Second Meeting on
Quaternionic Structures

in Mathematics and Physics
Roma, 6-10 September 1999

QUATERNIONIC GROUP REPRESENTATIONS AND THEIR
CLASSIFICATIONS

G. SCOLARICI AND L. SOLOMBRINO

ABSTRACT. We study quaternionic group representations of finite groups system-
atically and obtain some basic tools of the theory, such as orthogonality relations
and the Clabsch-Gordan series for reducible representations. We also derive all irre-
ducible inequivalent Q-representations of a group G, classifying them according to a
suitable generalization of the Wigner and the Frobenius-Schur classification. Some
applications to physical problems and to the time reversal symmetry are shown.

1. INTRODUCTION

In the first part of this communication we intend to inquire quaternionic group
representations (QGR) directly (i.e. without the detour of transcribing the quaternion
operators into complex ones via the symplectic representation) and systematically,
going over the basic steps of the theory.

When dealing with this subject the main difficulties come from the non commu-
tativity of ), which complicates from the very beginning the basic problem of the
invertibility of a linear mapping, and the usual form of the character of a representa-
tion must be abandoned in favor of a (seemingly) weaker characterization. Moreover
the corollary of the Schur’s lemma (which is a basic tool for the analysis of representa-
tions and for deriving orthogonality relations) fails to be true in its usual form. This
notwithstanding, we obtain some orthogonality relations for linear representations and
characters in QGR, that can be applied to analyze any reducible ()-representation; in
particular we obtain all the ( inequivalent ) irreducible Q-representations (Q-irreps)
of a (finite) group G and classify them according to a generalization of the well-known
Frobenius-Schur classification [2,8] of C-representations.

The second part of this communication, is devoted to some applications, mainly re-
garding magnetic groups. The time-reversal symmetry, which is described in complex
quantum mechanics by an antiunitary operator, brings out the necessity of introduc-
ing the more general concept of corepresentations (i.e., representations by unitary
and antiunitary operators) whenever the symmetry group contains a time-inversion

operator.
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In the framework of Quaternionic Quantum Mechanics (Q@QM) the time-inversion
operator is still unitary, with the remarkable property that it anticommutes with the
anti-self-adjoint operator which represents the Hamiltonian of the physical system
[1]. It follows that one can study the symmetry groups including time-reversal by
the same methods adopted in order to study symmetry groups containing spatial
symmetries only.

We apply to the magnetic groups a further classification of groups, which in some
sense replaces the Wigner classification of corepresentations [9,10] and can be crossed
with the generalized Frobenius-Schur classification in order to get a more general
classification of these groups. Some physical applications are briefly sketched in the
conclusions, from which a suggestion arises to inquire into parity violation from a
purely group theoretical point of view.

The main results of this comunication have been exposed in ref.[14,15].

2. UNITARY Q-REPRESENTATIONS

In a (right) n-dimensional vector space Q™ over @), every linear operator is associ-
ated in a standard way [4] to a nxn matrix acting on the left.

In analogy with the case of complex group representations, one can then define the
hermitian conjugate A" = A" of a matrix A (AT and A denote, as usual, the transpose
and the quaternionic conjugate of A, respectively), and introduce the concepts of
unitarity, hermiticity and so on. The properties of hermitian and unitary matrices
in @™ have been widely investigated [6,7]; moreover if G is a finite (or a compact)
group, one can always assume unitarity and complete reducibility of the quaternionic
representations [13].

Finally we recall that for Q-irreps Schur’s lemma still holds [7] and one obtains as
a corollary that: ”If a Hermitian matriz H commutes with an irreducible set D of
matrices,it is a (real) multiple of the unit matriz” 7).

The above corollary allows one to prove the following proposition:

" The equivalence between unitary QQ-representations can always be effected by a
unitary matrixz”.

