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In this chapter we use the ideas and the results of Chapters 1 and 3 to study in
details the asymptotic behaviour of a class of problems arising in the nonlinear theo-
ry of oscillations of distributed parameter systems. The main object is the following
second order in time equation in a separable Hilbert space :

, (0.1)

, (0.2)

where  is a positive operator with discrete spectrum in ,  is a real function
(its properties are described below),  is a linear operator in ,  is a given
bounded function with the values in , and  is a nonnegative parameter. The
problem of type (0.1) and (0.2) arises in the study of nonlinear oscillations of a plate
in the supersonic flow of gas. For example, in Berger’s approach (see [1, 2]), the dy-
namics of a plate can be described by the following quasilinear partial differential
equation:

, (0.3)

 

with boundary and initial conditions of the form

. (0.4)

Here  is the Laplace operator in the domain ; , , and  are con-
stants; and , , and  are given functions. Equations (0.3)–(0.4)
describe nonlinear oscillations of a plate occupying the domain  on a plane which
is located in a supersonic gas flow moving along the -axis. The aerodynamic pres-
sure on the plate is taken into account according to Ilyushin’s “piston” theory (see,
e. g., [3]) and is described by the term . The parameter  is determined by
the velocity of the flow. The function  measures the plate deflection at the
point  and the moment . The boundary conditions imply that the edges of the
plate are hinged. The function  describes the transverse load on the plate.
The parameter  is proportional to the value of compressive force acting in the
plane of the plate. The value  takes into account the environment resistance.

Our choice of problem (0.1) and (0.2) as the base example is conditioned by the
following circumstances. First, using this model we can avoid significant technical
difficulties to demonstrate the main steps of reasoning required to construct a solu-
tion and to prove the existence of a global attractor for a nonlinear evolutionary se-
cond order in time partial differential equation. Second, a study of the limit regimes
of system (0.3)–(0.4) is of practical interest. The point is that the most important
(from the point of view of applications) type of instability which can be found in the
system under consideration is the flutter, i.e. autooscillations of a plate subjected to
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aerodynamical loads. The modern look on the flutter instability of a plate is the fol-
lowing: there arises the Andronov-Hopf bifurcation leading to the appearance of
a stable limit cycle in the system. However, there are experimental and numerical
data that enable us to conjecture that an increase in flow velocity may result in the
complication of the dynamics and appearance of chaotic fluctuations [4]. Therefore,
the study of the existence and properties of the attractor of the given problem
enables us to better understand the mechanism of appearance of a nonlinear flutter.

§ 1 Spaces§ 1 Spaces§ 1 Spaces§ 1 Spaces

As above (see Chapter 2), we use the scale of spaces  generated by a positive ope-
rator  with discrete spectrum acting in a separable Hilbert space . We remind
(see Section 2.1) that the space  is defined by the equation

,

where  is the orthonormal basis of the eigenelements of the operator  in ,
 are the corresponding eigenvalues and is a real parameter

(for  we have  and for  the space  should be treated as a class
of formal series). The norm in  is given by the equality

for .

Further we use the notation  for the set of measurable functions
on the segment  with the values in the space  such that the norm

is finite. The notation  has a similar meaning for .
We remind that a function  with the values in a separable Hilbert space 

is said to be Bochner measurableBochner measurableBochner measurableBochner measurable on a segment  if it is a limit of a se-
quence of functions

for almost all , where  are elements of  and  are the cha-
racteristic functions of the pairwise disjoint Lebesgue measurable sets . One
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can prove (see, e.g., the book by K. Yosida [5]) that for separable Hilbert spaces un-
der consideration a function  is measurable if and only if the scalar function

 is measurable for every . Furthermore, a function  is said
to be Bochner integrableBochner integrableBochner integrableBochner integrable  over  if

, ,

where  is a sequence of simple functions defined above. The integral of the
function  over a measurable set  is defined by the equation

,

where is the characteristic function of the set  and the integral of a simple
function in the right-hand side of the equality is defined in an obvious way.

For the function with the values in Hilbert spaces most facts of the ordinary Le-
besgue integration theory remain true.

Let  be a function on  with the values in a sepa-
rable Hilbert space . If there exists a sequence of measurable func-
tions  such that  almost everywhere, then 
is also measurable.

Show that a measurable function  with the values in 
is integrable if and only if . Therewith

for any measurable set .

Let a function  be integrable over  and let  be
a measurable set from . Show that

for any .

Show that the space  can be described as a set
of series
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where  are scalar functions that are square-integrable over
 and such that

. (1.1)

Below we also use the space  of strongly continuous functions on 
with the values in  and the norm

.

Let  be a function with the values in  integrable over
. Show that the function 

lies in . Moreover,  is an absolutely continuous
function with the values in , i.e. for any  there exists 
such that for any collection of disjoint segments 
the condition  implies that 

.

Show that for any absolutely continuous function  on
 with the values in  there exists a function  with the

values in  such that it is integrable over  and

, .

(Hint: use the one-dimensional variant of this assertion).

The space

 (1.2)

with the norm

plays an important role below. Hereinafter the derivative  stands for
a function integrable over  and such that
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almost everywhere for some  (see Exercises 1.5 and 1.6). Evidently, the space
 is continuously embedded into , i.e. every function  from 

lies in  and

,

where  is a constant. This fact is strengthened in the series of exercises given be-
low.

Let be the projector onto the span of the set 
 and let . Show that  is absolutely

continuous and possesses the property

.

The equations

(1.3a)

and

 (1.3b)

are valid for any  and .

Use (1.3) to prove that
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and

. (1.4b)
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The following three exercises result in a particular case of Dubinskii’s theorem
(see Exercise 1.13).

Let  be an orthonormal basis in  con-
sisting of the trigonometric functions

, , ,

. Show that  if and only if

(1.5)

and

.

Show that the space  can be described as a set of series of
the form (1.5) such that

.

Use the method of the proof of Theorem 2.1.1 to show that
 is compactly embedded into the space  for any

.

Show that  is compactly embedded into .
Hint: use Exercise 1.10 and the reasoning which is usually applied
to prove the Arzelà theorem on the compactness of a collection
of scalar continuous functions.

§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem§ 2 Auxiliary Linear Problem

In this section we study the properties of a solution to the following linear problem:
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Here is a positive operator with discrete spectrum. The vectors , , 
as well as the scalar function  are given (for the corresponding hypotheses see
the assertion of Theorem 2.1).

The main results of this section are the proof of the theorem on the existence
and uniqueness of weak solutions to problem (2.1) and (2.2) and the construction
of the evolutionary operator for the system when . In fact, the approach we
use here is well-known (see, e.g., [6] and [7]).

A weak solution  weak solution  weak solution  weak solution to problem (2.1) and (2.2) on a segment  is a func-
tion  such that  and the equation

(2.3)

holds for any function  such that . As above,  stands for the
derivative of  with respect to .

Prove that if a weak solution  exists, then it satisfies
the equation

 (2.4)

for every  (Hint: take  in (2.3), where
is a scalar function from ).

Theorem 2.1

Let Let Let Let , , and . We al, , and . We al, , and . We al, , and . We alsssso assume that o assume that o assume that o assume that  is a bounded is a bounded is a bounded is a bounded

continuous function on continuous function on continuous function on continuous function on and and and and , where , where , where , where  is a posi- is a posi- is a posi- is a posi-

tive number. Then problem tive number. Then problem tive number. Then problem tive number. Then problem (2.1) andandandand (2.2) has a unique weak solution has a unique weak solution has a unique weak solution has a unique weak solution

 on the segment  on the segment  on the segment  on the segment .... This solution possesses the properties This solution possesses the properties This solution possesses the properties This solution possesses the properties

,,,, (2.5)

and satisfies the energy equationand satisfies the energy equationand satisfies the energy equationand satisfies the energy equation
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Proof.

We use the compactness method to prove this theorem. At first we construct ap-
proximate solutions to problem (2.1) and (2.2). The approximate Galerkin solution
(to this problem) of the order  with respect to the basis  is considered to be
the function

(2.7)

satisfying the equations

, (2.8)

, , . (2.9)

Here  and is absolutely continuous. Due to the orthogonality
of the basis  equations (2.8) and (2.9) can be rewritten as a system of ordinary
differential equations:

e,

, , .

Lemma 2.1
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rable bounded function. Then the Cauchy problem
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Proof.

Problem (2.10) is solvable at least locally, i.e. there exists  such that a so-
lution exists on the half-interval . Let us prove estimate (2.11) for the in-
terval of existence of solution. To do that, we multiply equation (2.10) by .
As a result, we obtain that

.

We integrate this equality and use the equations 

, ,

to obtain that

.

This and Gronwall’s lemma give us (2.11).
In particular, estimate (2.11) enables us to prove that the solution  can

be extended on a segment  of arbitrary length. Indeed, let us assume the
contrary. Then there exists a point  such that the solution can not be extended
through it. Therewith equation (2.11) implies that

, .

Therefore, (2.10) gives us that the derivative  is bounded on .
Hence, the values

,

are continuous up to the point . If we now apply the local theorem on exis-
tence to system (2.10) with the initial conditions at the point  that are equal to

 and , then we obtain that the solution can be extended through .
This contradiction implies that the solution  exists on an arbitrary segment

.
Let us prove estimate (2.13). To do that, we consider the function

.  (2.14)

Using the inequality

,

it is easy to find that the equation

 (2.15)
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holds under the condition

, .

Further we use (2.10) with  to obtain that

.

Consequently, with the help of (2.15) we get

under conditions (2.12). This implies that

.

We use (2.15) to obtain estimate (2.13). Thus, Lemma 2.1 is proved.

