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In this chapter we consider some questions on the asymptotic behaviour of a dis-
crete dynamical system. We remind (see Chapter 1) that a discrete dynamical sys-
tem is defined as a pair  consisting of a metric space  and a continuous
mapping of  into itself. Most assertions on the existence and properties of attrac-
tors given in Chapter 1 remain true for these systems. It should be noted that the fol-
lowing examples of discrete dynamical systems are the most interesting from the
point of view of applications: a) systems generated by monodromy operators (period
mappings) of evolutionary equations, with coefficients being periodic in time;
b) systems generated by difference schemes of the type 

,  in a Banach space  (see Examples 1.5 and 1.6 of Chap-
ter 1).

The main goal of this chapter is to give a strict mathematical description of one
of the mechanisms of a complicated (irregular, chaotic) behaviour of trajectories.
We deal with the phenomenon of the so-called homoclinic chaos. This phenomenon
is well-known and is described by the famous Smale theorem (see, e.g., [1–3]) for fi-
nite-dimensional systems. This theorem is of general nature and can be proved for
infinite-dimensional systems. Its proof given in Section 5 is based on an infinite-di-
mensional variant of Anosov’s lemma on -trajectories (see Section 4). The conside-
rations of this Chapter are based on the paper [4] devoted to the finite-dimensional
case as well as on the results concerning exponential dichotomies of infinite-dimen-
sional systems given in Chapter 7 of the book [5]. We follow the arguments given in [6]
while proving Anosov’s lemma.

§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos§ 1 Bernoulli Shift as a Model of Chaos

Mathematical simulation of complicated dynamical processes which take place in real
systems requires that the notion of a state of chaos be formalized. One of the possible
approaches to the introduction of this notion relies on a selection of a class of expli-
citly solvable models with complicated (in some sense) behaviour of trajectories.
Then we can associate every model of the class with a definite type of chaotic beha-
viour and use these models as standard ones comparing their dynamical structure
with a qualitative behaviour of the dynamical system considered. A discrete dynami-
cal system known as    the Bernoulli shift    is one of these explicitly solvable models.

Let  and let

,

i.e.  is a set of two-sided infinite sequences the elements of which are the inte-
gers . Let us equip the set  with a metric
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. (1.1)

Here  and  are elements of . Other methods
of introduction of a metric in  are given in Example 1.1.7 and Exercise 1.1.5.

Show that the function  satisfies all the axioms of
a metric.

Let  and  be elements of the set .
Assume that  for  and for some integer . Prove that

.

Assume that equation  holds for ,
where  is a natural number. Show that  for all 
(Hint: if ).

Let  and let

. (1.2)

Prove that for any  the relation

holds, where  is an integer with the property

.

Show that the space  with metric (1.1) is a compact met-
ric space.

In the space  we define a mapping  which shifts every sequence one symbol
left, i.e.

, , .

Evidently,  is invertible and the relations

,

hold for all . Therefore, the mapping  is a homeomorphism.
The discrete dynamical system  is called the Bernoulli shift  the Bernoulli shift  the Bernoulli shift  the Bernoulli shift of the

space of sequences of  symbols. Let us study the dynamical properties of the sys-
tem .

Prove that  has  fixed points exactly. What struc-
ture do they have?
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We call an arbitrary ordered collection  with 
a segment (of the length ). Each element  can be considered as an or-
dered infinite family of finite segments while the elements of the set  can be con-
structed from segments. In particular, using the segment  we can
construct a periodic element  by the formula

, , . (1.3)

Let  be a segment of the length  and let
 be an element defined by (1.3). Prove that  is a periodic

point of the period  of the dynamical system , i.e.
.

Prove that for any natural  there exists a periodic point
of the minimal period equal to .

Prove that the set of all periodic points is dense in , i.e. for
every  and  there exists a periodic point  with the
property  (Hint: use the result of Exercise 1.4).

Prove that the set of nonperiodic points is not countable.

Let  and  be fi-
xed points of the system . Let  be an element
of  such that  for  and  for , where

 and  are natural numbers. Prove that

, . (1.4)

Assume that an element  possesses property (1.4) with  and .
If , then the set

is called a    heteroclinic trajectory heteroclinic trajectory heteroclinic trajectory heteroclinic trajectory that connects the fixed points  and .
If , then  is called a homoclinic trajectory  homoclinic trajectory  homoclinic trajectory  homoclinic trajectory of the point . The
elements of a heteroclinic (homoclinic, respectively) trajectory are called hetero-
clinic (homoclinic, respectively) points.

Prove that for any pair of fixed points there exists an infinite
number of heteroclinic trajectories connecting them whereas the
corresponding set of heteroclinic points is dense in .

Let
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be cycles (periodic trajectories). Prove that there exists a hetero-
clinic trajectory  that connects the cycles 
and , i.e. such that

,

and

, .

For every  there exists only a finite number of segments of the length . There-
fore, the set  of all segments is countable, i.e. we can assume that 

, therewith the length of the segment  is not less than the length
of . Let us construct an element  from  taking  for

 and sequentially putting all the segments  to the right of the zeroth posi-
tion. As a result, we obtain an element of the form

, . (1.5)

Prove that a positive semitrajectory  with
 having the form (1.5) is dense in , i.e. for every  and

 there exists  such that .

Prove that the semitrajectory  constructed in Exercise 1.14
returns to an -vicinity of every point  infinite number
of times (Hint: see Exercises 1.4 and 1.9).

Construct a negative semitrajectory 
which is dense in .

Thus, summing up the results of the exercises given above, we obtain the following
assertion.

Theorem 1.1.

The dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequencesThe dynamical system  of the Bernoulli shift of sequences

of symbols possesses the properties:of symbols possesses the properties:of symbols possesses the properties:of symbols possesses the properties:

1) there exists a finite number of fixed points;there exists a finite number of fixed points;there exists a finite number of fixed points;there exists a finite number of fixed points;

2) there exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of thesethere exist periodic orbits of any minimal period and the set of these

orbits is dense in the phase space ;orbits is dense in the phase space ;orbits is dense in the phase space ;orbits is dense in the phase space ;

3) the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;the set of nonperiodic points is uncountable;

4) heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;heteroclinic and homoclinic points are dense in the phase space;

5) there exist everywhere dense trajectories.there exist everywhere dense trajectories.there exist everywhere dense trajectories.there exist everywhere dense trajectories.

All these properties clearly imply the extraordinarity and complexity of the dyna-
mics in the system . They also give a motivation for the following definitions.
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Let  be a discrete dynamical system. The dynamics of the system 
is called chaotic  chaotic  chaotic  chaotic if there exists a natural number  such that the mapping  is
topologically conjugate to the Bernoulli shift for some , i.e. there exists a homeo-
morphism  such that  for all . We also say
that chaotic dynamics is observed in the system  if there exist a number 
and a set  in  invariant with respect to   such that the restriction
of  to  is topologically conjugate to the Bernoulli shift.

It turns out that if a dynamical system  has a fixed point and a correspon-
ding homoclinic trajectory, then chaotic dynamics can be observed in this system
under some additional conditions (this assertion is the core of the Smale theorem).
Therefore, we often speak about homoclinic chaos in this situation. It should also be
noted that the approach presented here is just one of the possible methods used to
describe chaotic behaviour (for example, other approaches can be found in [1] as
well as in book [7], the latter contains a survey of methods used to study the dynam-
ics of complicated systems and processes).

§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy§ 2 Exponential Dichotomy

and Difference Equationsand Difference Equationsand Difference Equationsand Difference Equations

This is an auxiliary section. Nonautonomous linear difference equations of the form

, , (2.1)

in a Banach space  are considered here. We assume that  is a family of linear
bounded operators in ,  is a sequence of vectors from . Some results both
on the dichotomy (splitting) of solutions to homogeneous  equation (2.1)
and on the existence and properties of bounded solutions to nonhomogeneous equa-
tion are given here. We mostly follow the arguments given in book [5] as well as
in paper [4] devoted to the finite-dimensional case.

Thus, let  be a sequence of linear bounded operators in a Banach
space . Let us consider a homogeneous difference equation

, , (2.2)

where  is an interval in , i.e. a set of integers of the form

,

where  and  are given numbers, we allow the cases  and .
Evidently, any solution  to difference equation (2.2) possesses the pro-
perty

, , ,
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where  for  and . The mapping
 is called an evolutionary operator  evolutionary operator  evolutionary operator  evolutionary operator of problem (2.2).

Prove that for all  we have

.

Let  be a family of projectors (i.e. ) in 
such that . Show that

, , ,

i.e. the evolutionary operator  maps  into .

Prove that solutions  to nonhomogeneous difference
equation (2.1) possess the property

, .

Let us give the following definition. A family of linear bounded operators 
is said to possess an exponential dichotomy  exponential dichotomy  exponential dichotomy  exponential dichotomy over an interval  with constants

 and  if there exists a family of projectors  such that

a) , ;

b) , , ;

c) for  the evolutionary operator  is a one-to-one mapping
of the subspace  onto  and the following estimate
holds:

, , .

