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(Luis Español y Juan L. Varona, editores),
Servicio de Publicaciones, Universidad de La Rioja,
Logroño, Spain, 2001.

TRANSFERRING FOURIER MULTIPLIERS ON ADMISSIBLE
SPACES

KRZYSZTOF STEMPAK
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Abstract. Proved is a theorem that allows to transfer Fourier multipliers from
the discrete to the continuous case in spaces more general than the Lebesgue

spaces, for instance the weighted Lorentz spaces.

1. Introduction and statement of the result

The essential aim of this note is to furnish a generalization of the following the-
orem proved by Igari.

Theorem ([6]). Let 1 < p < ∞ and assume that m is a bounded function on R
d,

continuous except on a set of Lebesgue measure zero. If {m(εn)} ∈ Mp(Zd) for all
sufficiently small ε > 0 and lim infε→0+ ‖m(εn)‖Mp(Zd) <∞, then m ∈Mp(Rd) and

‖m‖Mp(Rd) ≤ lim inf
ε→0+

‖m(εn)‖Mp(Zd).

This theorem is a well-known converse to a multiplier restriction result of de
Leeuw, [8]. Here, Mp(Zd) and Mp(Rd) denote the spaces of Lp-Fourier multipliers
on Z

d and R
d, respectively, and ‖mn‖Mp(Zd) or ‖m‖Mp(Rd) denote the multiplier

norms of mn or m, that is the norms of relevant operators associated to mn or m
that act on Lp((−π, π)d) or Lp(Rd).

Igari’s result was generalized in several directions, cf. [7], [3], [1], [2], [5], mainly
to orthogonal expansions other than the trigonometric system. The generalization
we consider in this note deals back with Fourier multipliers but in the spaces more
general than the Lebesgue spaces Lp. We tried to formulate this generalization in
an abstract, to some extent, form, but an immediate application of our main result,
Theorem 1.5, gives a transference result for Fourier multipliers in weighted Lorentz
spaces, cf. Section 3 for details. Due to this “abstract form” a straightforward
argument from the proof of the aforementioned Igari’s paper, [6], does not apply to
the present situation. More sophisticated argument from [7] does, however, the job.
We use it in the proof of our result.
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392 KRZYSZTOF STEMPAK

In the sequel we fix d ∈ N and use a fairly standard notation. Thus: D = D(Rd)
is the space of all C∞ functions with compact support; given f ∈ L1(Rd), its Fourier
transform is defined by

f̂(x) =
∫

Rd

f(y)e−ixy dy

and its inverse transform by

f̌(x) =
1

(2π)d

∫
Rd

f(y)eixy dy;

also, given f ∈ L1(Td), its Fourier coefficients are defined by

f̂(k) =
1

(2π)d

∫
Td

f(y)e−iky dy, k ∈ Z
d,

and the Fourier series associated to f is the series

f(x) ∼
∑
k∈Zd

f̂(k)eikx.

Throughout the paper we will consequently use the following convention: given an
object T on R

d, by T̃ we will denote its “periodic” counterpart, i.e. a “corresponding”
object on T

d. Thus, if M denotes the linear space of measurable functions on R
d

(two functions are identified when they differ on a set of Lebesgue measure zero)
then M̃ is the linear space of (equivalence classes of) measurable functions on T

d.
The family of dilations δλ, λ > 0, on functions on R

d is given by δλϕ(x) = ϕ(λx).
For functions ϕ, ψ, we write 〈ϕ, ψ〉 to denote the integral

∫
Rd ϕ(x)ψ(x) dx whenever

it makes sense.

