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If an infinite-dimensional dynamical system possesses a global attractor of finite
dimension (see the definitions in Chapter 1), then there is, at least theoretically,
a possibility to reduce the study of its asymptotic regimes to the investigation of pro-
perties of a finite-dimensional system. However, as the structure of attractor cannot
be described in details for the most interesting cases, the constructive investigation
of this finite-dimensional system cannot be carried out. In this respect some ideas
related to the method of integral manifolds and to the reduction principle are very
useful. They have led to appearance and intensive use of the concept of inertial ma-
nifold of an infinite-dimensional dynamical system (see [1]–[8] and the references
therein). This manifold is a finite-dimensional invariant surface, it contains a global
attractor and attracts trajectories exponentially fast. Moreover, there is a possibility
to reduce the study of limit regimes of the original infinite-dimensional system
to solving of a similar problem for a class of ordinary differential equations.

In this chapter we present one of the approaches to the construction of inertial
manifolds (IM) for an evolutionary equation of the type:

, . (0.1)

Here is a function of the real variable  with the values in a separable Hilbert
space . We pay the main attention to the case when  is a positive linear operator
with discrete spectrum and  is a nonlinear mapping of  subordinated to 
in some sense. The approach used here for the construction of inertial manifolds is
based on a variant of the Lyapunov-Perron method presented in the paper [2]. Other
approaches can be found in [1], [3]–[7], [9], and [10]. However, it should be noted
that all the methods for the construction of IM known at present time require a quite
strong condition on the spectrum of the operator : the difference 
of two neighbouring eigenvalues of the operator  should grow sufficiently fast
as .

§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept§ 1 Basic Equation and Concept

of Inertial Manifoldof Inertial Manifoldof Inertial Manifoldof Inertial Manifold

In a separable Hilbert space  we consider a Cauchy problem of the type

, , , , (1.1)

where  is a positive operator with discrete spectrum (for the definition see Section
1 of Chapter 2) and  is a nonlinear continuous mapping from 
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into ,  possessing the properties

(1.2)

and

 (1.3)

for all , , and  from the domain  of the operator . Here  is
a positive constant independent of  and  is the norm in the space . Further it
is assumed that  is the orthonormal basis in  consisting of the eigenfunctions
of the operator :

, , .

Theorem 2.3 of Chapter 2 implies that for any initial condition  prob-
lem (1.1) has a unique mild (in ) solution  on every half-interval ,
i.e. there exists a unique function  which satisfies the inte-
gral equation

(1.4)

for all . This solution possesses the property (see (2.6) in Chapter 2)

,

for  and . Moreover, for any pair of mild solutions  and  to
problem (1.1) the following inequalities hold (see (2.2.15)):

, (1.5)

and (cf. (2.2.18))

, (1.6)

where ,  and  are positive numbers depending on , ,
and  only. Hereinafter , where  is the orthoprojector onto the first

 eigenvectors of the operator . Moreover, we use the notation

for and for . (1.7)

Further we will also use the following so-called dichotomy estimates proved
in Lemma 1.1 of Chapter 2:

, ;

, ; (1.8)
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, , .

The inertial manifoldinertial manifoldinertial manifoldinertial manifold (IM) of problem (1.1) is a collection of surfaces
 in  of the form

,

where is a mapping from  into  satisfying the Lipschitz
condition 

(1.9)

with the constant  independent of  and . We also require the fulfillment of the
invariance condition (if , then the solution  to problem (1.1) posses-
ses the property , ) and the condition of the uniform exponential
attraction of bounded sets: there exists  such that for any bounded set 
there exist numbers  and  such that

for all . Here  is a mild solution to problem (1.1).
From the point of view of applications the existence of an inertial manifold (IM)

means that a regular separation of fast (in the subspace ) and slow (in the
subspace ) motions is possible. Moreover, the subspace of slow motions turns
out to be finite-dimensional. It should be noted in advance that such separation is
not unique. However, if the global attractor exists, then every IM contains it.

When constructing IM we usually use the methods developed in the theory
of integral manifolds for central and central-unstable cases (see [11], [12]).

If the inertial manifold exists, then it continuously depends on , i.e.

for any  and . Indeed, let  be the solution to problem (1.1) with
, . Then  for  and hence

.

Therefore,

Consequently, Lipschitz condition (1.9) leads to the estimate

.

Since , this estimate gives us the required continuity pro-
perty of .
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Prove that the estimate

holds for  when , , .

The notion of the inertial manifold is closely related to the notion of the inertialinertialinertialinertial

formformformform. If we rewrite the solution  in the form , where
, , and , then equation (1.1) can be re-

written as a system of two equations

By virtue of the invariance property of IM the condition  implies that
, i.e. the equality  implies that .

Therefore, if we know the function  that gives IM, then the solution 
lying in  can be found in two stages: at first we solve the problem

, , (1.10)

and then we take  . Thus, the qualitative behaviour of solu-
tions  lying in IM is completely determined by the properties of differential
equation (1.10) in the finite-dimensional space . Equation (1.10) is said to be
the inertial form (IF) of problem (1.1). In the autonomous case ( )
one can use the attraction property for IM and the reduction principle (see Theorem
7.4 of Chapter 1) in order to state that the finite-dimensional IF completely deter-
mines the asymptotic behaviour of the dynamical system generated by problem (1.1).

Let  give the inertial manifold for problem (1.1).
Show that IF (1.10) is uniquely solvable on the whole real axis, i.e.
there exists a unique function  such that
equation (1.10) holds.

Let  be a solution to IF (1.10) defined for all . Prove
that  is a mild solution to problem (1.1) de-
fined on the whole time axis and such that .

Use the results of Exercises 1.2 and 1.3 to show that if IM
 exists, then it is strictly invariant, i.e. for any  and
 there exists  such that  is a solution to prob-

lem (1.1).
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In the sections to follow the construction of IM is based on a version of the Lyapunov-
Perron method presented in the paper by Chow-Lu [2]. This method is based on the
following simple fact.

Lemma 1.1.

Let  be a continuous function on  with the values in  such that

, .

Then for the mild solution  (on the whole axis) to equation

(1.11)

to be bounded in the subspace  it is necessary and sufficient that

(1.12)

for , where  is an element from  and  is an arbitrary real

number.

We note that the solution to problem (1.11) on the whole axis is a function 
 satisfying the equation

for any .

Proof.

It is easy to prove (do it yourself) that equation (1.12) gives a mild solution
to (1.11) with the required property of boundedness. Vice versa, let  be
a solution to equation (1.11) such that  is bounded. Then the func-
tion  is a bounded solution to equation

.

Consequently, Lemma 2.1.2 implies that

.

Therefore, in order to prove (1.12) it is sufficient to use the constant variation
formula for a solution to the finite-dimensional equation

, .

Thus, Lemma 1.1  is proved.
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Lemma 1.1 enables us to obtain an equation to determine the function .
Indeed, let us assume that  is bounded and there exists  with the func-
tion  possessing the property  for all  and .
Then the solution to problem (1.1) lying in  has the form

.

It is bounded in the subspace  and therefore it satisfies the equation of the
form

(1.13)

Moreover,

 . (1.14)

Actually it is this fact that forms the core of the Lyapunov-Perron method. It is
proved below that under some conditions (i) integral equation (1.13) is uniquely
solvable for any  and (ii) the function  defined by equality (1.14)
gives IM.

In the construction of IM with the help of the Lyapunov-Perron method an im-
portant role is also played by the results given in the following exercises.

Assume that , where  is any
number from the interval  and . Let be a mild
solution (on the whole axis) to equation (1.11). Show that  pos-
sesses the property

 

if and only if equation (1.12) holds for . 
Hint: consider the new unknown function

instead of .

Assume that  is a continuous function on the semiaxis
 with the values in  such that for some  from the interval

 the equation

holds. Prove that for a mild solution  to equation (1.11) on the
semiaxis  to possess the property
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it is necessary and sufficient that

(1.15)

where  and  is an element of . Hint: see the hint to
Exercise 1.5.

§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination§ 2 Integral Equation for Determination

of Inertial Manifoldof Inertial Manifoldof Inertial Manifoldof Inertial Manifold

In this section we study the solvability and the properties of solutions to a class of in-
tegral equations which contains equation (1.13) as a limit case. Broader treatment of
the equation of the type (1.13) is useful in connection with some problems of the ap-
proximation theory for IM.

For  and  we define the space  as the set
of continuous functions  on the segment  with the values in 
and such that

.

Here  is a positive number. In this space we consider the integral equation

, , (2.1)

where

Hereinafter the index  of the projectors  and  is omitted, i.e.  is the ortho-
projector onto  and . It should be noted that the most sig-
nificant case for the construction of IM is when .
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Lemma 2.1.

Let at least one of two conditions be fulfilled:

and (2.2)

or  and 

, , (2.3)

where  is defined by equation (1.7). Then for any fixed  there

exists a unique function  satisfying equation (2.1) for all

, where  is an arbitrary number from the segment 

 in the case of (2.2) and  in the case of (2.3).

Moreover,

(2.4)

and

, (2.5)

where

. (2.6)

Proof.

Let us apply the fixed point method to equation (2.1). Using (1.8) it is easy
to check (similar estimates are given in Chapter 2) that
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and

. (2.8)

Therefore, if the estimate

, (2.9)

holds, then

. (2.10)

Let us estimate the values  and . Assume that (2.2) is fulfilled.
Then it is evident that 

and

for . Therefore,

.