If these conditions are fulfilled, then it is also said that difference equation (2.2) ad-
mits an exponential dichotomy over . It should be noted that the cases  and

 are the most interesting for further considerations, where  is
the set of all nonnegative (nonpositive) integers.

The simplest case when difference equation (2.2) admits an exponential dicho-
tomy is described in the following example.

E x a m p l e  2.1 (autonomous case)

Assume that equation (2.2) is autonomous, i.e.  for all , and the spec-
trum  does not intersect the unit circumference . Linear
operators possessing this property are often called hyperbolic (with respect to
the fixed point ). It is well-known (see, e.g., [8]) that in this case there
exists a projector  with the properties:
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a) , i.e. the subspaces  and  are invariant with re-
spect to ;

b) the spectrum  of the restriction of the operator  to  lies
strictly inside of the unit disc;

c) the spectrum  of the restriction of  to the subspace
 lies outside the unit disc.

Let  be a linear bounded operator in a Banach space  and
let  be its spectral radius. Show that for
any  there exists a constant  such that

,

(Hint: use the formula  the proof of which can be
found in [9], for example).

Applying the result of Exercise 2.4 to the restriction of the operator  to , we ob-
tain that there exist  and  such that

, . (2.3)

It is also evident that the restriction of the operator  to  is invertible and
the spectrum of the inverse operator lies inside the unit disc. Therefore,

, , (2.4)

where the constants  and  can be chosen the same as in (2.3). The
evolutionary operator  of the difference equation  has the
form , . Therefore, the equality  and estimates
(2.3) and (2.4) imply that the equation  admits an exponential dicho-
tomy over , provided the spectrum of the operator  does not intersect the unit
circumference.

Assume that for the operator  there exists a projector 
such that  and estimates (2.3) and (2.4) hold with .
Show that the spectrum of the operator  does not intersect the
unit circumference, i.e.  is hyperbolic.

Thus, the hyperbolicity of the linear operator  is equivalent to the exponential di-
chotomy over  of the difference equation  with the projectors  in-
dependent of . Therefore, the dichotomy property of difference equation (2.2)
should be considered as an extension of the notion of hyperbolicity to the nonauto-
nomous case. The meaning of this notion is explained in the following two exercises.

Let  be a hyperbolic operator. Show that the space  can be
decomposed into a direct sum of stable  and unstable  sub-
spaces, i.e.  therewith

AP P A� PX 1 P�� �X
A

' A
PX

� � A PX

' A 1 P�� �X� � A

1 P�� �X

E x e r c i s e 2.4 C X

( z : z ' C� ��� max#
q (� M

q
1


Cn M
q

qn� n 0 1 2 	� � ��

( Cn 1 n/
n �!

lim�

A PX

K 0� 0 q 1� �

AnP K qn� n 0

A 1 P�� �X

A n� 1 P�( ) K qn� n 0

K 0� 0 q 1� �
$ m n�� � x

n 1� Ax
n

�
$ m n�� � Am n�� m n
 AP PA�

x
n 1� Ax

n
�

Z A

E x e r c i s e 2.5 A P

AP PA� 0 q 1� �
A

A

A

Z x
n 1� Ax

n
� P

n

n

E x e r c i s e 2.6 A X

Xs Xu

X Xs Xu��



372 H o m o c l i n i c  C h a o s  i n  I n f i n i t e - D i m e n s i o n a l  S y s t e m s

6

C

h

a

p

t

e

r

,  , ,

, , ,

with some constants  and .

Let  be a plane and let  be an operator defined by
the formula

, .

Show that the operator  is hyperbolic. Evaluate and display gra-
phically stable  and unstable  subspaces on the plane. Display
graphically the trajectory  of some point  that lies
neither in , nor in .

The next assertion (its proof can be found in the book [5]) plays an important role in
the study of existence conditions of exponential dichotomy of a family of operators

.

Theorem 2.1.

Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-Let  be a sequence of linear bounded operators in a Ba-

nach space nach space nach space nach space .... Then the foll Then the foll Then the foll Then the folloooowing assertions are equivalent:wing assertions are equivalent:wing assertions are equivalent:wing assertions are equivalent:

(i) the sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy overthe sequence  possesses an exponential dichotomy over

,,,,

(ii) for any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a uniquefor any bounded sequence  from  there exists a unique

bounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous differencebounded solution  to the nonhomogeneous difference

equationequationequationequation

,,,, .... (2.5)

In the case when the sequence  possesses an exponential dichotomy, solutions
to difference equation (2.5) can be constructed using the Green function the Green function the Green function the Green function :

Prove that .

Prove that for any bounded sequence  from 
a solution to equation (2.5) has the form

, .
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Moreover, the following estimate is valid:

.

The properties of the Green function enable us to prove the following assertion
on the uniqueness of the family of projectors .

Lemma 2.1.

Let a sequence  possess an exponential dichotomy over . Then

the projectors  are uniquely defined.

Proof.

Assume that there exist two collections of projectors  and  for
which the sequence  possesses an exponential dichotomy. Let 
and  be Green functions constructed with the help of these collec-
tions. Then Theorem 2.1 enables us to state (see Exercise 2.9) that

for all  and for any bounded sequence . Assuming that 
for  and  for , we find that

, , , .

This equality with  gives us that . Thus, the lemma is proved.

In particular, Theorem 2.1 implies that in order to prove the existence of an expo-
nential dichotomy it is sufficient to make sure that equation (2.5) is uniquely solv-
able for any bounded right-hand side. It is convenient to consider this difference
equation in the space  of sequences  of elements of 
for which the norm

(2.6)

is finite. Assume that the condition

(2.7)

is valid. Then for any  the sequence  lies in .
Consequently, equation

, (2.8)

defines a linear bounded operator acting in the space . Therewith as-
sertion (ii) of Theorem 2.1 is equivalent to the assertion on the invertibility of the
operator  given by equation (2.8).
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The assertion given below provides a sufficient condition of invertibility of the
operator . Due to Theorem 2.1 this condition guarantees the existence of an expo-
nential dichotomy for the corresponding difference equation. This assertion will be
used in Section 4 in the proof of Anosov’s lemma. It is a slightly weakened variant
of a lemma proved in [6].

Theorem 2.2.

Assume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies conditionAssume that a sequence of operators  satisfies condition

(2.7).... Let there exist a family of projectors  such that Let there exist a family of projectors  such that Let there exist a family of projectors  such that Let there exist a family of projectors  such that

,,,, ,,,, (2.9)

,,,, ,,,, (2.10)

for all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertiblefor all . We also assume that the operator  is invertible

as a mapping from  into  and the estimatesas a mapping from  into  and the estimatesas a mapping from  into  and the estimatesas a mapping from  into  and the estimates

,,,, (2.11)

are valid for every . Ifare valid for every . Ifare valid for every . Ifare valid for every . If

,,,, ,,,, (2.12)

then the operator  acting in  according to formula then the operator  acting in  according to formula then the operator  acting in  according to formula then the operator  acting in  according to formula (2.8) is invertible is invertible is invertible is invertible

and and and and ....

Proof.

Let us first prove the injectivity of the mapping . Assume that there exists a
nonzero element  such that , i.e.  for all .
Let us prove that the sequence  possesses the property

(2.13)

for all . Indeed, let there exist  such that

. (2.14)

It is evident that this equation is only possible when . Let us con-
sider the value
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it follows from (2.11) that

for every  and for all . Therefore, we use estimates (2.10) to find that

. (2.16)

Then it is evident that

Therefore, estimates (2.9)–(2.11) imply that

, . (2.17)

Thus, equations (2.15)–(2.17) lead us to the estimate

.

It follows from (2.14) that

.

Therefore,

.

Hence, if conditions (2.12) hold, then

. (2.18)

When proving (2.18) we use the fact that

.

Thus, equation (2.18) follows from (2.14), i.e.  implies . Hence,

for all .

Moreover, (2.18) gives us that

, .

Therefore,  as . This contradicts the assumption .
Thus, for all  estimate (2.13) is valid. In particular it leads us to the inequality

. (2.19)

Therefore, it follows from (2.17) that

for all . We use conditions (2.12) to find that

, . (2.20)
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If , then inequality (2.19) gives us that there exists  such that
. Therefore, it follows from (2.20) that

for all . We tend  to obtain that  which is impossible
due to (2.9) and the boundedness of the sequence . Therefore, there does not
exist a nonzero  such that . Thus, the mapping  is injective.

Let us now prove the surjectivity of . Let us consider an operator  in the
space  acting according to the formula

, ,

where the operator  acts from  into 
and is inverse to . It follows from (2.9) and (2.11) that

, . (2.21)

It is evident that

Since

,

we have that

Consequently,

Therefore, inequalities (2.10), (2.11), and (2.12) give us that

,

i.e. . That means that the operator  is invertible and

. (2.22)

Let  be an arbitrary element of . Then it is evident that the element 
 is a solution to equation . Moreover, it follows from (2.21) and

(2.22) that

.