Assume that  in Lemma 2.1. Show that problem (2.10)
is uniquely solvable on any segment  and the estimate 

is valid for  and for any , where .

Lemma 2.1 implies the existence of a sequence of approximate solutions 
to problem (2.1) and (2.2) on any segment .

Show that every approximate solution  is a solution to
problem (2.1) and (2.2) with , , and 

, where 

,

, 

and  is the orthoprojector onto the span of elements 
 in  .

Let us prove that the sequence of approximate solutions  is convergent.
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At first we note that 

for every . Therefore, by virtue of Lemma 2.1 we have that

for . Moreover, in the case , the result of Exercise 2.2 gives that

.

These equations imply that the sequences  and  are the Cauchy
sequences in the space  on any segment . Consequently, there
exists a function  such that

, ,

. (2.17)

Equations (2.8) and (2.9) further imply that

for all functions  from  such that . Here , and , ,
are defined by (2.16). We use equation (2.17) to pass to the limit in this equation and
to prove that the function  satisfies equality (2.3). Moreover, it follows from
(2.17) that . Therefore, the function  is a weak solution to problem
(2.1) and (2.2).

In order to prove the uniqueness of weak solutions we consider the function

 (2.18)

for . Here  is a weak solution to problem (2.1) and (2.2) for ,
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.

Due to the structure of the function  we obtain that

, (2.19)

where

.

It is evident that  for . Therefore,

If we substitute this estimate into equation (2.19), then it is easy to find that

,

where  and is a positive constant depending on the length of the seg-
ment . This and Gronwall’s lemma imply that .

Let us prove the energy equation. If we multiply equation (2.8) by  and
summarize the result with respect to , then we find that

.

After integration with respect to  we use (2.17) to pass to the limit and obtain (2.6).
Theorem 2.1 is completely proved.

Prove that the estimate

(2.20)

is valid for a weak solution  to problem (2.1) and (2.2). Here
 and .
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Let  be a weak solution to problem (2.1) and (2.2). Prove
that  and

.

Here we treat the equality as an equality of elements in . 
(Hint: use the results of Exercises 2.1 and 2.1.3).

Let  be a weak solution to problem (2.1) and (2.2) con-
structed in Theorem 2.1. Then the function  is absolutely conti-
nuous as a vector-function with the values in  while the derivati-
ve  belongs to the space . Moreover, the function

 satisfies equation (2.1) if we treat it as an equality of elements
in  for almost all .

In particular, the result of Exercise 2.6 shows that a weak solution satisfies equation
(2.1) in a stronger sense then (2.4).

We also note that the assertions of Theorem 2.1 and Exercises 2.4–2.6 with the
corresponding changes remain true if the initial condition is given at any other mo-
ment  which is not equal to zero.

Now we consider the case  and construct the evolutionary operator of prob-
lem (2.1) and (2.2). To do that, let us consider the family of spaces

, .

Every space  is a set of pairs  such that  and .
We define the inner product in  by the formula

.

Prove that  is compactly embedded into  for .

In the space  we define the evolutionary operator  of problem (2.1) and
(2.2) for  by the equation

, (2.21)

where is a solution to (2.1) and (2.2) at the moment  with initial conditions
that are equal to  at the moment .

The following assertion plays an important role in the study of asymptotic be-
haviour of solutions to problem (0.1) and (0.2).
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Theorem 2.2

Assume that the function Assume that the function Assume that the function Assume that the function  is continuously differentiable in  is continuously differentiable in  is continuously differentiable in  is continuously differentiable in (2.1)
and such thatand such thatand such thatand such that

, .

Then the evolutionary operator Then the evolutionary operator Then the evolutionary operator Then the evolutionary operator  of problem  of problem  of problem  of problem (2.1) andandandand (2.2) for for for for

 is a linear bounded operator in each space  is a linear bounded operator in each space  is a linear bounded operator in each space  is a linear bounded operator in each space  for  for  for  for  and it and it and it and it

possesses the properties:possesses the properties:possesses the properties:possesses the properties:

a) ,,,, ,,,, ;;;;

b) for all  the estimatefor all  the estimatefor all  the estimatefor all  the estimate

 (2.22)

is valid;is valid;is valid;is valid;

c) there exists a number there exists a number there exists a number there exists a number     depending ondepending ondepending ondepending on , , , , , , , , and  such that the and  such that the and  such that the and  such that the

equationequationequationequation

,,,, ,,,, (2.23)

holds holds holds holds for all for all for all for all ,,,, where where where where  is the orthoprojector onto the subspace is the orthoprojector onto the subspace is the orthoprojector onto the subspace is the orthoprojector onto the subspace

in the space in the space in the space in the space ....

Proof.

Semigroup property a) follows from the uniqueness of a weak solution.
The boundedness property of the operator  follows from (2.22). Let us prove
relations (2.22) and (2.23). It is sufficient to consider the case . According
to the definition of the evolutionary operator we have that

, ,

where  is the weak solution to problem (2.1) and (2.2) for . Due to
(2.17) it can be represented as a convergent series of the form

.

Moreover, Lemma 2.1 implies that

. (2.24)

Since

,

equation (2.24) implies (2.22).
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Further we use equation (2.13) to obtain that

, (2.25)

provided the conditions (cf. (2.12))

, ,

are fulfilled. Evidently, these conditions hold if

,

where and . Since

,

equation (2.25) gives us (2.23) for all , where  is the smallest natural
number such that

. (2.26)

Thus, Theorem 2.2 is proved.

Show that a weak solution  to problem (2.1) and (2.2)
can be represented in the form

, (2.27)

where  and  is defined by (2.21).

Use the result of Exercise 2.2 to show that Theorem 2.1 and
Theorem 2.2 (a, b) with another constant in (2.22) also remain true
for . Use this fact to prove that if the hypotheses of Theorems
2.1 and 2.2 hold on the whole time axis, then problem (2.1) and (2.2)
is solvable in the class of functions

with .

Show that the evolutionary operator  has a bounded
inverse operator in every space  for . How is the operator

 for  related to the solution to equation (2.1) for
? Define the operator  using the formula 

 for  and prove assertion (a) of Theorem 2.2 for
all .
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§ 3 Theorem on Existence§ 3 Theorem on Existence§ 3 Theorem on Existence§ 3 Theorem on Existence

and Uniqueness of Solutionsand Uniqueness of Solutionsand Uniqueness of Solutionsand Uniqueness of Solutions

In this section we use the compactness method (see, e.g., [8]) to prove the theorem
on the existence and uniqueness of weak solutions to problem (0.1) and (0.2) under
the assumption that

, , ; (3.1)

, , (3.2)

where , ,  is the first eigenvalue of the operator , and the
operator  is defined on  and satisfies the estimate

, . (3.3)

Similarly to the linear problem (see Section 2), the function  is said
to be a weak solution  weak solution  weak solution  weak solution to problem (0.1) and (0.2) on the segment 
if  and the equation

 (3.4)

holds for any function  such that . Here the space  is defined
by equation (1.2).

Prove the analogue of formula (2.4) for weak solutions to
problem (0.1) and (0.2).

The following assertion holds.

Theorem 3.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.1)–(3.3) hold. Then on every segment  hold. Then on every segment  hold. Then on every segment  hold. Then on every segment 

problem problem problem problem (0.1) andandandand (0.2) has a weak solution  has a weak solution  has a weak solution  has a weak solution .... This solution is unique. This solution is unique. This solution is unique. This solution is unique.

It possesses the propertiesIt possesses the propertiesIt possesses the propertiesIt possesses the properties

,,,, (3.5)
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and satisfies the energy equalityand satisfies the energy equalityand satisfies the energy equalityand satisfies the energy equality

,,,, (3.6)

wherewherewherewhere

....  (3.7)

We use the scheme from Section 2 to prove the theorem.
The Galerkin approximate solution of the order  to problem (0.1) and (0.2)

with respect to the basis  is defined as a function of the form

which satisfies the equations

(3.8)

for  with  and the initial conditions

, , . (3.9)

Simple calculations show that the problem of determining of approximate solutions
can be reduced to solving the following system of ordinary differential equations:

, (3.10)

, , . (3.11)

The nonlinear terms of this system are continuously differentiable with respect to
. Therefore, it is solvable at least locally. The global solvability follows from the

a priori estimate of a solution as in the linear problem. Let us prove this estimate.
We consider an approximate solution  to problem (0.1) and (0.2) on the

solvability interval . It satisfies equations (3.8) and (3.9) on the interval
. We multiply equation (3.8) by  and summarize these equations with re-

spect to  from 1 to . Since

,

we obtain

 (3.12)
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as a result, where  is defined by (3.7). Equation (3.3) implies that

.

Condition (3.2) gives us the estimate

 (3.13)

with the constants independent of . Therefore, due to Gronwall’s lemma equation
(3.12) implies that

, (3.14)

with the constants , , and  depending on the problem parameters only.

Use equation (3.14) to prove the global solvability of Cauchy
problem (3.10) and (3.11).

It is evident that

and .

Therefore,

 ,

where . Consequently, equation (3.14) gives
us that

 (3.15)

for any , where  does not depend on . Thus, the set of approximate solu-
tions  is bounded in  for any . Hence, there exist an element

 and a sequence  such that  weakly in . Let us
show that the weak limit point  possesses the property 

 (3.16)

for almost all . Indeed, the weak convergence of the sequence  to
the function  in  means that  and  weakly (in ) con-
verge to  and  respectively. Consequently, this convergence will also take
place in  for any  and  from the segment . Therefore, by
virtue of the known property of the weak convergence we get

 .
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With the help of (3.15) we find that

.

Therefore, due to the arbitrariness of  and  we obtain estimate (3.16).

Lemma 3.1

For any function 

,

where

.

Proof.