Definition 1.1. We call a quasi-normed space (X, ‖ · ‖X) admissible if
(a) X, as a subset, is contained in M;
(b) (X, ‖ · ‖X) is δ-homogeneous in the sense that for every λ > 0, δλ maps X

into X and

‖δλf‖X = λA‖f‖X , λ > 0, f ∈ X,
for a homogeneity constant A ∈ R;

(c) D ⊂ X.
We will consider a fixed family {hr}r>1 of elements of D satisfying

(1) 0 ≤ hr ≤ 1, hr = 1 on [−π, π]d, supphr ⊂ [−π − 1/r, π+ 1/r]d

On the torus T
d ∼ [−π, π)d, (with the usual identification of the boundary points)

we consider the space of all C∞ functions, D̃ = D(Td), which are identified with
2π-periodic, C∞ functions on R

d (2π-periodicity means ϕ(x+2πk) = ϕ(x), x ∈ R
d,

k = (k1, k2, . . . , kd) ∈ Z
d).

Definition 1.2. Given an admissible space (X, ‖ · ‖X) we define (X̃, ‖ · ‖
eX) by

X̃ = {g ∈ M̃ : g = fχTd for an f ∈ X}
and

‖g‖
eX = inf{‖f‖X : g = fχTd}.
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It may be checked that X̃ equipped with ‖ · ‖
eX becomes a quasi-normed space.

Moreover, D̃ ⊂ X̃ and
‖g‖

eX ≤ ‖g‖X

for any g ∈ D with supp g ⊂ (−π, π)d.
Definition 1.3. Let (Y, ‖ · ‖Y ) be an admissible space. We say (Y, ‖ · ‖Y ) satisfies
the property (W1) provided that for every g ∈ D̃ and the family {hr}r>1 ⊂ D that
satisfies (1)

(W1) ‖g‖
eY = lim

r→∞
‖hrg‖Y ,

where the last g is treated as a 2π-periodic function on R
d. We say (Y, ‖ · ‖Y )

satisfies the property (W2) provided that from every sequence {yj}j∈N ⊂ D, which is
uniformly bounded in Y , supj ‖yj‖Y ≤ R <∞, one can choose a subsequence {yji}
and an element y ∈ Y ∩ L1loc(Rd) such that ‖y‖Y ≤ R and, for every ϕ ∈ D,
(W2) lim

i→∞
〈yji , ϕ〉 = 〈y, ϕ〉.

Definition 1.4. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be admissible spaces and assume D lies
densely in X. We call a bounded measurable function m(x) on R

d an (X, Y )-Fourier
multiplier provided for every ϕ ∈ D, (mϕ̂)̌ ∈ Y and

|(mϕ̂)̌ |Y ≤ C‖ϕ‖X

with a constant C ≥ 0 independent of ϕ ∈ D. The least constant C for which
the above holds is then defined to be the multiplier norm of m(x) and is denoted
‖m(x)‖mult(X,Y ). In the same way a bounded sequence {mk}k∈Zd is called an (X̃, Ỹ )-
Fourier multiplier provided for every ϕ ∈ D̃∥∥∥ ∑

k∈Zd

mkϕ̂(k)eikx
∥∥∥
eY
≤ C‖ϕ‖

eX .

As before the least C is then called the multiplier norm of mk and is denoted
‖mk‖mult( eX,eY ).

Note that the last series is absolutely convergent for every x ∈ R
d, defines an

element of D̃, hence it also belongs to Ỹ (let us agree to use spherical summation to
sum the above series and those that follow). Due to the assumption on the density
of D in X the operator ϕ → (mϕ̂)̌ , initially defined on D, can be extended in a
unique way to a bounded operator from X to Y . The same remark applies to the
operator ϕ→ ∑

m(k)ϕ̂(k)eikx, initially defined on D̃ provided D̃ lies densely in X̃.

Theorem 1.5. Assume (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) are two admissible spaces with the
δ-homogeneity constants A and B respectively, D lies densely in X, and a bounded
function m(x) on R

d, continuous except on a set of Lebesgue measure zero, is such
that for all sufficiently small ε > 0 the sequence {m(εk)}k∈Zd is an (X̃, Ỹ )-Fourier
multiplier and, moreover,

L = lim inf
ε→0+

εB−A‖m(εk)‖mult( eX,eY ) <∞.
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Assume, in addition, that Y satisfies the properties (W1) and (W2). Then m(x) is
an (X, Y )-Fourier multiplier and ‖m(x)‖mult(X,Y ) ≤ L.