Consequently, equation (2.2) implies (2.9). Now let the spectral condition (2.3)
be fulfilled. Then

for all . We change the variable in integration 
and find that

,

where the constant  is defined by (1.7). It is also evident that

provided that . Equation (2.3) implies that  lies in
the interval . If we choose the parameter  in such way, then we get
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.

Hence, equation (2.3) implies (2.9). Therefore, estimate (2.10) is valid, provi-
ded that the hypotheses of the lemma hold. Moreover, similar reasoning enables
us to show that

, (2.11)

where  is defined by formula (2.6). In particular, estimates (2.10) and (2.11)
mean that when , , and  are fixed, the operator  maps  into itself
and is contractive. Therefore, there exists a unique fixed point . Evi-
dently it possesses properties (2.4) and (2.5). Lemma 2.1 is proved.

Lemma 2.1 enables us to define a collection of manifolds  by the formula

,

where

. (2.12)

Here  is the solution to integral equation (2.1). Some properties of
the manifolds  and the function  are given in the following assertion.

Theorem 2.1.

Assume that at leaAssume that at leaAssume that at leaAssume that at leasssst one of two conditions t one of two conditions t one of two conditions t one of two conditions (2.2) and  and  and  and (2.3) is satisfied.is satisfied.is satisfied.is satisfied.

Then the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the propertiesThen the mapping  from  into  possesses the properties

a) (2.13)

for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula for any , hereinafter  is defined by formula (2.6) and and and and

;;;; (2.14)

b) the manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface andthe manifold  is a Lipschitzian surface and

(2.15)

for all  and ;for all  and ;for all  and ;for all  and ;

c) if if if if  is the solution to problem is the solution to problem is the solution to problem is the solution to problem (1.1) with the with the with the with the

initial data initial data initial data initial data ,,,,    ,,,, then  then  then  then 

for for for for .... In case of  the inequality In case of  the inequality In case of  the inequality In case of  the inequality

(2.16)
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holds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from theholds for all , where  is an arbitrary number from the

segment  if segment  if segment  if segment  if (2.2) is fulfilled and  when is fulfilled and  when is fulfilled and  when is fulfilled and  when

(2.3) is fulfilled;  is fulfilled;  is fulfilled;  is fulfilled; 

d) if  does not depend on if  does not depend on if  does not depend on if  does not depend on ,,,, then , i.e. then , i.e. then , i.e. then , i.e.

 is independent of  is independent of  is independent of  is independent of ....

Proof.

Equations (2.12) and (1.8) imply that

By virtue of (2.9) we have that . Therefore, when we change the vari-
able in integration  with the help of equation (2.5) we obtain (2.13).
Similarly, using (2.4) and (1.8) one can prove property (2.15).

Let us prove assertion (c). We fix  and assume that  is a
function on the segment  such that  for  and 

 for . Here  is the solution to integral equation (2.1). Using
equations (1.4) and (2.1) we obtain that 

(2.17)

for . Evidently, equation (2.17) also remains true for . Equa-
tion (1.4) gives us that

.

Therefore, the substitution in (2.17) gives us that

(2.18)

for all , where  and

. (2.19)
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In particular, if  equation (2.18) turns into equation (2.1) with  and
. Therefore, equation (2.12) implies the invariance property 

. Let us estimate the value (2.19). If we reason in the same way as
in the proof of Lemma 2.1, then we obtain that

,

where  is defined by formula (2.7) and

. (2.20)

Therefore, simple calculations give us that

, (2.21)

where  is defined by formula (2.14). Let  be the solution to integral equa-
tion (2.1) for  and . Then using (2.12), (2.18), and (2.1) we find
that

. (2.22)

However, for all  we have that

.

Therefore, the contractibility property of the operator  gives us that

.

Hence, it follows from (2.21) and (2.22) that

This and equation (2.5) imply (2.16). Therefore, assertion (c) is proved.
In order to prove assertion (d) it should be kept in mind that if 

, then the structure of the operator  enables us to state that

for , where . Therefore, if 
is a solution to integral equation (2.1), then the function
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is its solution when  is written instead of . Consequently, equation (2.12)
gives us that 

 .

Thus, Theorem 2.1 is proved.

Show that if , then inequalities (2.13) and
(2.16) can be replaced by the relations

, (2.23)

 , (2.24)

where  is defined by formula (2.14).

§ 3 Existence and Properties§ 3 Existence and Properties§ 3 Existence and Properties§ 3 Existence and Properties

of Inertial Manifoldsof Inertial Manifoldsof Inertial Manifoldsof Inertial Manifolds

In particular, assertion (c) of Theorem 2.1 shows that if the spectral gap condition

, , (3.1)

is fulfilled, then the collection of surfaces

, , (3.2)

is invariant, i.e.

, . (3.3)

Here  is defined by formula (2.12) for  and  is
the evolutionary operator corresponding to problem (1.1). It is defined by the for-
mula , where  is a mild solution to problem (1.1).

In this section we show that collection (3.2) possesses the property of exponen-
tial uniform attraction. Hence,  is an inertial manifold for problem (1.1). More-
over, Theorem 3.1 below states that  is an exponentially asymptoticallyexponentially asymptoticallyexponentially asymptoticallyexponentially asymptotically

completecompletecompletecomplete  IM, i.e. for any solution  there exists a solution 
 lying in the manifold  such that

, , .

In this case the solution  is said to be an induced trajectoryinduced trajectoryinduced trajectoryinduced trajectory  for  on the
manifold . In particular, the existence of induced trajectories means that the so-
lution to original infinite-dimensional problem (1.1) can be naturally associated with
the solution to the system of ordinary differential equations (1.10).
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Theorem 3.1.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) is valid for some  is valid for some  is valid for some  is valid for some ....

Then the manifold  given by formula Then the manifold  given by formula Then the manifold  given by formula Then the manifold  given by formula (3.2) is inertial for prob- is inertial for prob- is inertial for prob- is inertial for prob-

lem lem lem lem (1.1).... Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in- Moreover, for any solution  there exists an in-

duced trajectory  such that  for  andduced trajectory  such that  for  andduced trajectory  such that  for  andduced trajectory  such that  for  and

,,,, (3.4)

where and where and where and where and ....

Proof.

Obviously it is sufficient just to prove the existence of an induced trajectory
 possessing property (3.4). Let  be a mild solution to problem (1.1),

. We construct the induced trajectory  for 
in the form , where  lies in the space 

 of continuous functions on the semiaxis  such that

, (3.5)

where . We introduce the notation

(3.6)

and consider the integral equation (cf. (1.15))

 (3.7)

in the space . Here the value  is chosen from the condition

,

i.e. such that

.

Therefore, by virtue of (3.7) we have

. (3.8)

Thus, in order to prove inequality (3.4) it is sufficient to prove the solvability of inte-
gral equation (3.7) in the space  and to obtain the estimate of the solution. The
preparatory steps for doing this are hidden in the following exercises.
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Assume that  has the form (3.6). Show that for any

 

and for  the following inequalities hold:

, (3.9)

. (3.10)

Using (1.8) prove that the equations 

, (3.11)

(3.12)

hold for  and . Here  is defined by formula
(1.7).

Lemma 3.1.

Assume that spectral gap condition (3.1) holds with . Then

 is a continuous contractive mapping of the space  into itself.

The unique fixed point  of this mapping satisfies the estimate

. (3.13)

Proof.

If we use (3.7), then we find that

for . Therefore, (3.9), (3.11), and (3.12) give us that
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Since , spectral gap condition (3.1) implies that

. (3.14)

Similarly with the help of (3.10)–(3.12) we have that

(3.15)

for any . From equations (3.8), (3.9), and (2.15) we obtain that

.

Therefore, (3.11) implies that

.

Similarly we have that

. (3.17)

It follows from (3.14)–(3.17) that

, (3.18)

.

Therefore, if , then the operator  is continuous and contractive in
. Estimate (3.13) of its fixed point follows from (3.18). Lemma 3.1 is proved.

In order to complete the proof of Theorem 3.1 we must prove that the function

is a mild solution to problem (1.1) lying in  (here  is a solution
to integral equation (3.7) ). We can do that by using the result of Exercise 1.2, the in-
variance of the collection , and the fact that equality (3.8) is equivalent to the
equation . Theorem 3.1 is completely proved.

Show that if the hypotheses of Theorem 3.1 hold, then the in-
duced trajectory  is uniquely defined in the following sense: if
there exists a trajectory  such that  for  and

with , then   for  .
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The construction presented in the proof of Theorem 3.1 shows that in order to build
the induced trajectory for a solution  with the exponential order of decrease 
given, it is necessary to have the information on the behaviour of the solution 
for allallallall  values . In this connection the following simple fact on the exponential
closeness of the solution  to its projection  onto the mani-
fold appears to be useful sometimes.

Show that if the hypotheses of Theorem 3.1 hold, then the es-
timate

is valid for any solution  to problem (1.1). Here 
and  (Hint: add the value 

 to the expression under the norm sign in the left-hand
side. Here  is the induced trajectory for ).

It is evident that the inertial manifold  consists of the solutions  to problem
(1.1) which are defined for all real  (see Exercises 1.3 and 1.4). These solutions can
be characterized as follows.

Theorem 3.2.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) holds with  and holds with  and holds with  and holds with  and

 is the inertial manifold for problem  is the inertial manifold for problem  is the inertial manifold for problem  is the inertial manifold for problem (1.1) constructed in Theorem constructed in Theorem constructed in Theorem constructed in Theorem 3.1....