Proof. Let D, and Dy be two equivalent unitary irreducible Q)-representations, and
let T be the matrix that effects the equivalence between them:

DlT == TD2
The conjugate of previous equation reads
TtD! = DIiTt

or, recalling the unitarity of D; and Ds,

T'D, = D,T".
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Then, TT'D, = TD,T' = D;TT" | i.e., the hermitian matrix TT' commutes with
D, and by the Schur Lemma, 7Tt = r1,7 € R. Moreover, r > 0 being trivially

Vig) € Q" (o T'T ¢y = (o | ¢) = T |9)]”

Hence, T' = %T is a unitary matrix such that
T

D1 - T,DQT,_I.

The proof for reducible representations follows at once, observing that D; = Dy
if and only if the irreducible blocks in their decomposition are both equivalent (see
sect.3).

3. ORTHOGONALITY RELATIONS AND ANALYSIS OF Q—REPRESENTATIONS

Let D (G) be an n-dimensional irreducible and unitary Q-representation of a finite
group G and let us consider the matrix

_ —T
(3.1) A=>"D(g ') XD(9)=> D (9)XD(y)
9eG g9eG
with X hermitian; then , trivially, A = A" .
Indeed
(3.2) Aij =YY " Diilg) XDy (9) = Aji;
geG kil

moreover D (g) A= AD (g),Vg € G.
By using the corollary of Schur’s lemma [7],

(3.3) A=)\XT,

where AX) € R and I,, is the unit n X n matrix.

Let us now choose in Eq. (3.1) a matrix X in such a way that X,S;) = 0r0pr
with r fixed, and take the real trace of A. Recalling that the real trace satisfies the
cyclic property ReTrBC = ReTrCB [7], we obtain

(3.4) ReTrA = Z ReTrX" =[G] = \"n
9

where [G] is the order of G.
By substituting the explicit form of X ,g) and A(") in Eq. (3.2), we easily obtain

(3.5) > . Dyi(9) Dyj(9) = %%-

geG
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Analogously, let D™ (G) and D™) (Q) (1 # v) be two unitary inequivalent Q-irreps
of G whose dimensions respectively are n, and n,; then the matrix

(3.6) A= ZD(N) (g71) XD (g)
9€G
for every matrix X , satisfies the condition
DW (h)A=AD™ (h)  VheQG.
By using Schur’ lemma [7], we conclude that A must vanish identically.

Choosing in Eq. (3.6) a matrix X("®) such that X,gs) = 0,05 with 7, s fixed and
writing down the explicit form of A;;, we obtain

(37) > DY (9) D (9) =0
geG
and finally (expressing Eqgs. (3.5) and (3.7) in a more compact form),

(33) > D% (9) DY (g) = &

geG

51] 6;11/,

which is the (weaker) analogue for Q-irreps of the orthogonality relation for C-irreps.
Let us put now r =4 and s = j in Eq. (3.8), and let us sum over ¢ and j; then,

(3.9) Z X2 (g) x® (g) =0

where x(# (g) denotes the (full) trace of D™ (g). Eq. (3.9) express the orthogonality
between (quaternionic) characters of two inequivalent Q-irreps of the group G.
On the other hand,the following identity holds:

£ (9) = Rext® (9) =  [x*) (9) = ix!® ()i — jx* (9)  ~ kx(® (5) ]

and each term in parentheses, say —ix(® (g) i, can be considered as the character of
g in a @Q-representation (in our case —iD®)7j), which is equivalent to the D™ but

certainly inequivalent to the D®) [13]. For, we easily get the following relation from
Eq. (3.9)

> x(“ ZX (9) = ou

or also (remembering that conjugated elements of a group have the same real char-
acter)

1 (1) (V)
(310) = . (19 kiX'N X :5;“/7
5 i 2
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where )25“ ) obviously indicates the (real) character of all elements belonging to the

i-th conjugation class of GG, and k; is the number of the elements of such a class.

