |σ|
∫

D

ωσ.

In particular the integral depends on an ordering the coordinates, i.e., depends the choice of an orientation

in Rn, while the usual Riemann integral of a function does not depend on such a choice (see also Exercise

5.2).

In order to define the integral of a p-form, we first define the “domain of integration”.

1.3. Definition.

• A p-simplex in Rn is the convex hull1 of (p + 1) points {v0, . . . , vp} ⊂ Rn in general position2. The

points vi are called the vertexes of the simplex. Any subset of q + 1 (distinct) vertexes determine

a q-simplex called a face of the original one.

• Let {e1, . . . , ep} be the canonical basis of Rp and e0 = 0. The standard p-simplex, ∆p ⊂ Rp is the

simplex with vertexes {e0, e1, . . . , ep}.
• A differentiable singular p-simplex in U , is a smooth map σ : ∆p −→ U (i.e. σ extends to a

smooth map of an open neighborhood of ∆p) . When clear from the context we will omit the term

differentiable.

1We recall that the convex hull of a subset of Rn is the smallest convex set that contain the given set.
2The points {v0, . . . , vp} are in general position if they are not contained in any affine subspace of dimension less than p.

This is equivalent to the fact that the vectors {vi − v0 : i = 1, . . . p} are linearly independent.

37
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1.4. Remark. Given a p-simplex with vertexes {vo, . . . , vp}, a point in the simplex can be written in

a unique way in the form v =
∑p

i=0 λivi with λi ∈ [0, 1] ⊂ R and
∑p

i=0 λi = 1. The numbers λi are the

baricentric coordinate of v.

1.5. Example. An important example of a singular simplex is the following: Let {v0, . . . , vp} be points

of Rn, not necessarily in general position. Define L(v0, . . . , vp) as the singular simplex of Rn that maps the

point of ∆p with baricentric coordinates {λ0, . . . , λp} to the point
∑p

i=0 λivi ∈ Rn. This simplex will be

called the linear simplex with vertexes {v0, . . . , vp}.

1.6. Definition. Let ω ∈ Ωp(U) be a differential p-form and σ : ∆p → U a singular p-simplex. Define:
∫

σ

ω :=
∫

∆p

σ∗ω,

where the integral on the right hand side is in the sense of Definition 1.1.

1.7. Example. If f ∈ F(U) is a smooth function, i.e. a 0-form, and p ∈ U a fixed point, i.e. a 0-simplex,

then the integral of the form on the simplex is just f(p).

1.8. Example. If ω =
∑

ωidxi ∈ Ω1(U) is a 1-form and σ : ∆1 −→ U a smooth 1-simplex, then

σ∗ω = ω̃(t)dt, with ω̃(t) = σ∗ω(t)(dt) = ω(σ(t))(dσ(t)(1)) = ω(σ(t))(σ̇(t)) =
n∑

i=1

ωi(σ(t))σ̇i(t),

where σi(t) = 〈σ(t), ei〉 is the ith coordinate of σ. Hence
∫

σ

ω =
∫ 1

0

[
n∑

i=1

ωi(σ(t))σ̇i(t)

]
dt.

The fundamental result in the elementary integration theory is Stokes Theorem. It relates the integral

of an n-form on a domain to the integral of a primitive on the boundary. We will define now the ingredients

necessary to state this Theorem.

We will start introducing more general domains of integration for a p-form.

1.9. Definition. A singular p-chain is a (formal) finite linear combination of singular p-simplexes, with

real coefficients.

The set Cp(U) of all such p-chains is a real vector space, with the obvious operations.

If ω ∈ Ωp(U), c ∈ Cp(U), c =
∑

aiσi, we define the integral of ω on c by:

I(c, ω) :=
∫

c

ω :=
∑

ai

∫

σi

ω.

Next we have to define the boundary of a p chain. Intuitively, the boundary of a singular simplex will

be the restriction of the simplex to the boundary of the standard p-simplex ∆p (which is a chain and not a

simplex). More precisely:

1.10. Definition. The boundary operator ∂p : Cp(U) −→ Cp−1(U) is defined as the linear extension of

∂p σ :=
p∑
0

(−1)iσ ◦ Fi,

where σ is a singular p-simplex and Fi : ∆p−1 −→ ∆p is the linear simplex Fi = L(e0, . . . , êi, . . . , ep).
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1.11. Remark. The signs in the definition above guarantee that the (p− 1) faces of ∆p are taken with

the induced orientations.

1.12. Example. For a linear simplex, we have the formula:

∂pL(v0, . . . , vp) =
p∑

i=1

(−1)iL(v0, . . . , v̂i, . . . , vp).

In our context we have the following version of the classical Stokes Theorem:

1.13. Theorem. [Stokes Theorem] If c ∈ Cp+1(U), ω ∈ Ωp(U), then

I(∂c, ω) :=
∫

∂c

ω =
∫

c

dω := I(c, dω).

Proof. By linearity, it is sufficient to prove the Theorem when c is a singular simplex σ : ∆p+1 −→ U .

In this case ∫

σ

dω =
∫

∆p+1
σ∗dω =

∫

∆p+1
dσ∗ω

(see Theorem 3.1 of Chapter 1 for the last equality). Also
∫

∂σ

ω =
∫

∂∆p+1
σ∗ω,

where ∂∆p+1 is the linear chain
∑p+1

i=0 (−1)iL(e0, . . . , êi, . . . ep+1) ∈ Cp(∆p+1).

Now η := σ∗ω =
∑

i fi(x1, . . . , xp+1)dx1 ∧ · · · ˆdxi · · · ∧dxp+1. Again, by linearity, it is sufficient to prove

the Theorem for each monomials. Since we can permute coordinate, up to sign, it is not restrictive to assume

η = f(x1, . . . , xp+1)dx1 ∧ · · · ∧ dxp.

Then:

dη = (−1)p ∂f

∂xp+1
dx1 ∧ · · · ∧ dxp+1.

Hence, by Fubini Theorem
∫

∆p+1
dη = (−1)p

∫

∆p+1

∂f

∂xp+1
dx1 · · · dxp+1 = (−1)p

∫

∆p

[∫ 1−∑p
i xi

0

∂f

∂xp+1
dxp+1

]
dx1 · · · dxp =

= (−1)p

∫

∆p

[
f(x1, . . . , xp, 1−

p∑

i=1

xi)− f(x1, . . . , xp, 0)

]
dx1 · · · dxp,

where ∆p is the standard simplex {e0, . . . ep} ⊆ Rp ⊆ Rp+1.

Now ∂∆p+1 = L(e1, . . . ep+1) + (−1)p+1L(e0, . . . , ep) + γ where γ is a chain of linear simplexes that are

faces of ∆p+1 containing both e0 and ep+1. Since on each of such faces at list one of the first p coordinates

vanishes, η = 0 on γ. Hence:
∫

∂∆p+1
η =

∫

L(e1,...ep+1)

η + (−1)p+1

∫

L(e0,...ep)

η =

= (−1)p

∫

∆p

f(x1, . . . , xp, 1−
p∑

i=1

xi)dx1 · · · dxp + (−1)p+1

∫

∆p

f(x1, . . . , xp, 0)dx1 · · · dxp =
∫

∆p+1
dη.

¤
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2. Singular homology

We will now look a little deeper at the boundary operator.

