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R. Penrose has observed in 1976 [11] that the points of the Minkowski space-time
can be represented by two-dimensional linear subspaces of a complex four-dimensional
vector space on which an hermitian form of signature (++, ——) is defined. He called
this  flat twistor space, and the method of investigating deformation of complex
structures, yielded from there, the twistor programme. This initiated a series of
papers and monographs by various authors. In the present research we are dealing
with dynamical systems generated by the Hermitian Hurwitz pairs of the signature
(0,8),0+s=5+4u,lco+1—s =2+ 4m;u,m = 0,1,... In particular, for (3,2)
and its dual (1,4) the role of entropy is indicated as well as the relationship between
Hurwitz and Penrose twistors; Hurwitz twistors being objects introduced by us. The
signatures (1,8) and (7,6) give rise for introducing pseudotwistors and bitwistors,
respectively; for pseudotwistors we can prove [9] a counterpart of the original funda-
mental Penrose theorem in the local version (on real analytic solutions of the related
spinor equations vs. harmonic forms) and in the semi-global version (on holomorphic
solutions of those equations vs. Dolbeault cohomology groups). This has to be pre-
ceded by basic constructions (which is the core topic of this paper), a study of the
related pseudotwistors and spinor equations as well as complex structures on spinors.
This will allow us to prove a theorem (which we call the atomization theorem) saying
that there exist complex structures on isometric embeddings for the Hermitian Hur-
witz pairs concerned so that the embeddings are real parts of holomorphic mappings.

1. INTRODUCTION

In 1985 Lawrynowicz and Rembieliniski [5] initiated a geometrization of the problem
of A. Hurwitz concerned with the composition of quadratic forms and a geometrical
study of the related differential operators of the Cauchy-Riemann-, Dirac- and Fueter-
types by introducing the so-called Hurwitz pairs, also in the hyperbolic case [17]
discussed by Penrose [11]. The results obtained quickly appeared in text-books [12]
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242 JULIAN LAWRYNOWICZ AND OSAMU SUZUKI

and enabled [7, 8] to formulate and prove counterparts of two Penrose’s fundamental
theorems within the theory of Hurwitz pairs.

Consider the Hurwitz pair consisting of the Hermitian space C*(k) = (C*, k),
equipped with the metric

_ (L 0 (10
K):IQ,Q.— (0 _IZ>, -[2—(0 1)

and the real space R*(n) := (R®, ), equipped with the metric
1 00
I 0
=l = <02 —1>’ I;=101 0
s 001

Let (ey,-.-,e4) be the canonical basis of C*(x). We consider a pair
H = (C'(k), K (n)).

If there exists a bilinear mapping o : R®(n) x C*(k) — C*(k) called multiplication of
elements of R®(n) by elements of C*(x) such that, for f € C*(k) and a € R®(n), we
have

(a,a)n((f, [))e = {{ao fra0 )

where
{f,9)) = f kg, f,g€C"; (a,b),:=a"nb, a,b R

and * denotes the hermitian conjugation, and, moreover, H is irreducible, i.e. there
exists no subspace V of C*, V # {0}, C*, such that o|R°(n) x V : R3(n) x V = V,
then H is called an Hermitian Hurwitz pair (cf. e.g. [7, 8]). This is of course a
particular case of the general definition.

Further, let

€aoer=Clie;+-+Clhep,
where (e, ..., €5) is the canonical basis of R? (7)) and let Cy = (C%,), = 1,...,5. We

define the algebra Aj; 3 which is generated by {C#Cj : a < B}, where CF = kCix 1.
An element z € Ay 3 is called Hurwitz twistor [7, 8] whenever z has the form

(1.1) =Y £usC¥Cs, LupeC
a<fp

and im z? = 0, where im z,x € Ay 3 is defined in the following manner: z € A, 3 can
be written uniquely as

4
T = Z$k, T = Z falgl___akﬂkcoﬁc/gl . 'kacﬁm
k=0

a1 <P1< <o <Py
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with zop = &1y. We define im z := = — 2y and denote the collection of Hurwitz
twistors by P! = Jy:

Jg={z= ZfaﬂC’ng : im 2? = 0}.

a<f

2. DYNAMICAL SYSTEMS GENERATED BY THE HERMITIAN HURWITZ PAIRS OF
SIGNATURES (3,2) AND (1,4)

Following [1] we are looking in our case for a dynamical system (X, fi,7) in the
sense of ergodic theory. Here X is a measure space, i is a measure on the space and
T an invertible, measurable map X — X that preserves [i, i.e., for any measurable
set A C X we have ji[A] = i o T~'[A], and [X] = 1. Of course it is natural to take

