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Abstract

We give a direct proof that the multidimensional Henstock-
Kurzweil integral is equivalent to the Perron integral defined by
continuous major and minor functions.

1. INTRODUCTION

It is well-known that the classical Henstock-Kurzweil integral is equiv-
alent to the Perron integral (see for example [4]). However, this equiva-
lence is based on the definition of the Perron integral in which the major
and minor functions are not supposed to be continuous. It is unclear
whether this Perron integral is equivalent to the one defined by con-
tinuous major and minor functions. For the one-dimensional Henstock-
Kurzweil integral, this equivalence can be proved by several methods,
which are real-line dependent [5, 6, 7]. For the multidimensional case, B.
Bongiorno et al. [1] used an indirect method to prove this equivalence.
In this note, we shall give a constructive proof of their result.

2. PRELIMINARIES

Let R and R
+ denote the real line and the positive real line re-

spectively, m a fixed positive integer and Rm the m-dimensional Eu-
clidean space. Unless otherwise stated, an interval will always be a
compact nondegenerate interval of the form [s, t] =

∏m
i=1[si, ti] where

s = (s1, s2, . . . , sm). Also, E =
∏m

i=1[ai, bi] will denote a fixed interval
in Rm, and B(x, δ) denotes an open ball in Rm with center x and radius
δ. A finite collection of intervals whose interiors are disjoint is called a
nonoverlapping collection. A partial division D = {I} of E is a finite
collection of non-overlapping intervals. If, in addition, the union of I
from D gives E, we say that D is a division of E. Let δ : E −→ R

+
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be given. A partial division D = {(I, ξ)} is said to be δ-fine if for each
(I, ξ) ∈ D with ξ ∈ I, we have I ⊂ B(ξ, δ(ξ)).

Unless otherwise stated, all functions will be assumed to be real-
valued, and often the same letter is used to denote a function on E as
well as its restriction to a set Z ⊂ E. A function f : E −→ R is said to be
Henstock-Kurzweil integrable to a real number A on E if for every ε > 0,
there exists δ : E −→ R

+ such that for any δ-fine division D = {(I, ξ)}
of E, we have ∣∣∣(D)

∑
f(ξ) |I| − A

∣∣∣ < ε.

We write A = (HK)

∫
E

f . If f is Henstock-Kurzweil integrable on E,

then f is also Henstock-Kurzweil integrable on each subinterval I of E.
If F (I) = (HK)

∫
I
f for each subinterval I of E, we say that F is the

primitive of f on E. For the definition of Perron integral, see [1, p.322].
If g is Lebesgue integrable on E, we write the Lebesgue integral of g over

E as (L)

∫
E

g. It is known that if g is Lebesgue integrable on E, then g is

Henstock-Kurzweil integrable there with the same integral value [2]. The
words “measure”, “measurable” and “almost everywhere” always refer to
the m-dimensional Lebesgue measure. If X is measurable, we shall write
|X| as the m-dimensional Lebesgue measure of X.

3. MAIN RESULT

We shall begin with some known lemmas and theorems. Lemma 1 is
a special case of [3, Lemma 4].

Lemma 1 Suppose f is Henstock-Kurzweil integrable on E, and f is
Lebesgue integrable on some closed subset Y of E. Then given ε > 0, there
exists δ : Y −→ R

+ such that for any δ-fine partial division D = {(I, ξ)}
with ξ ∈ Y , we have

(D)
∑∣∣∣∣(L)

∫
I∩Y

f − (HK)

∫
I

f

∣∣∣∣ < ε.

Theorem 2 is a reformulation of [3, Theorem 6].
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Theorem 2 If f is Henstock-Kurzweil integrable on the interval E,
then there exists an increasing sequence of closed sets {Xk} such that

(i)
∞⋃
k=1

Xk = E;

(ii) f is Lebesgue integrable on Xk for each k;

(iii) the sequence {(L)

∫
Xk∩I

f} converges uniformly over any subin-

terval I of E as k →∞ with

lim
n→∞

(L)

∫
Xn∩I

f = (HK)

∫
I

f.

Definition 3[1, p.320] An interval function F is said to be F -continuous
at x ∈ E if for any given ε > 0, there exists δ > 0 such that |F (I)| < ε
whenever x ∈ I with I ⊂ B(x, δ(x)).

It is easy to verify the next lemma.