Then for a solution  to problem Then for a solution  to problem Then for a solution  to problem Then for a solution  to problem (1.1) defined for all  to lie in the defined for all  to lie in the defined for all  to lie in the defined for all  to lie in the

inertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient thatinertial manifold , it is necessary and sufficient that

 (3.19)

for each , where for each , where for each , where for each , where ....

Proof.

If , then . Therefore, equation (2.13)
implies that

. (3.20)

The function  satisfies the equation

for all real  and . Therefore, we have that

u t� � $
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 for . With the help of (3.20) we find that

for , where

.

Hence, the inequality

holds for the function  and . If we introduce the func-
tion , then the last inequlity can be rewritten in the form

, ,

or

, .

After the integration over the segment  and a simple transformation it is easy
to obtain the estimate

. (3.21)

Obviously for  we have that

.

Therefore, equations (3.21) and (3.20) imply (3.19).
Vice versa, we assume that equation (3.19) holds for the solution . Then

, . (3.22)

It is evident that  is a bounded (on ) solution to the
equation

,
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where . By virtue of (3.22) the function  is
bounded in . It is also clear that  is a positive operator with discrete
spectrum in . Therefore, Lemma 1.1 is applicable. It gives

.

Using the equation for  it is now easy to find that

, ,

where  and  is the integral operator similar to the one in (2.1).
Hence, we have that  accoring to definition (2.12) of the
function . Thus, Theorem 3.2  is proved.

The following assertion shows that IM  can be approximated by the mani-
folds , , with the exponential accuracy (see (2.12)). 

Theorem 3.3.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) is fulfilled with  is fulfilled with  is fulfilled with  is fulfilled with .... We also We also We also We also

assume that the function  is defined by equality assume that the function  is defined by equality assume that the function  is defined by equality assume that the function  is defined by equality (2.12) for for for for

. Then the estimate. Then the estimate. Then the estimate. Then the estimate

(3.23)

is valid with , , ; the constants  and is valid with , , ; the constants  and is valid with , , ; the constants  and is valid with , , ; the constants  and 

are defined by equations are defined by equations are defined by equations are defined by equations (2.6) and  and  and  and (2.14);;;;

,,,, ....

Proof.

Let . Definition (2.12) implies that

, (3.24)

where  is a solution to integral equation (2.1) with , . The ope-
rator  acting in  (see (2.1)) can be represented in the form

, ,

where
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and  is an arbitrary element in . Therefore, if  is a solution
to problem (2.1) with , then

(3.25)

for all . Let us estimate the value . As before it is easy to
verify that

for all , where

,

 ,

and the norm  is defined using the constants  and 
by the formula

.

Evidently, spectral gap condition (3.1) implies the same equation with the parameter
 instead of . Therefore, simple calculations based on (1.8) give us that

and ,

where  is defined by formula (2.14). Using Lemma 2.1 under condition (2.3) with
 instead of  we obtain that

,

where  is given by formula (2.6). Therefore, finaly we have that

 

for all . Consequently,
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Therefore, since  is a contractive operator in , equation (3.25)
gives us that

Here we also use the equality . Hence, estimate (3.23) follows from
(3.24). Theorem 3.3  is proved.

Show that in the case when  equation (3.23)
can be replaced by the inequality

.

Assume that the hypotheses of Theorem 3.1 hold. Then the
estimate

holds for  and for any solution  to problem (1.1) possess-
ing the dissipativity property:  for  and for
some  and . Here  and the constant 
does not depend on .

Therefore, if the hypotheses of Theorem 3.1 hold, then a bounded solution to prob-
lem (1.1) gets into the exponentially small (with respect to  and ) vicinity of
the manifold  at an exponential velocity.

According to (2.12) in order to build an approximation  of the inertial
manifold  we should solve integral equation (2.1) for  large enough. This
equation has the same structure both for  and for . Therefore, it is im-
possible to use the surfaces  directly for the effective approximation of .
However, by virtue of contractiveness of the operator  in the space 

, its fixed point  which determines  can be found with the
help of iterations. This fact enables us to construct the collection  of appro-
ximations for  as follows. Let  be an element of . We take

, ,

and define the surfaces  by the formula

,

where ,
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Let  and let . Show that

and .

Assume that spectral gap condition (3.1) is fulfilled. Show
that

,

where  is defined by formula (2.6) and  is the function
that determines the inertial manifold.

Prove the assertion for  similar to the one in Exer-
cise 3.5.

Theorems represented above can also be used in the case when the original system is
dissipative and estimates (1.2) and (1.3) are not assumed to be uniform with respect
to . The dissipativity property enables us to restrict ourselves to the con-
sideration of the trajectories lying in a vicinity of the absorbing set when we study
the asymptotic behaviour of solutions to problem (0.1). In this case it is convenient
to modify the original problem. Assume that the mapping  is continuous with
respect to its arguments and possesses the properties

, (3.26)

for any  and for all , , and  lying in the ball .
Let  be an infinitely differentiable function on  such that

, ;  , ;

, , .

We define the mapping  by assuming that

, . (3.27)

Show that the mapping  possesses the properties

,

, (3.28)

where  and  is a constant from (3.26). 

Let us now assume that  satisfies condition (3.26) and the problem

, , (3.29)

has a unique mild solution on any segment  and possesses the following
dissipativity property: there exists  such that for any  the relation
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for all (3.30)

holds, provided that . Here  is the solution to problem (3.29).

Show that the asymptotic behaviour of solutions to problem
(3.29) completely coincides with the asymptotic behaviour of solu-
tions to the problem

, , (3.31)

where  is defined by formula (3.27) and  is the constant
from equation (3.30).

Assume that for a solution to problem (3.29) the invariance
property of the absorbing ball is fulfilled: if , then

 for all . Let  be the invariant manifold
of problem (3.31). Then the set  is in-
variant for problem (3.29): if , then  ,

.

Thus, if the appropriate spectral gap condition for problem (3.29) is fulfilled, then
there exists a finite-dimensional surface which is a locally invariant exponentially at-
tracting set.

In conclusion of this section we note that the version of the Lyapunov-Perron me-
thod represented here can also be used for the construction (see [13]) of inertial
manifolds for retarded semilinear parabolic equations similar to the ones considered
in Section 8 of Chapter 2. In this case both the smallness of retardation and the fulfil-
ment of the spectral gap condition of the form (3.1) are required.

§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial§ 4 Continuous Dependence of Inertial

Manifold on Problem ParametersManifold on Problem ParametersManifold on Problem ParametersManifold on Problem Parameters

Let us consider the Cauchy problem

, , (4.1)

in the space  together with problem (1.1). Assume that  is a nonlinear
mapping from  into  possessing properties (1.2) and (1.3) with the
same constant  as in problem (1.1). If spectral gap condition (3.1) is fulfilled, then
problem (4.1) (as well as (1.1)) possesses an invariant manifold
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, . (4.2)

The aim of this section is to obtain an estimate for the distance between the
manifolds  and . The main result is the following assertion.

Theorem 4.1.

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (1.2),,,, (1.3),,,, and  and  and  and (3.1) are fulfilled both forare fulfilled both forare fulfilled both forare fulfilled both for

problems problems problems problems (1.1) and  and  and  and (4.1).... We also assume that We also assume that We also assume that We also assume that

(4.3)

for all  and for all  and for all  and for all  and ,,,, where  and  are positive numbers. Then where  and  are positive numbers. Then where  and  are positive numbers. Then where  and  are positive numbers. Then

the equationthe equationthe equationthe equation

is valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariantis valid for the functions  and  which give the invariant

manifolds for problems manifolds for problems manifolds for problems manifolds for problems (1.1) and  and  and  and (4.1) respectively. Here the numbers respectively. Here the numbers respectively. Here the numbers respectively. Here the numbers

 and  do not depend on  and  and  do not depend on  and  and  do not depend on  and  and  do not depend on  and ....

Proof.

Equation (2.12) with  implies that

,

where  and  are solutions to the integral equations of the type (2.1) cor-
responding to problems (1.1) and (4.1) respectively. Equations (1.3) and (4.3) give
us that

(4.4)

for , where

(4.5)

and  as before. Hence, after simple calculations as in Section 2 we
find that

. (4.6)

Let us estimate the value . Since  and  are fixed points of the correspon-
ding operator , we have that
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Therefore, by using spectral gap condition (3.1) and estimate (4.4) as above it is
easy to find that

.

Consequently,

.

Therefore, equation (4.6) implies that

.

Hence, estimate (2.5) gives us the inequality

.

This implies the assertion of Theorem 4.1.

Let us now consider the Galerkin approximations  of problem (1.1). We re-
mind (see Chapter 2) that the Galerkin approximation of the order  is defined as a
function  with the values in , this function being a solution to the problem

, . (4.7)

Here  is the orthoprojector onto the span of elements  in .

Assume that spectral gap condition (3.1) holds and .
Show that problem (4.7) possesses an invariant manifold of the form

in , where the function  is de-
fined by equation similar to (2.12).
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The following assertion holds.

Theorem 4.2.

Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition Assume that spectral gap condition (3.1) holds. Let  andholds. Let  andholds. Let  andholds. Let  and

 be the functions defined by the formulae of the type  be the functions defined by the formulae of the type  be the functions defined by the formulae of the type  be the functions defined by the formulae of the type (2.12) and and and and

let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems let these functions give invariant manifolds for problems (1.1) and  and  and  and (4.7) for for for for

 respectively. Then the estimate respectively. Then the estimate respectively. Then the estimate respectively. Then the estimate

(4.8)

is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula is valid, where the constant  is defined by formula (2.6)....