2.1. Lemma. ∂(p−1) ◦ ∂p = 0.

Proof. Let σ be a singular simplex. From (1.12), we have:

∂p(σ) =
∑

i

(−1)iσ ◦ L(e0, . . . , êi, . . . , ep).

Therefore:

∂(p−1)∂p(σ) =
p∑

i=0

(−1)i
∑

j<i

(−1)jσ ◦ L(e0, . . . , êj , . . . , êi, . . . , ep)+

+
p∑

i=0

(−1)i
∑

j>i

(−1)(j−1)σ ◦ L(e0, . . . , êi, . . . , êj , . . . , ep).

Observe that the term σ ◦ L(e0, . . . , êi, . . . , êj , . . . , ep), i, j fixed, appears twice in the above sum with

opposite signs, and therefore ∂(p−1)∂p(σ) = 0.

¤

In particular the sequence:

· · · −→ C(p+1)(U)
∂(p+1)−→ Cp(U)

∂p−→ C(p−1)(U)
∂(p−1)−→ · · · ,

is a chain complex and we define:

• Zp(U) := ker ∂p the group of p-dimensional cycles.

• Bp(U) := Im ∂(p+1) the group of p-dimensional boundaries.

• Hp(U) := Zp(U)/Bp(U) the pthdimensional (singular) homology group.

From Stokes Theorem 1.13 we get:

2.2. Theorem. If a ∈ Zp(U), I(a,dω) = 0. If σ ∈ Zp(U), I(∂b, σ) = 0. Therefore the operator

I : Cp(U)× Ωp(U) → R induces an R-bilinear operator:

Ĩ : Hp(U)×Hp(U) −→ R, Ĩ([c], [ω]) := I(c, ω).

2.3. Remark. The classical Theorem of de Rham, that we will prove later on, states that Ĩ is non

degenerate and induces an isomorphism:

dR : Hp(U) −→ [Hp(U)]∗,

called de de Rham isomorphism.

Let F : U ⊆ Rn → V ⊆ Rm be a smooth map. Then F induces a linear map F∗ : Cp(U) −→ Cp(V ),

obtained extending by linearity the map which sends a singular simplex σ : ∆p −→ U to the singular simplex

F ◦σ : ∆p → V . It is easy to check that F∗ commutes with the boundary operator and hence it is a morphism

between chain complexes. Therefore it induces a morphism in homology, that we will denote with the same

symbol:

F∗ : Hp(U) −→ Hp(V ).
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The following functorial properties are easily established3:

• (11U )∗ = 11Hp(U),

• (G ◦ F ) = G∗ ◦ F∗,

We will look now at a few examples that are the analogue, for homology, of Examples 5.2, 5.3 and 5.1

of Chapter 1.

2.4. Example. Let U = R0. Then there is a unique singular p-simplex, the constant one. His boundary

is the alternated sum of (p + 1) elements, all equal to the (unique) (p− 1)-simplex. Therefore the boundary

operator is null if p is odd and it is the identity if p is even. The complex of singular chains is given by:

−→ C(2p+1)(U) = R 0−→ C2p(U) = R 11−→ C(2p−1)(U) = R 0−→ · · · 0−→ C0(U) = R −→ {0}.

Therefore:

Hp(R0) '
{
R if p = 0

{0} if p > 0

2.5. Remark. It could appear more natural and, in fact, some times would be more convenient, to define

chains and homology using singular cubes, i.e., smooth maps of the unit cube [0, 1]p ⊆ Rp into U . Since a

p-cube has always an even number of (p − 1)-faces, this construction gives, for U = R0, a chain complex

with p-dimensional chain group R and null boundary operators. So the homology would be isomorphic to R
in all dimensions, which is not what we would like to have. However if we take the quotient of the complex

of singular cubes by a suitable subcomplex, we obtain a new complex whose homology is the same as the

homology of the complex of singular simplexes.

2.6. Example. Let U =
∐

α Uα be the disjoint union of the open sets Uα. Since ∆p is connected, the

image of a singular simplex is contained in some Uα. Therefore Cp(U) =
⊕

α Cp(Uα) (direct sum) and the

boundaries preserve the decomposition, i.e. if c = {cα}, ∂c = {∂cα}. It follows that:

Hp(U) ∼=
⊕

α

Hp(Uα).

2.7. Remark. We observe explicitly that we are dealing with finite linear combinations of simplexes

so we have a direct sum instead of a direct product, as in the case of cohomology. Furthermore, this is in

agreement with the de Rham Theorem 2.3, since the dual of the direct sum of vector spaces is the direct

product of the duals.

2.8. Example. Let us analyze the 0-dimensional homology. Let us suppose first that U is connected.

A 0-simplex is a constant map, i.e. a point in U . Such a simplex is a cycle, by definition. On the other

hand, given two points in U they may be joined by a smooth curve, i.e. a 1-simplex. The boundary of such

simplex is the difference of the two points, so the two points are in the same homology class. It follows

that H0(U) ∼= R. Also, as in the case of cohomology, if U ⊆ Rn, V ⊆ Rm are connected open sets and

F : U −→ V is a smooth map, the induced map F∗ : H0(U) −→ H0(V ) is an isomorphism.

3This means that the homology is a covariant functor from the category of open sets of Rn and smooth maps into the

category of (graded) vector spaces and linear maps.
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If U is not connected, lets say with connected components Uα, it follows from Example 2.6 that:

H0(U) ∼=
⊕

α

R.

Next we will prove the homotopy invariance for homology:

2.9. Theorem. Let F,G : U → V be homotopic smooth maps. Then F∗ = G∗.

Proof. Let H : U × [0, 1] → V be a homotopy between F and G. The strategy, analogous to the case

of cohomology, is to construct an algebraic homotopy between the maps induced at level of chain complexes,

i.e. a map H̃p : Cp(U) −→ C(p+1)(V ) such that:

∂ ◦ H̃ + H̃ ◦ ∂ = G∗ − F∗.

The theorem will follows since if c ∈ Zp(U), G∗(c)− F∗(c) ∈ Bp(V ) i.e., [G∗(c)] = [F∗(c)] in Hp(V ).

Consider the product ∆p × [0, 1] ⊂ Rp+2. If σ is a singular p-simplex of U , we consider the map

H ◦ (σ × 11) : ∆p × [0, 1] −→ V . The problem is that ∆p × [0, 1] is not a simplex. The strategy will be to

subdivide ∆p × [0, 1] into simplexes and to take a suitable alternated sum of the restrictions of H ◦ (σ × 11)

to such simplexes.

Consider vi = (ei, 0), wi = (ei, 1), and the linear (p+1)-simplexes L(v0, . . . , vi, wi, . . . wp). If σ : ∆p −→ U

is a singular p-simplex, we define:

H̃(σ) =
p∑

i=0

(−1)iH ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , wp),

and extend by linearity to a morphism H̃ : Cp(U) −→ Cp+1(V ). We show now that the map is, in fact, an

algebraic homotopy. Using 1.12 and the functorial properties, we get:

∂H̃(σ) =
∑

j<i

(−1)i(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , v̂j , . . . , vi, wi, . . . wp)+

+
∑

j≥i

(−1)i(−1)j+1H ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , ŵj , . . . , wp),

H̃∂(σ) =
∑

j<i

(−1)i−1(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , v̂j , . . . , vi, wi, . . . wp)+

+
∑

j≥i

(−1)i(−1)jH ◦ (σ × 11) ◦ L(v0, . . . , vi, wi, . . . , ŵj , . . . , wp).