Hence,  is surjective and . Theorem 2.2 is proved.
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§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets§ 3 Hyperbolicity of Invariant Sets

for Differentiable Mappingsfor Differentiable Mappingsfor Differentiable Mappingsfor Differentiable Mappings

Let us remind the definition of the differentiable mapping. Let  and  be Banach
spaces and let  be an open set in . The mapping  from  into  is called
(Frechét)    differentiable differentiable differentiable differentiable at the point  if there exists a linear bounded ope-
rator  from  into  such that

.

If the mapping  is differentiable at every point , then the mapping 
 acts from  into the Banach space  of all linear bounded oper-

ators from  into . If  is continuous, then the mapping  is
said to be continuously differentiable  continuously differentiable  continuously differentiable  continuously differentiable (or -mapping) on . The notion of
the derivative of any order can also be introduced by means of induction. For example,

 is the Frechét derivative of the mapping .

Let  and  be continuously differentiable mappings from
 into  and from  into , respectively. Moreover, let

 and  be open sets such that . Prove that 
 is a -mapping on  and obtain a chain rule for the

differentiation of a composed function

, .

Let  be a continuously differentiable mapping from  into
 and let  be the -th degree of the mapping , i.e. 

, , . Prove that  is a -map-
ping on  and

. (3.1)

Now we give the definition of a hyperbolic set. Assume that  is a continuously dif-
ferentiable mapping from a Banach space  into itself and  is a subset in which
is invariant with respect to  . The set  is called hyperbolic  hyperbolic  hyperbolic  hyperbolic (with
respect to ) if there exists a collection of projectors  such that

a)  continuously depends on  with respect to the operator
norm;

b) for every 

; (3.2)

c) the mappings  are invertible for every  as linear operators
from  into ;
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d) for every  the following equations hold:

, , (3.3)

, , (3.4)

with the constants  and  independent of . Here
 is the -th degree of the mapping  (  for

 and ).

It should be noted that properties (b) and (c) as well as formula (3.1) enable us
to state that  maps  into  and is an invertible
operator. Therefore, the value in the left-hand side of inequality (3.4) exists.

Let , where  is a fixed point of a -mapping ,
i.e. . Then for the set  to be hyperbolic it is necessary
and sufficient that the spectrum of the linear operator  does
not intersect the unit circumference (Hint: see Example 2.1).

Let  be an invariant hyperbolic set of a -mapping  and let 
be a complete trajectory (in ) for , i.e.  is a sequence of points from 
such that  for all . Let us consider a difference equation ob-
tained as a result of linearization of the mapping  along :

, . (3.5)

Prove that the evolutionary operator  of difference
equation (3.5) has the form

, , .

Prove that difference equation (3.5) admits an exponential di-
chotomy over  with (i) the constants  and  given by equations
(3.3) and (3.4) and (ii) the projectors  involved in the
definition of the hyperbolicity.

It should be noted that property (a) of uniform continuity implies that the projectors
 are similar to one another, provided the values of  are close enough.

The proof of this fact is based on the following assertion.

Lemma 3.1.

Let  and  be projectors in a Banach space . Assume that

, , (3.6)

for some constant . Then the operator

(3.7)
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possesses the property  and is invertible, therewith

. (3.8)

Proof.

Since , we have

.

It follows from (3.6) that

.

Hence, the operator  can be defined as the following absolutely convergent
series

.

This implies estimate (3.8). The permutability property  is evident.
Lemma 3.1 is proved.

Let  be a connected compact set and let  be
a family of projectors for which condition (a) of the hyperbolicity de-
finition holds. Then all operators  are similar to one another, i.e.
for any  there exists an invertible operator  such
that .

The following assertion contains a description of a situation when the hyperbolicity
of the invariant set is equivalent to the existence of an exponential dichotomy for dif-
ference equation (3.5) (cf. Exercise 3.5).

Theorem 3.1.

Let  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  intoLet  be a continuously differentiable mapping of the space  into

itself. itself. itself. itself. Let Let Let Let  be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let be a hyperbolic fixed point of  ( ) and let 

be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.be a homoclinic trajectory (not equal to ) of the mapping , i.e.

,,,, ,,,, ,,,, .... (3.9)

Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-Then the set  is hyperbolic if and only if the diffe-

rence equationrence equationrence equationrence equation

,,,, ,,,, (3.10)

possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over ....

Proof.

If  is hyperbolic, then (see Exercise 3.5) equation (3.10) possesses an expo-
nential dichotomy over . Let us prove the converse assertion. Assume that equa-
tion (3.10) possesses an exponential dichotomy over  with projectors 
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and constants  and . Let us denote the spectral projector of the operator 
corresponding to the part of the spectrum inside the unit disc by . Without loss
of generality we can assume that

, ,

, .

Thus, for every  the projector  is defined: , .
The structure of the evolutionary operator of difference equation (3.10) (see Exer-
cise 3.4) enables us to verify properties (b)–(d) of the definition of a hyperbolic set.
In order to prove property (a) it is sufficient to verify that

as . (3.11)

Since  is a compact set, then

. (3.12)

Let us consider the following difference equations

, , (3.13)

and

, , (3.14)

where  is an integer. It is evident that equation (3.14) admits an exponential di-
chotomy over  with constants  and  and projectors . Let 
and  be the Green functions (see Section 2) of difference equations
(3.13) and (3.14). We consider the sequence

, .

Since (see Exercise 2.8)

, , (3.15)

we have that the sequence  is bounded. Moreover, it is easy to prove (see Exer-
cise 2.9) that  is a solution to the difference equation

.

It follows from (3.12) and (3.15) that the sequence  is bounded. Therefore,
(see Exercise 2.9),

.

If we take  in this formula, then from the definition of the Green function we
obtain that
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Therefore, equation (3.15) implies that

.

Consequently,

where  is an arbitrary natural number. Upon simple calculations we find that

for every . It follows that

, .

We assume that  to obtain that

.

This implies equation (3.11). Therefore, Theorem 3.1 is proved.

It should be noted that in the case when the set  from The-
orem 3.1 is hyperbolic the elements  of the homoclinic trajectory 
are called transversal homoclinic points transversal homoclinic points transversal homoclinic points transversal homoclinic points. The point is that in some cases (see,
e.g., [4]) it can be proved that the hyperbolicity of  is equivalent to the transversa-
lity property at every point  of the stable  and unstable  mani-
folds of a fixed point  (roughly speaking, transversality means that the surfaces

 and  intersect at the point  at a nonzero angle). In this case the
trajectory  is often called a transversal homoclinic trajectory transversal homoclinic trajectory transversal homoclinic trajectory transversal homoclinic trajectory .

§§§§ 4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories4 Anosov’s Lemma on -trajectories

Let  be a -mapping of a Banach space  into itself. A sequence 
in  is called a -pseudotrajectory -pseudotrajectory -pseudotrajectory -pseudotrajectory (or -pseudoorbit) of the mapping  if for
all  the equation
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is valid. A sequence  is called an -trajectory -trajectory -trajectory -trajectory of the mapping  cor-
responding to a -pseudotrajectory  if

(a)  for any ;

(b)  for all .

It should be noted that condition (a) means that  is an orbit (complete tra-
jectory) of the mapping . Moreover, if a pair of -mappings  and  is given,
then the notion of the -trajectory of the mapping  corresponding to a -pseu-
doorbit of the mapping  can be introduced.

The following assertion is the main result of this section.

Theorem 4.1.

Let  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  beLet  be a -mapping of a Banach space  into itself and let  be

a hyperbolica hyperbolica hyperbolica hyperbolic invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini- invariant  set. Assume that there exists a -vicini-

ty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformlyty  of the set  such that  and  are bounded and uniformly

continuous on the closure  of the set continuous on the closure  of the set continuous on the closure  of the set continuous on the closure  of the set .... Then there exists  posses- Then there exists  posses- Then there exists  posses- Then there exists  posses-

sing the property that for every  there exists  suchsing the property that for every  there exists  suchsing the property that for every  there exists  suchsing the property that for every  there exists  such

that any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectorythat any -pseudoorbit  lying in  has a unique -trajectory

  corresponding to .  corresponding to .  corresponding to .  corresponding to .

As the following theorem shows, the property of the mapping  to have an -trajec-
tory is rough, i.e. this property also remains true for mappings that are close to .

Theorem 4.2.

Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem Assume that the hypotheses of Theorem 4.1 hold for the mapping . hold for the mapping . hold for the mapping . hold for the mapping .

LetLetLetLet  be a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the spacebe a set of continuously differentiable mappings  of the space

 into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the into itself such that the following estimates hold on the closure of the

-vicinity  of the set :-vicinity  of the set :-vicinity  of the set :-vicinity  of the set :

,,,, .... (4.1)

Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every Then  can be chosen to possess the property that for every 

there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-there exist  and  such that for any -pseudotra-

jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any jectory  (lying in ) of the mapping  and for any 

there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-there exists a unique trajectory  of the mapping  with the pro-

pertypertypertyperty

 for all for all for all for all ....