Since

where , due to (3.15) and (3.16) we have

,

where the constant  is the maximum of the function  on the sufficient-
ly large segment , determined by the constant  from inequalities
(3.15) and (3.16). Hence,

The compactness of the embedding of  into  (see Exer-
cise 1.13) implies that  as . It is evident that
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.

Because of the weak convergence of  to  this gives us the assertion of the
lemma. 

Prove that the functional

is continuous on  for any .

Let us prove that the limit function  is a weak solution to problem (0.1) and
(0.2).

Let  be the orthoprojector onto the span of elements 
in the space . We also assume that

and

.

It is clear that an arbitrary element of the space  has the form

,

where  is an absolutely continuous real function on  such that

, .

If we multiply equation (3.8) by , summarize the result with respect to  from
1 to , and integrate it with respect to  from  to , then it is easy to find that

for . The weak convergence of the sequence  to  in  as well as Lem-
ma 3.1 and Exercise 3.3 enables us to pass to the limit in this equality and to show
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that the function  satisfies equation (3.4) for any function , where
. Further we use (cf. Exercise 2.1.11) the formula

for any function  in order to turn from the elements  of  to the func-
tions  from the space .

Prove that .

Thus, every weak limit point  of the sequence of Galerkin approximations 
in the space  is a weak solution to problem (0.1) and (0.2).

If we compare equations (3.4) and (2.3), then we find that every weak solution
 is simultaneously a weak solution to problem (2.1) and (2.2) with  and

. (3.17)

It is evident that . Therefore, due to Theorem 2.1 equations
(3.5) are valid for the function .

To prove energy equality (3.6) it is sufficient (due to (2.6)) to verify that for
 of form (3.17) the equality

(3.18)

holds. Here is a vector-function possessing property (3.5). We can do that by
first proving (3.18) for the function of the form  and then passing to the limit.

Let  be a weak solution to problem (0.1) and (0.2). Use
equation (3.6) to prove that

, , (3.19)

where  are constants depending on the parameters
of problem (0.1) and (0.2).

Let us prove the uniqueness of a weak solution to problem (0.1) and (0.2). We as-
sume that  and  are weak solutions to problem (0.1) and (0.2) with the
initial conditions  and , respectively. Then the function
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is a weak solution to problem (2.1) and (2.2) with the initial conditions 
, , the function , and the right-hand

side

.

We use equation (3.19) to verify that

, ,

where  is a positive monotonely increasing function of the parameter .
Therefore, equation (2.20) implies that

where  depends on  and the problem parameters and is a function of the
variables , . We can assume that  is the same for all initial
data such that , . Using Gronwall’s lemma we obtain that

, (3.20)

where  and  is a constant depending only on , the problem pa-
rameters and the value  such that . In particular, this esti-
mate implies the uniqueness of weak solutions to problem (0.1) and (0.2). The proof
of Theorem 3.1 is complete.

Show that a weak solution  satisfies equation (0.1) if we
consider this equation as an equality of elements in  for almost all .
Moreover,  (Hint: see Exercise 2.5).

Assume that the hypotheses of Theorem 3.1 hold. Let  be
a weak solution to problem (0.1) and (0.2) on the segment 
and let  be the corresponding Galerkin approximation of the
order . Show that

as .
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In conclusion of the section we note that in case of stationary load  we
can construct an evolutionary operator  of problem (0.1) and (0.2) in the space

 supposing that 

for , where  is a weak solution to problem (0.1) and (0.2) with the
initial conditions . Due to the uniqueness of weak solutions we have

, , .

By virtue of (3.20) the nonlinear mapping  is a continuous mapping of . Equa-
tion (3.5) implies that the vector-function  is strongly continuous with respect
to  for any . Moreover, for any  and  there exists a constant

 such that

 (3.21)

for all  and for all . 

Use equation (3.21) to show that  is a continu-
ous mapping from  into .

Prove the theorem on the existence and uniqueness of solu-
tions to problem (0.1) and (0.2) for . Use this fact to show that
the collection of operators  is defined for negative  and forms
a group (Hint: cf. Exercises 2.9 and 2.10).

Prove that the mapping  is a homeomorphism in  for eve-
ry .

Let  be a periodic function: 
, . Define the family of operators  by the for-

mula

, ,

in the space . Here is a solution to problem (0.1)
and (0.2) with the initial conditions . Prove that the
pair  is a discrete dynamical system. Moreover, 
and  is a homeomorphism in .
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§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions§ 4 Smoothness of Solutions

In the study of smoothness properties of solutions constructed in Section 3 we use
some ideas presented in paper [9]. The main result of this section is the following as-
sertion.

Theorem 4.1

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 3.1 hold. We assume that  hold. We assume that  hold. We assume that  hold. We assume that 

 and the load  and the load  and the load  and the load  lies in  lies in  lies in  lies in  for some  for some  for some  for some .... Then Then Then Then

for a weak solution for a weak solution for a weak solution for a weak solution  to problem  to problem  to problem  to problem (0.1) andandandand (0.2) to possess the properties to possess the properties to possess the properties to possess the properties

 (4.1)

it is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditionsit is necessary and sufficient that the following compatibility conditions

are fulfilled:are fulfilled:are fulfilled:are fulfilled:

,,,, ;;;; .... (4.2)

Here Here Here Here  is a strong derivative of the function  is a strong derivative of the function  is a strong derivative of the function  is a strong derivative of the function  with respect to  with respect to  with respect to  with respect to 

of the order of the order of the order of the order  and the values  and the values  and the values  and the values  are recurrently defined by the initial are recurrently defined by the initial are recurrently defined by the initial are recurrently defined by the initial

conditions conditions conditions conditions  and  and  and  and  with the help of equation  with the help of equation  with the help of equation  with the help of equation (0.1)::::

,,,, ,,,,

 (4.3)

where where where where ....

Proof.

It is evident that if a solution  possesses properties (4.1) then compatibility
conditions (4.2) are fulfilled. Let us prove that conditions (4.2) are sufficient for
equations (4.1) to be satisfied. We start with the case . The compatibility condi-
tions have the form: , . As in the proof of Theorem 3.1 we consider
the Galerkin approximation

of the order  for a solution to problem (0.1) and (0.2). It satisfies the equations
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(4.4)

, ,

where  is the orthoprojector onto the span of elements . The structure
of equation (3.10) implies that . We differentiate equation
(4.4) with respect to  to obtain that  satisfies the equation

 (4.5)

and the initial conditions

, 

. (4.6)

It is clear that

,

where  is defined by (4.3). Therefore,

.

The compatibility conditions give us that  and hence . Thus,
the initial condition  possesses the property

, . (4.7)

We multiply (4.5) by  scalarwise in  to find that

, (4.8)

where

 (4.9)

Using a priori estimates (3.14) for  we obtain
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Thus, equation (4.8) implies that

, .

Equation (4.7) and the property  give us that the estimate 

holds uniformly with respect to . Therefore, we reason as in Section 3 and use
Gronwall’s lemma to find that

, . (4.10)

Consequently,

, . (4.11)

Equation (4.4) gives us that

.

Therefore, (3.14) and (4.11) imply that

, . (4.12)

Thus, the sequence  of approximate solutions to problem (0.1) and (0.2)
possesses the properties (cf. Exercise 3.7):

 (4.13)

where  is a weak solution to problem (0.1) and (0.2). Moreover (see Exer-
cise 1.13),

 (4.14)

for every . If we use these equations and arguments similar to the ones given in
Section 3, then it is easy to pass to the limit and to prove that the function 
is a weak solution to the problem

 (4.15)
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where  is defined by (4.3). Therefore, Theorem 2.1 gives us that

.

This implies equation (4.1) for .

Further arguments are based on the following assertion.

Lemma 4.1

Let  be a weak solution to the linear problem

 (4.16)

where  is a scalar continuously differentiable function, 

 and , . Then

 (4.17)

and the function  is a weak solution to the problem obtained

by the formal differentiation of (4.16) with respect to  and equiped

with the initial conditions  and  

.

Proof.

Let  be the Galerkin approximation of the order  of a solution to
problem (4.16) (see (2.7)). It is clear that  is thrice differentiable with re-
spect to  and  satisfies the equation

, ,

and the initial conditions

, .

Therefore, as above, it is easy to prove the validity of equations (4.10)–(4.14)
for the case under consideration and complete the proof of Lemma 4.1.

Assume that the hypotheses of Lemma 4.1 hold with 
 and  for some . Let the com-

patibility conditions (4.2) be fulfilled with , 
, and
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for . Show that the weak solution  to problem
(4.16) possesses properties (4.1) and the function  is
a weak solution to the equation obtained by the formal differentia-
tion of (4.16)  times with respect to . Here .

In order to complete the proof of Theorem 4.1 we use induction with respect to
. Assume that the hypotheses of the theorem as well as equations (4.2) for

 hold. Assume that the assertion of the theorem is valid for .
Since equations (4.1) hold for the solution  with , we have

,

where , . Therefore, we differentiate equation
(0.1)  times with respect to  to obtain that  is a weak solution
to problem (4.16) with

and .

Consequently, Lemma 4.1 gives us that  is a weak solution to the problem
which is obtained by the formal differentiation of equation (0.1)  times with re-
spect to :

However, the hypotheses of Lemma 4.1 hold for this problem. Therefore (see (4.17)),

,

i.e. equations (4.1) hold for . Theorem 4.1 is proved.

Show that if the hypotheses of Theorem 4.1 hold, then the
function  is a weak solution to the problem which is
obtained by the formal differentiation of equation (0.1)  times with
respect to , .