The terms on the right hand side of the first equation with i = j cancel except for the terms

H ◦ (σ × 11) ◦ L(v̂0, w0, . . . , wp) = G ◦ σ and −H ◦ (σ × 11) ◦ L(v0, . . . , vp, ŵp) = −F ◦ σ.

The rest of the sum is the opposite of the right hand side of the second equation, hence the conclusion. ¤

From Theorem 2.9 and the funtorial properties we have:

2.10. Corollary. If F : U −→ V is a homotopy equivalence, then F∗ : Hp(U) → Hp(V ) is an

isomorphism. In particular, a contractible space has the same homology as R0 (see Example 2.4).
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2.11. Remark. As in the case of cohomology, the homotopy invariance allows to define the map induced

in homology by a continuous map (see Remark 5.9 in Chapter 1).

We also have a Mayer-Vietoris type sequence for homology. Let Ui ⊆ Rn, i = 1, 2 be open sets and define

U = U1 ∪ U2, V = U1 ∩ U2. Consider the sequence of chain complexes (with the obvious boundary maps):

{0} −→ Cp(V )
((j1)∗,(j2)∗)−→ Cp(U1)⊕ Cp(U2)

((k1)∗−(k2)∗)−→ Cp(U) −→ {0},
where ji : V → Ui, ki : Ui → U are the inclusions.

We wold like to proceed like in the case of cohomology. The problem we have here is that the sequence

above is not exact. More precisely, ((k1)∗− (k2)∗) is not surjective, since a chain in U maight not be the sum

of chains in Ui. To overcome this problem, we consider the chain complex Cp(U1 +U2) ⊆ Cp(U) spanned by

the singular simplexes of U1 and U2. Substituting Cp(U) with this complex, we have a short exact sequence

of chain complexes. The point that makes this work is the following Theorem (that we will not prove here).

2.12. Theorem. The inclusion Cp(U1 + U2) −→ Cp(U) induces an isomorphism in homology.

Using Theorem 2.12 and Theorem 4.15, we have, as for cohomology:

2.13. Theorem. There are morphisms ∆∗ : Hp(U) −→ H(p−1)(V ) and a long exact sequence:

· · · −→ Hp(V )
((j1)∗,(j2)∗)−→ Hp(U1)⊕Hp(U2)

((k1)∗−(k2)∗)−→ Hp(U) ∆∗−→ H(p−1)(V ) −→ · · · .

The (long) exact sequence above is called the Mayer-Vietoris sequence in homology and the maps ∆p

the Mayer-Vietoris boundaries operators.

3. The de Rham Theorem for open sets of Rn

Let U ⊆ Rn be an open set. As we have seen, integration induces a linear map:

dR : Hp(U) −→ (Hp(U))∗, dR([ω])([c]) =
∫

c

ω.

We have already announced that this map is an isomorphism and the aim of this section is to prove this

fact. We will start with a Lemma of general character, useful in many situations.

3.1. Lemma. 4 Let U ⊆ Rn be an open set and P a statement about the open subsets V ⊆ U . Suppose

that:

(1) P is true for convex sets,

(2) If P is true for disjoint sets, then it is true for their union,

(3) If P is true for two sets and for their intersection, then it is true for their union.

Then P is true for U .

Proof. First we observe that P is true for the union of n convex sets. In fact, for n = 2 it follows from

(3) observing that the intersection of two convex sets is convex. Suppose that P is true for the union of

4The lemma is often called the “onion lemma” and the reason will be clear from the proof.
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(n− 1) convex sets. Let V1, . . . , Vn be convex sets and V = V1 ∪ . . .∪ V(n−1). Then P is true for Vn and, by

the inductive hypothesis, for V . But it is also true for V ∩ Vn since

V ∩ Vn = (V1 ∩ Vn) ∪ . . . ∪ (V(n−1) ∩ Vn)

is union of (n− 1) convex sets. From (3), P is true for the union of all the Vi’s.

Let φ : U −→ [0,∞) be a proper function (see Lemma 7.5 in Chapter 1). Define:

An = φ−1([n, n + 1]).

Since φ is proper, An is compact and we can cover it with a finite number of open convex sets, Uα,n, contained

in φ−1
(
(n− 1

2 , n + 3
2 )

)
. Let Un = ∪αUα,n. Now P is true for Un, since it is a finite union of convex sets. Let

us consider Ueven = ∪nU2n and Uodd = ∪nU2n+1. Then, by (2), P is true for Ueven and Uodd since each one is

disjoint union of sets for which P is true. Finally Ueven ∩Uodd = ∪nUα,2n ∩Uβ,2n+1 and therefore is disjoint

union of sets that are finite union of convex sets. Therefore, by (3), P is true for U = Ueven ∪ Uodd. ¤

We can prove now the de Rham Theorem.

3.2. Theorem. The map dR : Hp(U) −→ [Hp(U)]∗ is an isomorphism.

Proof. Since we will work with several open sets, it is convenient to denote with dRV the de Rham

map relative to the open set V ⊆ U ⊆ Rn. We are going to use Lemma 3.1. Let us consider the statement:

P(V ) = dRV : Hp(V ) −→ [Hp(V )]∗ is an isomorphism.

Clearly the statement is true for convex sets. In fact they are contractible and we have to check the

statement in dimension 0, which is trivial. Also, if it is true for a family of disjoint open sets, it is also true

for their union (recall that the dual of the direct sum is the direct product).

Let us suppose that P is true for the open sets V, W and for V ∩W . Consider the diagram:

· · · // Hp(V ∩W ) //

dRV∩W

²²

Hp+1(V ∪W ) //

dRV∪W

²²

Hp+1(V )⊕Hp+1(W ) //

dRV ⊕dRW

²²

· · ·

· · · // (Hp(V ∩W ))∗ // (Hp+1(V ∪W ))∗ // (Hp+1(W ))∗ ⊕ (Hp+1(W ))∗ // · · ·
where the upper row is the Mayer-Vietoris sequence for cohomology and the lower row is the dual of the

Mayer-Vietoris sequence in homology. Since integration commutes with induced maps, the diagram above

is induced by a cochain complex morphism. In this situation the Mayer-Vietoris (co)boundaries are natural

(see Proposition 4.19 of Chapter 1), hence the squares are commutative. Since dRV ∩W , dRV ⊕ dRW are

isomorphisms by hypothesis, it follows from the five Lemma (Lemma 4.6 of Chapter 1) that dRV ∪W is an

isomorphism. So P verifies the hypothesis of Lemma 3.1 and hence dR = dRU is an isomorphism. ¤

3.3. Remark. Starting with the singular complex C(U) = {Cp(U), ∂p}, we can consider the dual complex

C∗(U) = {Cp(U)∗, ∂∗p} (see Remark 4.11 of Chapter 1). The cohomology of C∗(U) is called the singular

cohomology of U and is isomorphic, by Theorem 4.12 of Chapter 1, to the dual of the singular homology of U .

So the de Rham Theorem states that the singular cohomology and the de Rham cohomology are isomorphic.

The de Rham cohomology H∗(U) = ⊕p≥0H
p(U) has a natural product, distributive, associative and graded
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commutative, induced by the exterior product of forms. In the singular cohomology is possible to introduce,

by geometric arguments, a product, called the cup product, which is distributive, associative and graded

commutative. The de Rham Theorem really says that dR is an isomorphism of algebras.