2. Proof of the theorem

Fix g ∈ D and consider λ’s sufficiently large; in particular so large that δλg ∈ D̃.
Take the dilation δλg against the multiplier sequence {m(k/λ)} and write

‖
∑
m(k/λ)δ̂λg(k)eikx‖

eY ≤ ‖m(k/λ)‖mult( eX,eY )‖δλg‖ eX

≤ λA‖m(k/λ)‖mult( eX,eY )‖g‖X .

Since m(x) is bounded, |m(x)| ≤ K, by Parseval’s identity,

‖
∑
m(k/λ)δ̂λg(k)eikx‖L2(Td) ≤ Kλ−d/2‖g‖L2(Rd).

Letting to denote
Gλ(x) =

∑
m(k/λ)δ̂λg(k)eikx

we rewrite the above as

‖Gλ(x)‖eY ≤ λA‖m(k/λ)‖mult( eX,eY )‖g‖X

and
‖Gλ(x)‖L2(Td) ≤ Kλ−d/2‖g‖L2(Rd).

Since, by assumption, Y and, evidently, L2(Rd) both satisfy (W1), for every η > 0,
given λ sufficiently large we can find r = r(λ) > λ such that

‖hr(λ)(x)Gλ(x)‖Y ≤ (1 + η)‖Gλ‖eY
and

‖hr(λ)(x)Gλ(x)‖L2(Rd) ≤ (1 + η)‖Gλ‖L2(Td).

Consequently,

‖hr(λ)(x)Gλ(x)‖Y ≤ (1 + η)λA‖m(k/λ)‖mult( eX,eY )‖g‖X

and
‖hr(λ)(x)Gλ(x)‖L2(Rd) ≤ (1 + η)Kλ−d/2‖g‖L2(Rd),

and the dilation property next gives

‖hr(λ)(x/λ)Gλ(x/λ)‖Y ≤ (1 + η)λA−B‖m(k/λ)‖mult( eX,eY )‖g‖X

and
‖hr(λ)(x/λ)Gλ(x/λ)‖L2(Rd) ≤ (1 + η)K‖g‖L2(Rd).

Choosing a sequence 0 < λ1 < λ2 < . . . , λj → ∞, such that

λA−B
j ‖m(k/λj)‖mult( eX,eY ) ≤ (1 + η)L

and letting to denote

Fλj(x) = hr(λj)(x/λj)Gλj(x/λj)

allows to write
‖Fλj‖Y ≤ (1 + η)2L‖g‖X , j ∈ N,
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and

‖Fλj‖L2(Rd) ≤ (1 + η)K‖g‖L2(Rd), j ∈ N.

In what follows, from a given sequence we will frequently choose a subsequence. To
avoid multiplication of subscripts let us agree to denote the resulting subsequence
in the same way as the sequence we started from. We believe this agreement will
not lead to a confusion.

Since Y satisfies (W2) one can choose a subsequence of {λj} and an element
F ∈ Y such that

(2) ‖F ‖Y ≤ (1 + η)2L‖g‖X

and, for every ϕ ∈ D,

〈Fλj , ϕ〉 =
∫

Rd

Fλj(x)ϕ(x) dx→ 〈F, ϕ〉

with j → ∞. Next, by weak compactness of a ball of arbitrary radius in L2(Rd),
from {λj} one can choose a subsequence and an element Fo ∈ L2(Rd) such that
‖Fo‖L2(Rd) ≤ (1 + η)K‖g‖L2(Rd) and, for every ψ ∈ L2(Rd),

(3)
∫

Rd

Fλj(x)ψ(x) dx→ 〈Fo, ψ〉

with j → ∞. From the above it follows that F = Fo ∈ L2(Rd). Relying solely on
(3), the weak convergence of Fλj to Fo in L2(Rd), we will now show that

(4) Fo = (mĝ)̌ .