It is clear that Theorem 4.1 is a corollary of Theorem 4.2 the proof of which is based
on the lemmata below.
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Lemma 4.1.

Let  be an open set in a Banach space  and let  be a con-

tinuously differentiable mapping. Assume that for some point 

there exist an operator  and a number  such that

(4.2)

for all  with the property . Assume that for some 

the inequality

(4.3)

is valid with . Then for any -mapping  such that

(4.4)

and

(4.5)

for , the equation  has a unique solution  with

the property .

Proof.

Let  and let

.

For  we have that

Since

,

it follows from (4.2) that

(4.6)

for all  and  from . Now we rewrite the equation  in the form

.
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Let us show that the mapping  has a unique fixed point in the ball 
. It is evident that

for any . Since , we obtain from (4.6) that

.

Therefore, estimates (4.3) and (4.4) imply that

for ,

i.e.  maps the ball  into itself. This mapping is contractive in . Indeed,

,

where

It follows from (4.5) that

.

This equation and inequality (4.6) imply the estimate

.

Therefore, the mapping  has a unique fixed point in the ball 
. The lemma is proved.

Let the hypotheses of Theorems 4.1 and 4.2 hold. We assume that  in (4.1).
Then for any element  the following estimates hold:

, , , (4.7)

where  is a constant. In particular, these estimates are valid for the mapping .

Lemma 4.2.

Let  be a -pseudotrajectory of the mapping  lying in .

Then for any  the sequence  is a -pseu-

dotrajectory of the mapping . Here  has the form

, , , (4.8)

and  is a constant from (4.7).
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Proof.

Let us use induction to prove that

, . (4.9)

Since  is a -pseudotrajectory, then it is evident that for  inequality
(4.9) is valid. Assume that equation (4.9) is valid for some  and prove esti-
mate (4.9) for :

.

With the help of (4.7) we obtain that

.

Thus, Lemma 4.2 is proved.

Lemma 4.3.

Let  be a -pseudoorbit of the mapping  lying in . Let  be

a trajectory of the mapping  such that

, , (4.10)

for some . If

, (4.11)

then

, (4.12)

where  has the form (4.8).

Proof.

We first note that

Therefore, it is evident that

. (4.13)

Here we use the estimate

which follows from (4.7) and holds when the segment connecting the points 
and  lies in . Condition (4.11) guarantees the fulfillment of this property
at each stage of reasoning. If we repeat the arguments from the proof of (4.13),
then it is easy to complete the proof of (4.12) using induction as in Lemma 4.2.
Lemma 4.3 is proved.
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Lemma 4.4.

Let  and . Assume that

. (4.14)

Then the estimates

, , (4.15)

, (4.16)

(4.17)

are valid for  and for every mapping .

Proof.

As above, let us use induction. If , it is evident that equations (4.15)–
(4.17) hold. The transition from  to  in (4.15) is evident. Let us consider
estimate (4.16):

. (4.18)

Condition (4.14) and the induction assumption give us that  lies in the ball
with the centre at the point  lying in . Therefore, it follows from
(4.18) that

.

The transition from  to  in (4.17) can be made in a similar way. Lemma 4.4
is proved.

Lemma 4.5.

There exists  such that the equations

(4.19)

and

(4.20)

are valid in the -vicinity  of the set  for any function

. Here  as .

The proof follows from the definition of the class of functions  and estimates
(4.7) and (4.17).
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Let us also introduce the values

(4.21)

and

. (4.22)

The requirement of the uniform continuity of the derivative  (see the hypo-
theses of Theorem 4.1) and the projectors  (see the hyperbolicity definition)
enables us to state that

, as . (4.23)

Let  be a -pseudotrajectory of the mapping  lying in . Then due to
Lemma 4.2 the sequence  is a -pseudotrajectory of the
mapping . Let us consider the mappings  and  in the space

 (for the definition see Section 2) given by the equalities

, (4.24)

 , (4.25)

where  is an element from . Thus, the construction of -trajec-
tories of the mapping  and  corresponding to the sequence  is reduced to
solving of the equations

and

in the ball . Let us show that for  large enough Lemma 4.1 can be
applied to the mappings  and . Let us start with the mapping .

Lemma 4.6.

The function  is a -smooth mapping in  with the properties

, (4.26)

, . (4.27)

Proof.

Estimate (4.26) follows from the fact that  is a -pseudotrajec-
tory. Then it is evident that

, (4.28)

where  and  lie in . Therefore, simple cal-
culations and equation (4.21) give us (4.27).
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In order to deduce relations (4.2) and (4.3) from inequalities (4.26) and (4.27) for
, we use Theorem 2.2. Consider the operator . It is clear that

, .

Let us show that equations (2.9)–(2.11) are valid for  and 
 and then estimate the corresponding constants. Property (2.9) follows

from the hyperbolicity definition. Equations (3.3) and (4.15) imply that

and .

Further, the permutability property (3.2) gives us that

Hence (see (4.22)),

.

Similarly, we find that

.

The operator

is invertible if (see Lemma 3.1)

 .

Moreover,

,

provided . Due to the hyperbolicity of the set , the operator
 is an invertible mapping from  into . Therefore,

since

,

the operator  is invertible as a mapping from  into
. Moreover, by virtue of (3.4) we have that

.

Thus, under the conditions

, , , (4.29)

Theorem 2.2 implies that the operator  is invertible and .
Let us fix some . If
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, , (4.30)

then by Lemma 4.6 relations (4.2) and (4.3) hold with , , and . If

, (4.31)

then equations (4.4) and (4.5) also hold with , , and . Hence,
under conditions (4.29)–(4.31) there exists a unique solution to equation 
possessing the property . This means that for any -pseudoorbit 

 (lying in ) of the mapping  there exists a unique trajectory 
of the mapping  such that

, ,

provided conditions (4.29)–(4.31) hold. Therefore, under the additional condition

and due to Lemma 4.3 we get

, .

These properties are sufficient for the completion of the proof of Theorem 4.2.
Let us fix  such that . We choose  (  is defined

in Lemma 4.5) such that

for all .

Let us fix an arbitrary  and take . Now we choose
 and  such that the following conditions hold:

, ,

, , .

It is clear that under such a choice of  and  any -pseudoorbit (from ) of the
mapping  has a unique -trajectory of the mapping . Thus, Theorem 4.2 is proved.

Let the hypotheses of Theorem 4.1 hold. Show that there
exist  and  such that for any two trajectories 
and  of a dynamical system  the conditions

, ,

imply that , . In other words, any two trajectories of
the system  that are close to a hyperbolic invariant set cannot
remain arbitrarily close to each other all the time.
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Show that Theorem 4.1 admits the following strengthening:
if the hypotheses of Theorem 4.1 hold, then there exists  such
that for every  there exists  with the property
that for any -pseudoorbit  such that  there
exists a unique -trajectory.

Prove the analogue of the assertion of Exercise 4.2 for Theo-
rem 4.2.

Let  be a periodic orbit of the mapping ,
i.e.  for all  and for some . Assume
that the hypotheses of Theorem 4.2 hold. Then for  small
enough every mapping  possesses a periodic trajectory
of the period .

§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem§ 5 Birkhoff-Smale Theorem

One of the most interesting corollaries of Anosov’s lemma is the Birkhoff-Smale the-
orem that provides conditions under which the chaotic dynamics is observed in
a discrete dynamical system . We remind (see Section 1) that by definition
the possibility of chaotic dynamics means that there exists an invariant set  in the
space  such that the restriction of some degree  of the mapping  on  is to-
pologically equivalent to the Bernoulli shift  in the space  of two-sided infinite
sequences of  symbols.

Theorem 5.1.

Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space Let  be a continuously differentiable mapping of a Banach space 

into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let into itself. Let  be a hyperbolic fixed point of  and let 

be a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide withbe a homoclinic trajectory of the mapping  that does not coincide with

, i.e., i.e., i.e., i.e.

;;;; ,,,, ,,,, ;;;; , ....

Assume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the setAssume that the trajectory  is transversal, i.e. the set

is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set is hyperbolic with respect to  and there exists a vicinity  of the set 

such that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on thesuch that  and  are bounded and uniformly continuous on the

closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-closure . By  we denote a set of continuously differentiable map-

pings  of the space  into itself such thatpings  of the space  into itself such thatpings  of the space  into itself such thatpings  of the space  into itself such that

,,,, ,,,, ....
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Then there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for anyThen there exists  such that for any mapping  and for any

 there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the there exist a natural number  and a continuous mapping  of the

space  into a compact subset  in  such thatspace  into a compact subset  in  such thatspace  into a compact subset  in  such thatspace  into a compact subset  in  such that

a)  is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ; is strictly invariant with respect to , i.e. ;

b) if  and  are elementsif  and  are elementsif  and  are elementsif  and  are elements

of  such that  for some , then ;of  such that  for some , then ;of  such that  for some , then ;of  such that  for some , then ;

c) the restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoullithe restriction of  on  is topologically conjugate to the Bernoulli

shift  in , i.e.shift  in , i.e.shift  in , i.e.shift  in , i.e.