3.4. Remark. Singular homology is usually defined starting with continuous simplexes i.e., continuous

maps σ : ∆p −→ U 5. The singular chain complex C0(U) = {C0
p(U), ∂p} is defined in the obvious way,

i.e. the spaces C0
p(U) are the vector spaces with basis the singular continuous simplexes and the boundary

operator is defined just as in the smooth case. The basic properties, such as homotopy invariance and the

Mayer-Vietoris exact sequence, are also proved just as in the smooth case. The inclusion C(U) −→ C0(U) is a

morphism of chain complexes, so it induces a map between the homology groups. Using the same arguments

as in the proof of the de Rham Theorem, it is easy to prove that actually, the maps induced in homology

are isomorphisms.

4. Integration of 1-forms and some applications

Let U ⊆ Rn be an open set. If γ : [a, b] −→ U is a smooth map, we can consider the smooth 1-simplex

γ̃ = γ ◦ L(a, b) where L(a, b) is the linear 1-simplex L(a, b) : ∆1 −→ [a, b], L(a, b)(t) = (1 − t)a + tb. If

ω ∈ Ω1(U) is a 1-form, we define
∫

γ

ω :=
∫

γ̃

ω =
∫ 1

0

[∑
ωi(γ̃(t)) ˙̃γi(t)

]
dt =

∫ b

a

[∑
ωi(γ(t))γ̇i(t)

]
dt,

where the second integral is the integral of ω on the 1-simplex γ̃ and the last equality came from the formula

of change of variable in 1-dimensional integrals (see also Example 1.8).

For the rest of this section, when clear from the context, we will make no difference between the curve

γ and the 1-simplex γ̃.

Let γ : [a, b] ⊆ R −→ U be a piecewise smooth curve, i.e. a continuous curve such that there exists a

partition t0 = a < t1 < · · · < tk = b of [a, b] such that γi := γ|[ti, ti+1] is smooth. Then γ can be viewed as

the (smooth) 1-chain γ =
∑

γi or a continuous 1-simplex. Clearly, in both cases, ∂γ = γ(b)− γ(a).

Let γ : [a, b] ⊆ R −→ U be a continuous closed curve, i.e. γ(a) = γ(b). Consider the map π : [a, b] −→
S1 := {x ∈ R2 : ‖x‖ = 1}, π((1 − t)a + tb)) = (cos 2πt, sin 2πt). Since γ is closed, γ̃ = γ ◦ π−1 is a well

defined continuous map of S1 into U . Conversely, any such a map defines a continuous closed curve. From

this point of view, continuous closed curves and continuous maps of the circle in U look like to be the same

thing. However, there are some difference:

• If γ is a smooth curve γ̃ will be just piecewise smooth. It will be smooth if and only if the derivatives

of all orders of γ at a, coincide with the derivatives of the corresponding order of γ at b.

• Any curve γ : [a, b] −→ U is homotopic to a constant (see Exercise 5.3). This is not the case for maps

of S1 into U . The following result,whose proof is quite obvious, relates the two situations:

4.1. Lemma. Let γ̃i : S1 −→ U, i = 0, 1 be continuous maps and γi be the corresponding closed curves.

Then γ̃0 ∼ γ̃1 if and only if there is a homotopy H : [a, b] × [0, 1] −→ U between γ0 and γ1 such that

H(a, s) = H(b, s) ∀s ∈ [0, 1].

5Here U can be any topological space.
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4.2. Remark. A homotopy like the one in Lemma 4.1 is called a free homotopy and the maps γ̃i are

said to be freely homotopic The word “free” is to distinguish this concept from the one of based homotopy,

frequently used in homotopy theory, for example in the definition of the fundamental group.

4.3. Remark. There is one more way to look at closed curves particularly convenient when we talk

about differentiability. In fact a continuous closed curve γ : [0, 1] −→ U is the restriction to [0, 1] of a

continuous function γ : R −→ U, γ(t) := γ(t− [t]), where [t] is the biggest integer less or equal to t. If γ is

piecewise smooth, so is γ. Also, if γ is smooth, γ is piecewise smooth, and smooth if the derivatives of all

orders of γ at 0 coincide with the derivatives of the corresponding order of γ at 1, i.e. if γ is a smooth closed

curve.

When clear from the context we will make no difference between the three points of view.

Let γ : [a, b] −→ U be a closed piecewise smooth curve. Then, if we think of γ as a smooth 1-chain,

∂γ = 0, and it determines an element [γ] ∈ H1(U).

4.4. Lemma. If γ0 and γ1 are freely homotopic piecewise smooth closed curves, then [γ0] = [γ1] in H1(U).

Proof. Let H : [a, b]× [0, 1] −→ U be a free homotopy between the two curves. Subdividing [a, b]× [0, 1]

into triangles and using linear simplexes as in the proof of homotopy invariance for singular homology (see

Theorem 2.9), we get a chain H̃ with ∂H̃ = γ1 − γ0. ¤

An other important variant of the concept of homotopy of curves is the following:

4.5. Definition. Let γi : [a, b] −→ U, i = 0, 1 be curves such that γ0(a) = γ1(a), γ0(b) = γ1(b).

An endpoints fixing homotopy between the two curves is an homotopy H : [a, b] × [0, 1] −→ U such that

H(a, s) = γ0(a), H(b, s) = γ0(b), ∀ s ∈ [0, 1].

If such homotopy exists, we will say that the curves are homotopic relative to the endpoints.

The following Proposition follows easily from Stokes Theorem (Exercice 5.11).

4.6. Proposition. Let ω ∈ Ω1(U) be a closed 1-form.

(1) If γi, i = 0, 1 are freely homotopic piecewise smooth closed curves (resp. curves homotopic relative

to the endpoints) then: ∫

γ0

ω =
∫

γ1

ω.

(2) ω is exact if and only if for all closed curves γ
∫

γ

ω = 0.

4.7. Definition. A connected open set U ⊆ Rn is simply connected if every closed curve is freely

homotopic to a constant curve 6.

From Proposition 4.6 we have:

6The concept of simply connectedness is usually defined in terms of vanishing of the fundamental group. In this group,

two freely homotopic closed curves are in the same conjugacy class (and conversely), but they may not be the same element of

the group. However, the vanishing of the fundamental group is equivalent to the fact that every two closed curves are freely

homotopic.
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4.8. Corollary. If U is simply connected, then H1(U) = {0}.

4.9. Remark. A natural question is if H1(U) = {0} implies that U is simply connected. The answer

to this question is affirmative for n = 2 (see Exercise 5.23) and negative if n ≥ 3. For example there are, in

R3, (complicated) closed sets, homeomorphic to the 3-dimensional closed disk, whose complement are not

simply connected (for example the so called “horned sphere”). The complement of such a disks has, by the

Jordan-Alexander duality (see Theorem 6.4 of Chapter 1), the same cohomology of the complement of the

standard 3-dimensional disk, hence vanishing first cohomology group (see Example 5.13 of Chapter 1). We

do not know of any simpler example in dimension 3. For n ≥ 4 there are simpler examples.

We will focus now on closed curves in U = R2 \ {0}. In U there is a very important 1-form, the angle

form:

ω =
−y

x2 + y2
dx +

x

x2 + y2
dy.