This, the fact that F = Fo and arbitrariness of η > 0 in (2) then show

‖(mĝ)̌ ‖Y ≤ L‖g‖X

and finish the proof of the theorem.
Let’s start proving (4). For any given N = 1, 2, . . . we will use the decomposition

(5)

Fλ(x) = hr(λ)(x/λ)
( ∑

|k|≤N[λ]

+
∑

|k|>N[λ]

)
m(k/λ)δ̂λg(k)eikx/λ = FN

λ (x) +RN
λ (x),

where |k| = (k21+ · · ·+k2d)1/2 and [·] denotes the greatest integer function. We start
with estimating ‖RN

λ ‖L2(Rd). Applying the identity

δ̂λg(k) = −(λ/|k|)2(δλ(∆g))̂ (k),



396 KRZYSZTOF STEMPAK

where ∆ denotes the Laplacean on R
d, and using Parseval’s identity, gives∫

Rd

|RN
λ (x)|2 dx =

∫
Rd

hr(λ)(x/λ)2 ·
∣∣∣∣ ∑
|k|>N[λ]

m(k/λ)δ̂λg(k)eikx/λ

∣∣∣∣2 dx
= λd

∫
Rd

hr(λ)(y)2 ·
∣∣∣∣ ∑
|k|>N[λ]

m(k/λ)δ̂λg(k)eiky

∣∣∣∣2 dy
≤ (3λ)d

∫
Td

∣∣∣∣ ∑
|k|>N[λ]

m(k/λ)δ̂λg(k)eiky

∣∣∣∣2 dy
≤ K2(3λ)d(2π)d

∑
|k|>N[λ]

|δ̂λg(k)|2

≤ K
2(3λ)d

N4
(2π)d

∑
k∈Zd

|(δλ(∆g))̂(k)|2

≤ K
23d

N4
‖∆g‖L2(Rd).

Hence, we conclude that

(6) ‖RN
λ ‖L2(Rd) = O(N−2),

uniformly in λ→ ∞. By invoking the diagonal argument we can find a subsequence
of {λj} such that for every N ∈ N, {RN

λj
} is weakly convergent to a function RN in

L2(Rd). Clearly, ‖RN‖L2(Rd) = O(N−2), hence, for an increasing sequence {Nn}n∈N

of positive integers, {RNn}n∈N converges to zero a.e. on R
d. By defining FNn =

Fo − RNn , n ∈ N, it is clear that FNn

λj
→ FNn weakly in L2(Rd) for every n ∈ N.

Moreover, {FNn}n∈N converges to Fo a.e. on R
d. In a moment we will check that

(7) lim
j→∞

FNn

λj
(x) = (2π)−d

∫
‖y‖≤Nn

m(y)ĝ(y)eixy dy

for every x ∈ R
d. Having this, first note, that for fixed n ∈ N the sequence {FNn

λj
}j∈N

is uniformly bounded on R
d:

|FNn

λj
(x)| ≤ K

λd
j

∑
|k|≤Nn[λj ]

|ĝ(k/λj)| ≤
CK

λd
j

∑
|k|≤Nn[λj ]

(|k|/λj)−2

≤ CK

λd−2
j

∑
|k|≤Nn[λj]

|k|−2 ≤ C ′Nd−2
n .

Therefore, when integrating the sequence {FNn

λj
}j∈N over any rectangle P = [r1, s1]×

· · · × [rd, sd], −∞ < ri < si < ∞, using the Lebesgue dominated convergence
theorem is possible. On the other hand, by weak convergence in L2(Rd),∫

P

FNn

λj
(x) dx→

∫
P

FNn(x) dx,
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when j → ∞. This, combined with (7), shows that for a.e. x ∈ R
d

FNn(x) = (2π)−d

∫
‖y‖≤Nn

m(y)ĝ(y)eixy dy

and letting n → ∞, (4) will then follow. Consequently, the proof of Theorem 1.5
will be finished.