,,,, ....

Moreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there existsMoreover, if in addition we assume that for the mapping  there exists

 such that for any two trajectories  and  such that for any two trajectories  and  such that for any two trajectories  and  such that for any two trajectories  and 

(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition(of the mapping ) lying in the -vicinity of the set  the condition

 for some  implies that  for all  for some  implies that  for all  for some  implies that  for all  for some  implies that  for all ,,,, then the map- then the map- then the map- then the map-

ping  is a homeomorphism.ping  is a homeomorphism.ping  is a homeomorphism.ping  is a homeomorphism.

The proof of this theorem is based on Anosov’s lemma and mostly follows the stan-
dard scheme (see, e.g., [4]) used in the finite-dimensional case. The only difficulty
arising in the infinite-dimensional case is the proof of the continuity of the mapping

. It can be overcome with the help of the lemma presented below which is bor-
rowed from the thesis by Jürgen Kalkbrenner (Augsburg, 1994) in fact.

It should also be noted that the condition under which  is a homeomorphism
holds if the mapping  does not “glue” the points in some vicinity of the set , i.e.
the equality  implies .

Lemma 5.1.

Let the hypotheses of Theorem 5.1 hold. Let us introduce the notation

,

where  and . Let  be a segment (lying

in ) of a pseudoorbit of the mapping :

, , . (5.1)

Assume that  and  are segments of or-

bits of the mapping :

, , , (5.2)

such that

, . (5.3)

Then there exist , and  such that conditions (5.1)–
(5.3) imply the inequality

. (5.4)
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Proof.

It follows from (5.2) that

, (5.5)

where

.

Since the set  is hyperbolic with respect to , there exists a family of projec-
tors  for which equations (3.2)–(3.4) are valid. Therefore,

It means that

Consequently, equation (3.4) implies that

.

Let us estimate the value . It can be rewritten in the form

.

It follows from (5.3) that . Hence, using (4.20)
and (4.21), for  small enough we obtain that

, (5.6)

where  as  and  as . Therefore,

, (5.7)

provided . Further, we substitute the value  for 
in (5.5) to obtain that

.

Therefore, using (3.2) we find that
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Hence, equations (3.3) and (5.6) with  instead of  give us that

(5.8)

Since

,

it follows from (4.15) and (5.1) that

for  small enough. Therefore,

,

where  as  (cf. (4.22)). Consequently, estimate (5.8) implies that

(5.9)

It is evident that estimates (5.7) and (5.9) enable us to choose the parameters
, and  such that

.

Using this inequality with  instead of  we obtain that

for all . Therefore,

.

If we continue to argue like that, then we find that

.

Since , this and estimate (5.3) imply (5.4).
Lemma 5.1 is proved.

Proof of Theorem 5.1.

Let  be distinct integers. Let us choose and fix the parame-
ters  and the integer  such that (i) Theorem 4.2 and Lemma 5.1
can be applied to the hyperbolic set  and (ii)
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. (5.10)

Assume that  is such that

for and (5.11)

for all . Let us consider the segments  of the orbits of the map-
ping  of the form

, ,

.

The length of every such segment is . Let . Let us
consider a sequence of elements  made up of the segments  by the formula

. (5.12)

It is clear that  and by virtue of (5.11)  is a -pseudoorbit of the mapping
. Therefore, due to Theorem 4.2 there exists a unique trajectory 

 of the mapping  such that

, (5.13)

where  and  is the -th element of the
segment , , . Let us define the mapping  from 
into  by the formula

, (5.14)

where  is the zeroth element of the trajectory . Since the trajectory 
possessing the property (5.13) is uniquely defined, equation (5.14) defines a map-
ping from  into .

If we substitute  for  in (5.13) and use the equations

,

we obtain that

for all  and . Therefore, the equality 
with  being the Bernoulli shift in  leads us to the equation

.

Consequently, the uniqueness property of the -trajectory in Theorem 4.2 gives us
the equation
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This implies that

, , (5.15)

i.e. property (c) is valid for . It follows from (5.15) that

.

Therefore, the set  is strictly invariant with respect to . Thus, as-
sertion (a) is proved.

Let us prove the continuity of the mapping . Assume that the sequence of ele-
ments  of  tends to 

 as . This means (see Exercise 1.4) that for any  there exists
 such that

for , . (5.16)

Assume that  and  are -pseudoorbits in  constructed ac-
cording to (5.12) for the symbols  and , respectively. Equation (5.16) implies
that  for . Let  and  be -trajectories corres-
ponding to  and , respectively. Lemma 5.1 gives us that

, (5.17)

provided , i.e. for any  equations (5.17) is valid for .
This means that

as . Thus, the mapping  is continuous and  is a compact strict-
ly invariant set with respect to .

Let us now prove nontriviality property (b) of the mapping . Let 
be such that  for some . Let  and  be -trajectories corres-
ponding to the symbols  and , respectively. Then

Therefore, it follows both from (5.13) and the definition of the elements  that

,

where  and . We apply (5.10) to obtain that

. (5.18)

Therefore, if , then

.

Hence, . This completes the proof of assertion (b).
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If the trajectories of the mapping  cannot be “glued” (see the hypotheses of
Theorem 5.1), then for some  equation (5.18) gives us that , i.e.

 if . Thus, the mapping  is injective in this case. Since 
is a compact metric space, then the injectivity and continuity of  imply that  is
a homeomorphism from  onto . Theorem 5.1 is proved.

It should be noted that equations (5.13) and (5.14) imply that the set 
lies in the -vicinity of the hyperbolic set . Therewith, the values  and  in-
volved in the statement of the theorem depend on  and one can state that for any
vicinity  of the set  there exist  and  such that the conclusions of Theo-
rem 5.1 are valid and . It is also clear that the set  is not
uniquely determined.

Assume that  in Theorem 5.1. Prove that the mapping 
can be constructed such that , where

 is a homoclinic orbit of the mapping .

Prove the Birkhoff theorem: if the hypotheses of Theorem 5.1
hold, then for any  small enough there exist  and 
such that for every mapping  there exist periodic trajec-
tories of the mapping  of any minimal period in the -vicinity
of the set .

Use Theorem 1.1 to describe all the possible types of beha-
viour of the trajectories of the mapping  on a set

.

In conclusion, it should be noted that different infinite-dimensional versions of Ano-
sov’s lemma and the Birkhoff-Smale theorem have been considered by many authors
(see, e.g., [6], [10], [11], [12], and the references therein).

§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem§ 6 Possibility of Chaos in the Problem

of Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plateof Nonlinear Oscillations of a Plate

In this section the Birkhoff-Smale theorem is applied to prove the existence of chaotic
regimes in the problem of nonlinear plate oscillations subjected to a periodic load.
The results presented here are close to the assertions proved in [13]. However, the
methods used differ from those in [13].
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Let us remind the statement of the problem. We consider its abstract version
as in Chapter 4. Let  be a separable Hilbert space and let  be a positive operator
with discrete spectrum in , i.e. there exists an orthonormalized basis  in 
such that

, , .

The following problem is considered:

Here , and  are positive parameters,  is an element of the space , 
is a linear operator in  subordinate to , i.e.

, (6.3)

where  is a constant. The problem of the form (6.1) and (6.2) was studied in Chap-
ter 4 in details (nonlinearity of a more general type was considered there). The re-
sults of Section 4.3 imply that problem (6.1) and (6.2) is uniquely solvable in the
class of functions

. (6.4)

Moreover, one can prove (cf. Exercise 4.3.9) that Cauchy problem (6.1) and (6.2)
is uniquely solvable on the whole time axis, i.e. in the class

.

This fact as well as the continuous dependence of solutions on the initial conditions
(see (4.3.20)) enables us to state that the monodromy operator  acting in 

 according to the formula

(6.5)

is a homeomorphism of the space  (see Exercise 4.3.11). Here  is a solution
to problem (6.1) and (6.2)

The aim of this section is to prove the fact that under some conditions on  and
 chaotic dynamics is observed in the discrete dynamical system  for some

set of parameters , and .

Lemma 6.1. 

The mapping  defined by equality (6.5) is a diffeomorphism of the

space .

Proof.

We use the method applied to prove Lemma 4.7.3. Let  be a solution
to problem (6.1) and (6.2) with the initial conditions  and let

H A
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 be a solution to it with the initial condions  .
Let us consider a linearization of problem (6.1) and (6.2) along the solution :

As in the proof of Theorem 4.2.1, it is easy to find that problem (6.6) and (6.7) is
uniquely solvable in the class of functions (6.4). Let .
It is evident that  is a weak solution to problem

where

A simple calculation shows that

,

where

,

.

We assume that  and . In this case (see Section 4.3) the esti-
mates

,

,

, (6.10)

are valid on any segment . Here  is a constant. Therefore,

,  , ,

where  and  are constants depending on  and T. Hence,

, .

u2 t� � y z� u0 z0� u1 z1��� � ��#
u1 t� �

(6.6)

(6.7)
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*
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Therefore, the energy equation 

(6.11)

for problem (6.8) and (6.9) leads us to the estimate

, .