X = (C4, = << ) ))12,2 resp. X = (Cma = << ) >>IS,8'
If £ is a finite partitioning of X in measurable sets C1,...,Cn), i.e.,

CjCX, CjﬂCkZQ, fOI‘j?ék, andclLJ"'UCN(g):X,
the entropy H (&) of the partition & is the quantity

H,(€) == =59 i(C;) log, (C;),

1=

where i(C;)log, fi(C;) = 0 whenever p(C;) = 0.
If¢€=|Cj, 1 <j<N(E),and € = {C}, 1 < k < N() are two finite partitions of

X, we shall denote by £V € the partition of X into C; NCy, where the indices j and &
run independently from 1 to N(£) and from 1 to N (5), respectively. For an arbitrary
partition £ = |G}, 1 < j < N (), we denote by T~'¢ the partition of X into the sets
T7'Cy, ..., T 'Cy- For all positive integers n we form " = T7% v ... v T—"Fl¢
and consider the limit of H;(¢™)/n as n — oo. The limit exists and is called the
entropy of the partition £ for unit time. We denote it by b; (7’| X ;). For the mapping
T : X — X of the dynamical system (X, i, T), the metric entropy in the sense of Ja.
G. Sinai is the quantity b;(T'|X) := sup bz (T[X; &), where the upper bound is taken
over all finite partitions of X.

In particular, we may take as b;(7'|X) the entropy in the physical sense (cf., e.g.
E. Fermi’s book [2]); treating it as a stochastic instant 7 [10, 4], analogous to a time
instant ¢, when considering a relativistic particle at (z,y,z) € R® within the spaces
R®(I1,4) and R®(I35) of space-time elements

ds? = A2dt? — dz® — dy? — d2® — dr? and — ds® = —2dt* + dx® + dy® + d2* — dr?,

where c is a positive constant interpreted as the light velocity. Already in the New-
tonian dynamics an additional dimension corresponding to time is needed because of
the necessity of introducing an inertical frame and absolute time in connection with
the Newtonian laws of dynamics. This means that, in contrast to the Aristotelian
physics, the space E* = {(z,y,2) € R ds* = dz? + dy? + dz?} together with time
t € T = R are no more absolute: there is a projection mapping 7 : E* x T — T which
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associates to any element p € E* x R the corresponding instant of time ¢ = m(p); T
is called the base space. The inverse image of ¢, 7~1(p) is called a fibre. Each fibre is
isomorphic to the Euclidean space 3, which is therefore called a typical fibre. Such a
triple (E* x T, T, ) with m being a surjective projection map is called a bundle with
the base space T and bundle space E* x T. The bundle approach is very convenient
and naturally extendable to higher dimensions and curved spaces [12].

In the case of the space-time elements in question, the usual variational procedure
with respect to the action integral leads to discussion of the Lorentz transformation

dr =p,(dx’ +vidt' +vidr"), dy=dy, dz=d7,

dt =py(vida' + dt' +vldr'), pi,p2, p3 € RT,

dr =ps(vida’ +vjdt' +dr'), vf etc. €R,
satisfying the condition AT pA = p, where A is the matrix of the transformation and
p the metric in question. Hence [10]:

1, N2 1 _
pr=[1= Copl? = @7, == o) ()7,

1 ,
py = [1 (1) F (o)) 2

with various restrictions for vy etc. The corresponding Euler-Lagrange equations,
interpreted as the equations of motion, include the stochastic force (cf. [10, 3]):

F = tmu; Val, 7= (z,y,2)

(m denoting the mass), being now an intrinsic part of the geometry. More generally, if
we consider a one-parameter family of symplectic transformations and the parameter
value 0 corresponds to the identity transformation, a Hamiltonian operator is defined
as the derivative of the transformations of the family with respect to the parameter
(at 0). By differentiating the condition for symplecticity of a transformation, we may
find the condition for an operator H to be Hamiltonian: w(Hx,y) + w(x, Hy) = 0
for all x,y belonging to a symplectic space in question endowed with a skew-scalar
product w; the Hamiltonian is supposed to be related in a standard way with the
Lagrangian density appearing in the action integral.

3. BASIC CONSTRUCTIONS FOR THE HURWITZ PAIRS
(C'(Isg), B (,5)), 0 +5=9

In this section, we recall basic constructions of Hurwitz algebras and give generators
of the Hurwitz algebras H,s, o0 +s = 9. They are counterparts of A;3. Generally,
under a Hurwitz algebra we understand a central Clifford algebra whose generators
S, satisfy the condition S¥ = S,,.