It is easily seen that dω = 0, in fact, locally, ω = d arctan(
y

x
). ω is not exact since, if γ : [0, 1] −→ U is the

closed curve γ(t) = (cos 2πt, sin 2πt), we have:
∫

γ

ω =
∫ 1

0

2π[sin2(2πt) + cos2(2πt)]dt = 2π 6= 0.

In particular, dR([ω])([γ]) = 2π. Since H1(U) ∼= R, by Examples 5.13 of Chapter 1, [ω] spans H1(U).

Also, [γ] spans H1(U) ∼= R.

4.10. Definition. Let γ : [0, 1] −→ U be a piecewise smooth curve. An angular function for γ is a

piecewise smooth function θ : [0, 1] −→ R such that θ(t) is one of the determinations, in radians, of the

(oriented) angle between e1 and γ(t).

4.11. Lemma. Any piecewise smooth curve γ : [0, 1] −→ U admits angular functions and two angular

functions for γ differ by an entire multiple of 2π.

Proof. Let θ0 ∈ [0, 2π) be the angle between e1 and γ(0), and ω the angle form. Define

θ(t) =
∫

γ|[0,t]

ω + θ0.

Since, locally, ω = d arctan(
y

x
), θ is an angular function for γ. Finally we observe that two angular functions,

at a given time, are determinations of the same angle, so they differ, at that time, by an entire multiple of

2π. This multiple does not depend on the time since the difference of the two angular functions is an integer

valued continuous function defined on a connected set, hence constant. ¤

4.12. Remark. The advantage of having angular functions is that we can write γ in polar coordinates :

γ(t) = ‖γ(t)‖ eiθ(t) = ‖γ(t)‖ (cos θ(t), sin θ(t)).

Let γ : [0, 1] −→ U be a closed curve and θ an angular function. Since γ(0) = γ(1), θ(1) − θ(0) is an

entire multiple of 2π.

4.13. Definition. The winding number of γ is the integer:

w(γ) =
θ(1)− θ(0)

2π
∈ Z.



4. INTEGRATION OF 1-FORMS AND SOME APPLICATIONS 48

4.14. Remark. Since two angular functions differ by a multiple of 2π, the winding number does not

depend on the particular angular function. Moreover:

w(γ) =
1
2π

∫

γ

ω.

where ω is the angular form.

4.15. Example. Consider the curve ξn(t) = (cos 2πnt, sin 2πnt), t ∈ [0, 1], n a given integer. Then

θ(t) = 2πnt is an angular function and w(ξn) = n.

The main fact about winding numbers is the following:

4.16. Theorem. Two piecewise smooth closed curves γi : [0, 1] −→ U, i = 0, 1, are freely homotopic if

and only if they have the same winding number.

Proof. If the two curves are freely homotopic, by Proposition 4.6 and Remark 4.14, they have the

same winding number. Suppose now that γ is a piecewise smooth closed curve with angular function θ and

winding number w(γ) = n ∈ Z. Let ξn be as in Example 4.15. Define:

H : [0, 1]× [0, 1] −→ U, H(t, s) = [s‖γ(t)‖+ (1− s)](cos(sθ(t) + (1− s)2πnt), sin(sθ(t) + (1− s)2πnt)).

Then H(t, 0) = ξn(t), H(t, 1) = γ(t) and the condition w(γ) = n implies H(0, s) = H(1, s). Hence H is a

free homotopy between ξn and γ. This concludes the proof since the relation of being freely homotopic is an

equivalence relation. ¤

4.17. Remark. By a different argument we could show that any continuous curve in U admits continuous

angular functions. Once we have angular functions, we can define the winding number for a continuous closed

curve. Theorem 4.16 holds true in this more general situation (see Exercise 5.14).

4.18. Remark. Geometrically, the winding number of a closed curve in R2 \ {0} is the (algebraic)

number of times that the curve goes around zero. We will make this statement more precise. Suppose,

for simplicity, that γ is a regular smooth curve, i.e. γ̇(t) 6= 0, ∀t. Suppose also that there is a half line

a = {sv : v ∈ R2, ‖v‖ = 1, s ≥ 0}, that intersects the curve γ transversally, i.e., if p = γ(t0) ∈ a, γ̇(t0) and v

are linearly independent 7. For an intersection point p = γ(t0), we define ε(p) = ±1 depending if {v, γ̇(t0)}
is a positive or negative basis for R2. It is known that, in this situation, the number of intersection points is

finite. Then the winding number is given by

w(γ) =
∑

p

ε(p),

where p runs in the set of intersection points. We will leave the proof of this fact as an exercise (Exercise

5.15).

More generally, given a curve γ : [0, 1] −→ R2, a point p ∈ R2 \ γ([0, 1]) and an half line a = {p + sv :

v ∈ S1, s ≥ 0} we can define angular functions for γ with respect to the pair (p,a), and, if γ is closed, the

winding number w(γ, p,a). It is easily seen that this number does not depend on a but it depends on p. So

we will use the notation w(γ, p). The geometric interpretation, for the case of regular closed curves is like in

Remark 4.18. One of the main features of this number is the following:

7It is a consequence of Sard Theorem that such v’s are dense in S1.
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4.19. Proposition. If γ : S1 −→ R2 is a closed curve and p, p′ ∈ R2 belongs to the same connected

component of R2 \ γ(S1), then w(γ, p) = w(γ, p′).

Proof. Suppose first that the segment joining p and p′ does not intersect γ(S1) Let a be a half line

starting at p, and a′ its translated by the vector p′ − p. Let θ, θ′ be angular function for γ in relation to

(p,a), (p′,a′) respectively. Denote by w, w′ the winding number of γ in relation to p and p′ respectively,

and set:

∆(t) :=
θ′(t)− θ(t)

π
.

Now ∆(1) −∆(0) = 2(w′ − w). Hence, if w′ 6= w, |∆(1) −∆(0)| ≥ 2 and there exist t∗ such that ∆(t∗) is

an odd integer. Then γ(t∗) belongs to the segment joining p and p′, a contradiction.

For the general case, consider a polygonal in R2\γ(S1), joining p and p′, such that the segments between

two consecutive vertices do not intersect γ(S1). The the result follows applying the argument above to pairs

of consecutive vertices of the polygonal. ¤

Proposition 4.19 suggest the following

4.20. Definition. The index of a connected component C of R2\γ(S1) is the winding number w(γ, p), p ∈
C.

4.21. Remark. It is easily seen that R2 \ γ(S1) has exactly one unbounded component and the index

of such component is zero.

We will give now an alternative proof of the Jordan curve Theorem (see Theorem 6.8 of Chapter 1) in

the case of regular curves, to better illustrate the concepts and facts discussed sofar. We will start with some

preliminaries.

4.22. Definition. A regular curve γ : [0, 1] ⊆ R −→ Rn is a smooth curve such that t(t) := γ̇(t) 6=
0 ∀ t ∈ [a, b].

Naturally, for a regular closed curve we will mean a smooth periodic curve with non vanishing tangent

vector (see Remark 4.3).

We will be interested in the case n = 2. In this case there is, ∀ t ∈ [0, 1], a (unique) unit vector n(t),

the unit normal vector, orthogonal to t(t) and such that {t(t),n(t)} is a positive bases for R2.