Using Gronwall’s lemma we find that

, ,

where the constant  depends on  and . This estimate implies that the map-
ping 

(6.12)

is a Frechét derivative of the mapping  defined by equality (6.5). Here 
is a solution to problem (6.6) and (6.7). It follows from (6.10) and (6.6) that 
is a continuous linear mapping of  into itself. Using (6.10) it is also easy to see
that  continuously depends on  with respect to
the operator norm. Lemma 6.1 is proved.

Further we will also need the following assertion.

Lemma 6.2.

Let  be the monodromy operator of problem (6.1) and (6.2) with

 and , . Assume that for  equation (6.3) is va-

lid and , . Moreover, assume that

, , .

Then the estimates

(6.13)

and

(6.14)

are valid. Here  is a ball of the radius  in , 

is an arbitrary number while the constant  depends on  and  but

does not depend on the parameters , and  provided they

vary in bounded sets.
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Proof.

Let  be a solution to problem (6.1) and (6.2) with  and ,
. It is evident (see Section 4.3) that

, . (6.15)

Therefore, it is easy to find that the difference  satisfies
the equation

where the function  can be estimated as follows:

.

As in the proof of Lemma 6.1, we now use energy equality (6.11) and Gronwall’s
lemma to obtain the estimate

. (6.16)

This implies inequality (6.13). Estimate (6.14) can be obtained in a similar way.
In its proof equations (6.12), (6.15), and (6.16) are used. We suggest the reader
to carry out the corresponding reasonings himself/herself. Lemma 6.2 is proved.

Let us now prove that there exist an operator  and a vector  such that the corres-
ponding mapping  possesses a hyperbolic homoclinic trajectory. To do that, we use
the following well-known result (see, e.g., [1], [13], as well as Section 7) related to the
Duffing equation.

Theorem 6.1.

Let Let Let Let  be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing be a monodromy operator corresponding to the Duffing

equationequationequationequation

,,,, (6.17)

i.e. the mapping of the plane i.e. the mapping of the plane i.e. the mapping of the plane i.e. the mapping of the plane  into itself acting according to the formula into itself acting according to the formula into itself acting according to the formula into itself acting according to the formula

,,,, (6.18)

where where where where  is a solution to equation  is a solution to equation  is a solution to equation  is a solution to equation (6.17) such that  such that  such that  such that  and  and  and  and 

.... All the parameters contained in  All the parameters contained in  All the parameters contained in  All the parameters contained in (6.17) are assumed to be positive. are assumed to be positive. are assumed to be positive. are assumed to be positive.

Let us also assume thatLet us also assume thatLet us also assume thatLet us also assume that

.... (6.19)
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Then there exists Then there exists Then there exists Then there exists  such that for every  such that for every  such that for every  such that for every  the mapping  the mapping  the mapping  the mapping     pos-pos-pos-pos-

sesses a fixed point sesses a fixed point sesses a fixed point sesses a fixed point  and a homoclinic trajectory  and a homoclinic trajectory  and a homoclinic trajectory  and a homoclinic trajectory  to it, to it, to it, to it,    ,,,,

therewith the set therewith the set therewith the set therewith the set  is hyperbolic. is hyperbolic. is hyperbolic. is hyperbolic.

Let  be the orthoprojector onto the one-dimensional subspace generated by the
eigenvector  in . We consider problem (6.1) and (6.2) with  in-
stead of  and , where  is a positive number. Then it is evident that
every solution to problem (6.1) and (6.2) with the initial conditions  and

 has the form

,

where  is a solution to the Duffing equation

(6.20)

with the initial conditions  and . In particular, this means that
the two-dimensional subspace  of the space  is strict-
ly invariant with respect to the corresponding monodromy operator  while the re-
striction of  to  coincides with the monodromy operator corresponding to the
Duffing equation (6.20). Therefore, if  is small enough and the conditions

,

hold, then the mapping  possesses a hyperbolic invariant set

consisting of the fixed point  and its homoclinic trajectory

, where .

Thus, if  and for some  the condition  holds, then there exists an
open set  in the space of parameters  such that for every  the mo-
nodromy operator  corresponding to problem (6.1) and (6.2) with 
instead of  and  possesses a hyperbolic set consisting of a fixed point and
a homoclinic trajectory. This fact as well as Lemmata 6.1 and 6.2 enables us to apply
the Birkhoff-Smale theorem and prove the following assertion.

Theorem 6.2. 

Let Let Let Let  and let the condition  and let the condition  and let the condition  and let the condition  hold for some  hold for some  hold for some  hold for some .... Then there Then there Then there Then there

exist exist exist exist  and an open set  and an open set  and an open set  and an open set  in the metric space  in the metric space  in the metric space  in the metric space  such that if such that if such that if such that if

,,,, ,,,,

then some degree then some degree then some degree then some degree  of the monodromy operator  of the monodromy operator  of the monodromy operator  of the monodromy operator  of problem  of problem  of problem  of problem (6.1) andandandand

(6.2) possesses a compact strictly invariant set  possesses a compact strictly invariant set  possesses a compact strictly invariant set  possesses a compact strictly invariant set  in the space  in the space  in the space  in the space 

in which the mapping in which the mapping in which the mapping in which the mapping  is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of is topologically conjugate to the Bernoulli shift of
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sequences of sequences of sequences of sequences of  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism  symbols, i.e. there exists a homeomorphism 

such thatsuch thatsuch thatsuch that

 ,,,, ....

Prove that if the hypotheses of Theorem 6.2 hold, then equa-
tion (6.1) possesses an infinite number of periodic solutions with pe-
riods multiple to .

Apply Theorem 6.2 to the Berger approximation of the prob-
lem of nonlinear plate oscillations:

§ 7 On the Existence of § 7 On the Existence of § 7 On the Existence of § 7 On the Existence of TransversalTransversalTransversalTransversal

Homoclinic TrajectoriesHomoclinic TrajectoriesHomoclinic TrajectoriesHomoclinic Trajectories

Undoubtedly, Theorem 6.1 on the existence of a transversal (hyperbolic) homoclinic
trajectory of the monodromy operator for the periodic perturbation of the Duffing
equation is the main fact which makes it possible to apply the Birkhoff-Smale
theorem and to prove the possibility of chaotic dynamics in the problem of plate
oscillations. In this connection, the question as to what kind of generic condition
guarantees the existence of a transversal homoclinic orbit of monodromy operators
generated by ordinary differential equations gains importance. Extensive literature
is devoted to this question (see, e.g., [1], [2] and the references therein). There are
several approaches to this problem. All of them enable us to construct systems with
transversal homoclinic trajectories as small perturbations of “simple” systems with
homoclinic (not transversal!) orbits. In some cases the corresponding conditions on
perturbations can be formulated in terms of the Melnikov function.

This section is devoted to the exposition and discussion of the results obtained
by K. Palmer [14]. These results help us to describe some classes of systems of ordi-
nary differential equations which generate dynamical systems with transversal ho-
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moclinic orbits. Such differential equations are obtained as periodic perturbations
of autonomous equations with homoclinic trajectories.

In the space  let us consider a system of equations

, , (7.1)

where  is a twice continuously differentiable mapping. Assume that the
Cauchy problem for equation (7.1) is uniquely solvable for any initial condition

. Let us also assume that there exist a fixed point  and
a trajectory  homoclinic to , i.e. a solution to equation (7.1) such that

 as . Exercises 7.1 and 7.2 given below give us the examples of the
cases when these conditions hold. We remind that every second order equation 

 can be rewritten as a system of the form (7.1) if we take  and
.

Consider the Duffing equation

, .

Prove that the curve  is an orbit of the corres-
ponding system (7.1) homoclinic to . Here .

Assume that for a function  there exist a num-
ber  and a pair of points  such that

; , ;

; ; .

Then system (7.1) corresponding to  possesses an or-
bit homoclinic to  that passes through the point .

Unfortunately, as the cycle of Exercises 7.3–7.5 shows, the homoclinic orbit of au-
tonomous equation (7.1) cannot be used directly to construct a discrete dynamical
system with a transversal homoclinic trajectory.

For every  define the mapping  by the for-
mula , where  is a solution to equation
(7.1) with the initial condition . Show that  is a diffeomorphism
in  with a fixed point  and a family of homoclinic orbits

, where , .

Prove that the derivative  of the mapping  constructed in
Exercise 7.3 can be evaluated using the formula ,
where  is a solution to problem

, .

Here  is a solution to equation (7.1) with the initial
condition .

Rn
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Let  be the mapping constructed in Exercise 7.3 and let
 be a homoclinic orbit of equation (7.1). Show that

 is a bounded solution to the difference equa-
tion , where  (Hint: the function

 satisfies the equation ).