Lemma 4 Suppose {Hk} is a sequence of interval functions such
that each Hk is F-continuous at each x ∈ E. If the series

∑∞
k=1 Hk(I)

converges uniformly to H(I) over any subinterval I of E, then H is F-
continuous at each x ∈ E.

In what follows, the lower derivative of an interval function F at a
point x is denoted by DF (x). Similarly, the upper derivative of F at a
point x is denoted by DF (x).

We are now ready to give an alternative proof of [1, Theorem 5].

Theorem 5 Suppose f is Henstock-Kurzweil integrable on E with
primitive F . Then for ε > 0, there exists a F-continuous major function
M and a F-continuous minor function m such that

(i) 0 ≤ F (I)−m(I) < ε and 0 ≤M(I)−F (I) < ε for each subinterval
I of E ;

(ii) f(x) ≤ DM(x) and Dm(x) ≤ f(x) for each x ∈ E.

Proof. Since f is Henstock-Kurzweil integrable on E, we may choose
a sequence of closed sets {Xk} satisfying all the conditions in Theorem
2. Let ε > 0 be given. We shall first construct a major function M with
the required properties.

3



Put Yk = Xk−Xk−1 for k = 1, 2, . . . with X0 = ∅. Then f is Lebesgue
integrable on each of the measurable set Yk. Denoting the primitive of
fχ

Yk
by Fk, it follows from [5, p.191] that there exists a F -continuous

major function Mk such that

0 ≤Mk(I)− Fk(I) <
ε

2k+1
(1)

for each subinterval I of E, and

(fχ
Yk

)(x) ≤ DMk(x) (2)

for each x ∈ E.

By Lemma 1, there exists δk : Yk −→ R
+ such that for any δk-fine

partial division D = {(I, ξ)} of Yk, we have

(D)
∑
|Fk(I)− F (I)| < ε

2k+1
(3)

Define the interval function Vδk by

Vδk(I) = sup
∑
|Fk(J)− F (J)| (4)

whenever I ∩Yk is non-empty, and the supremum is taken over all δk-fine
partial division {(J, ξ)} of I∩Yk. If I∩Yk is empty, then we put Vδk(I) =
0. It follows from [1, Proposition 1] that each Vδk is F -continuous at each

point x of E. Define an interval function M on E by M =
∞∑
k=1

(Mk+Vδk).

In view of Theorem 2, the series
∞∑
k=1

Fk(I) converges uniformly for every

subinterval I of E, so it follows from (1), (3) and (4) that the series
∞∑
k=1

(Mk(I) + Vδk(I)) converges uniformly to M(I) for every subinterval I

of E. An application of Lemma 4 shows that M is F -continuous at each
point x of E. By our definition of M , we have
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M(I)− F (I)

=
∞∑
k=1

{Mk(I) + Vδk(I)− Fk(I)}

≥
∞∑
k=1

{Mk(I)− Fk(I)}

≥ 0

and

M(I)− F (I)

=
∞∑
k=1

{Mk(I) + Vδk(I)− Fk(I)}

=
∞∑
k=1

{Mk(I)− Fk(I)}+
∞∑
k=1

Vδk(I)

<
ε

2
+
ε

2
= ε.

We see that 0 ≤M(I)−F (I) < ε for each subinterval I of E. It remains
to show that

f(x) ≤ DM(x)

for each x ∈ E. Suppose x ∈ E. Then x ∈ Yk for some k ∈ Z+. If x ∈ I
with I ⊂ B(x, δk(x)), then we have

M(I)− F (I)

=
∞∑
k=1

(Mk(I) + Vδk(I))− F (I)

=
∞∑
k=1

(Mk(I) + Vδk(I)− Fk(I))

≥Mk(I) + Vδk(I)− Fk(I)

≥Mk(I)− F (I)
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Consequently, we have

DM(I) ≥ DMk(I) = fχ
Yk

(x) = f(x)

for all x ∈ E, proving that M is a required major function with the
required properties. Similarly, if mk is a F -continuous minor function
such that

0 ≤ Fk(I)−mk(I) <
ε

2k+1

for each subinterval I of E, and

Dmk(x) ≤ (fχ
Yk

)(x)

for each x ∈ E, then we can also verify that the minor function m =
∞∑
k=1

(mk − Vδk) is a minor function with the required properties. The

proof is complete.

We remark that the converse of Theorem 5 holds, and M is not addi-
tive. Is it possible of finding an additive interval function M that satisfies
the conditions of Theorem 5 ?
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