Proof.

It is evident that

, (4.9)

where  and  are solutions to the integral equations

, ,

and

, .

Here  is defined as in (2.1). Since

,

we have

.

The contractiveness property of the operator  leads to the equation

.

In particular, this implies that

.

Hence, with the help of (4.9) we find that

(4.10)

# p s�� �
# m� � p s�� �

m N 1��

A� # p s�� � # m� � p s�� ��� �
C q M �� �� �

�
m 1�
1 ��

------------------------------ 1
D1 A�p�

1
�

N 1�
�

m 1�
---------------�

---------------------------�

� �
' '
� �
' '
� �

�

D1

# p s�� � # m� � p s�� ��� � Q v s p�� � v m� � s p�� ��� "�

v t p�� � v m� � t p�� �

v t� � Bp
s ��

v� " t� �� �� t s��

v m� � t� � P
m

B
p

s ��
v m� �� " t� �� �� t s��

Bp
s ��

v t� � v m� � t� �� I Pm�� � v t� � Pm Bp
s ��

v� " t� � Bp
s ��

v m� �� " t� ��� "��

A� v t� � v m� � t� ��� � A� 1 P
m

�� � v t� � A� Bp
s ��

v� " t� � Bp
s ��

v m� �� " t� ��� "��

Bp
s ��

A� v t� � v m� � t� ��� � A� 1 P
m

�� � v t� � q v v m� �� s e$ s t�� �/��

v v m� �� s e
$ s t�� ��

t s�
sup A� v t� � v m� � t� ��� � 1 q�� � 1� 1 Pm�� � v

s
�&

A� # p s�� � # m� � p s�� ��� � A� v s� � v m� � s� ��� � v v m� �� s

1 q�� � 1� 1 Pm�� � v
s
 .

� � �

�



C o n t i n u o u s  D e p e n d e n c e  o f  I n e r t i a l  M a n i f o l d  o n  P r o b l e m  P a r a m e t e r s 175 
Let us estimate the value . It is clear that

.

Therefore, Lemma 2.1.1 (see also (1.8)) gives us that

where

as above. Simple calculations analogous to the ones in Lemma 2.1 imply that

,

where the constant  has the form (1.7). Consequently, using (2.5) we obtain

This and (4.10) imply estimate (4.8). Theorem 4.2  is proved.

In addition assume that the hypotheses of Theorem 4.2 hold
and . Show that in this case estimate (4.8) has the form 
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§ 5 Examples and Discussion§ 5 Examples and Discussion§ 5 Examples and Discussion§ 5 Examples and Discussion

E x a m p l e  5.1

Let us consider the nonlinear heat equation

Assume that  is a positive parameter and  is a continuous function
of its variables which possesses the properties

, .

Problem (5.1)–(5.3) generates a dynamical system in  (see Section 3
of Chapter 2). Therewith

, ,

where  is the Sobolev space of the order . The mapping  given
by the formula  satisfies conditions (1.2) and (1.3) with

. In this case spectral gap condition (2.3) has the form

.

Thus, problem (5.1)–(5.3) possesses an inertial manifold of the dimension ,
provided that

(5.4)

for some .

Find the conditions under which the inertial manifold of prob-
lem (5.1)–(5.3) is one-dimensional. What is the structure of the cor-
responding inertial form?

Consider problem (5.1) and (5.3) with the Neumann bounda-
ry conditions:

(5.5)

Show that problem (5.1), (5.3), and (5.5) has an inertial manifold
of the dimension , provided condition (5.4) holds for some
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. (Hint:  with condition (5.5), 
, where  is small enough).

Find the conditions on the parameters of problem (5.1), (5.3),
and (5.5) under which there exists a one-dimensional inertial mani-
fold. Show that if , then the corresponding iner-
tial form is of the type

, .

E x a m p l e  5.2

Consider the problem

(5.6)

Here  and  is a continuous function of its variables such that

(5.7)

for all ,  and

,

where  are nonnegative numbers. As in Example 5.1 we assume that

, , .

It is evident that

.

Here  is the norm in . By using the obvious inequality

, ,

we find that

.

Hence, conditions (1.2) and (1.3) are fulfilled with

, .
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Therewith spectral gap condition (2.3) acquires the form

,

where

.

Thus, the equation

or

must be valid for some . We can ensure the fulfilment of this con-
dition only in the case when

, ,

i.e. if

. (5.9)

Thus, in order to apply the above-presented theorems to the construction of the
inertial manifold for problem (5.6) one should pose some additional conditions
(see (5.7) and (5.9)) on the nonlinear term  or require that the
diffusion coefficient  be large enough.

Assume that  in (5.6), where
the function  possesses properties (5.7) and (5.8) with arbitrary

. Show that problem (5.6) has an inertial manifold for any
, where

.

Characterize the dependence of the dimension of inertial manifold
on .

Study the question on the existence of an inertial manifold for
problem (5.6) in which the Dirichlet boundary condition is replaced
by the Neumann boundary condition (5.5).
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It should be noted that 

, , ,

where  are the eigenvalues of the linear part of the equation of the type

, , ,

in a multidimensional bounded domain . Therefore, we can not expect that Theo-
rem 3.1 is directly applicable in this case. In this connection we point out the paper
[3] in which the existence of IM for the nonlinear heat equation is proved in a boun-
ded domain   that satisfies the so-called “principle of spatial ave-
raging” (the class of these domains contains two- and three-dimensional cubes).

It is evident that the most severe constraint that essentially restricts an applica-
tion of Theorem 3.1 is spectral gap condition (3.1). In some cases it is possible to
weaken or modify it a little. In this connection we mention papers [6] and [7]
in which spectral gap condition (3.1) is given with the parameters  and 
for . Besides it is not necessary to assume that the spectrum of the opera-
tor  is discrete. It is sufficient just to require that the selfadjoint operator  pos-
sess a gap in the positive part of the spectrum such that for its edges the spectral
condition holds. We can also assume the operator  to be sectorial rather than self-
adjoint (for example, see [6]). 

Unfortunately, we cannot get rid of the spectral conditions in the construction
of the inertial manifold. One of the approaches to overcome this difficulty runs as
follows: let us consider the regularization of problem (0.1) of the form

, . (5.10)

Here  and the number  is chosen such that the operator 
possesses spectral gap condition (3.1). Therewith IM for problem (5.10) should be
naturally called an approximate IM for system (0.1). Other approaches to the con-
struction of the approximate IM are presented below.

It should also be noted that in spite of the arising difficulties the number of equations
of mathematical physics for which it is possible to prove the existence of IM is large
enough. Among these equations we can name the Cahn-Hillard equations in the do-
main , , the Ginzburg-Landau equations ( ,

), the Kuramoto-Sivashinsky equation, some equations of the theory of oscilla-
tions ( ), a number of reaction-diffusion equations, the Swift-Hohenberg equa-
tion, and a non-local version of the Burgers equation. The corresponding references
and an extended list of equations can be found in survey [8].

In conclusion of this section we give one more interesting application of the
theorem on the existence of an inertial manifold.
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E x a m p l e  5.3

Let us consider the system of reaction-diffusion equations

, , (5.11)

in a bounded domain . Here  and the function 
satisfies the global Lipschitz condition:

, (5.12)

where , , and . We also assume that .
Problem (5.11) can be rewritten in the form (0.1) in the space 
if we suppose

, .

It is clear that the operator  is positive in its natural domain and it has a dis-
crete spectrum. Equation (5.12) implies that the relation

is valid for . Thus,

,

where 

.

Therefore, problem (5.11) generates an evolutionary semigroup  (see Chap-
ter 2) in the space . An important property of  is the following: the
subspace  which consists of constant vectors is invariant with respect to this
semigroup. The dimension of this subspace is equal to . The action of the
semigroup in this subspace is generated by a system of ordinary differential
equations

, . (5.13)

Assume that equation (5.12) holds for . Show that
equation (5.13) is uniquely solvable on the whole time axis for any
initial condition and the equation

(5.14)

holds for any .
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The subspace  consists of the eigenvectors of the operator  corresponding to the
eigenvalue . The next eigenvalue has the form , where  is
the first nonzero eigenvalue of the Laplace operator with the Neumann boundary
condition on . Therefore, spectral gap equation (3.1) can be rewritten in the
form

(5.15)

for  and , where . It is clear that there exists 
such that equation (5.15) holds for all . Therefore, we can apply Theorem 3.1
to find that if  is large enough, then there exists IM of the type

.

The invariance of the subspace  and estimate (5.14) enable us to use Theorem 3.2
and to state that . This easily implies that , i.e. . Thus,
Theorem 3.1 gives us that for any solution  to problem (5.11) there exists a so-
lution  to the system of ordinary differential equations (5.13) such that

, ,

where the constant  does not depend on  and  is the Sobolev norm
of the first order.

Consider the problem

, ; , (5.16)

where the function  has the form

.
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and  are continuous functions such that
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then the dynamical system generated by problem (5.16) has the
two-dimensional (flat) inertial manifold

and the corresponding inertial form is:

, .

Study the question on the existence of an inertial manifold
for the Hopf model of turbulence appearance (see Section 7 of Chap-
ter 2).