The basic constructions are methods of giving explicit forms for generators of Hur-
witz algebras. These constructions involve three different methods. (I) Hy,o =

Hoi20, o =1 (mod 2). Let Sy, Ss,...S, be generators of H,o. Then
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3 0 L) 3 0 il i
SU+1 = (In 0) ) SO'+2 = (—’LIn 0 ) , n= 2[2 1]

become generators of Hy 9.

(Il) Hop = Ho2, o =1mod (2). Let Sy,...,S, be generators of H, . Then

o Sl 0 > Sa 0
Sl_(o —Sl)""’ S"‘(o —S(,>’
3 0 I r 0 i, 1,

become generators of H,o. (III) Hys = Hpst2, 0+ s=1mod (2), s> 0. Let

Si,...,S,+s be generators of H, s of the form
A, 1B, _
Sa_(iB; _Da> a=1,2,...,0+s,
Ar = A,, D} = D,,

A, Ba, Dy € Mn((C) n = 2[%(04-8)—%]_

Then the generators of H, ;. are given by

Ae. 0 0 1Bq
= 0 D, iB. 0 B
Sa = 0 B, —A. 0 , a=12,...,0+s,

iB, 0 0 -D,

~ 0 In ~ 0 ’Llén &® o3
So+s+1 = (_In 0) , Sotst2 = (U;n ® 03 0 ) ;

1 0
0 -1

Applying the above construction methods, we can find generators of the Hurwitz
algebras of (C*(I22),R%(I,)), 0+ s =5, and (C*®(Isg5),R%(I,)), o+ 5 =09. At first
we notice that

where o3 =

(C"(I1p,1n), R (L))

Ve N\
Htf—l,s Hs—l a

)



246 JULIAN LAWRYNOWICZ AND OSAMU SUZUKI

which implies that a Hurwitz pair gives rise to two Hurwitz algebras H,_;, and
Hs_1,. Explicitly, in the case of o + s = 5,

for 0=1 and s=4 weget Hpa, Hs:

2 3 Hiz, Hop
3 2 Hoo, His
4 1 Hsz 1, Hoa

I

In the case of 0 + s =9,

for o=1 and s=8 weget Hps, Hra
2 7 Hiz, Hep
3 6 Hop, Hss3
4 ) Hss, Haa
5 4 Haa, His
6 3 Hs3, Hop
7 2 He2, Hiz
8 1 Hr1, Hog

We give the generators of Hurwitz algebras involved explicitly as well as the type
of the basic construction. We take the Pauli matrices as follows:

(01 (0 —i (1 0
=1 0) 27\ i o) T \o 1)
(IV) Hys with 0+ s =3 and 0 + s = 5.

For Hs the generators can be chosen as S, = 04, @ = 1,2, 3. Subsequently, we take

Sl = o 0 ) SQ - o2 0 ) S3 = s 0 )
0 —01 0 —09 0 —03
for H3 2 .
’ S, — 0 IQ S — 0 ’LIQ
Y7\-L 0) T\l 0
with the type of basing construction 3 g (I—I>) =H39;

for 7'[1,2 Sl = ’1;0'1, SQ = i02, 53 = 03,

_ 0 iO'l . 0 ’iO’Q _ ]2 0
Sl_(ial 0)’ S2_(z‘az 0)’ S3_<0 —12)’
o 0 IQ o 0 ’1;0'3
S = (—12 o) ;5= <w3 0 )

with the type of basing construction H; o (I—H>) =H14; (V) Hos with 0 + s =7. Let

for 7‘[1,4
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diag (A, B) = (61 g) etc. and diag*(A4, B) := (31 lg) etc.,

where A, B, etc. denote square matrices. For #; ¢ the generators can be chosen as

S = diag*(i0y,104,104,104), @ =1,2,3,

. 0 0 4, 0
Sy = diag"(—1Is, I, — I, I5), (0 I s_|0 0o 0 —ip
“\=-I, 0)> "7 \|4i, 0O 0 O

S7 = diag(o;;, —03, —03, 0'3),
0 —, 0 0

(111) (I11) (111)

with the type of construction Hio — =Hi4 = =Hi16 = =Hizs;

S, = diag(oa, =04, —0a,04), a=1,2,3,

0L 0 0 0 il,b 0 0
g _ |20 0 0 g _|=i 0 0 0

for Hs o Y10 0 0 -L|> "L 0 0 0 —il]’
0 0 —I, 0 0 0 4l 0

_ (0 L _ (0 —i
Sﬁ—(14 o>’ S7_<—u4 o)

with the type of construction s, Q =MHs (I—IQ =—=Hs2;
So = diag(oqa, 04, —0a, —04), a=1,2,3,
for H34 Sy =diag*(—Iy, Iy, I3, 1), Sg resp. Sy as S5 resp. Sg for Hyg,
Ss = diag* (i1, ily, il5,i15)