4.23. Theorem. [Tubular neighborhood Theorem] Let γ : S1 −→ R2 be a regular Jordan curve, i.e. γ

is smooth, regular and injective. Then there exists ε > 0 and a map:

Tub : S1 × (−ε, ε) −→ R2, Tub(t, 0) = γ(t),

which is a diffeomorphism onto an open neighborhood U of γ(S1).

Proof. Define the map

Tub : S1 × R −→ R2, Tub(t, s) = γ(t) + sn(t).

By definition, Tub(t, 0) = γ(t). Moreover at a point (t0, 0) ∈ S1 × R we have:

∂Tub

∂t
(t0, 0) = γ̇(t),

∂Tub

∂t
(t0, 0) = n(t).
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Therefore dTub(t0, 0) is invertible and hence, by the inverse function Theorem, Tub maps a neighborhood

(t0 − η, t0 + η) × (−ε(t0), ε(t0)) of (t0, 0) diffeomorfically onto an open neighborhood of γ(t0). Since S1

is compact, we can cover it (or better S1 × {0}) with a finite number of such neighborhoods, say Ui =

(ti−ηi, ti +ηi)× (−ε(ti), ε(ti)). We claim that there exists ε > 0 such that Tub|S1×(−ε,ε) is injective. Suppose

not. Then for all n ∈ N there are distinct points (tn, sn), (t′n, s′n) ∈ S1 × (− 1
n , 1

n ) such that Tub(tn, sn) =

Tub(t′n, s′n). Since those points are in a compact neighborhood of S1×{0}, the two sequences have converging

subsequences. Without loss of generality we can suppose that the sequence {(tn, sn)} converges to (t, 0). The

second sequence has a subsequence {(t′nk
, s′nk

)} converging to (t′, 0). So the two sequences {(tnk
, snk

)} and

{(t′nk
, s′nk

)} converge to (t, 0) and (t′, 0) respectively. By continuity, Tub(t, 0) := γ(t) = γ(t′) := Tub(t′, 0).

Since γ is injective, t = t
′ (in S1). Therefore, for nk sufficiently large, (tnk

, snk
) and (t′nk

, s′nk
) are in the

same Ui, for some i, and this gives a contradiction since Tub|Ui
is injective.

Finally, again by the inverse function Theorem, U := Tub(S1× (−ε, ε)) is open and [Tub|U ]−1 is smooth.

¤

4.24. Definition. The neighborhood U is called a tubular neighborhood of γ.

4.25. Theorem. [Jordan curve Theorem] Let γ : S1 −→ R2 be a regular Jordan curve. Then R2 \ {0}
has exactly two connected components. Moreover, one of the components is bounded of index ±1 and the

other one is unbounded of index zero.

Proof. We will start proving that R2 \ γ(S1) has, at most, two connected components. Let U be a

tubular neighborhood of γ. Then U \ γ(S1) has two connected components, U+ = Tub(S1 × (0, ε)) and

U− = Tub(S1 × (−ε, 0)). Let us denote by G± the connected components of R2 \ γ(S1) containing U±. Let

G be a connected component of R2 \ γ(S1). Take p ∈ G. It will be sufficient to prove that p ∈ G±. If

p ∈ U , there is nothing to prove. Suppose p 6∈ U and let σ : [0, 1] −→ R2 be a curve joining p with a point

in γ(S1). Let t0 = inf{t ∈ [0, 1] : γ(t) 6∈ U}. Then, for η sufficiently small, σ([0, t0 + η]) ⊆ R2 \ γ(S1) and

σ(t0 +η) ∈ U . Let say σ(t0 +η) ∈ U+. Then p may be connected, in R2 \γ(S1), to a point of G+, so p ∈ G+

and G = G+.

We will prove now that R2 \ γ(S1) is disconnected. We will give two different arguments.

First argument It is enough to show that there exists a continuous function g̃ : R2 −→ R such that:

• g̃ assumes positive and negative values,

• g̃(x) = 0 if and only if x ∈ γ(S1).

Let U be a tubular neighborhood of γ. We will denote by π : S1 × (−ε, ε) −→ R the projection on the

second factor, π(t, s) = s. Then π ◦ [Tub]−1 : U −→ R is a function with the two properties above. The

problem is that it is not defined in the all R2, just in U . In order to obtain a function defined on the

all R2 we first modify slightly the function near ∂U and then we will extend the modified function. Let

λ : (−ε, ε) −→ (−ε, ε) be a non decreasing smooth function such that λ(s) = s, if |s| < ε
3 , λ(s) = ε

2 if s > 2
3ε

and λ(s) = − ε
2 if s < − 2

3ε. Then the function f = λ ◦ π ◦ [Tub]−1 : U −→ R is again a function with the

two properties above and it is locally constant near ∂U . In U we consider the 1-form ω = df . Since ω = 0

near ∂U , we can extend it to a smooth 1-form on the all of R2, by setting it identically zero outside U . ω is

a closed form, hence exact since R2 is contractible. Then ω = dg where g : R2 −→ R is a smooth function
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uniquely defined up to an additive constant. So, taking g = 0 on a point of γ(S1), we have g = f in U . The

function g assumes positive and negative values and, in U , it vanishes exactly on γ(S1). So, all we have to

show is that g(p) 6= 0 if p 6∈ U . Let p 6∈ U and σ : [0, 1] −→ R2 be a smooth curve joining p with a point of

γ(S1). Let t0 = sup{t : σ(s) 6∈ U, ∀ s < t}. Then σ([0, t0)) ⊆ R2 \ U, σ(t0) ∈ ∂U and g(σ(t0)) ± 2
3ε 6= 0.

But

g(σ(t0))− g(p) =
∫ t0

0

g′(t)dt =
∫

σ|[0,t0]

ω = 0,

and hence g(p) = g(σ(t0)) 6= 0.

Second argument: Consider the function h(t) = ‖γ(t)‖2. Let t0 be a maximum of h. Then h′(t0) =

2〈γ(t0), γ̇(t0)〉 = 0. Then γ(t0) is parallel to n(t0) and the half line sγ(t0) meet γ transversally at γ(t0).

Observe that if s > 1, sγ(t0) 6∈ γ(S1). Let p = (1 − ε)γ(t0), q = (1 + ε)γ(t0). If ε is sufficiently small it

follows from Theorem 4.23, that the half line starting at p, parallel to γ(t0), meets γ(S1) only at γ(t0). Also

the half line starting at q, parallel to γ(t0), does not meet γ(S1). Therefore by Remark 4.18,

w(γ, p) = ±1, w(γ, q) = 0.

By Proposition 4.19 p and q can not be in the same connected component of the complement of γ(S1) hence

this complement has, at least, two distinct connected components.

The last claim follows from Remark 4.21 and the second argument above. ¤

4.26. Remark. The Jordan curve Theorem has the following refinement, due to Schoenflies, that we

will not prove here.

4.27. Theorem. [Schoenflies Theorem] A Jordan curve γ : S1 −→ R2 extends to a homeomorphism Γ

of the 2-disk onto the closure of the bounded component of R2 \ γ(S1).

4.28. Remark. It is a natural question to ask if the Jordan curve Theorem holds for Jordan curves in

general surfaces. The properties of R2 we have used in the proof above are:

• R2 is orientable. This allows to define the unit normal vector to a closed curve an to prove the

tubular neighborhood Theorem.

• H1(R2) = {0}. This allows to integrate the closed form ω.