As usual in CGR theory, Eq. (3.10 ) can be read as an orthogonality relation
between vectors in a k-dimensional space (where x is the number of the conjugation
classes of (7),so that we finally obtain that the number r of inequivalent @Q-irreps of
G must satisfy the following inequality

r<kK

(and some cases occur in which strict inequality holds).
The possibility of decomposing any reducible Q)-representation follows at once from
these results. Indeed, let

D(G) =) a,D" (G)

be the Clebsh-Gordan series of a reducible Q-representation D (G) . Then, trivially,
@)= axX"(9) VgeG.

n

By using Eq. (3.10) we obtain

1 NP
Uy = =5 ki,
Do kngu) i
and this decomposition is unique, so that we can finally assert that two @Q-represen-
tations are equivalent if and only if their (real) characters coincide.

4. Q—IRREPS AND THE GENERALIZED FROBENIUS-SCHUR CLASSIFICATION

In order to obtain all the Q-irreps, we recall that any C-irrep of a group G can
obviously be considered as a (not necessary irreducible) Q-representation and an
important theorem (Main Reduction Theorem) states that: A C-irrep D reduces
over @ (into two equivalent Q-irreps D1 and Do ) if and only if D is equivalent to its
complex conjugate D* by an antisymmetric matriz” [7].

Moreover we can prove that: ”All the Q-representations found in the sense of
Main Reduction Theorem are inequivalent to each other, with the exception of those
generated by a pair of complex conjugated representations such that D % D*”[14],

Recalling that, in the realm of CGR, ” Two inequivalent C-irreps share the same
real part of the character if and only if they are complex conjugate of each other” [14],
we can conclude that the choice of characterizing any ()-representation by means of
the real part of the trace (due to the necessity of maintaining the cyclic property of
this quantity) does not eliminate any relevant information.

Finally we prove that:

"No Q-irrep exists besides those generated (in the sense of the Main Reduction
Theorem) by the C-irreps” [14].
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Proof. (We give here a more direct proof of this proposition, with respect to ref. [14])
Let D = D; + jD, be a purely quaternionic representation (i.e., D; and D, are
complex matrices and Dy # 0 in every basis); if we take the direct sum

Dy+3j3Dy 0O
0 Dy +jDy )’

and perform the similarity transformation

11 -1 D+ jDy 0 1 j1 \ (D -D
2\ —j1 k1 0 D + jD, i1 —k1 ) =\ D, D )°

we obtain a complex representation which is equivalent to its complex conjugate
by an antisymmetric matrix:

0 1 D, —D; 0 -1\ _ (D} —Dy
-1 0 D, D: 10 J~-\pD; D )

One can easily verify that the complex commutant of such representation is a
complex multiple of identity operator, therefore, by the corollary of Schur’s Lemma
for C-irreducible representations, this representation is irreducible over the complex
field. The Main Reduction Theorem, cited above, ensures on the other hand that to
any C-representation with the previous properties is associated an purely quaternionic
irreducible Q-representation and the theorem is prooved.

We have shown elsewhere [14] that all irreducible linear (inequivalent) Q-repre-
sentations of a finite group G fall into three classes: potentially real or of type R,
potentially complex or of type C, (purely) quaternionic or of type @ (generalized
Frobenius-Schur classification). The generalized irreducibility criterion reads

(4.1) 32 (g) = G

C(M)
9
1 R
where ¢ = { 2 when the representation D® is of type{ C .
4 Q

Let us recall [14] that the following relation occur between the character ng) of
a complex representation and the character x(*) of the corresponding quaternionic
representation:

X R
(4.2) ) = Rex(c’f) when D® of type C

X Q
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Then, we also obtain, by using the classical Frobenius-Schur criterion:

(4.3) Zx(u) (92) — d®) [G]
g
+1 R
where d® ={ 0 if D® is a Q-irrep of type{ C .
1
—3 Q
)

We conclude that the couple of values of >_, ™2 (g) and > ™ (g?) uniquely
identifies all Q-irreps and their class.