(1)

) . II
with the type of construction s, (—>) =—=H3zo — =—=>H3z4;

S = diag(oa, =04, 0a, —0a), a=1,23,
for H7,0 o 0 7,I4 o 0 I4
54, 55 as for Hl’s, SG = <’LI4 0 ) 5 57 = (—14 0)

. . I I
with the type of construction Hs, (—; =Hs, (—; =Hry.

4. PSEUDOTWISTORS RELATED TO HERMITIAN HURWITZ PAIRS
In this section we define the pseudotwistors for the Hermitian Hurwitz pairs
((C16 (1858)7 Rg (Ia';s))’

0+ s =9, and discuss the duality of them and the Penrose diagrams. These are the
counterparts of (C* (I, R®(Iy3)) in [7, 8].
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Let (C'*%(Iss), R%(L,5)), 0 + s = 9 be one of the Hurwitz pairs and let C,,
a=1,2,...,9, be the corresponding Hurwitz matrices. Then we have the Hurwitz
algebras:

4
A = ®k:O -/4219’
Ay, = {21§a1<ﬂ1<---<ak<ﬂk§9 €a1</31---akﬂkcoﬁ 051 i 'Coﬁ,cﬂk}'

Definition. An element £ € A is called a pseudotwistor of A, if im €2 = 0. If £ € Ay,
it is said to be of degree k. Here we denote the non-scalar part of £2 is denoted by
im £2.

Example 1. Scalar elements are pseudotwistors.

Ezxample 2. Monomials

CﬁCgl...Cngk, < fBr<ag << By,

are pseudotwistors. Hence we see that any element of A can be written as a linear
combination of pseudotwistors.

Ezxzample 3. There are elements of A which are not pseudotwistors, e.g, £ = C’# Co+
C#C,. We note that im £2 = 207 C,C¥C,.

Now we introduce an analogue of Wick’s theorem in the fermionic algebras to
Hurwitz algebras. We describe it with the use of a simple example: For

& =CfC3+C1Cs, & =CfCs,
we have
&6 = =CF C,CF G5 + 155 CY G,
Because of contractions, we have a term of lower degrees. We denote this term by
C#CQ = 7755C#C5C§¢C5,

where underlining indicates the way of contraction. The first term is called the normal
product of &; and & and is denoted by

L 618 = —CFC,CF 0.

Hence we can write

£i& =1 &6+ 1 §E,y

where  denotes contraction. In general, for &,&; € A, we have
— —7(2)
§ilo =118+ 166 +: 66 1+,
where 5222) = fEQ etc., i.e. @ denotes the /-time contraction.

Ezxample 4. For & = CfC’ng#CE, &= Cng + C’ng + C#C;J,, we get

51522251§2I+15225+5§§2 5
L &&= CFo,cf o, - CF o,
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1§, = —CT G307 G,
1 6&, = CfC’p
We have the following

Lemma 4.1. An element £ € A is a pseudotwistor if and only if
(k1) |

(E€:=0,:6£:=0,...,E€ = 0.
We are going to prove

Theorem 4.2. The pseudotwistor space of degree k
T® =€ AP . im =0}, k=1,234,
has a decomposition
J® =g+ g

and introduces a flag structure, i.e.,

(i) 7% c G(2k —1,8) and 7 c G(2k, 8) and

(i) £ =&+ &, implies £ C &,

Proof. The proof is divided into five steps.

Step A. We are going to choose a special basis of the algebra A in question. We
take

./L‘QZC;#CQ, $3=C#Cg,...,l‘920#09.
Then we arrive at the following basis {z,25: 2 < o < 5= 9} of A:
293 = —m1CF Cs, @94 = —1CFCuy ..., 39 = —11,CF Co,

where 7 is the metric of R?(I,5). An element zj, € Ay, k =1,2,3,4, can be written
as

9
I = Z 1.8, + Z €a161Ta1 T4

Br1=2 28a1<p1
T2 = E : 61/31112&'%‘,313:&23;,32 + E galﬂlazﬂzxoqxﬁlmoaxﬂz’
2<B1<a1< B2 2 a1 <fr<aa<Bo
T3 = E : 51,3104252043ﬂ3$ﬂ1xazxﬂ2xa3xﬂ4
28 B1<an<<P3
+ § : 5(11/31---a3ﬂ3xa1xﬂlxa2x52$a3mﬂ3’