Thus, due to Theorems 2.1 and 3.1 the result of Exercise 7.5 implies that the set

cannot be hyperbolic with respect to the mapping  defined by the formula
, where  is a solution to equation (7.1) with the initial

condition . Nevertheless we can indicate some quite simple conditions on the
class of perturbations  periodic with respect to  under which the mo-
nodromy operator of the problem

, , (7.2)

possesses a transversal (hyperbolic) homoclinic trajectory for  small enough.

Further we will use the notion of exponential dichotomy for ordinary differential
equations (see [15], [16] as well as [5] and the references therein)

Let  be a continuous and bounded  matrix function on the real axis.
We consider the problem

, , , (7.3)

in the space . It is easy to see that it is solvable for every initial condition.
Therefore, we can define the evolutionary operator , , by the for-
mula

, ,

where  is a solution to problem (7.3).

Prove that

,

for all  and the following matrix equations hold:

, . (7.4)

Prove the inequality

, .
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2 z0�  z n�� � : n Z�� 3�

f

f x0� � x � x0)� �� x t x0)� �
x0

h t x >� �� ��  t

x· t� � g x t� �� � >h t x t� � >� �� ��� x t� � Rn�

>

A t� � n nA

x· t� � A t� � x t� �� t R� x
t s� x0�

X Rn�
$ t s�� � t s� R�

$ t s�� � x0 x t� � x t s x0)�� �#� t s� R�

x t� �

E x e r c i s e 7.6

$ t s�� � $ t ��� � $ � s�� �� $ t t�� � I�

t s �� � R�
d
td
-----$ t s�� � A t� � $ t s�� �� d

sd
-----$ t s�� � $ t s�� �� A s� ��
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Let  be some interval of the real axis. We say that equation (7.3) admits an expo- expo- expo- expo-

nential dichotomy nential dichotomy nential dichotomy nential dichotomy over the interval  if there exist constants  and
a family of projectors  continuously depending on  and such that

, ; (7.5)

, , (7.6)

, , (7.7)

for .

Let  be a constant matrix. Prove that equation (7.3)
admits an exponential dichotomy over  if and only if the eigenva-
lues on  do not lie on the imaginary axis.

The assertion contained in Exercise 7.8 as well as the following theorem on the
roughness enables us to construct examples of equations possessing an exponential
dichotomy.

Theorem 7.1. 

Assume that problemAssume that problemAssume that problemAssume that problem (7.3) possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over possesses an exponential dichotomy over

an interval . Then there exists  such that equationan interval . Then there exists  such that equationan interval . Then there exists  such that equationan interval . Then there exists  such that equation

(7.8)

possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for possesses an exponential dichotomy over , provided  for ....

Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for Moreover, the dimensions of the corresponding projectors for (7.3) and and and and

(7.8) are the same. are the same. are the same. are the same.

The proof of this theorem can be found in [15] or [16], for example.

The exercises given below contain some simple facts on systems possessing an expo-
nential dichotomy. We will use them in our further considerations.

Prove that equations (7.5)–(7.7) imply the estimates

, ,

, ,

for any .

Assume that equation (7.3) admits an exponential dichotomy
over . Prove that , where

(7.9)

(Hint: , ).

	

	 K �� 0�
P t� � : t 	��  t

P t� � $ t s�� � $ t s�� � P s� �� t s


$ t s�� �P s� � K e � t s�� ��� t s


$ t s�� � I P s� ��� � K e � s t�� ��� t s�
t s� 	�

E x e r c i s e 7.8 A t� � A#
R

A

	 � 0�

x· t� � A t� � B t� ��� � x t� ��

	 B t� � �� t 	�

E x e r c i s e 7.9

$ t s�� � 7 K 1� e� t s�� � 1 P s� ��� � 7
 t s


$ t s�� � 7 K 1� e� s t�� � P s� � 7
 t s�

7 X Rn#�

E x e r c i s e 7.10

R+ 0 +����� P 0� �X V+�

V+ 7 X Rn#� : $ t 0�� � 7
t 0�
sup ��

� �
� �
� �

#

$ t 0�� � 7 K 1� e� t 1 P 0� ��� � 7
 t 0
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If equation (7.3) possesses an exponential dichotomy over
, then , where

(7.10)

(Hint: , ).

Assume that equation (7.3) possesses an exponential dicho-
tomy over  (over , respectively). Show that any solution to
problem (7.3) bounded on  (on , respectively) decreases
at exponential velocity as  (as , respectively).

Assume that equation (7.3) possesses an exponential dicho-
tomy over the half-interval , where  is a real number.
Prove that equation (7.3) possesses an exponential dichotomy over
any semiaxis of the form .
(Hint: ).

Prove the analogue of the assertion of Exercise 7.13 for the
semiaxis .

Prove that for problem (7.3) to possess an exponential dicho-
tomy over  it is necessary and sufficient that equation (7.3) pos-
sesses an exponential dichotomy both over  and  and has no
nontrivial solutions bounded on the whole axis .

Prove that the spaces  and  (see (7.9) and (7.10)) pos-
sess the properties

, ,

provided problem (7.3) possesses an exponential dichotomy over .

Consider the following equation adjoint to (7.3):

, (7.11)

where  is the transposed matrix. Prove that the evolutionary
operator  of problem (7.11) has the form .

Assume that problem (7.3) possesses an exponential dichoto-
my over an interval . Then equation (7.11) possesses exponential
dichotomy over  with the same constants  and projectors

.

Assume that problem (7.3) possesses an exponential dichoto-
my both over  and . Let , where  are
defined by equalities (7.9) and (7.10). Show that the dimensions of
the spaces of solutions to problems (7.3) and (7.11) bounded on the
whole axis are finite and coincide.

E x e r c i s e 7.11

R– � 0 ����� I P 0� ��� �X V–�

V– 7 X Rn#� : $ t 0�� � 7
t 0�
sup ��

� �
� �
� �

�

$ t 0�� � 7 K 1� e� t P 0� � 7
 t 0�

E x e r c i s e 7.12

R+ R–
R+ R–

t +�! t ��!

E x e r c i s e 7.13

a +���� a

b +����
P t� � $ t a�� � P a� � $ a t�� ��

E x e r c i s e 7.14

� a ����

E x e r c i s e 7.15

R
R+ R–
R

E x e r c i s e 7.16 V+ V–

V+ V–@ 0� � V+ V–� X Rn#�

R

E x e r c i s e 7.17

y· t� � A* t� �� y t� ��
A* t� �
H t s�� � H t s�� � $ s t�� �� �*�

E x e r c i s e 7.18

	

	 K �� 0�
Q t� � I P t� �*��

E x e r c i s e 7.19

R+ R– V+dim V–dim� n� V&
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Assume that problem (7.3) possesses an exponential dichoto-
my over . Then for any  and  the difference equation

 possesses an exponential dichotomy over
 (for the definition see Section 2).

Let us now return to problem (7.1). Assume that  is a hyperbolic fixed point for
(7.1), i.e. the matrix  does not have any eigenvalues on the imaginary axis. Let

 be a trajectory homoclinic to . Using Theorem 7.1 on the roughness and the
results of Exercises 7.13 and 7.14 we can prove that the equation

(7.12)

possesses an exponential dichotomy over both semiaxes  and . Moreover, the
dimensions of the corresponding projectors are the same and coincide with the di-
mension of the spectral subspace of the matrix  corresponding to the spec-
trum in the left semiplane. Therewith it is easy to prove that ,
where  have form (7.9) and (7.10). The result of Exercise 7.15 implies that equa-
tion (7.12) cannot possess an exponential dichotomy over  (  is a solu-
tion to (7.12) bounded on ) while Exercise 7.19 gives that the number of linearly
independent bounded (on ) solutions to (7.12) and to the adjoint equation

(7.13)

is the same. These facts enable us to formulate Palmer’s theorem (see [14]) as fol-
lows.

Theorem 7.2. 