§ 6§ 6§ 6§ 6 Approximate Inertial ManifoldsApproximate Inertial ManifoldsApproximate Inertial ManifoldsApproximate Inertial Manifolds

for for for for Semilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic EquationsSemilinear Parabolic Equations

Even in the cases when the existence of IM can be proved, the question concerning
the effective use of the inertial form 

(6.1)

is not simple. The fact is that it is not practically possible to find a more or less ex-
plicit solution to the integral equation for  even in the finite-dimensional
case. In this connection we face the problem of approximate or asymptotic construc-
tion of an invariant (inertial) manifold. Various aspects of this problem related to fi-
nite-dimensional systems are presented in the book by Ya. Baris and O. Lykova [14].

For infinite-dimensional systems the problem of construction of an approxi-
mate IM can be interpreted as a problem of reduction, i.e. as a problem of construc-
tive description of finite-dimensional projectors  and functions : 

 such that an equation of form (6.1) “inherits” (of course, this needs
to be specified) all the peculiarities of the long-time behaviour of the original system
(0.1). It is clear that the manifolds arising in this case have to be close in some sense
to the real IM (in fact, the dynamics on IM reproduces all the essential features of
the qualitative behaviour of the original system). Under such a formulation a prob-
lem of construction of IM acquires secondary importance, so one can directly con-
struct a sequence of approximate IMs. Usually (see the references in survey [8]) the
problem of the construction of an approximate IM can be formulated as follows: find
a surface of the form 

, (6.2)

which attracts all the trajectories of the system in its small vicinity. The character of
closeness is determined by the parameter  related to the decomposition 
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(6.3)

We obtain the trivial approximate IM  if we put  in (6.2).
In this case  is a finite-dimensional subspace in  whereas inertial form (6.1)
turns into the standard Galerkin approximation of problem (0.1) corresponding to
this subspace. One can find the simplest non-trivial approximation  using for-
mula (6.2) and assuming that 

. (6.4)

The consideration of system (0.1) on  leads to the second equation of equa-
tions (6.3) being replaced by the equality . The results of the
computer simulation (see the references in survey [8]) show that the use of just the
first approximation to IM has a number of advantages in comparison with the tradi-
tional Galerkin method (some peculiarities of the qualitative behaviour of the system
can be observed for a smaller number of modes). 

There exist several methods of the construction of an approximate IM. We present
the approach based on Lemma 2.1 which enables us to construct an approximate IM
of the exponential order, i.e. the surfaces in the phase space  such that their expo-
nentially small (with respect to the parameter ) vicinities uniformly attract all
the trajectories of the system. For the first time this approach was used in paper [15]
for a class of stochastic equations in the Hilbert space. Here we give its deterministic
version.

Let us consider the integral equation (see(2.1))

,

and assume that , where the parameter  possesses the property

. (6.5)

In this case equations (2.2) hold. Hence, Lemma 2.1 enables us to construct a collec-
tion of manifolds  for  with the help of the formula

, (6.6)

where

. (6.7)

Here  is a solution to integral equation (2.1) and . 
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Show that both the function  and the surface 
do not depend on  in the autonomous case .

The following assertion is valid.

Theorem 6.1.

There exist positive numbers  and There exist positive numbers  and There exist positive numbers  and There exist positive numbers  and 

such that ifsuch that ifsuch that ifsuch that if

,,,, ,,,, ,,,, (6.8)

then the mappings  defined by equation then the mappings  defined by equation then the mappings  defined by equation then the mappings  defined by equation (6.7) possess possess possess possess

the propertythe propertythe propertythe property

(6.9)

for all for all for all for all .... Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild Here  is an absolute constant and  is a mild

solution to problem solution to problem solution to problem solution to problem (1.1) such that such that such that such that

 forforforfor .... (6.10)

If , then estimate If , then estimate If , then estimate If , then estimate (6.9) can be rewritten as follows: can be rewritten as follows: can be rewritten as follows: can be rewritten as follows:

(6.11)

where  is defined by equality where  is defined by equality where  is defined by equality where  is defined by equality (2.14)....

Proof.

Let

, ,

where  is a mild solution to problem (1.1) with the initial condition
 at the moment . Therewith . It is evident that

(6.12)

Let us estimate each term in this decomposition. Equation (1.6) implies that

, (6.13)
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where

.

Using (2.16) we find that

(6.14)

where

,

moreover, the second term in  can be omitted if  (see Exer-
cise 2.1). At last equations (2.15) and (1.5) imply that

(6.15)

Thus, equations (6.12)–(6.15) give us the inequality

(6.16)

for , where

and

It follows from (6.16) that under the condition  the equation

(6.17)

holds with

.

It is clear that  if

,

and

, . (6.18)

Let  be such that equation (6.18) holds for  and for
the parameter  of the form (6.5) with . Then equation (6.8) with

 implies that . Let . Then
it follows from (6.17) that
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,

After iterations we find that

, (6.19)

Equation (6.17) also gives us that

, .

Therefore, it follows from (6.19) that

for all . This implies (6.9) and (6.11) if we take  in the equa-
tion for . Thus, Theorem 6.1  is proved.

In particular, it should be noted that relations (6.9) and (6.11) also mean that a solu-
tion to problem (0.1) possessing the property (6.10) reaches the layer of the thick-
ness  adjacent to the surface  given by equation (6.6)
for  large enough. Moreover, it is clear that if problem (0.1) is autonomous

 and if it possesses a global attractor, then the attractor lies in this
layer. In the autonomous case  does not depend on  (see Exercise 6.1). These
observations give us some information about the position of the attractor in the
phase space. Sometimes they enable us to establish the so-called localization theo-
rems for the global attractor.

Let . Use equations (1.4) and (1.8) to show
that

,

where .

In particular, the result of this exercise means that assumption (6.10) holds for any
 and for  large enough under the condition . In the general

case equation (6.10) is a variant of the dissipativity property.

Let  be a function from .
Assume that 

,

and

,

Show that the assertions of Theorem 6.1 remain true for the function
 if we add the term
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to the right-hand sides of equations (6.9) and (6.11). Here  is de-
fined by equality (6.5) and  is the norm of the function  in the
space .

Therefore, the function  generates a collection of approximate inertial
manifolds of the exponential (with respect to ) order for  large enough.

E x a m p l e  6.1

Let us consider the nonlinear heat equation in a bounded domain :

(6.20)

Assume that the function  possesses the properties

,  .

We use Theorem 6.1 and the asymptotic formula

, ,

for the eigenvalues of the operator  in  to obtain that in the Sobolev
space  for any  there exists a finite-dimensional Lipschitzian surface

 of the dimension  such that

for  and for any mild (in ) solution  to problem (6.20). Here 
is large enough,  and  are positive constants.

Consider the abstract form of the two-dimensional system of
the Navier-Stokes equations

, (6.21)

(see Example 3.5 and Exercises 4.10 and 4.11 of Chapter 2). Assume
that  for . Use the dissipativity property for
(6.21) and the formula

for the eigenvalues of the operator  to show that there exists a col-
lection of functions  from  into 
possessing the properties
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a) ;

 

for any ;

b) for any solution  to problem (6.21) there
exists  such that

Here  is the orthoprojector onto the first  eigenelements of the
operator .

Use Theorem 6.1 to construct approximate inertial manifolds
for (a) the nonlocal Burgers equation, (b) the Cahn-Hilliard equa-
tion, and (c) the system of reaction-diffusion equations (see Sec-
tions 3 and 4 of Chapter 2). 

In conclusion of the section we note (see [8], [9]) that in the autonomous case the ap-
proximate IM can also be built using the equation

. (6.22)

Here , ,  is the Frechét derivative and  is its
value at the point  on the element . At least formally, equation (6.22) can be ob-
tained if we substitute the pair  into equation (6.3). The second of
equations (6.3) implicitly contains a small parameter . Therefore, using (6.22)
we can suggest an iteration process of calculation of the sequence  giving the
approximate IM:

, , (6.23)

where the integers  are such that

, , .

One should also choose the zeroth approximation and concretely define the form of
the values  (for example, we can take  and , 

). When constructing a sequence of approximate IMs one has to solve only a linear
stationary problem on each step. From the point of view of concrete calculations this
gives certain advantages in comparison with the construction used in Theorem 6.1.
However, these manifolds have the power order of approximation only (for detailed
discussion of this construction and for proofs see [9]).

Prove that the mapping  has the form (6.4) under the
condition . Write down the equation for  when

, .
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§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order§ 7 Inertial Manifold for Second Order

in Time Equationsin Time Equationsin Time Equationsin Time Equations

The approach to the construction of IM given in Sections 2–4 is essentially based on
the fact that the system has form (0.1) with a selfadjoint positive operator . How-
ever, there exists a wide class of problems which cannot be reduced to this form.
From the point of view of applications the important representatives of this class are
second order in time systems arising in the theory of nonlinear oscillations:

(7.1)

In this section we study the existence of IM for problem (7.1). We assume that
 is a selfadjoint positive operator with discrete spectrum (  and  are the cor-

responding eigenvalues and eigenelements) and the mapping  possesses the
properties of the type (1.2) and (1.3) for , i.e.  is a continuous
mapping from  into  such that

,

, (7.2)

where  and .

The simplest example of a system of the form (7.1) is the following nonlinear
wave equation with dissipation:

(7.3)

Let . It is clear that  is a separable Hilbert space with the
inner product

, (7.4)

where  and  are elements of . In the space  prob-
lem (7.1) can be rewritten as a system of the first order:

, ; . (7.5)
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Here

, .