We now return to (7). Fix N ∈ N and x ∈ R
d. For large λ

FN
λ (x) =

1
(2πλ)d

∑
|k|≤N[λj]

m(k/λ)ĝ(k/λ)eikx/λ

tends with λ → ∞ to (2π)−d
∫
‖y‖≤N m(y)ĝ(y)eixy dy since, by assumption made

on m(y), the function under the last integral is Riemann integrable on the region
{y ∈ R

d : ‖y‖ ≤ N}.

3. Examples and comments

Letmα
f denote the distribution function of an f ∈ M with respect to the measure

dµα(x) = ‖x‖α dx (dx means the Lebesgue measure on R
d),

mα
f (t) = µα({x ∈ R

d : |f(x)| > t}), t > 0.

It is easily seen that the weighted Lorentz spaces Lp,q
α (Rd), 0 < p <∞, 0 < q ≤ ∞,

α > −d, that consist of those f ∈ M for which the quantity

‖f‖p,q;α =

{ ( ∫ ∞
0

[
tmα

f (t)
1/p

]q dt
t

)1/q
, q <∞,

sup0<t<∞
[
tmα

f (t)
1/p

]
, q = ∞,

is finite, is an admissible space with the homogeneity constant −(d+α)/p. Moreover,
Lp,q

α (Rd) satisfies the (W1) property, D is dense in Lp,q
α (Rd) if q < ∞, and, when

1 < p < ∞, 1 < q < ∞, Lp,q
α (Rd) satisfies the (W2) property. The last statement

is easily explained by the fact that the quasi-norm ‖ · ‖p,q;α is then equivalent to
a norm and with this norm Lp,q

α (Rd) becomes a reflexive Banach space (with the
above assumptions on p and q, the dual space to Lp,q

α (Rd) can be identified with
Lp′,q′

α (Rd), p′ = p/(p−1), q = q/(q−1)). Needless to say, that if X = Lp,q
α (Rd) then

X̃ = Lp,q
α (Td) and ‖ · ‖

eX coincides with the usual quasi-norm on Lp,q
α (Td) given now

in terms of
m̃α

f (t) = µ̃α({x ∈ T
d : |f(x)| > t}).

The result from the proposition that follows (under stronger assumptions and with
additional restrictions) has been used in an outline of proof of a result stated in
p.267 of [4]. In the case of 1 < p2 < ∞, 1 < q2 < ∞ the proposition is a direct
consequence of Theorem 1.5. Since the (unweighted) weak-Lp case, that is the case
of Lp2,∞, 1 ≤ p2 <∞, is important for possible applications, we decided to include
it into consideration.

Proposition 3.1. Let m(x) be a bounded function on R
d, continuous except on

a set of Lebesgue measure zero. Let 0 < p1 < ∞, 0 < q1 < ∞, α > −d and
either 1 < p2 < ∞ and 1 < q2 < ∞ or α = 0, 1 ≤ p2 < ∞ and q2 = ∞.
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Assume further that for all sufficiently small ε > 0 the sequence {m(εk)}k∈Zd is an
(Lp1,q1

α (Td), Lp2,q2
α (Td))-Fourier multiplier and, moreover,

L = lim inf
ε→0+

ε(d+α)(1/p1−1/p2)‖m(εk)‖mult <∞.

Then m(x) is an (Lp1,q1
α (Rd), Lp2,q2

α (Rd))-Fourier multiplier and ‖m(x)‖mult ≤ L.

Proof. Consider the additional case 1 ≤ p2 <∞ and q2 = ∞. The idea of proof that
follows belongs to Connett and Schwartz and the proof itself can be easily read off
from their paper [3], cf. also [1]. We include it here only for a sake of completeness.
Let us also add that using the (W2) property is now simply replaced by applying
Fatou’s lemma. To simplify the notation, in what follows we write µ (the Lebesgue
measure) in place of µ0 and Lp,q in place of Lp,q

0 .
Fix g ∈ D and t > 0. By assumption, for λ’s sufficiently large,

tµ({x ∈ T
d : |

∑
m(k/λ)δ̂λg(k)eikx| > t})1/p2 ≤ ‖m(k/λ)‖mult‖δλg‖Lp1,q1(Td)

≤ λ−d/p1‖m(k/λ)‖mult‖g‖Lp1,q1(Rd).