Assume that the hypotheses of Theorem 4.1 hold and 
in equation (0.1). Show that if the conditions

, , (4.18)

are fulfilled, then a solution  to problem (0.1) and (0.2) possess-
es the properties

, .
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Assume that the hypotheses of Theorem 4.1 hold. We define
the sets

equation (4.2) holds with (4.19)

in the space . Prove that

and  .

Show that every set  given by equality (4.19) is invariant:

, .

Here  is a weak solution to problem (0.1) and (0.2).

Assume that  in equation (0.1) and the load  pos-
sesses property (4.18). Show that for  the set  of
form (4.19) contains the subspace .

Assume that the hypotheses of Theorem 3.1 hold and the ope-
rator  (in equation (0.1)) possesses the property

for some . (4.20)

Let  and let . Show that the estimate

, , (4.21)

is valid for the approximate Galerkin solution  to problem
(0.1) and (0.2). Here the constant  does not depend on 
(Hint: multiply equation (3.8) by  and summarize the re-
sult with respect to ; then use relation (3.14) to estimate the non-
linear term).

Show that if the hypotheses of Exercise 4.7 hold, then prob-
lem (0.1) and (0.2) possesses a weak solution  such that

,

where  is the number from Exercise 4.7.
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§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic§ 5 Dissipativity and Asymptotic

CompactnessCompactnessCompactnessCompactness

In this section we prove the dissipativity and asymptotic compactness of the dynam-
ical system  generated by weak solutions to problem (0.1) and (0.2) for

 in the case of a stationary load . The phase space is 
. The evolutionary operator is defined by the formula

, (5.1)

where  is a weak solution to problem (0.1) and (0.2) with the initial condition
.

Theorem 5.1

Assume that in addition to Assume that in addition to Assume that in addition to Assume that in addition to (3.2) the following conditions are fulfilled the following conditions are fulfilled the following conditions are fulfilled the following conditions are fulfilled::::

a) there exist numbers there exist numbers there exist numbers there exist numbers     such thatsuch thatsuch thatsuch that

,,,,  (5.2)

with a constant with a constant with a constant with a constant ;;;;

b) there exist there exist there exist there exist  and  and  and  and  such that such that such that such that

,,,, .... (5.3)

Then the dynamical system Then the dynamical system Then the dynamical system Then the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2)
for for for for  and for  and for  and for  and for  is dissipative is dissipative is dissipative is dissipative....

To prove the theorem it is sufficient to verify (see Theorem 1.4.1 and Exercise 1.4.1)
that there exists a functional  on  which is bounded on the bounded sets of
the space , differentiable along the trajectories of system (0.1) and (0.2), and
such that

, (5.4)

, (5.5)

where  and  are constants. To construct the functional 
we use the method which is widely-applied for finite-dimensional systems (we used
it in the proof of estimate (2.13)). 

Let

,

where . Here  is the energy of system (0.1)
and (0.2) defined by the formula (3.7),
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,

and the parameter  will be chosen below. It is evident that

.

For  this implies estimate (5.4) and the inequality

 (5.6)

with the constants  independent of . This inequality guarantees the
boundedness of  on the bounded sets of the space .

Energy equality (3.6) implies that the function , where , is
continuously differentiable and

.

Therefore, due to (5.3) we have that

.

We use interpolation inequalities (see Exercises 2.1.12 and 2.1.13) to obtain that

, .

Thus, the estimate

 (5.7)

holds for any .

Lemma 5.1

Let  be a weak solution to problem (0.1) and (0.2) and let 

. Then the function  is continuously differenti-

able and

. (5.8)

We note that since  (see Exercise 3.6), equation (5.8) is correct-
ly defined.

Proof.

It is sufficient to verify that

. (5.9)
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Let  be the orthoprojector onto the span of elements  in
. Then it is evident that the vector-function  is twice continu-

ously differentiable with respect to . Therefore,

.

The properties of the projector  (see Exercise 2.1.11) enable us to pass to
the limit  and to obtain (5.9). Lemma 5.1 is proved.

Since  is a solution to equation (0.1), relation (5.8) implies that

.

Therefore, equation (5.2) and the evident inequality

give us that

.

Hence, (5.6) and (5.7) enable us to obtain the estimate

where  and

.

Therefore, for any  estimate (5.5) holds, provided  and  are chosen
appropriately. Thus, Theorem 5.1 is proved.

Prove that if the hypotheses of Theorem 5.1 hold, then the as-
sertion on the dissipativity of solutions to problem (0.1) and (0.2)
remains true in the case of a nonstationary load .

Theorem 5.2

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 5.1 hold and assume that for some  hold and assume that for some  hold and assume that for some  hold and assume that for some 

,,,, ,,,,  .... (5.10)

Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set Then there exists a positively invariant bounded set  in the space  in the space  in the space  in the space 
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 (5.11)

for any bounded set for any bounded set for any bounded set for any bounded set  in the space  in the space  in the space  in the space , , , , ....

Due to the compactness of the embedding of  in  for , this theorem and
Lemma 1.4.1 imply that the dynamical system  is asymptotically compact.

Proof.

Since the system  is dissipative, there exists  such that for all
 and 

, (5.12)

where  is a weak solution to problem (0.1) and (0.2) with the initial conditions
. We consider  as a solution to linear problem (2.1) and (2.2)

with  and . It is easy to verify that  is a
continuously differentiable function and

, .

Moreover, equation (2.27) implies that

, (5.13)

where

.

Here  is the evolutionary operator of the homogeneous problem (2.1) and
(2.2) with  and . By virtue of Theorem 2.2 there
exists  such that

, (5.14)

where , , and is the orthoprojector  onto

, .

This implies that

.

Therefore, we use (5.10) to obtain that

. (5.15)
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It is also easy to find that

, .

Consequently, there exists a number  depending on the radius of dissipativity 
and the parameters of the problem such that the value

 (5.16)

lies in the ball

for . Therefore, with the help of (5.12) and (2.23) we have that

. (5.17)

Let . Evidently equation (5.11) is valid. Moreover, 
is positively invariant. The continuity of  with recpect to the both variables

 in the space  (see Exercise 3.8) and attraction property (5.17) imply that
 is a closed set in . Let us prove that  is bounded in . First we note that
 is bounded in . Indeed, by virtue of the dissipativity we have that 

for all  and . Since  is continuous with respect to the vari-
ables , its maximum is attained on the compact . Thus, there exists

 such that  for all . Let us return to equality (5.16) for 
and . It is evident that the norm of the right-hand side in the space 
is bounded by the constant . However, equation (5.14) implies that

, , .

Therefore, equation (5.16) leads to the uniform estimate

, , .

Thus, the set  is bounded in . Theorem 5.2 is proved.

Show that for any  a bounded set of  is attracted
by  at an exponential rate with respect to the metric of the space

. Thus, we can replace  by  in (5.11).

Prove that if the hypotheses of Theorem 5.2 hold, then the as-
sertion on the asymptotic compactness of solutions to problem (0.1)
and (0.2) remains true in the case of nonstationary load 

 (see also Exercise 5.1).

Prove that the hypotheses of Theorem 5.1 and 5.2 hold for
problem (0.3) and (0.4) for any , provided that 
and  lies in the Sobolev space .
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Let us consider the dissipativity properties of smooth solutions (see Section 4) to
problem (0.1) and (0.2).

Theorem 5.3

Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem Let the hypotheses of Theorem 5.1 hold. Assume that  hold. Assume that  hold. Assume that  hold. Assume that 

and the initial conditions and the initial conditions and the initial conditions and the initial conditions  are such that equations  are such that equations  are such that equations  are such that equations (4.1) (and (and (and (and

hence hence hence hence (4.2)) are valid for the solution ) are valid for the solution ) are valid for the solution ) are valid for the solution .... Then there exists Then there exists Then there exists Then there exists

 such that for any initial data  such that for any initial data  such that for any initial data  such that for any initial data  possessing the property possessing the property possessing the property possessing the property

,,,, ,,,, (5.18)

the solution the solution the solution the solution  admits the estimate admits the estimate admits the estimate admits the estimate

 (5.19)

for all for all for all for all  as soon as  as soon as  as soon as  as soon as ....

We use induction to prove the theorem. The proof is based on the following asser-
tion.

Lemma 5.2

Assume that the hypotheses of Theorem 5.3 hold for . Then the dy-

namical system  generated by problem (0.1) and (0.2) in the

space  is dissipative.

Proof.

Let  be a semitrajectory of the dynamical system
 and let . If the hypotheses of the lem-

ma hold, then the function  is a weak solution to problem (4.15) ob-
tained by formal differentiation of (0.1) with respect to  (as we have shown in
Section 4). By virtue of Theorem 2.1 the energy equality of the form (2.6) holds
for the function . We rewrite it in the differential form:

, (5.20)

where

 (5.21)

and

The dissipativity property of  given by Theorem 5.1 leads to the esti-
mates
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,

for all  with the property

and for all  large enough. Hereinafter  is the radius of dissipativity
of the system . These estimates imply that for  we have

 (5.22)

and

, (5.23)

where the constants  depend on . Here . Similarly, we use Lem-
ma 5.1 to find that

for . Consequently, the function

possesses the properties

, ,

and

for and for  small enough. This implies that

 (5.24)

for , provided that

. (5.25)

If we use (5.4)–(5.6), then it is easy to find that

, ,

under condition (5.25). Using the energy equality for the weak solutions to
problem (4.15) we conclude that
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.

Therefore, standard reasoning in which Gronwall’s lemma is used leads to

,

provided that equation (5.25) is valid. Here  and  are some positive con-
stants depending on  and . This and equation (5.24) imply that

, (5.26)

where  depends on  only. Since

,

provided that

,

equation (5.26) gives us the estimate

, .

This easily implies the dissipativity of the dynamical system . Thus,
Lemma 5.2 is proved.