The linear operator  and the mapping  are defined by the equations:

, , (7.6)

, .

Prove that the eigenvalues and eigenvectors of the operator
 have the form:

, , , (7.7)

where  and  are the eigenvalues and eigenvectors of .

Display graphically the spectrum of the operator  on the
complex plane.

These exercises show that although problem (7.1) can be represented in the form
(7.5) which is formally identical to (0.1) we cannot use Theorem 3.1 here. Neverthe-
less, after a small modification the reasoning of Sections 2–4 enables us to prove the
existence of IM for problem (7.1). Such a modification based on an idea from [16] is
given below.

First of all we prove the solvability of problem (7.1). Let us first consider the li-
near problem

(7.8)

These equations can also be rewritten in the form (cf. (7.5))

, , (7.9)

where  and . We define a mild solution  mild solution  mild solution  mild solution to
problem (7.8) (or (7.9)) on the segment  as a function  from the class

which satisfies equations (7.8). Here  as before (see Chapter 2). One
can prove the existence and uniqueness of mild solutions to (7.8) using the Galerkin
method, for example. The approximate Galerkin solution  approximate Galerkin solution  approximate Galerkin solution  approximate Galerkin solution of the order  is
defined as a function
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satisfying the equations

(7.10)

for . Moreover, we assume that  and  is
absolutely continuous. Hereinafter we use the notation . Evidently
equations (7.10) can be rewritten in the form

(7.11)

where  is the orthoprojector onto  in .

In the exercises given below it is assumed that

, , . (7.12)

Show that problem (7.10) is uniquely solvable on any segment
 and . 

Show that the energy equality

(7.13)

holds for any solution to problem (7.10).

Using (7.11) and (7.13) prove the a priori estimate

for the approximate Galerkin solution  to problem (7.8).

Using the linearity of problem (7.11) show that for every two
approximate solutions  and  the estimate

u
m

t� � g
k

t� � e
k

k 1�

m

F�

u··m t� � e
j

�� � 2< u·m t� � e
j

�� � Au
m

t� � e
j

�� �� � h t� � e
j

�� � , t s  ,
�

u
m

s� � e
j

�� � u0 e
j

�� � , u·m s� � e
j

�� � u1 e
j

�� �� �
�
'
�
'
�

j 1 2 � m� � �� g
j

t� � C1 s s T��� �� g· j t� �
v· t� � vd td!�

u··m t� � 2 <u·m t� � A u
m

t� �� � p
m

h t� �  ,�

u
m

t s�
p

m
u0� ,  u·m

t s�
p

m
u1  ,�

�
'
�
'
�

p
m

Lin e1 � e
m

�� � H

h t� � L� R H�� �� u0 D A1 2/� �� u1 H�

E x e r c i s e 7.3

s s T��� " u
m

t� � Ls T��

E x e r c i s e 7.4

1
2
--- u·m t� � 2

A1 2/ um t� � 2�( )
* + 2 < u·m �� � 2 �d

s

t

��  

1
2
--- p

m
u1

2
A1 2/ pmu0

2�( )
* +

h �� � u·m �� ��� � �d

s

t

��

�

�

E x e r c i s e 7.5

A 1 2/� u··m t� � 2
u·m t� � 2

A1 2/ u
m

t� �� � C T u0 u1� �� ��

u
m

t( )

E x e r c i s e 7.6

u
m

t� � u
m 6 t� �

A 1� 2! u··m t� � u··m 6 t� ��� � 2

u·m t� � u·m 6 t� �� A1 2/ um t� � um 6 t� ��� � 2 �

�

� �



192 I n e r t i a l  M a n i f o l d s

3

C

h

a

p

t

e

r

holds for all , where  is an arbitrary number.

Using the results of Exercises 7.5 and 7.6 show that we can
pass to the limit  in equations (7.11) and prove the existence
and uniqueness of mild solutions to problem (7.8) on every segment

 under the condition (7.12).

For a mild solution  to problem (7.8) prove the energy
equation:

(7.14)

In particular, the exercises above show that for  problem (7.8) generates a
linear evolutionary semigroup  in the space  by the formula

, (7.15)

where  is a mild solution to problem (7.8) for . Equation (7.14) implies
that the semigroup  is contractive for .

Assume that conditions (7.12) are fulfilled. Show that the
mild solution to problem (7.8) can be presented in the form

, (7.16)

where the semigroup  is defined by equation (7.15).

Let us now consider nonlinear problem (7.1) and define its mild solution  mild solution  mild solution  mild solution as
a function  satisfying the integral equation

(7.17)

on . Here  and .
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Show that the estimates

,

hold in the space . Here  is a positive constant.

Follow the reasoning used in the proof of Theorems 2.1 and
2.3 of Chapter 2 to prove the existence and uniqueness of a mild so-
lution to problem (7.1) on any segment .

Thus, in the space  there exists a continuous evolutionary family of operators
 possessing the properties

, ,

and

,

where  is a mild solution to problem (7.1) with the initial condition 
.

Let condition  hold for some integer . We consider the decomposi-
tion of the space  into the orthogonal sum

,

where

and  is defined as the closure of the set

.

Show that the subspaces  and  are invariant with re-
spect to the operator . Find the spectrum of the restrictions of the
operator  to each of these spaces.

Let us introduce the following inner products in the spaces  and  (the pur-
pose of this introduction will become apparent further):

 

Here  and  are elements from the corresponding sub-
space . Using (7.18) we define a new inner product and a norm in  by the
equalities:

, ,

where  and  are decompositions of the elements  and 
into the orthogonal terms , .
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Lemma 7.1.

The estimates

, ; (7.19)

, (7.20)

hold for . Here

. (7.21)

Proof.

Let . It is evident that in this case 
for any . Therefore,

,

i.e. equation (7.19) holds. Let . Then using the inequality

, , (7.22)

for  we find that

.

If we take  and use (7.22), then we obtain estimate (7.20). The
lemma  is proved.

In particular, this lemma implies the estimate

(7.23)

for any , where  and  has the form (7.21).

Prove the equivalence of the norm  and the norm generated
by the inner product (7.4).

Show that we can take  for  in (7.20)
and (7.23).

Prove that the eigenvectors of the operator  (see
(7.7)) possess the following orthogonal properties: 

, ,

, . (7.24)
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Note that the last of these equations is one of the reasons of introducing a new inner
product.

Let  be the orthoprojector onto the subspace  in , .

Lemma 7.2.

The equality

, , (7.25)

is valid. Here  is the operator norm which is induced by the corres-

ponding vector norm. 

Proof. 

Let . We consider the function . Since  is inva-
riant with respect to , the equation

holds, where  is a solution to problem (7.8) for . After simple cal-
culations we obtain that

.

It is evident that

.

Therefore,

.

Consequently,

, . (7.26)

If we now notice that

,

then equation (7.26) implies (7.25). Thus, Lemma 7.2  is proved.

Let us consider the subspaces

.

Equation (7.24) gives us that the subspaces are orthogonal to each other and there-
fore . Using (7.24) it is easy to prove (do it yourself) that
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, , (7.27)

, . (7.28)

We use the following pair of orthogonal (with respect to the inner product
) projectors in the space 

,

to construct the inertial manifold of problem (7.1) (or (7.5)). Lemma 7.2 and equa-
tions (7.27) and (7.28) imply the dichotomy equations

, ; , . (7.29)

We remind that  and .
The assertion below plays an important role in the estimates to follow.

Lemma 7.3.

Let , where  and  pos-

sesses properties (7.2). Then

, ,

, , (7.30)

where

. (7.31)

The proof of this lemma follows from the structure of the mapping  and from
estimates (7.2) and (7.23).

Show that one can take  for  in
(7.30) (Hint: see Exercise 7.14).

Let us now consider the integral equation (cf. (2.1) for )

(7.32)
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in the space  of continuous vector-functions  on  with the values
in  such that the norm

, ,

is finite. Here  and .

Show that the right-hand side of equation (7.32) is a continu-
ous function of the variable  with the values in .

Lemma 7.4.

The operator  maps the space  into itself and possesses the pro-

perties 

(7.33)

and

. (7.34)

Proof.

Let us prove (7.34). Evidently, equations (7.29) and (7.30) imply that

Since

,

it is evident that

with

.

Simple calculations show that . Consequently, equa-
tion (7.34) holds. Equation (7.33) can be proved similarly. Lemma 7.4 is proved.
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Thus, if for some  the condition

(7.35)

holds, then equation (7.32) is uniquely solvable in  and its solution  can be esti-
mated as follows:

. (7.36)

Therefore, we can define a collection of manifolds  in the space  by the for-
mula

, (7.37)

where

. (7.38)

Here  is a solution to integral equation (7.32). The main result of this section is
the following assertion.

Theorem 7.1.

Assume thatAssume thatAssume thatAssume that

andandandand (7.39)

for some , where  and  is defined by formulafor some , where  and  is defined by formulafor some , where  and  is defined by formulafor some , where  and  is defined by formula

(7.31).... Then the function  given by equality  Then the function  given by equality  Then the function  given by equality  Then the function  given by equality (7.38) satisfies the Lip- satisfies the Lip- satisfies the Lip- satisfies the Lip-

schitz conditionschitz conditionschitz conditionschitz condition

(7.40)

and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-and the manifold  is invariant with respect to the evolutionary opera-

tor  generated by the formulator  generated by the formulator  generated by the formulator  generated by the formula

,,,, ,,,,

in in in in ,,,, where  is a solution to problem  where  is a solution to problem  where  is a solution to problem  where  is a solution to problem (7.1) with the initial condition with the initial condition with the initial condition with the initial condition

.... Moreover, if  Moreover, if  Moreover, if  Moreover, if ,,,, then there exist initial conditions then there exist initial conditions then there exist initial conditions then there exist initial conditions

 such that such that such that such that

for , where for , where for , where for , where ....