This gives

tµ({x ∈ T
d : |Fλ(x)| > t})1/p2 ≤ λ−d/(1/p1−1/p2)‖m(k/λ)‖mult‖g‖Lp1,q1(Rd),

where
Fλ(x) = χTd(x/λ)

∑
m(k/λ)δ̂λg(k)eikx/λ.

We now choose a sequence 0 < λ1 < λ2 < . . . , λj → ∞, and a function Fo ∈ L2(Rd)
such that

(8) tµ({x ∈ R
d : |Fλj(x)| > t})1/p2 ≤ (L + 1/j)‖g‖Lp1,q1(Rd),

and {Fλj}j∈N converges weakly to Fo ∈ L2(Rd). The argument for the proof that
Fo = (mĝ)̌ is the same as in the proof of (4) in Section 2. Thus, it remains only to
check that

(9) tµ({x ∈ R
d : |Fo(x)| > t})1/p2 ≤ L‖g‖Lp1,q1(Rd).

We will use again the decomposition Fλ(x) = FN
λ (x)+RN

λ (x) from the proof of The-
orem 1.5, cf. Section 2. Arguing as before we have to our disposal a subsequence of
{λj}n∈N (let us recall that the agreement concerning avoiding multiplication of sub-
scripts is still valid!), an increasing sequence {Nn}n∈N of positive integers, functions
FNn ∈ L2(Rd) and the decomposition

Fλj(x) = F
N
λj
(x) + RN

λj
(x)

that satisfy:

• FNn converges to Fo a.e., n→ ∞;
• for every n = 1, 2, . . ., FNn

λj
converges to FNn a.e., j → ∞;

• ‖RNn

λj
‖L2(Rd) = O(N−2

n ), uniformly in j = 1, 2, . . . .
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We use the above properties to show (9). Fix η > 0. Fatou’s lemma then gives

µ({|Fo(x)| > t})1/p2 ≤ lim inf
n→∞

µ({|FNn(x)| > t})1/p2 .

Hence, for a subsequence of {Nn},
(10) µ({|Fo(x)| > t})1/p2 ≤ µ({|FNn(x)| > t})1/p2 + η.

Fix n = 1, 2, . . . . Fatou’s lemma again gives

µ({|FNn(x)| > t})1/p2 ≤ lim inf
j→∞

µ({|FNn

λj
(x)| > t})1/p2 .

Hence, for a subsequence of {λj},
(11) µ({|FNn(x)| > t})1/p2 ≤ µ({|FNn

λj
(x)| > t})1/p2 + η.

By invoking the diagonal argument, we can assume that (11) holds for every n, j ∈ N.
Combining (10) and (11) then gives

(12) µ({|Fo(x)| > t})1/p2 ≤ µ({|FNn

λj
(x)| > t})1/p2 + 2η.

We now have

µ({|FNn

λj
(x)| > t})1/p2 = µ({|Fλj(x)−RNn

λj
(x)| > t})1/p2

≤ µ({|Fλj(x)| > t(1 − η)})1/p2 + µ({|RNn

λj
(x)| > tη})1/p2 .(13)

By Chebyshev’s inequality

µ({|RNn

λj
(x)| > tη}) ≤ ‖RNn

λj
‖2L2(Rd)/(tη)

2.

Hence µ({|RNn

λj
(x)| > tη}) can be made arbitrarily small for sufficiently large n,

uniformly in j = 1, 2, . . . . Let

(14) µ({|RNn

λj
(x)| > tη})1/p2 ≤ η

for n ≥ no and j = 1, 2, . . . . Combining (12), (13) and (14) now gives

µ({|Fo(x)| > t})1/p2 ≤ µ({|Fλj(x)| > t(1− η)})1/p2 + 3η.

By using arbitrariness of η and (8) and letting j → ∞ shows (9) and finishes the
proof of Proposition 3.1. �
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c�law, Poland
E-mail address : stempak@im.pwr.wroc.pl


