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Abstract. We formulate the equation of motion of a charged particle in a
Riemannian manifold with a closed two form. Since a two-step nilpotent Lie
group has natural left-invariant closed two forms, it is natural to consider the
motion of a charged particle in a simply connected two-step nilpotent Lie
groups with a left invariant metric. We study the behavior of the motion of a
charged particle in the above spaces.

1. Introduction

Let O be a closed two-form on a connected Riemannian manifold (M, ( , )),
where () is a Riemannian metric on M. We denote by A™(M) the space of m-
forms on M. We denote by ((X) : A™(M) — A™ (M) the interior product
operator induced from a vector field X on M, and by £ : T(M) — T*(M), the
Legendre transformation from the tangent bundle T(M) over M onto the cotangent
bundle T*(M) over M, which is defined by

L:TM) > T* (M), u- L(u), Lu)(v)={,v), uveTM). (1)

A curve x(t) in M is referred as a motion of a charged particle under electromag-
netic field O, if it satisfies the following second order differential equation

Vix = L77(x)Q) (2)

where V is the Levi-Civita connection of M. Here Vix means the acceleration
of the charged particle. Since £ '(1(x)Q) is perpendicular to the direction
of the movement, £ '(1(x)Q) means the Lorentz force. The speed x| is a
conservative constant for a charged particle. When (O = 0, then the motion of a
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charged particle is nothing but a geodesic. The equation (2) originated in the theory
of relativity (see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply con-
nected two-step nilpotent Lie group N with a left invariant Riemannian metric.
Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct
a left-invariant closed two form Q. from an element ap € Z specified below
and consider the motion of a charged particle under the electromagnetic field (3, .
H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply
connected nilpotent Lie group. In contrast with geodesics, there exist motions of
charged particles which are periodic. Kaplan defined a H-type Lie group, which is
a kind of two-step nilpotent Lie groups. We study the motion of a charged parti-
cle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie

group.
2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant
Riemannian metric (, ). Denote by the vector space consisting of all left-invariant
vector fields on N. Since is two-step nilpotent, has a non-trivial center . Let

= @ - be an orthogonal direct sum decomposition of ,then ~, ©~ C . For

ap € , we define a linear transformation ¢ o, on + by
<¢%(X))Y>:<a0> X)Y>) X)YE J--

We extend ¢4, to a linear transformation on by ¢ = 0 on , which is also
denoted by ¢o,. We can regard ¢, as a left-invariant (1, 1)-tensor on N. Then
bq, is skew-symmetric with respect to the left-invariant Riemannian metric (, )
since
(Pay (X),Y) + (X, dgy (Y)) = (a0, X,Y ) +{ao, V,X) =0
for any left invariant vector fields X, Y € . If we define a left-invariant two-form
g, on N by
Qq, (X,Y) = (X, P, (Y)), X, Y e

then a simple calculation implies that (4, is closed. In fact, for any X1, X7 and X3
in  we have

31dQq, ) (X1, X2, X3) = Qq, ( X1,X2,X35)
= (X1,X2,dq(X3)) =0

where we denote by  the cyclic sum, and the last equality follows from the fact
that X1,X; € and ¢(X3) € L. The equation of motion of the charged particle
under the electromagnetic field (34 is

Vik = Ggy (). 3)
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Here a curve in a manifold is simple if it is a simply closed periodic curve, or
if it does not intersect itself. Since N is simply connected, the one dimensional
de-Rham cohomology group vanishes. Hence we get the following theorem using
Theorem 9 in [2].