The proof of the theorem is based on Lemma 7.4 and estimates (7.29) and (7.30).
It almost entirely repeats the corresponding reasonings in Sections 2 and 3. We give
the reader an oppotunity to recover the details of the reasonings as an exercise. 
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Let us analyse condition (7.39). Equation (7.31) implies that (7.39) holds if

, . (7.41)

However, if we assume that

, (7.42)

then for condition (7.41) to be fulfilled it is sufficient to require that

. (7.43)

Thus, if for some  conditions (7.42) and (7.43) hold, then the assertions of Theo-
rem 7.1 are valid for system (7.1). This enables us to formulate the assertion on the
existence of IM as follows. 

Theorem 7.2.

Assume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the propertiesAssume that the eigenvalues  of the operator  possess the properties

andandandand ,,,, ,,,, ,,,, (7.44)

for some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimatefor some sequence  which tends to infinity and satisfies the estimate

,,,, ....

Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem Then there exists  such that the assertions of Theorem 7.1 hold for all hold for all hold for all hold for all

....

Proof.

Equation (7.44) implies that there exists  such that the intervals

, ,

cover some semiaxis . Indeed, otherwise there would appear a subse-
quence  such that

But that is impossible due to (7.44). Consequently, for any  there exists
 such that equations (7.42), (7.43) as well as (7.39) hold.

Consider problem (7.3) with the function 
 possessing the property

.

Use Theorem 7.1 to find a domain in the plane of the parameters
 for which one can guarantee the existence of an inertial ma-

nifold.
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§ 8 Approximate § 8 Approximate § 8 Approximate § 8 Approximate Inertial ManifoldsInertial ManifoldsInertial ManifoldsInertial Manifolds

for Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equationsfor Second Order in Time Equations

As seen from the results of Section 7, in order to guarantee the existence of IM for
a problem of the type

(8.1)

we have to require that the parameter  be large enough and the spectral
gap condition (see (7.41)) be valid for the operator . Therefore, as in the case with
parabolic equations there arises a problem of construction of an approximate inertial
manifold without any assumptions on the behaviour of the spectrum of the operator

 and the parameter  which characterizes the resistance force.
Unfortunately, the approach presented in Section 6 is not applicable to the

equation of the type (8.1) without any additional assumptions on . First of all, it is
connected with the fact that the regularizing effect which takes place in the case of
parabolic equations does not hold for second order equations of the type (8.1) (in
the parabolic case the solution at the moment  is smoother than its initial con-
dition).

In this section (see also [17]) we suggest an iteration scheme that enables us to
construct an approximate IM as a solution to a class of linear problems. For the sake
of simplicity, we restrict ourselves to the case of autonomous equations 

. The suggested scheme is based on the equation in functional derivatives
such that the function giving the original true IM should satisfy it. This approach was
developed for the parabolic equation in [9] (see also [8]). Unfortunately, this ap-
proach has two defects. First, approximate IMs have the power order (not the expo-
nential one as in Section 6) and, second, we cannot prove the convergence of
approximate IMs to the exact one when the latter exists.

Thus, in a separable Hilbert space  we consider a differential equation of the type
(8.1) where  is a positive number,  is a positive selfadjoint operator with discrete
spectrum and  is a nonlinear mapping from the domain  of the operator

 into  such that for some integer  the function  lies in  as a
mapping from  into  and for every  the following estimates hold:

, (8.2)
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td
------- A u� � B u� �  ,�

u
t 0� u0 , ud

td
-------

t 0�
u1  ,� �

$ 2 < 0
�
A

A $ 0


$

t 0


B u t�( ) &�
B u( )& �

H

$ A

B .� � D A1 2/� �
A1 2/ H m 2� B u� � Cm

D A1 2/� � H 4 0


B k� � u� � w1 � w
k

� ��C D C4 A1 2/ w
j

j 1�

k
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, (8.3)

where ,  is a norm in the space , , ,
and . Here  is the Frechét derivative of the order  of 
and  is its value on the elements . 

Let  be a class of solutions to problem (8.1) possessing the following
properties of regularity:

I) for  and for all 

and

, ,

where  is the space of strongly continuous functions on 
with the values in , hereinafter ;

II) for any  the estimate

(8.4)

holds for  and for , where  depends on  and  only.
In fact, the classes  are studied in [18]. This paper contains necessary and

sufficient conditions which guarantee that a solution belongs to a class .
It should be noted that in [18] the nonlinear wave equation of the type

(8.5)

serves as the main example. Here ,  and the conditions set on
the function  from  are such that we can take  or 

, where  for  and  for .
In this example the classes  are nonempty for all . Other examples will be
given in Chapter 4.

We fix an integer  and assume  to be the projector in  onto the sub-
space generated by the first  eigenvectors of the operator . Let . If we
apply the projectors  and  to equation (8.1), then we obtain the following sys-
tem of two equations for  and :

(8.6)

The reasoning below is formal. Its goal is to obtain an iteration scheme for the deter-
mination of an approximate IM. We assume that system (8.6) has an invariant mani-
fold of the form

(8.7)

B k� � u� � B k� � u*� �� w1 � w
k

� ��C D C4 A1 2/ u u*�� � A1 2/ w
j

j 1�

k

J�

k 0 1 � m� � �� . H A1 2/ u 4� A1 2/ u* 4�
wj D A1 2/� �� B k� � u� � k B u� �
B k� � u� � w1 � wk� ��C D w1 � wk� �

Lm R�

k 0 1 � m 1�� � �� T 0


u k� � t� � C 0 T D A� ���� ��

u m� � t� � C 0 T D A1 2/� ���� �� u m 1�� � t� � C 0 T H��� ��

C 0 T V��� � 0 T�� "
V u k� � t� � 9t

k
u t� ��

u Lm R��

u k 1�� � t� � 2
A1 2/ u k� � t� � 2

Au k 1�� � t� � 2� � R2�

k 1 � m� �� t t*� t* u0 u1
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in the phase space . Here  and  are smooth mappings from 
into . If we substitute  and 
in the second equality of (8.6), then we obtain the following equation:

The compatibility condition

gives us that

.

Hereinafter  and  are the Frechét derivatives of the function  with
respect to  and ;  and  are values of the corresponding deri-
vatives on an element .

Using these formal equations, we can suggest the following iteration process to
determine the class of functions  giving the sequence of approximate IMs
with the help of (8.7):

(8.8)

where  and the integers  should be choosen such that 
. Here  is defined by the formula

, (8.9)

where . We also assume that

. (8.10)

Find the form of  and  for  and for
.

The following assertion contains information on the smoothness properties of the
functions  and  which will be necessary further.

Theorem 8.1.

Assume that the class of functions  is defined according toAssume that the class of functions  is defined according toAssume that the class of functions  is defined according toAssume that the class of functions  is defined according to

(8.8)–(8.10).... Then for each  Then for each  Then for each  Then for each  the functions  the functions  the functions  the functions  and  and  and  and  belong to the class belong to the class belong to the class belong to the class

 as mappings from  as mappings from  as mappings from  as mappings from  into  into  into  into  and for all integers  such and for all integers  such and for all integers  such and for all integers  such

that  the estimatesthat  the estimatesthat  the estimatesthat  the estimates
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(8.11)

(8.12)

are valid for all  and  from  such that  and are valid for all  and  from  such that  and are valid for all  and  from  such that  and are valid for all  and  from  such that  and ....

Hereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of theHereinafter  is the mixed Frechét derivative of the function  of the

order  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the valuesorder  with respect to  and of the order  with respect to ; the values

 and  are from  and  are from  and  are from  and  are from .... Moreover, if  or  Moreover, if  or  Moreover, if  or  Moreover, if  or ,,,, then the correspon- then the correspon- then the correspon- then the correspon-

ding products in ding products in ding products in ding products in (8.11) and  and  and  and (8.12) should be omitted. should be omitted. should be omitted. should be omitted.

Proof.

We use induction with respect to . It follows from (8.10) and (8.2) that esti-
mates (8.11) and (8.12) are valid for . Assume that (8.11) and (8.12) hold
for all . Then the following lemma holds.

Lemma 8.1.

Let  and let

.

Then for  and for all integers  such that 

the estimate

(8.13)

holds, where , , , and , .

Proof.

It is evident that  is the sum of terms of the type

, .

Here  is one of the values of the form:

,

.
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Equation (8.2) implies that

.

Therefore, the induction hypothesis gives us (8.13).

Let us prove (8.12). The induction hypothesis implies that it is sufficient to estimate
the derivatives of the second term in the right-hand side of (8.9). It has the form

, (8.14)

where

.

The Frechét derivatives of value (8.14)

are sums of the terms of the type

,

where

.

Here ,  and the sets of indices possess the following proper-
ties:

,

;

,

.

The induction hypothesis implies that

.