5. MAGNETIC GROUPS AND THEIR CLASSIFICATION
Color groups are defined in the literature[12] by
(5.1) G' =G+ aG, a¢ @,

where ¢ is an operator which switches color (or, even, a product of such operator with
a spatial symmetry which does not belong to G ) and G is a (normal) subgroup of
G’ of index 2, whose elements represent spatial symmetries. In the CGR theory, the
same equation defines the magnetic groups [3,11], where the elements of the coset aG
are antiunitary operators. We call magnetic group in the following any group defined
by Eq. (5.1), without entering into the physical interpretation of the elements of aG .
We only characterize algebraically these elements by requiring that all elements in G
commute with a given operator, say H, while all elements in aG anticommute with
it.

We are now ready to study and possibly classify the representations of magnetic
groups in the spaces Q™. Let X be a finite dimensional vector space and let D(G") be
an irreducible (unitary) representation of a magnetic group G’ in X. Whenever the
restriction of D(G') to G is reducible, let X; be an irreducible G-invariant subspace
of X and let {| e;)} be a basis in it. Then,

(5.2) (ei | D (g) | €j) = Dy (9) = Aij (9) Vg € G;
moreover, if | f;) = D (a) | ;) , we get
(5.3) Aij (9)=(fi | D(g) | fj) = (e | D (a_l) D (g) D (a) | 6]‘) = Ay (a_lga) .

Since o 'ga € G , the set of matrices A (G) coincides with A (G) which is supposed
irreducible in X; (then, they share the same global properties); for, A (G) too is an
irreducible representation of G in Xy = D (a) X;. Furthermore, we note that

D (CL) X2 =D (CL2) X1 = Xl-

Now, let us observe that both the subspaces X; N X, and X; & X, are G'-invariant;
being by hypothesis D (G") irreducible, we easily obtain X;NXs = () and X; X, = X.
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Choosing as a basis in X the set {| e;)} U{]| f;)}, we get

s pe=(40 Ll )ow=(207).

and two cases arise, according to whether A is equivalent to A : A = A or not.

We have thus obtained a threefold classification of the irreducible representations
of magnetic groups :

I- the restriction D(G) of D to the subgroup G is irreducible;

II- D (G) is reducible and has the above form, with A % A;

III- D (G) is reducible and has the above form, with A = A.

This classification makes no reference to the scalar field of the vector space X, so
that it generalizes the Wigner classification of corepresentations [18] in CGR theory
and can replace it in the framework of QGR theory.

Thus, the idea arises to cross this new classification with the generalized F'S classi-
fication discussed in Sect.(4), so as to obtain a more detailed description of Q-irreps
of magnetic groups.

By using the orthogonality relations we can prove [15] that case I splits into five

subcases:
IR D(G") v R,D(G) «~ R (ie., D(G) and D (G") both of type R)

I.C/RD(G")~C,D(G)~R

I.C/C D(G")~C,D(G)~C

LQ/C D (G') ~ Q. D(G) ~ C
1LQ/Q D(G") Q. D(G) ~ Q,
case II splits into three subcases [15]:
II-RD(G')~R,D(G)~R+R
II-C D(G") ~ C,D(G) ~ C +C

I-Q D(G") « @, D(G) » Q+Q.
(We denote by R+ R,C + C,Q + @ a decomposition of D(G) in two inequivalent
representations of type R, C, @ respectively.)

Finally, case III splits in two subcases [15] only:

III-R D (G") «~ R, D (G) «~ 2C;

III-C D (G') «» C, D (G) « 2Q.

(We denote by 2C, 2@ here a decomposition of D (G) in two equivalent representations
of type C, Q respectively.) We observe that the above crossed classification is not
trivial, because some of the nine cases that one could in principle obtain split in
subcases, whereas one of them cannot occur, so that it provides a valuable insight
into the properties of magnetic groups and their Q-irreps.