Both conditions are essential for the proof and, in fact, for the validity of the Theorem. For example

the real projective space has vanishing first (de Rham) cohomology group, but it is not orientable and the

Theorem does not hold there. On the other side, the torus is orientable but the first cohomology group does

not vanishes and, again, the Theorem does not hold for the torus.

We will see now some applications of the homotopy invariance of the winding number.

Let D2(r) := {x ∈ R2 : ‖x‖ ≤ r} be the disk of radius r and S1(r) := {x ∈ R2 : ‖x‖ = r} be its

boundary. Consider a smooth function 8 f : D2(r) −→ R2. A basic question is to find solutions of the

equation f(x) = 0. In the case of a function f : [−r, r] −→ R, the celebrated Theorem of Bolzano states

that if f(r)f(−r) < 0 the equation has a solution. We will prove a similar result for our case, similar in the

8By Remark 4.17 we will only need continuity of the function.
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sense that we will give a condition on f , at the boundary of the disk, that will be sufficient for the existence

of solutions of our equation.

4.29. Definition. Let f : D2(r) −→ R2 be a smooth function. Suppose f(x) 6= 0 if ‖x‖ = r. The

degree of f , dg(f), is defined as the winding number of the closed curve:

γf : [0, 1] −→ U := R2 \ {0}, γf (t) = f(r(cos 2πt, sin 2πt))

.

4.30. Example. Consider the complex plane C ∼= R2 with complex variable z = x + iy, and the map

g(z) = zn. Then γg(t) = r(cos 2πnt, sin 2πnt). Hence dg(g) = n.

The announced result is the following:

4.31. Theorem. If dg(f) 6= 0 then the equation f(x) = 0 has a solution.

Proof. Suppose that dg(f) 6= 0 and that the equation has no solutions. Consider the map:

H : [0, 1]× [0, 1] −→ R2 \ {0}, H(t, s) = f(sr(cos 2πt, sin 2πt)).

Since f(x) 6= 0, for ‖x‖ ≤ r, H is a free homotopy, in R2\{0}, between γf and the constant curve α(t) = f(0).

Therefore, by Theorem 4.16 dg(f) := w(γf ) = 0, a contradiction. ¤

In order to compute degrees, the following fact is often useful:

4.32. Lemma. Let γi : [0, 1] −→ R2\{0}, i = 0, 1 be two closed curves. If ‖γ0(t)−γ1(t)‖ < ‖γ0(t)‖ ∀ t ∈
[0, 1], then the two curves are freely homotopic.

Proof. Consider the map:

H : [0, 1]× [0, 1] −→ R2, H(t, s) = sγ1(t) + (1− s)γ0(t).

The condition ‖γ0(t) − γ1(t)‖ < ‖γ0(t)‖ implies that the segment joining γ0(t) and γ1(t) does not contain

the origin. Then H([0, 1]× [0, 1]) ⊆ R2 \ {0} and H is a free homotopy between the two curves. ¤

As an application of Theorem 4.31, we will prove the Fundamental Theorem of Algebra:

4.33. Theorem. Let f(z) = zn + a1z
n−1 + · · ·+ an−1z + an be a polynomial in the complex variable z.

If n ≥ 1, f has a complex root.

Proof. Let r > 1 +
∑n

1 |ai|. If f(z) = 0, for some z ∈ S1(r), there is nothing to prove. Suppose

f(z) 6= 0 for ‖z‖ = r and consider the function g(z) = zn. For ‖z‖ = r we have:

‖f(z)− g(z)‖ ≤
n∑
1

|ai|‖z‖n−i < rn = ‖g(z)‖.

Hence, by Lemma 4.32, f and g have the same degree and dg(g) = n 6= 0, by Example 4.30. Hence, by

Theorem 4.31, the polynomial has a root in D2(r). ¤

The arguments we presented may be generalized to higher dimensions and this will be sketched in the

Exercises section (Exercises 5.21, 5.22).
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5. Exercises

5.1. Let ω = dx1 ∧ · · · ∧ dxp ∈ Ωp(Rn) and ∆p be the standard p-simplex. Show that
∫

∆p

ω =
1
p!

(= volume of ∆p).

5.2. Let U, V ⊆ Rn be connected open set and F : U −→ V be a diffeomorphism. Let D ⊆ U be the

closure of a bounded open set and f : V −→ R a smooth function. The change of variables Theorem for

multiple integrals states that:
∫

F (D)

f(y1, . . . , yn)dy1 · · · dyn =
∫

D

f(F (x1, . . . , xn))| det(dF )|dx1 · · · dxn.

Let ω ∈ Ωn(V ). Prove that: ∫

F (D)

ω = ±
∫

D

F ∗ω,

with the sign + (resp. −) if F preserves (resp. inverts) the orientation.

5.3. Let U ⊆ Rm, V ⊆ Rm be open sets and F : U −→ V a continuous map. Prove that if U (resp. V )

is contractible, then F is homotopic to a constant map.

5.4. Let Dn+1 = {x ∈ Rn+1 : ‖x‖ ≤ 1}, Sn = {x ∈ Rn+1 : ‖x‖ = 1} and V ⊆ Rm. Show that a

continuous map F : Sn −→ V is continuously homotopic to a constant map if and only if it extends to a

continuous map F̃ : Dn+1 −→ V (observe that the concept of continuous homotopy may be defined even if

the domains and codomains of the maps are not open).

5.5. Prove that an open set U ⊆ Rn is connected if and only if H0(U) ∼= R (see Example 2.8).

5.6. Let U ⊆ Rn, V ⊆ Rm be open set and F : U −→ V a smooth map. Prove that if U is connected,

F∗ : H0(U) −→ H0(V ) is injective. Study the case when U is not connected (see Example 2.8).

5.7. Consider the following generalization of the concept of homotopy:

Let U ⊆ Rn, V ⊆ Rm be open sets and F, G : U −→ V continuous maps. Let C ⊆ U be a closed set such

that F |C = G|C. A homotopy between F and G, relative to C, is a homotopy H : U × [0, 1] −→ V , between

F and G, such that H(x, t) = F (x) = G(x), ∀ t ∈ [0, 1], ∀ x ∈ C. If there exists such an homotopy, we will

write F ∼ G (rel C).

(1) Prove that this relation is an equivalence relation.

(2) Reformulate Definition 4.5 in this context.

5.8. For an open set U ⊆ Rn define the reduced homology, H̃p(U), as the homology of the augmented

chain complex

· · · −→ Cp(U) −→ Cp−1(U) −→ · · · −→ C0(U) −→ R −→ {0},
where the last map sends any singular 0-simplex to 1 ∈ R and is extended by linearity (the other maps are

the usual boundaries). Find the relation between Hp(U) and H̃p(U) and prove the homotopy invariance and

the exactness of Mayer-Vietoris sequence for reduced homology.



5. EXERCISES 54

5.9. Prove the claim made in Remak 3.4 that the homology of the complex of continuous singular

simplexes is isomorphic to the homology of the complex of the smooth singular simplexes (hint: use Lemma

3.1 and the Mayer-Vietoris exact sequences).

5.10. Compute the homology of Rn\{0} without using the de Rham Theorem (hint: look at the Example

5.13 of Chapter 1).

5.11. Prove Proposition 4.6.

5.12. Given a close smooth curve γ : [0, 1] −→ U ⊆ Rn, we define the n-iterated, γn : [0, n] −→
U, γn(t + m) = γ(t), m = 0, 1, . . . n− 1, t ∈ [0, 1].