Prove that the dynamical system  generated by
problem (0.1) and (0.2) with the initial data 

 is asymptotically compact provided that equations (5.10)
hold.

In order to complete the proof of Theorem 5.3, we should note first that Lemma 5.2
coincides with the assertion of the theorem for  and second we should use the
fact that the derivatives  are weak solutions to the problem obtained by dif-
ferentiation of the original equation. The main steps of the reasoning are given in the
following exercises.

Assume that the hypotheses of Theorem 5.3 hold for 
and its assertion is valid for . Show that  is
a weak solution to the problem of the form

where

for all .
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Use the result of Exercise 5.6 and the method given in the
proof of Lemma 5.2 to prove that  can be estima-
ted as follows:

(5.27)

where , the numbers  depend on  and , , and
the constant  depends on  only.

Use the induction assumption and equation (5.27) to prove
the assertion of Theorem 5.3 for .

§ 6 Global Attractor and § 6 Global Attractor and § 6 Global Attractor and § 6 Global Attractor and Inertial SetsInertial SetsInertial SetsInertial Sets

The above given properties of the evolutionary operator  generated by problem
(0.1) and (0.2) in the case of stationary load  enable us to apply the gene-
ral assertions proved in Chapter 1 (see also [10]).

Theorem 6.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2), , , , (5.2), , , , (5.3), and , and , and , and (5.10) are fulfilled. Then are fulfilled. Then are fulfilled. Then are fulfilled. Then

the dynamical system the dynamical system the dynamical system the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2) pos- pos- pos- pos-

sesses a global attractor sesses a global attractor sesses a global attractor sesses a global attractor  of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is of a finite fractal dimension. This attractor is

a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space a connected compact set in  and is bounded in the space ,,,,

where where where where  is defined by condition  is defined by condition  is defined by condition  is defined by condition (5.10)....

Proof.

By virtue of Theorems 5.1, 5.2, and 1.5.1 we should prove only the finite dimen-
sionality of the attractor. The corresponding reasoning is based on Theorem 1.8.1
and the following assertions.

Lemma 6.1.

Assume that conditions (3.2), (5.2), and (5.3) are fulfilled. Let .

Then for any pair of semitrajectories ,  posses-

sing the property  for all  the estimate

, , (6.1)

holds with the constant  depending on .
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Proof.

If  and  are solutions to problem (0.1) and (0.2) with the initial
conditions  and , then the function 

 satisfies the equation

, (6.2)

where

.

It is evident that the estimate 

holds, provided that . Therefore, (2.20)
implies that

.

Gronwall’s lemma gives us equation (6.1).

Lemma 6.2

Assume that the hypotheses of Theorem 6.1 hold. Let  be the compact

positively invariant set constructed in Theorem 5.2. Then for any

 the inequality

(6.3)

is valid, where , , the orthoprojector  and the

number  are defined as in (5.14),  and  are positive constants

which depend on the parameters of the problem.

Proof.

It is evident that

, 

where  is the orthoprojector onto the closure of the span of elements 
 in . Moreover, the function  

is a solution to the equation

,
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.
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Let us estimate the value . Since  for  (see the proof
of Theorem 5.2), we have

.

Using equation (5.10) we similarly obtain that

.

Therefore,

.

Consequently,

. (6.4)

Using equation (2.27) we obtain that

,

where  is the evolutionary operator of homogeneous problem (2.1) with
 and . Therefore, (2.23) and (6.4) imply that

(6.5)

We substitute (6.1) in this equation to obtain (6.3). Lemma 6.2 is proved.

Let us choose  and  such that

, , .

Then Lemmata 6.1 and 6.2 enable us to state that

and

,

where  and the elements  and  lie in the global attractor . Hence,
we can use Theorem 1.8.1 with , , and . Therefore, the fractal
dimension of the attractor  is finite. Thus, Theorem 6.1 is proved.
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Theorem 5.2 and Lemmata 6.1 and 6.2 enable us to use Theorem 1.9.2 to obtain an
assertion on the existence of the inertial set (fractal exponential attractor) for the
dynamical system  generated by problem (0.1) and (0.2).

Theorem 6.2

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 6.1 hold. Then there exists hold. Then there exists hold. Then there exists hold. Then there exists

a compact positively invariant set a compact positively invariant set a compact positively invariant set a compact positively invariant set  of the finite fractal dimen- of the finite fractal dimen- of the finite fractal dimen- of the finite fractal dimen-

sion such thatsion such thatsion such thatsion such that

for any bounded set for any bounded set for any bounded set for any bounded set  in  in  in  in     and and and and .... Here  Here  Here  Here  and  and  and  and  are positive num-are positive num-are positive num-are positive num-

bers. The inertial set bers. The inertial set bers. The inertial set bers. The inertial set  is bounded in the space  is bounded in the space  is bounded in the space  is bounded in the space ....

To prove the theorem we should only note that relations (5.11), (6.1), and (6.3)
coincide with conditions (9.12)–(9.14) of Theorem 1.9.2.

Using (1.8.3) and (1.9.18) we can obtain estimates (involving the parameters of the
problem) for the dimensions of the attractor and the inertial set by an accurate ob-
serving of the constants in the proof of Theorems 5.1 and 5.2 and Lemmata 6.1 and
6.2. However, as far as problem (0.3) and (0.4) is concerned, it is rather difficult
to evaluate these estimates for the values of parameters that are very interesting
from the point of view of applications. Moreover, these estimates appear to be quite
overstated. Therefore, the assertions on the finite dimensionality of an attractor and
inertial set should be considered as qualitative results in this case. In particular, this
assertions mean that the nonlinear flutter of a plate is an essentially finite-dimen-
sional phenomenon. The study of oscillations caused by the flutter can be reduced to
the study of the structure of the global attractor of the system and the properties
of inertial sets.

Prove that the global attractor of the dynamical system gene-
rated by problem (0.1) and (0.2) is a uniformly asymptotically stable
set (Hint: see Theorem 1.7.1).

We note that theorems analogous to Theorems 6.1 and 6.2 also hold for a class of re-
tarded perturbations of problem (0.1) and (0.2). For example, instead of (0.1) and
(0.2) we can consider (cf. [11–13]) the following problem
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Here , , and  are the same as in Theorems 6.1 and 6.2, the symbol  denotes
the function on  which is given by the equality  for 

, the parameter  is a delay value, and  is a linear mapping from
 into  possessing the property

for  small enough and for all , where  is a positive number. Such
a formulation of the problem corresponds to the case when we use the model of the
linearized potential gas flow (see [11–14]) to take into account the aerodynamic
pressure in problem (0.3) and (0.4).

The following assertion gives the time smoothness of trajectories lying in the attrac-
tor of problem (0.1) and (0.2).

Theorem 6.3

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2) and  and  and  and (5.2) are fulfilled and the linear ope- are fulfilled and the linear ope- are fulfilled and the linear ope- are fulfilled and the linear ope-

rator rator rator rator  possesses the property possesses the property possesses the property possesses the property

,,,,  (6.6)

for allfor allfor allfor all    .... Let  Let  Let  Let .... Then the assertions of Theorem  Then the assertions of Theorem  Then the assertions of Theorem  Then the assertions of Theorem 6.1
are valid for any are valid for any are valid for any are valid for any .... Moreover, if  Moreover, if  Moreover, if  Moreover, if  for some for some for some for some

, then the trajectories , then the trajectories , then the trajectories , then the trajectories     lying in the global attractor lying in the global attractor lying in the global attractor lying in the global attractor 

of the system of the system of the system of the system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2) for  for  for  for  pos- pos- pos- pos-

sess the propertysess the propertysess the propertysess the property

 (6.7)

for allfor allfor allfor all    ,,,,    ,,,, where  where  where  where  is a constant depending onis a constant depending onis a constant depending onis a constant depending on

the problem parameters onlythe problem parameters onlythe problem parameters onlythe problem parameters only....

Proof.

It is evident that conditions (5.3) and (5.10) follow from (6.6). Therefore, we
can apply Theorem 6.1 which guarantees the existence of a global attractor . Let
us assume that , . Let  be a trajectory in

, . We consider a function , where  is the ortho-
projector onto the span of the basis vectors  in  for  large enough.
It is clear that  and satisfies the equation 

. (6.8)

Equation (6.6) for  implies that  is a continuously differentiable
function. It is also evident that . Therefore, we differenti-
ate equation (6.8) with respect to  to obtain the equation
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for the function . Here

.

Since any trajectory  lying in the attractor possesses the property

, , (6.9)

it is clear that

, . (6.10)

Relation (6.9) also implies that the function

 (6.11)

possesses the property

, .

Therefore, as in the proof of Theorem 2.2, we find that there exists  such that

 (6.12)

for all real , where ,  is the orthoprojector onto

,

, and  is the evolutionary operator of the problem

with  of the form (6.10). Moreover,  can be presented
in the form

. (6.13)

Then for  we have
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Therefore, we use (6.9), (6.10), and (6.6) for  to obtain that

.

We tend  in this inequality to find that

,

where  does not depend on . It further follows from (6.9) and equation (0.1)
that

,

where the constant  can depend on . Hence,

.

We tend  to find that any trajectory  lying in the attrac-
tor possesses the property

, .

By virtue of (6.6) we have

, .

Therefore, we reason as above to find that equation (6.13) implies

.

Similarly we get

for all . Consequently, using equation (0.1) we obtain estimate (6.7) for
. In order to prove (6.7) for the other values of  we should use induction with

respect to  and similar arguments. We offer the reader to make an independent de-
tailed study as an exercise.