Using the induction hypothesis again as well as Lemma 8.1 and the inequality

,

we obtain an estimate of the following form (if  or , then the correspon-
ding product should be considered to be equal to 1):

.
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Hereinafter  is the -th eigenvalue of the operator . Thus, it is possible to state
that

. (8.15)

Using the inequality 

, , (8.16)

and equation (8.15) it is easy to find that estimates (8.12) are valid for . If we
use (8.8), (8.12) and follow a similar line of reasoning, we can easily obtain (8.11).
Theorem 8.1  is proved.

Theorem 8.1 and equation (8.4) imply the following lemma.

Lemma 8.2.

Assume that  is a solution to problem (8.1) lying in , .

Let  and let

, . (8.17) 

Then the estimates

with  and

are valid for  large enough.

Proof.

It should be noted that  is the sum of terms of the form

,

where , , ,  are nonnegative integers such that

, .

Similar equation also holds for . Further one should use Theorem 8.1 and
the estimates

, , ,

which follow from (8.4).

Let us define the induced trajectories of the system by the formula

,

where  and

, . (8.18)
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Here ,  is a solution to problem (8.1);  and  are defined
with the help of (8.17). Assume that  lies in . Then Lemma 8.2 implies
that the induced trajectories can be estimated as follows:

, ;

for  large enough. Using (8.3), (8.4), and the last estimates, it is easy to prove the
following assertion (do it yourself).

Lemma 8.3.

Let

.

Then

for  and for  large enough.

The main result of this section is the following assertion.

Theorem 8.2.

Let  be a solution to problem Let  be a solution to problem Let  be a solution to problem Let  be a solution to problem (8.1) lying in  with  lying in  with  lying in  with  lying in  with ....

Assume that  and  are defined by Assume that  and  are defined by Assume that  and  are defined by Assume that  and  are defined by (8.8)–(8.10).... Then the es- Then the es- Then the es- Then the es-

timatestimatestimatestimates

,,,, (8.19)

,,,, (8.20)

are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,are valid for  and for  large enough. Here ,

 and  are defined by  and  are defined by  and  are defined by  and  are defined by (8.18),,,, and  is the -th eigenva-and  is the -th eigenva-and  is the -th eigenva-and  is the -th eigenva-

lue of the operator lue of the operator lue of the operator lue of the operator ....

Proof.

Let us consider the difference between the solution  and the trajectory in-
duced by this solution:

, , ,

where  and  are defined by formula (8.18). Since , equation
(8.4) implies that

, , (8.21)
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for  large enough. Equations (8.8)–(8.10) also give us that

.

We use Lemma 8.3 and equation (8.21) to find that

, ,

for  large enough. Therefore, equation (8.19) holds for  and for  large
enough. From equations (8.6), (8.8), and (8.9) it is easy to find that

and

. (8.22)

Lemma 8.4.

The estimates

(8.23)

and

(8.24)

are valid for  large enough and for each , where .

Proof.

Let  or . It is clear that the value  is the
algebraic sum of terms of the form:

Therefore, Theorem 8.1 and Lemma 8.3 imply (8.23) and (8.24). Lemma 8.4
is proved.

We use Lemmata 8.3 and 8.4 as well as inequality (8.16) to obtain that

 (8.25)

where  and the numbers  and  do not depend on .
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If we now assume that (8.19) holds for , then equation (8.25) implies
(8.19) for  and for . Using (8.22) and (8.23) we obtain equation
(8.20). Theorem 8.2 is proved.

Corollary 8.1

Let the manifold  have the form (8.7) with  and

. We also assume that , where 

is the solution to problem (0.1) from the class . Then

, .

Thus, the thickness of the layer that attracts the trajectories in the phase space has
the power order with respect to  unlike the semilinear parabolic equations
of Section 6.

E x a m p l e  8.1

Let us consider the nonlinear wave equation (8.5). Let . We as-
sume the following (cf. [18]) about the function :

;

there exists  such that

;

for any  there exists  such that

. (8.26)

Under these assumptions the solution  lies in  for  large
enough if and only if the initial data satisfy some compatibility conditions [18].
Moreover, the global attractor  of system (8.5) exists and any trajectory lying
in  possesses properties (8.4) for all  and , [18]. It is easy
to see that Theorem 8.2 is applicable here (the form of ,  and  is evi-
dent in this case). In particular, Theorem 8.2 gives us that for a trajectory

 of problem (8.5) which lies in the global attractor  the
estimate

holds for all , all , and all . Here  and
 are defined with the help of (8.18). Therewith
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, , (8.27)

where  is a manifold of the type (8.7) with  and .
Here  is the distance between  and  in the space

. Equation (8.27) gives us some information on the location of
the global attractor in the phase space.

Other examples of usage of the construction given here can be found in papers [17]
and [19] (see also Section 9 of Chapter 4).

§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method§ 9 Idea of Nonlinear Galerkin Method

Approximate inertial manifolds have proved to be applicable to the computational
study of the asymptotic behaviour of infinite-dimensional dissipative dynamical sys-
tems (for example, see the discussion and the references in [8]). Their usage leads
to the appearance of the so-called nonlinear Galerkin method [20] based on the re-
placement of the original problem by its approximate inertial form. In this section we
discuss the main features of this method using the following example of a second or-
der in time equation of type (8.1):

, , . (9.1)

If all conditions on  and  given in the previous section are fulfilled, then
Theorem 8.2 is valid. It guarantees the existence of a family of mappings 
from  into  possessing the properties:

1) there exist constants  and , , such
that

, e, (9.2)

, (9.3)

(9.4)

for all  and  from  such that

, , ;

2) for any solution  to problem (9.1) which lies in  for  the es-
timate
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(9.5)

is valid (see Theorem 8.2) for all  and  large enough. Here

(9.6)

 is the -th eigenvalue of , and  is the constant from (8.4).

The family  is defined with the help of a quite simple procedure (see (8.8)
and (8.9)) which can be reduced to the process of solving of stationary equations of
the type  in the subspace . Moreover,

, , . (9.7)

In particular, estimates (9.5) and (9.6) mean (see Corollary 8.1) that trajectories
 of system (9.1) are attracted by a small (for  large enough)

vicinity of the manifold

. (9.8)

The sequence of mappings  generates a family of approximate inertial
forms of problem (9.1):

. (9.9)

A finite-dimensional dynamical system in  which approximates (in some sense)
the original system corresponds to each form. For  equation (9.9) transforms
into the standard Galerkin approximation of problem (9.1) (due to (9.7)). If ,
then we obtain a class of numerical methods which can be naturally called the non-
linear Galerkin methods. However, we cannot use equation (9.9) in the computa-
tional study directly. The point is that, first, in the calculation of  we have
to solve a linear equation in the infinite-dimensional space  and, second, we can
lose the dissipativity property. Therefore, we need additional regularization. It can
be done as follows. Assume that  stands for one of the functions 
or . We define the value

, (9.10)

where  is an infinitely differentiable function on  such that a) ;
b)  for ; c)  for ;  is the radius of dissipativity
(see (8.4) for ) of system (9.1);  is the orthoprojector in  onto the sub-
space generated by the first  eigenvectors of the operator , . We consider
the following -dimensional evolutionary equation in the subspace :
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(9.11)

Prove that problem (9.11) has a unique solution for  and
the corresponding dynamical system is dissipative in .

We call problem (9.11) a nonlinear Galerkin -approximation of problem
(9.1). The following assertion is valid.

Theorem 9.1.

Assume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equationsAssume that the mappings  and  satisfy equations

(9.2)–(9.5) for  and for some  for  and for some  for  and for some  for  and for some .... Moreover, we assume that Moreover, we assume that Moreover, we assume that Moreover, we assume that

(9.5) is valid for all  is valid for all  is valid for all  is valid for all .... Let  and  be defined by  Let  and  be defined by  Let  and  be defined by  Let  and  be defined by (9.10) with the help with the help with the help with the help

of  and  and letof  and  and letof  and  and letof  and  and let

,,,,

,,,,

where  is a solution to problem where  is a solution to problem where  is a solution to problem where  is a solution to problem (9.11).... Then the estimate Then the estimate Then the estimate Then the estimate
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and

are valid for the class of solutions under consideration. Therefore, we use (9.5) to
find that

(9.13)

and

(9.14)

Therefore, we must compare the solution  to problem (9.11) with the value
 which satisfies the equation

(9.15)

with the same initial conditions as the function . Let . Then
it follows from (9.11) and (9.15) that

(9.16)

where

.

Due to the dissipativity of problems (9.11) and (9.15) we use (9.13) to obtain

for the class of solutions under consideration. Therefore, equation (9.16) implies
that

.

Hence, Gronwall’s lemma gives us that

.

This and equations (9.13) and (9.14) imply estimate (9.12). Theorem 9.1  is proved.

If we take  and  in Theorem 9.1, then estimate (9.12) changes into the
accuracy estimate of the standard Galerkin method of the order . Therefore, if the
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parameters , , and  are compatible such that , then the error of
the corresponding nonlinear Galerkin method has the same order of smallness as in
the standard Galerkin method which uses  basis functions. However, if we use the
nonlinear method, we have to solve a number of linear algebraic systems of the order

 and the Cauchy problem for system (9.11) which consists of  equations.
In particular, in order to determine the value  we must solve the equation

for  and choose the numbers  and  such that . Moreover,
if , , as , then the values  and  must be com-
patible such that .

We note that Theorem 9.1 as well as the corresponding variant of the nonlinear
Galerkin method can be used in the study of the asymptotic properties of solutions
to the nonlinear wave equation (8.5) under some conditions on the nonlinear term

. Other applications of Theorem 9.1 can also be pointed out.
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