28an <fr1<-<az<pBs3
Ty = 1234567823 - - - Tg + 23, 9T2T3 - - . Tg.
(k) (k)

Let zp, =27 ' +xz4°, k =1,2,3,4. Since the degree k is indicated, we denote it simply
by z = x1 + x».
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St ep B.From the above formulae we calculate directly:

2 = 21Ty +Toxe :, k=1,
where
DT Ty 1= E §18,:6a, 8T, T, Tp,  (as. = antisymmetric),
,31,0(’1,,3’122
L X1Xg = E galﬂlgallﬂ;xal‘rﬂlxallxﬂi (as.);
alaIBha’laﬁIlZQ
. 2 R m— —_—
ImMmx” =:[T1] .+ : [T+ : BT+ 1 T1To . + 1 ToZs I,
where
P HT = E §1p10282 §16 a5 Tar T2y Tyt (aS.),
0(2,ﬂ1,ﬂ2,a’2,ﬂ,1,ﬂl222 T
D Mg = E §1pra28: Eulglal g, ThaTal Ty, (85.),
o ,03B5,85>2
L BTy = E ’salﬂiﬁga’lﬁ’la;ﬁgxazxﬁz%;%; (as.),
a]:a;,ﬂpﬂgzﬁ
XX = E 6061,31&2,325&'15'1&'2/3'21"061‘,L.,leazxﬂ2ma'lxﬁ'lxa'2xﬂ'2 (as.),
aj ,a‘,]nB] ,/3; 22
DX Ty = E §11028:60! Lol B T Tan Tpa T o Lyt Tl Tyt (as.);
o ,0385,85>2
. 2 o (3) e (4) L . ae(4)
m x —.3:13:1().+.x1x2().+.m2:r2().,
where
gz = E E1BranPrasBsis of B o 4 L Tas Ty T,y (a8.)
liis 3 1,871042 2a3ﬂ3 1 2 51 a, )
aj 1a‘,7‘ 5ﬂ]7ﬂ‘; 22
c(4)
ATy = §151008203858a, ol B a8, T Lol T8y (88.),
@035, >2 ——
c(4) .
CRXt = §a1ﬂ1a2ﬂiozsﬂ3€o/ﬁ'] o Bhalh By LarTpily) gy (as.);
a;j,03B5,85>2 —
. 2 _ _
im z° =0, k=4,
where

T = §12345678 23 - - - T + £23..9T2%3 - . . Tg.
Step C. We observe that J() determines a flag structure
M; = {(L1,Ly): Ly C Ly CC® dim L; =1,dim Ly = 2}.
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Indeed, let us write down the system of equations. We fix the indices (3, o/l, ,3'1 and
write down : zyzo := 0. If we take (2,3,4), for example, we obtain

12834 — E13824 + 14823 = 0.
The second equation : z1x5 := 0 for (ay, B, 0y, B;) = (2,3,4,5) implies

93845 — E24€35 + E25834 = 0.

Hence we see that (x1)234 C (2)2345- From the same discussion in the general case,
we conclude that

g— C 5—1-7

where £_ = > g, ipxy, &4 = Zz<a'1,3, o' ' To/ Ty, Which proves the assertion of
Step C.

Step D. J® determines a flag-structure

My = {(Ls,Ls): Ly C Ly C C® dim L3 = 3,dim L, = 4}.
Indeed, let
Lk(al,...,ﬁl)szﬂ{al ::/Bl:O}

Then : 2,7, := 0 implies that L3(3;) determines a 2-dimensional subspace in C® for
a fixed 5;. Hence we have a family of 2-dimensional subspaces. By this we infer that
: 7121 := 0 determines a 3-dimensional subspace L3 of C®. Hence : 2925 := 0 is the
system of Pliicker relations for 4-dimensional subspaces, so we have L, C C®. From

: xlxgz) := 0, we conclude that

L3(51, 042) C L4(Oél1,51), pr = 04’1, Qg = 51,
and hence L3 C L,. By this we obtain the desired correspondence.

Step E.A similar observation leads to the conclusion that J®) determines a
flag-structure

Ms = {(Ls,Lg) : Ls C Lg C C®, dim L5 =5, dim Lg = 6}.
Conclusions of Steps A-E suffice to complete the proof of the theorem.

Remark. We have not used in full the conditions to be pseudotwistors. In fact, we
shall see more subtle structures of pseudotwistors, which will lead us to the ”quater-
nary analysis” for the Hermitian Hurwitz pairs [9].
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