In addition to the hypotheses of Theorem 6.3 we assume that
 and . Prove that the global attractor  of

the system  lies in .
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§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor§ 7 Conditions of Regularity of Attractor

Unfortunately, the structure of the global attractor of problem (0.1) and (0.2) can be
described only under additional conditions that guarantee the existence of the Lya-
punov function (see Section 1.6). These conditions require that  and assume
the stationarity of the transverse load . For the Berger system (0.3) and (0.4)
these hypotheses correspond to  and , i.e. to the case of plate
oscillations in a motionless stationary medium.

Thus, let us assume that the operator  is identically equal to zero and
 in (0.1). Assume that the hypotheses of Theorem 3.1 hold. Then energy

equality (3.6) implies that

, (7.1)

where , the function  is a weak solution to problem
(0.1) and (0.2) with the initial conditions , and  is the energy
of the system defined by formula (3.7).

Let us prove that the functional  with 
is a Lyapunov function (for definition see Section 1.6) of the dynamical system

. Indeed, it is evident that the functional  is continuous on . By vir-
tue of (7.1) it is monotonely increasing. If  for some , then

.

Therefore,  for , i.e.  is a stationary solution to prob-
lem (0.1) and (0.2). Hence,  is a fixed point of the semigroup .

Therefore, Theorems 1.6.1 and 6.1 give us the following assertion.

Theorem 7.1

Assume that Assume that Assume that Assume that ,,,,    ,,,, and  and  and  and  for some  for some  for some  for some .... We also assume We also assume We also assume We also assume

that the function that the function that the function that the function  satisfies conditions  satisfies conditions  satisfies conditions  satisfies conditions (3.2) and  and  and  and (5.2).... Then the global Then the global Then the global Then the global

attractor attractor attractor attractor  of the dynamical system  of the dynamical system  of the dynamical system  of the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1)
andandandand (0.2) has the form has the form has the form has the form

,,,, (7.2)

where where where where  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup  is the set of fixed points of the semigroup , i.e., i.e., i.e., i.e.

,,,, (7.3)

and  is the unstable set emanating from  and  is the unstable set emanating from  and  is the unstable set emanating from  and  is the unstable set emanating from  (for definition see Sec-

tion 1.6).
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Let . Prove that if the hypotheses of Theorem 7.1 hold,
then any fixed point  of problem (0.1) and (0.2) either equals to ze-
ro, , or has the form , where the constant

 is the solution to the equation .

Assume that  and . Then problem (0.1)
and (0.2) has a unique fixed point  for .
If , then the number of fixed points is equal to 
and all of them have the form , ,
where

, , .

Show that if the hypotheses of Exercise 7.2 hold, then the
energy  of each fixed point  has the form

, , ,

for .

Assume that the hypotheses of Theorem 7.1 hold. Show that
if the set

(7.4)

is not empty, then it is a closed positively invariant set of the dyna-
mical system  generated by weak solutions to problem (0.1)
and (0.2).

Assume that the hypotheses of Theorem 7.1 hold and the set
 defined by equality (7.4) is not empty. Show that the dynamical

system  possesses a compact global attractor ,
where  is the set of fixed points of  satisfying the condition

.

Show that if the hypotheses of Theorem 7.1 hold, then the
global minimal attractor  (for definition see Section 1.3)
of problem (0.1) and (0.2) coincides with the set  of the fixed
points (see (7.3)).

Further we prove that if the hypotheses of Theorem 7.1 hold, then the attractor 
of problem (0.1) and (0.2) is regular in generic case. As in Section 2.5, the corre-
sponding arguments are based on the results obtained by A. V. Babin and M. I. Vishik
(see also Section 1.6). These results prove that in generic case the number of fixed
points is finite and all of them are hyperbolic.
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Lemma 7.1.

Assume that conditions (3.2) and (5.2) are fulfilled. Then the problem

, , (7.5)

possesses a solution for any , where . If  is a bounded set

in , then its preimage  is bounded in . If 

is a compact in , then  is a compact in , i.e. the

mapping  is proper.

Proof.

We follow the line of arguments given in the proof of Lemma 2.5.3. Let us
consider the continuous functional

 (7.6)

on , where  is a primitive of the function .
Equation (3.2) implies that

 (7.7)

Thus, the functional  is bounded below. Let us consider it on the subspace
, where  is the orthoprojector onto  as before. Since

 as , there exists a minimum point  on the subspace
. This minimum point evidently satisfies the equation

. (7.8)

Equation (7.7) gives us that

with the constants being independent of . Therefore, it follows from (7.8)
that , provided . This estimate enables us to pass to the
limit in (7.8) and to prove that if , then equation (7.5) is solvable for any

. Equation (7.5) implies that

for ,

i.e.  is bounded in  if  is bounded. In order to prove that the
mapping  is proper we should reason as in the proof of Lemma 2.5.3. We give
the reader an opportunity to follow these reasonings individually, as an exercise.
Lemma 7.1 is proved.
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Lemma 7.2

Let . Then the operator  defined by the formula

 (7.9)

with the domain  is selfadjoint and 

.

Proof.

It is clear that  is a symmetric operator on . Moreover, it is
easy to verify that

, , (7.10)

i.e.  is a relatively compact perturbation of the operator . Therefore,
 is selfadjoint. It is further evident that

.

However, due to (7.10) the operator  is compact. Therefore,
. Lemma 7.2 is proved.

Prove that for any  the operator  is bounded
below and has a discrete spectrum, i.e. there exists an orthonormal
basis  in  such that

, , .

Assume that , where  is a constant and  is an
element of the basis  of eigenfunctions of the operator . Show
that  for all , where

.

Here  for  and  for .

As in Section 2.5, Lemmata 7.1 and 7.2 enable us to use the Sard-Smale theorem
(see, e.g., the book by A. V. Babin and M. I. Vishik [10]) and to state that the set

for all

of regular values of the operator  is an open everywhere dense set in  for
.

Show that the set of solutions to equation (7.5) is finite for
 (Hint: see the proof of Lemma 2.5.5).
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Let us consider the linearization of problem (0.1) and (0.2) on a solution 
to problem (7.5):

(7.11)

Here  is given by formula (7.9).

Prove that problem (7.11) has a unique weak solution on any
segment  if , , and the function 

 possesses property (3.2).

Thus, problem (7.11) defines a strongly continuous linear evolutionary semigroup
 in the space  by the formula

, (7.12)

where  is a weak solution to problem (7.11).

Let  be the orthonormal basis of eigenelements of the
operator  and let  be the corresponding eigenvalues. Then
each subspace

is invariant with respect to . The eigenvalues of the restriction
of the operator  onto the subspace  have the form

.

Lemma 7.3

Let . Assume that  possesses property (3.2). Then

the evolutionary operator  of problem (0.1) and (0.2) is Frechét dif-

ferentiable at each fixed point . Moreover, ,

where  is defined by equality (7.12).

Proof.

Let

,

where , , and  is a solution to equation (7.5).
It is clear that , where  is a weak so-
lution to problem

(7.13)
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Here

where  is a weak solution to problem (0.1) and (0.2) with the initial condi-
tions  and  is a solution to problem (7.11) with

 and . It is evident that

, (7.14)

where

.

It is also evident that the value  can be estimated in the following way

for  and for , where the constants  and  depend on ,
, and . This implies that

. (7.15)

Let us rewrite the value  in the form

Consequently, the estimate

(7.16)

holds for  and for . Therefore, equations (7.14)–(7.16) give
us that

on any segment . Here  and . We use conti-
nuity property (3.20) of a solution to problem (0.1) and (0.2) with respect to
the initial conditions to obtain that
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, , .

Therefore,

 

for  and for . Hence, the energy equality for the solutions
to problem (7.13) gives us that

.

Therefore, Gronwall’s lemma implies that

, .

This equation can be rewritten in the form

.

Thus, Lemma 7.3 is proved.

Use the arguments given in the proof of Lemma 7.3 to verify
that under condition (3.2) for  the evolutionary
operator  of problem (0.1) and (0.2) in  belongs to the class 
and

for any  and .

Use the results of Exercises 7.7 and 7.11 to prove that for
a regular value  of the mapping  the spectrum of the opera-
tor  does not intersect the unit circumference while the eigen-
subspace  which corresponds to the spectrum outside the unit
disk does not depend on  and is finite-dimensional.

The results presented above enable us to prove the following assertion (see Chap-
ter V of the book by A. V. Babin and M. I. Vishik [10]).

Theorem 7.2

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 7.1 hold. Then there exists an hold. Then there exists an hold. Then there exists an hold. Then there exists an

open dense set open dense set open dense set open dense set  in  in  in  in  such that the dynamical system  such that the dynamical system  such that the dynamical system  such that the dynamical system  possesses possesses possesses possesses

a regular global attractor  for every a regular global attractor  for every a regular global attractor  for every a regular global attractor  for every , i. e., i. e., i. e., i. e.

,,,,

where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-where  is the unstable manifold of the evolutionary operator  ema-

nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-nating from the fixed point . Moreover, each set  is a finite-dimen-

sional surface of the class sional surface of the class sional surface of the class sional surface of the class ....
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In the case of a zero transverse load  Theorem 7.2 is not applicable in gene-
ral. However, this case can be studied by using the structure of the problem. For exam-
ple, we can guarantee finiteness of the set of fixed points if we assume (see Exer-
cise 7.1) that the equation , first, is solvable with respect to 
only for a finite number of the eigenvalues  and, second, possesses not more than
a finite number of solutions for every . The solutions to equation (7.5) are either

, or , where  and  satisfy . The eigen-
values of the operator  have the form

if

and

if .

Therefore, the result of Exercise 7.11 implies that the fixed points are hyperbolic
if all the numbers  are nonzero, i.e. if

, ; , ;

for all  and  such that . In particular, if ,
then for any real  there exists a finite number of fixed points (see Exercise 7.2)
and all of them are hyperbolic, provided that  for all  and the eigenvalues

 satisfying the condition  are simple. Moreover, we can prove that for
 the unstable manifold , , emanating

from the fixed point  (see Exercise 7.2) possesses the property

, .