A remarkable role is played among the magnetic groups by the factorizable groups,
the physical interest of which has been widely outlined [5,10].
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We recall that a magnetic group G’ = G + aG is said to be factorizable if the
automorphism

(5.5) g— ¢ =alga Vge G

is an inner automorphism, i.e., an element w € G exists such that ¢’ = w™lgw, Vg € G.
It is easy to see that G’ is factorizable if and only if an element ¢t = aw ! € aG exists
which commutes with all elements in G (hence with a, that is with all elements in
G").

In many physical applications, when such an operator ¢ exists, it is interpreted as
a time-inversion operator. Indeed Adler [ 1] has shown that in the realm of QQM all
spatial symmetries commute with the Hamiltonian H of the system, whereas the time-
inversion operator anticommutes with H and commutes with all spatial symmetries;
thus, in this framework, every symmetry group containing the time-inversion operator
is a factorizable group.

We therefore studyed magnetic groups of the form

(5.6) G'=G+G, [t,G]=0,

and determined that only the cases I-R, I-C/C, I-Q/Q,I-C/R, III-C of the crossed
classification actually occur for such groups. In the cases I-R, I-C/C, I-Q/Q) results
D (t?) = 1, and in the cases I-C/R, I-C/C, III-C we obtain D (t*) = —1.

If one now recalls that the squared time-inversion operator in QQM [1] is equal
to the identity for fermionic systems, it has opposite sign for bosonic systems, we
conclude that:

i) whenever a fermionic system is considered, a magnetic factorizable group falls
into one of the cases I-R, I-C/C, I-Q/Q of the previous classification and D (t*) = 1

)

ii) whenever a bosonic system is considered, a magnetic factorizable group falls into
one of the cases I-C/R, I-C/C, III-C of the previous classification and D (t*) = —1 .

6. CONCLUSIONS

We conclude the discussion recalling that the mathematical methods and results
developed in this communication have been applied to quantum physical problems,
such as the study of degeneracy of energy levels in QQM whenever a time-reversal
symmetry exists [15] (Kramers degeneracy). Kramers theorem applies in the context
of CQM [17] and states that all energy levels of a fermionic system must be at least
doubly degenerate, as really happens. Of course, Kramers degeneracy must appear
in all attempts of modifying or generalizing ordinary quantum mechanics; our results
perfectly agree with the experimental data.

Secondly we obtained the Q-representations of the quaternionic complete symmetry
group [16] (obtained by extending the connected Poincare’ group and the internal
symmetry group by means of the CPT (0g) and the generalized parity (P) operators),
in order to classify the particle multiplets.
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Further investigations are suggested by an examination of the explicit forms of the
QQ-representations of the complete group. For instance, one of the possible forms of
such extensions is, in a suitable basis:

(6.1) D(G) = ( ﬁ* @) X(G) )D(@o) = ( 21 ]51 ) ,D(P) = ( gr (;Sl )

and the Hamiltonian is
(62) H == ih,()]_, h() € R,

where A (G) is a Q-irrep of the internal symmetry group G, and ©y and P denote
the CPT and the parity operators, respectively.

On the other hand, if we consider a physical theory which is not invariant with
respect to the (generalized) parity operator and then study the extension of the same
representation A(G) of G obtained by means only of ©, the case I-C/C arises.
Performing again a suitable change of basis, we obtain:

[ AG) 0 (0 k1
(63 O R D - COR S
and the Hamiltonian is:
(6.4) H' = ihol + jhy ( ‘1) (1) ) hohy € R,

It follows at once that the representations of G and ©g are identical in both cases:
but the presence in the former case of a further symmetry, namely P , forces the
cancellation in the form of H of the genuinely quaternionic term in j, to which we
can then ascribe the parity violation (in perfect accordance with some arguments due
to Adler [1 | in a very different context).
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