(1) Prove that, if ω ∈ Ω1(U),
∫

γn
ω = n

∫
γ

ω.

(2) Prove that, if U has the property that for a given closed curve γ : [0, 1] −→ U there exist n ∈ N
such that γn is homotopic to a constant, then H1(U) = {0}.

5.13. Prove that an open set U ⊆ Rn is simply connected if and only if any two curves γi : [0, 1] −→
U, i = 0, 1 with with the same endpoints are homotopic relative to {0, 1}.

5.14. Prove that any continuous curve γ : [a, b] −→ R2 \ {0} admits angular functions (hint: use polar

coordinates to prove the claim when the image of γ is contained in a half plane. Then...). Extend Theorem

4.16, Definition 4.29 and Theorem 4.31 to the case of continuous functions.

5.15. Prove the formula in Remark 4.18.

5.16. Let γ : S1 −→ R2 \ {0} be an odd closed curve, i.e. γ(−t) = −γ(t), t ∈ S1. Prove that w(γ) is

odd.

5.17. Prove the following Theorem of Borsuk: if f, g : S2 −→ R are odd continuous functions, there

exists p ∈ S2 such that f(p) = 0 = g(p) (hint: use the projection of the closed upper hemisphere onto the

unit disk to define a function of the disk in R2).

5.18. Let f, g : S2 −→ R be continuous functions. Prove that there exists p ∈ S2 such that f(p) =

f(−p), g(p) = g(−p).

5.19. Prove that there are no injective continuous function F : S2 −→ R2.

5.20. Let ω = a(x, y)dx + b(x, y)dy be a smooth closed 1-form in R2 \ {0}. Suppose that, for 0 <

x2 + y2 ≤ K, the function a, b are bounded. Prove that ω is exact (hint: use homotopy invariance to show

that for all closed curves γ : S1 −→ R2 \ {0}, ∫
γ

ω = 0).

5.21. Let F : Sn −→ Sn be a smooth function and F̃ : Rn+1 \ {0} −→ Rn+1 \ {0}, F̃ (tx) = tF (x).

Then we have an induced linear map F̃∗ : Hn(Rn+1 \ {0}) ∼= R −→ Hn(Rn+1 \ {0}) ∼= R. This map is

multiplication by a real number dg(F ), called the degree of F . It is known that dg(F ) ∈ Z 9 . Let Dn+1

be the unit disk and G : Dn+1 −→ Rn+1 a smooth function not vanishing on the unit sphere Sn = ∂Dn+1.

Then the degree of G, dg(G), is defined as the degree of the map G̃(x) = G(x)
‖G(x)‖ . Prove that, if dg(G) 6= 0,

then the equation G(x) = 0 has a solution.

9It follows, from homotopy invariance, that homotopic maps have the same degree. A basic fact in homotopy theory is

the Theorem of Hopf: if tho maps from Sn to Sn have the same degree, then they are homotopic.
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5.22. Prove that there are not smooth maps F : Dn+1 −→ Sn = ∂Dn+1 such that F (x) = x ∀x ∈ Sn.

Use this fact to prove the celebrated Brouwer fix point Theorem: any continuous map G : Dn+1 −→ Dn+1

has a fixed point, i.e. a point x ∈ Dn+1 such that G(x) = x (hint for the Brouwer fix point Theorem:

if G(x) 6= x ∀ x ∈ Dn+1, take the halph line starting at G(x) containing x and define F (x) to be the

intersection of this halph line with Sn. Then ...).

5.23. Let U ⊆ R2 be an open set such that H1(U) = {0}. Prove that any smooth Jordan curve

γ : S1 −→ U is homotopic, in U , to a constant curve (hint: by Theorem 4.27, γ(S1) is the boundary of a

disk in R2. If the disk is in U , the curve is contractible by Exercise 5.4. If not use the angle form to get a

contradiction).

Remark: This fact implies that U is simply connected (see Remark 4.9).

5.24. Let U ⊆ R2 be an open set and X : U −→ R2 a smooth vector field. Let Dε ⊆ U be a disk of

radius ε, with center p ∈ U , such that X(q) 6= 0, ∀q ∈ Dε \{p}. The point p is called an (isolated) singularity

of X. The index of X at p, i(X, p), is defined as the degree of X|Dε
, i.e. the winding number of the curve

X(p + ε cos 2πt, p + ε sin 2πt), t ∈ [0, 1].

(1) Let γ : [0, 1] −→ U be a piecewise smooth, positively oriented closed Jordan curve bounding a disk

in U , containing p in its interior. Prove that i(X, p) is the winding number of X ◦ γ.

(2) If X(x, y) = (f(x, y), g(x, y)), prove that

i(x, p) =
1
2π

∫

γ

θ,

where γ is as in the preceding item and

θ =
−gdx

f2 + g2
+

fdy

f2 + g2
= X∗ω,

where ω is the angle form.

(3) Prove that if X(p) 6= 0, then i(X, p) = 0.

(4) Let X : R2 −→ R2 be a linear isomorphism. Prove that i(x, 0) = 1 if det X > 0 and i(x, 0) = −1 if

detX < 0.

(5) Assume that X(p) = 0 and dX(p) is invertible. In this case we will say that p is a simple singularity

of X, positive, if det dX(p) > 0, negative otherwise. Prove that a simple singularity is isolated

and i(X, p) = ±1, depending if p is a positive or negative simple singularity (hint: by Taylor’s

formula X(q) = dX(0)(q) + R(q)‖q‖, with limq→0 R(q) = 0. Prove that H(q, s) = dX(0)(q) + (1−
t)R(q)‖q‖ 6= 0, if ‖q‖ is sufficiently small. Hence...).

(6) Prove the following formula, called the Kronecker formula.

Let D ⊆ R2 be a closed disk, with center q and radius r, and X : D −→ R2 be a vector field with

only simple singularities, none of which is in ∂D. Then

1
2π

∫

γ

θ = P −N,

where γ(t) = p+r(cos 2πt, sin 2πt), P is the number of the positive singularities and N the number

of the negative ones.
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Remark: The condition i(X, p) = 0 does not imply X(p) 6= 0 (find an example!). However, if i(X, p) = 0,

given ε > 0, we can find a vector field X̃ which coincide with X outside a disk of radius ε and center p,

without zeros in that disk.

5.25. Let f : U ⊆ C = R2 −→ C be a holomorphic function (see Exercise 9.28 of Chapter 1), f = u+ iv.

(1) Prove the following Cauchy’s Theorem:

Theorem: If U is simply connected and γ : S1 −→ U is a closed piecewise smooth curve then∫

γ

f(z)dz :=
∫

γ

(udx− vdy) + i

∫

γ

(udy + vdx) = 0.

(2) Suppose that f ′(z) 6= 0 for z in a disk D ⊆ U and f(z) 6= 0 for z ∈ ∂U . Prove that the number of

zeros in D is given by
1

2πi

∫

∂D

df

f

(hint: prove that the singularities of the vector field X(x, y) = (u(x, y), (v(x, y)) are all simple and

positive. Then....).

5.26. Use Exercise 5.21 to define the index of a vector field X : U ⊆ Rn −→ Rn at a point p ∈ U and

try to extend, as much as you can, the facts claimed in Exercise 5.24 for this situation.

5.27. Make the following claim precise and prove it

Claim: the de Rham isomorphism is natural with respect to smooth maps.
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