§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem§ 8 On Singular Limit in the Problem

of Oscillations of a Plateof Oscillations of a Plateof Oscillations of a Plateof Oscillations of a Plate

In this section we consider problem (0.1) and (0.2) in the following form:

, (8.1)

. (8.2)

Equation (8.1) differs from equation (0.1) in that the parameter  is intro-
duced. It stands for the mass density of the plate material. The introduction of a new
time  transforms equation (8.1) into (0.1) with the medium resistance pa-
rameter  instead of . Therefore, all the above results mentioned above
remain true for problem (8.1) and (8.2) as well.
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The main question discussed in this section is the asymptotic behaviour of the
solution to problem (8.1) and (8.2) for the case when the inertial forces are small
with respect to the medium resistance forces . Formally, this assumption
leads to a quasistatic statement of problem (8.1) and (8.2):

, (8.3)

. (8.4)

Here we prove that the global attractor of problem (8.1) and (8.2) is close to the glo-
bal attractor of the dynamical system generated by equations (8.3) and (8.4)
in some sense.

Without loss of generality we further assume that . We also note that
problem (8.3) and (8.4) belongs to the class of equations considered in Chapter 2.

Assume that conditions (3.2) and (3.3) are fulfilled and
. Show that problem (8.3) and (8.4) has a unique mild

(in ) solution on any segment , i.e. there exists
a unique function  such that

(Hint: see Theorem 2.2.4 and Exercise 2.2.10).

Let us consider the Galerkin approximations of problem (8.3) and (8.4):

, (8.5)

, (8.6)

where  is the orthoprojector onto the first  eigenvectors of the operator  and
.

Assume that conditions (3.2) and (3.3) are fulfilled and
. Then problem (8.5) and (8.6) is solvable on any seg-

ment  and

, . (8.7)

Theorem 8.1

Let Let Let Let  and assume that conditions  and assume that conditions  and assume that conditions  and assume that conditions (3.2),,,,    (5.2),,,, and  and  and  and (5.3) are ful- are ful- are ful- are ful-

filled. Then the dynamical system filled. Then the dynamical system filled. Then the dynamical system filled. Then the dynamical system  generated by weak solutions to generated by weak solutions to generated by weak solutions to generated by weak solutions to

problem problem problem problem (8.3) andandandand (8.4) possesses a compact connected global attractor  possesses a compact connected global attractor  possesses a compact connected global attractor  possesses a compact connected global attractor ....

This attractor is a bounded set in This attractor is a bounded set in This attractor is a bounded set in This attractor is a bounded set in  for  for  for  for  and has a finite frac- and has a finite frac- and has a finite frac- and has a finite frac-

tal dimensiontal dimensiontal dimensiontal dimension....
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Proof.

First we prove that the system  is dissipative. To do that we consider
the Galerkin approximations (8.5) and (8.6). We multiply (8.5) by  scalarwise
and find that

Using equation (5.2) we obtain that

We use equation (5.3) and reason in the same way as in the proof of Theorem 5.1 to
find that

 (8.8)

with some positive constants ,  . Multiplying equation (8.5) by 
we obtain that

,

where

.

It follows that

. (8.9)

If we summarize (8.8) and (8.9), then it is easy to find that

.

This implies that

.

We use (8.7) to pass to the limit as  and to obtain that

 .

This implies the dissipativity of the dynamical system  generated by prob-
lem (8.3) and (8.4). In order to complete the proof of the theorem we use Theorem
2.4.1.
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We note that the dissipativity also implies that the dynamical system  pos-
sesses a fractal exponential attractor (see Theorem 2.4.2).

Assume that the hypotheses of Theorem 8.1 hold and .
Show that for generic  the attractor of the dynamical system

 generated by equations (8.3) and (8.4) is regular (see the
definition in the statement of Theorem 7.2). Hint: see Section 2.5.

We assume that  and conditions (3.2), (5.2), (5.3), and (5.10) are
fulfilled. Let us consider the dynamical system  generated by problem
(8.1) and (8.2) in the space . Lemma 5.2 and Exer-
cise 5.5 imply that  possesses a compact global attractor  for any

.
The main result of this section is the following assertion on the closeness of

attractors of problem (8.1) and (8.2) and problem (8.3) and (8.4) for small .

Theorem 8.2

Assume that Assume that Assume that Assume that  and conditions  and conditions  and conditions  and conditions (3.2),,,,    (5.2),,,,    (5.3),,,, andandandand

(5.10) concerning  concerning  concerning  concerning ,,,,    ,,,, and  are fulfilled and  are fulfilled and  are fulfilled and  are fulfilled....    Then the equationThen the equationThen the equationThen the equation

 (8.10)

is valid, where is valid, where is valid, where is valid, where  is a global attractor of the dynamical system  is a global attractor of the dynamical system  is a global attractor of the dynamical system  is a global attractor of the dynamical system 

generated by problem generated by problem generated by problem generated by problem (8.1) andandandand (8.2),,,,

....

Here Here Here Here  is a global attractor of problem  is a global attractor of problem  is a global attractor of problem  is a global attractor of problem (8.3) andandandand (8.4) in  in  in  in  and and and and

 is the distance between the element  is the distance between the element  is the distance between the element  is the distance between the element  and the set  and the set  and the set  and the set  in the in the in the in the

space space space space . We remind that . We remind that . We remind that . We remind that     in equations in equations in equations in equations (8.1) and  and  and  and (8.3)....

The proof of the theorem is based on the following lemmata.

Lemma 8.1

The dynamical system  is uniformly dissipative in  with

respect to  for some , i.e. there exists  and

 such that for any set  which is bounded in  we have

 (8.11)

for all , .
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Proof.

We use the arguments from the proof of Theorem 5.1 slightly modifying
them. Let

, ,

where

and

.

As in the proof of Theorem 5.1 it is easy to find that the inequalities

(8.12)

and

(8.13)

are valid for . Here  is an arbitrary number,
the constants  and  do not depend on . Moreover, it is also evident that

(8.14)

for  and for any . Here  and  do not depend on 
 and . Equations (8.12)–(8.14) lead us to the inequality

where the constant  does not depend on . If we choose  small
enough, then we can take  and  independent of  and
such that

, (8.15)

where  does not depend on . Moreover, we can assume
(due to the choice of ) that

, (8.16)

where  and  do not depend on . Using equations (8.14)–(8.16)
we obtain the assertion of Lemma 8.1.
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Lemma 8.2

Let  be a solution to problem (8.1) and (8.2) such that 

for all . Then the estimate

is valid for , where  is a positive constant such that .

Proof.

It is evident that the estimate

holds, provided . Therefore, equaiton (8.1) easily implies the esti-
mate

for the solution . We multiply this inequality by . Then by virtue
of the fact that  we have

for . We integrate this equation from  to  to obtain the assertion
of the lemma.

Lemma 8.3

Let  be a solution to problem (8.1) and (8.2) with the initial condi-

tions  and such that  for . Then

the estimate

 (8.17)

is valid for the function . Here ,  is small

enough, , and the numbers  and  do not depend on

.

Proof.

Let us consider the function

for . It is clear that
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(8.18)

Since the function  is a weak solution to the equation obtained by the dif-
ferentiation of (8.1) with respect to  (cf. (4.15)):

,

where

,

then we have that

It follows that

.

We take  and choose  small enough to obtain with the help
of (8.18) that

, , ,

where the constants  and  do not depend on . Consequently,

.

Therefore, estimate (8.17) follows from equation (8.18) and Lemma 8.2. Thus,
Lemma 8.3 is proved.

Lemma 8.3 and equations (8.11) imply the existence of a constant  such that for
any bounded set  in  there exists  such that

, , (8.19)

where  is a solution to problem (8.1) and (8.2) with the initial conditions from
. However, due to (8.1) equations (8.11) and (8.19) imply that  for

. Thus, there exists  such that
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, , (8.20)

where  is a solution to system (8.1) and (8.2) with the initial conditions from the
bounded set  in ,  does not depend on , and  is small
enough. Equation (8.20) and the invariance property of the attractor  imply the
estimate

(8.21)

for any trajectory  lying in  for all .
Let us prove (8.10). It is evident that there exists an element 

from  such that

.

Let  be a trajectory of system (8.1) and (8.2) lying in the at-
tractor  and such that . Equation (8.21) implies that there exist
a subsequence  and an element 
such that for any segment  the sequence  converges to  in the

weak topology of the space  as . Equation (8.21) gives us
that the subsequence  is uniformly continuous and uniformly bounded
in . Therefore (cf. Exercise 1.14), 

(8.22)

for any . However, it follows from (8.21) that  as . There-
fore, we pass to the limit  in equation (8.1) and obtain that the function 
is a bounded (on the whole axis) solution to problem (8.3) and (8.4). Hence, it lies in
the attractor  of the system . With the help of (8.21) and (8.22) it is easy
to find that

, ,

where

.

Thus, Theorem 8.2 is proved.
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§ 9 On Inertial and § 9 On Inertial and § 9 On Inertial and § 9 On Inertial and ApproximateApproximateApproximateApproximate

Inertial ManifoldsInertial ManifoldsInertial ManifoldsInertial Manifolds

The considerations of this section are based on the results presented in Sections 3.7,
3.8, and 3.9. For the sake of simplicity we further assume that .