Assume that Assume that Assume that Assume that  is a twice continuously differentiable function from is a twice continuously differentiable function from is a twice continuously differentiable function from is a twice continuously differentiable function from

 into  into  into  into  and equation and equation and equation and equation

possesses a fixed hyperbolic point possesses a fixed hyperbolic point possesses a fixed hyperbolic point possesses a fixed hyperbolic point  and a trajectory  and a trajectory  and a trajectory  and a trajectory  homo- homo- homo- homo-

clinic to clinic to clinic to clinic to . We also assume that . We also assume that . We also assume that . We also assume that  is a unique (up to a scalar fac- is a unique (up to a scalar fac- is a unique (up to a scalar fac- is a unique (up to a scalar fac-

tor) solution to equationtor) solution to equationtor) solution to equationtor) solution to equation

(7.14)

bounded on . Let bounded on . Let bounded on . Let bounded on . Let  be a continuously differentiable vector func- be a continuously differentiable vector func- be a continuously differentiable vector func- be a continuously differentiable vector func-

tion tion tion tion -periodic with respect to -periodic with respect to -periodic with respect to -periodic with respect to  and defined for  and defined for  and defined for  and defined for ,,,,    ,,,,

,,,,    .... If If If If

,,,, ,,,, (7.15)

where where where where  is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to is a bounded (unique up to a constant factor) solution to

the equation adjoint to the equation adjoint to the equation adjoint to the equation adjoint to (7.14), then there exist , then there exist , then there exist , then there exist  and  and  and  and  such that for such that for such that for such that for

 the perturbed equation the perturbed equation the perturbed equation the perturbed equation

(7.16)

E x e r c i s e 7.20

R s R� � 0�
x

n
$ s �n� s�� � x

n 1��
Z

z0
g 9 z0� �

z t� � z0

y· g 9 z t� �� � y�

R+ R–

g 9 z0� �
V+dim V–dim� n�

V&
R y t� � z· t� ��

R
R

y· g 9 z t� �� �� �� *y�
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Rn Rn

x· g x� ��
z0 z t� � : t R�� 

z0 y t� � z· t� ��

y· g 9 z t� �� � y�
R h t x >� �� �

T t t R� x z t� �� 40�
> '0� > R�

I t� � h t z t� � 0� �� ��� �
Rn td

��
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8 0� I t� � h
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Rn

td

��
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possesses the following properties:possesses the following properties:possesses the following properties:possesses the following properties:

(a) there exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such thatthere exists a unique -periodic solution  such that

,,,, ,,,,

andandandand

,,,, ;;;;

(b) there exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such thatthere exists a solution  bounded on  and such that

,,,, ,,,,

,,,,

andandandand

;;;;

(c) the linearized equationthe linearized equationthe linearized equationthe linearized equation

,,,, (7.17)

where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-where  is equal to either  or , possesses an ex-

ponential dichotomy over .ponential dichotomy over .ponential dichotomy over .ponential dichotomy over .

This theorem immediately implies (see Exercise 7.20 and Theorem 3.1) that
under conditions (7.15) the monodromy operator for problem (7.16) has a hyperbo-
lic fixed point in a vicinity of the orbit  and a transversal trajectory ho-
moclinic to it.

We will not prove Theorem 7.2 here. Its proof can be found in paper [14]. We only
outline the scheme of reasoning which enables us to construct a homoclinic trajecto-
ry . Here we pay the main attention to the role of conditions (7.15). If we
change the variable  in equation (7.16), then we obtain the equation

.

We use this equation to construct a mapping  from  into
 acting according to the formula

. (7.18)

We remind that  is the space of  times continuously differentiable bound-
ed functions from  into  with bounded derivatives with respect to  up to the -
th order, inclusive.

Thus, the existence of bounded solutions to problem (7.16) is equivalent to the
solvability of the equation . It is clear that . Therefore, in
order to construct solutions to equation  we should apply an appropri-
ate version of the theorem on implicit functions. Its standard statement requires
that the operator  be invertible. However, it is easy to check that the
operator  has the form

T 70 t >�� �

z0 70 t >�� �� 4� t R�

z0 70 t >�� ��
t R�
sup 0! > 0!

7 t >�� � R

7 t >�� � z t� �� 4� t R�

7 t >�� � z t� ��
t R�
sup 0 >� ��

7 t >�� � 70 t >�� ��
t �&!

lim 0�

y· g 9 5 t >�� �� � >h9x t 5 t >�� � >� �� ��
� �
� �
� �

y�

5 t >�� � 7 t >�� � 70 t >�� �
R

z t� � : t R�� 

7 t :�� �
x z t� � J��

J· g z t� � J�� � g z t� �� �� >h t z t� � J� >� �� ���

� C
b
1 R Rn�� � RA

C
b
0 R Rn�� �

J >�� � � J >�� �! J· g z t� � J�� � g z t� �� �� >h t z t� � J� >� �� ��� ��

C
b
k R X�� � k

R X t k

� J >�� � 0� � 0 0�� � 0�
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 .

Therefore, it possesses a nonzero kernel . Hence, we should use the modi-
fied (nonstandard) theorem on implicit functions (see Theorem 4.1 in [14]). Roughly
speaking, we should make one more change  and consider the equation

. (7.19)

If this equation is solvable and the solution  depends on  smoothly, then  sa-
tisfies the equation

, (7.20)

where  is the derivative of  with respect to the parameter . This equation can
be obtained by differentiation of the identity  with respect to .
Due to the smoothness properties of the mapping , it follows from (7.20) the solva-
bility of the problem

, (7.21)

which is equivalent to the differential equation

(7.22)

in the class of bounded solutions. It is easy to prove that the first condition in (7.15)
is necessary for the solvability of (7.22) (it is also sufficient, as it is shown in [14]).

Further, the necessary condition of the dichotomicity of (7.17) for 
 on  is the condition of the absence of nonzero solutions to equation

(7.17) bounded on . However, this equation can be rewritten in the form

, (7.23)

where  is determined with (7.19). If we assume that equation (7.23) has
nonzero solutions, then we differentiate equation (7.23) with respect to  at zero,
as above, to obtain that

, (7.24)

where  is a solution to equation (7.21), , , and  is
a solution to equation (7.23). Equation (7.17) transforms into (7.14) when .
Therefore, the condition of uniqueness of bounded solutions to (7.14) gives us that

, therewith we can assume that . Hence, equation (7.24) trans-
forms into an equation for  of the form

, (7.25)

where

L y� � t� � y· t� � g 9 z t� �� � y t� ���

L z· 0�� �

J >w�

� >w >�� � 0�
w > w

DJ� >w >�� � w >w>�� � D>� >w >�� �� 0�

w> w >
� >w >� � >�� � 0� >

�

DJ� 0 0�� �w0 D>� 0 0�� �� 0�

w· 0 g 9 z t� �� �w0 h t z t� � 0� �� ���

5 t >�� � �
7 t >�� �� R

R

DJ � >w >�� � y >� � 0�

w w >� ��
>

DJJ � 0 0�� �w0 DJ> � 0 0�� �� y0 DJ � 0 0�� � y1� 0�

w0 y0 y 0� �� y1 D>y 0� �� y >� �
> 0�

y0 c0 z· t� �� c0 1�
y1

y·1 g 9 z t� �� � y1� a t� ��

a t� � DJJ � 0 0�� �w0 DJ> � 0 0�� �� z·- .
/ 0 t� ��

D
x x

g z t� �� � w0 t� � D
x
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Here  is a solution to (7.22). A simple calculation shows that equation (7.25)
can be rewritten in the form

. (7.26)

The second condition in (7.15) means that equation (7.26) cannot have solutions
bounded on the whole axis. It follows that equation (7.23) has no nonzero solutions,
i.e. equation (7.17) is dichotomous for .

Thus, the first condition in (7.15) guarantees the existence of a homoclinic tra-
jectory  while the second one guarantees the exponential dichotomicity of
the linearization of the equation along this trajectory.

As to the existence and properties of the periodic solution , this situa-
tion is much easier since the point  is hyperbolic. The standard theorem on im-
plicit functions works here.

It should be noted that condition (7.15) can be modified a little. If we consider a
“shifted” homoclinic trajectory  for  instead of  in Theo-
rem 7.2, then the first condition in (7.15) can be rewritten in the form

.

If we change the variable , then we obtain that

. (7.27)

It is evident that

.

Therefore, the second condition in (7.15) leads us to the requirement .
Thus, if the function  has a simple root  ( , ), then the
assertions of Theorem 7.2 hold if we substitute the value  for  in (b).
Performing the corresponding shift in the function , we obtain the asser-
tions of the theorem in the original form. Thus, condition (7.15) is equivalent to the
requirement

, for some , (7.28)

where  has form (7.17).

In conclusion we apply Theorem 7.2 to prove Theorem 6.1. The unperturbed Duffing
equation can be rewritten in the form

(7.29)

w0 t� �

d
td
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The equation linearized along the homoclinic orbit  (see Exer-
cise 7.1) has the form

(7.30)

Let us show that system (7.30) has no solutions which are bounded on the axis and
not proportional to . Indeed, if  is another bounded solution,
then due to the fact that  as , the Wronskian 

 possesses the properties

and .

This implies that  and therefore  is proportional to .
Evidently, the equation adjoint to (7.30) has the form

(7.31)

Since we have that

,

a solution to (7.31) bounded on  has the form . Let us now
consider the corresponding function . Since in this case 

, we have

,

where

.

Calculations (try to do them yourself) give us that

.

Therefore, equation  has simple roots under condition (6.19). Thus, the as-
sertion of Theorem 6.1 follows from Theorem 7.2.

It should be noted that in this case the function  coincides with the famous
Melnikov function arising in the geometric approach to the study of the transversali-
ty (see, e.g., [1], [2] and the references therein). Therewith conditions (7.28) trans-
form into the standard requirements on the Melnikov function which guarantee the
appearance of homoclinic chaos.
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Addition to the English translation:

The monographs by Piljugin [1*] and by Palmer [2*] have appeared after publication
of the Russian version of the book. Both monographs contain an extensive bibliogra-
phy and are closely related to the subject of Chapter 6.
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