Theorem 9.1

Assume that conditions Assume that conditions Assume that conditions Assume that conditions (3.2), , , , (5.2), and , and , and , and (5.3) are fulfilled. We also as- are fulfilled. We also as- are fulfilled. We also as- are fulfilled. We also as-

sume that eigenvalues of the operator sume that eigenvalues of the operator sume that eigenvalues of the operator sume that eigenvalues of the operator  possess the properties possess the properties possess the properties possess the properties

andandandand ,,,, ,,,, ,,,, (9.1)

for some sequence for some sequence for some sequence for some sequence .... Then there exist numbers  Then there exist numbers  Then there exist numbers  Then there exist numbers  and  and  and  and 

such that the conditionssuch that the conditionssuch that the conditionssuch that the conditions

andandandand (9.2)

imply that the dynamical system imply that the dynamical system imply that the dynamical system imply that the dynamical system  generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand

(0.2) possesses a  possesses a  possesses a  possesses a local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-local inertial manifold, i.e. there exists a finite-dimen-

sional manifold sional manifold sional manifold sional manifold  in  in  in  in  of the form of the form of the form of the form

,,,, (9.3)

where where where where  is a Lipschitzian mapping from is a Lipschitzian mapping from is a Lipschitzian mapping from is a Lipschitzian mapping from  into  into  into  into  and  and  and  and  is a is a is a is a

finite-dimensional projector in finite-dimensional projector in finite-dimensional projector in finite-dimensional projector in .... This manifold possesses the properties: This manifold possesses the properties: This manifold possesses the properties: This manifold possesses the properties:

1) for any bounded set for any bounded set for any bounded set for any bounded set  in  in  in  in  and for  and for  and for  and for 

;;;; (9.4)

2) there exists there exists there exists there exists  such that the conditions  such that the conditions  such that the conditions  such that the conditions  and  and  and  and  for for for for

 imply that  imply that  imply that  imply that     for for for for ;;;;

3) if the global attractor of the system if the global attractor of the system if the global attractor of the system if the global attractor of the system  exists, then the set  exists, then the set  exists, then the set  exists, then the set 

contains it contains it contains it contains it (see Theorem 6.1)....

Proof.

Conditions (3.2), (5.2), and (5.3) imply (see Theorem 5.1) that the dynamical
system  is dissipative, i.e. there exists  such that

, ,  (9.5)

for any bounded set . This enables us to use the dynamical system 
generated by an equation of the type

 (9.6)

to describe the asymptotic behaviour of solutions to problem (0.1) and (0.2). Here

p t� 	 g� H�

A

�N

�
N 1�
--------------

N
inf 0� �

N k� 	 1� c0 k
� 1 o 1� 	�� 	
 � 0� k �-

N k� 	% & �- �0 0� k0 0�

� �0� �
N k� 	 1�
2 �

N k� 	
2� k0�N k� 	 1��

� S
t

�� 	

� � �1 �08

� y w B w� 	�
 : w P�� , B w� 	 1 P�� 	��% &


B .� 	 P� 1 P�� 	� P

�

B � t t0 B� 	�

St y ��� 	dist : y 
�% &sup C 2 t t0 BBBB� 	�� 	�% &exp(

R 0� y �� S
t
y

�
R(

t 0 t0�* +� S
t
y �� t 0 t0�* +�

� S
t

�� 	 �

� St�� 	 R 0�
S

t
y

�
R( y B� t t0 B� 	�

B �� � S
�

t�� 	

u·· �u· A2 u� � B
R

u� 	  ,


u
t 0
 u0 , u·

t 0
 u1  ,

�
!
#

B
R

u� 	 , 2R� 	 1�
Au� �

� � g M A1 2� u
2

� �
� � Au� Lu�

�  
! "
# $
6




O n  I n e r t i a l  a n d  A p p r o x i m a t e  I n e r t i a l  M a n i f o l d s 277 
and  is an infinitely differentiable function on  possessing the properties

; ;

, ; , .

It is easy to find that there exists a constant  such that

and

.

Therefore, we can apply Theorem 3.7.2 to the dynamical system  generated
by equation (9.6). This theorem guarantees the existence of an inertial manifold of
the system  if the hypotheses of Theorem 9.1 hold. However, inside the dissi-
pativity ball  problem (9.6) coincides with problem (0.1) and (0.2).
This easily implies the assertion of Theorem 9.1.

Show that the hypotheses of Theorem 9.1 hold for the prob-
lem on oscillations of an infinite panel in a supersonic flow of gas:

Here  and  are real parameters and .

It is evident that the most essential assumption of Theorem 9.1 that restricts its ap-
plication is condition (9.2). In this connection the following assertion concerning the
case when problem (0.1) and (0.2) possesses a regular attractor is of some interest.

Theorem 9.2

Assume that in equation Assume that in equation Assume that in equation Assume that in equation (0.1) we have  we have  we have  we have  and  and  and  and 

    for some for some for some for some .... We also assume that conditions  We also assume that conditions  We also assume that conditions  We also assume that conditions (3.2) and and and and

(5.2) are fulfilled. Then there exists  are fulfilled. Then there exists  are fulfilled. Then there exists  are fulfilled. Then there exists  such that for all  such that for all  such that for all  such that for all  the the the the

subspacesubspacesubspacesubspace

 (9.7)

is an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical systemis an invariant and exponentially attracting set of the dynamical system

 generated by problem  generated by problem  generated by problem  generated by problem (0.1) andandandand (0.2)::::

,,,,  (9.8)

for for for for and for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojectorand for any bounded set  in . Here  is the orthoprojector

onto onto onto onto ....
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Proof.

Since  for , where  is the orthoprojector onto the span of
, the uniqueness theorem implies the invariance of . Let us prove

attraction property (9.8). It is sufficient to consider a trajectory  lying in
the ball of dissipativity . Evidently the function 
satisfies the equation

 (9.9)

It is also clear that the conditions

and

hold in the ball of dissipativity. This fact enables us to use Theorem 2.2 with 
. In particular, equation (2.23) guarantees the existence of a num-

ber  which depends on , , and  and such that

, ,

for all , where  is the orthoprojector onto  and .
This implies estimate (9.8). Theorem 9.2 is proved.

Assume that the hypotheses of Theorem 9.2 hold. Show that
for any semitrajectory  there exists an induced trajectory in

, i.e. there exists  such that

for  and for some .

Write down an inertial form of problem (0.1) and (0.2) in the
subspace , provided the hypotheses of Theorem 9.2 hold. Prove
that the inertial form coincides with the Galerkin approximation of
the order  of problem (0.1) and (0.2).

Show that if the hypotheses of Theorem 9.2 hold, then the
global attractor of problem (0.1) and (0.2) coincides with the global
attractor of its Galerkin approximation of a sufficiently large order.

Let us now turn to the question on the construction of approximate inertial mani-
folds for problem (0.1) and (0.2). In this case we can use the results of Section 3.8
and the theorems on the regularity proved in Sections 4 and 5.
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Assume that , and

,

where  and . Show that the mapping 
has the Frechét derivatives  up to the order  inclusive. Moreo-
ver, the estimates

 (9.10)

and

(9.11)

are valid, where , , , and
. Here  is the value of the

Frechét derivative on the elements .

We consider equations (9.10) and (9.11) as well as Theorem 5.3 which guarantees
nonemptiness of the classes  corresponding to the problem considered when

 is large enough. They enable us to apply the results of Section 3.8.
Let  be the orthoprojector onto the span of elements  in  and

let . We define the sequences  and  of map-
pings from  into  by the formulae

, (9.12)

(9.13)

(9.14)

Here ,  and  are the Frechét de-
rivatives with respect to the corresponding variables, , , where

 is a stationary transverse load in (0.1), , the numbers
 are chosen to fulfil the inequality .

Evaluate the functions  and .
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Theorem 3.8.2 implies the following assertion.

Theorem 9.3

Assume that Assume that Assume that Assume that , , , , , , , , , and conditions, and conditions, and conditions, and conditions

(3.2), , , , (5.2),,,, andandandand (5.3) are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection are fulfilled. Then for all   the collection of of of of

mappings mappings mappings mappings     given by equalities given by equalities given by equalities given by equalities (9.12)––––(9.14) possesses the properties possesses the properties possesses the properties possesses the properties

1) there exist constants there exist constants there exist constants there exist constants  and  and  and  and , , , ,  such that such that such that such that

,,,, ,,,,

,,,,

,,,,

for all for all for all for all  and  and  and  and  from  from  from  from  and such that and such that and such that and such that

,,,, , ;;;;

2) for any solution for any solution for any solution for any solution  to problem  to problem  to problem  to problem (0.1) andandandand (0.2) which satisfies com- which satisfies com- which satisfies com- which satisfies com-

patibility conditions patibility conditions patibility conditions patibility conditions (4.3) with  with  with  with  the estimate the estimate the estimate the estimate

is valid for is valid for is valid for is valid for  and for  and for  and for  and for  large enough. Here large enough. Here large enough. Here large enough. Here

,,,,

,,,,

 is the  is the  is the  is the -th eigenvalue of the operator -th eigenvalue of the operator -th eigenvalue of the operator -th eigenvalue of the operator  and the constant  and the constant  and the constant  and the constant  de- de- de- de-

pends on the radius of dissipativity.pends on the radius of dissipativity.pends on the radius of dissipativity.pends on the radius of dissipativity.

In particular, Theorem 9.3 means that the manifold

attracts sufficiently smooth trajectories of the dynamical system  generated
by problem (0.1) and (0.2) into a small vicinity (of the order ) of .

Assume that the hypotheses of Theorem 6.3 hold (this theo-
rem guarantees the existence of the global attractor  consisting of
smooth trajectories of problem (0.1) and (0.2)). Prove that

for all  (the number  is defined by the condition
).

Prove the analogue of Theorem 3.9.1 on properties of the non-
linear Galerkin method for problem (0.1) and (0.2).
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