Theorem 1. The motion of a charged particle (3) in a simply connected two-step
nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group
with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie
algebra  with an inner product (,). In order to do this, we recall a Hausdorff
formula for a Lie group (see [1, p. 106]), which states that

1
expXexpY = exp (X—i—Y—i—EX,Y —|—)

If the Lie group is two-step nilpotent, then the higher terms 4 - - - on the right hand
side vanish. Based on the Hausdorff formula, we define a Lie group structure on
itself by

1
X-Y=X+Y+3XY,  XYe

The identity element in this group is 0, and the inverse element of x € is equal
to x. We denote by N = ( ,:) the so obtained Lie group. The center of N
coincides with . Denote by Lie(N) the Lie algebra consisting of all left-invariant
vector fields on N. Then Lie(N) is identified with as a Lie algebra as mentioned
below. Since N is a Euclidean space as a manifold, we can identify To(N) with
as vector spaces. The identification induces a Lie algebra structure on To(N].
For X € To(N), we denote by X € Lie(N) the left-invariant vector field on N
such that Xo = X. The mapping defined by = To(N) — Lie(N), X — X
gives an isomorphism as Lie algebras. Hence N is a simply connected two-step
nilpotent Lie group whose Lie algebra is . The inner product {,) on induces a
left-invariant Riemannian metric {, ) on N. Using this notation, we have

an (X,V) = <>~<> ¢V> = <aO> Y>>Z> = <C10, Y)X >

The exponential mapping exp : — N is equal to identity mapping. Hence for
X € To(N), we have

- d d t
Xx = —=(x tX)jjmo = — tX+ = x, X Tx(N).
o= gl Do = g (r X 3 0X) TN

Since the Riemannian metric on N is left-invariant, the left action of N on N itself
is isometric. Hence X € To(N) induces a Killing vector field X* on N by

, d d t
XL = a(exp tX) Xm0 = a(tX +x+ 7

The Killing vector field X* is right-invariant.

X, x )lt:O € Tx(N).
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Lemma 1. The mapping defined by
1
-, X=X+ 7 X, x

is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injec-
tive. In order to do this, we study the kernel of the mapping. Suppose that X €

satisfy the condition X + % X,x = 0. Decompose X as X = X7 + X, where
X1 € +and Xz € ,then Xy + (X2 4+ 3 X1,x ) = 0. This implies X; = 0 and
X + % X1,x = 0. Hence we have X, = 0, hence, X = 0. O

By the lemma above, we have Ty (N) = span{X} ; X € ] for any x in N. The
Killing vector field X* is an infinitesimal automorphism of ¢.

Lemma 2. Let X be in To(N) = . For a fixed x € N, we have X}, = W,, where
weset W =X+ X, x.

Proof: Since

~ d t
Wy = — (x—l—tX—l—tX,x + =—x, X+ X, x )
d t
=4 <x+tx+zx,x)ltzozxi
we have the assertion. O

Lemma 3. Define a one-formnga, on N by
n(lo(X;kc):<x')X>a0>» X e

Then ((X*)Qq, = d(nq, (X*)) for any Xin .

Proof: Let X and Y bein .ByLemma 2, we have

(LX) Q) (Yx) = Qo (X5, V)
= Qq, (Wy, Vo)
=04, X+ X,x),Y)
= (ap, \,X+ X,x ) ={ap, Y,X).
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Using the above equation, we have also

~ ~

d(Na, (X*))(Yx) = Yx(na, (X*))
d

%k
dtn ao (Xx+tY+ 1xYl ) [t=0

d t
= —(x+tY+=x,Y,X,a0)

dt 2
= < Y, X >a0> = (L(Xi)ﬂao)(Yx)-
Hence we get d(nq, (X*)) = (X")Qq,. O

Denote by Ty (N) — To(N);v — v, the usual parallel translation in the Euclidean
space : Take a curve c(t) in N such that ¢(0) = x,¢{(0) = v. Then v, =
%(c(t) X)jt=0- The following lemma gives a relation between the two linear
isomorphisms L;1 : Tx(N) = To(N) and T (N) — To(N),v — v,.

Lemmad. L v =v, % X,Vqa for v e T (N).

Proof: Take a curve c(t) in N such that ¢(0) = x, ¢(0) = v. Then

_ d 1
wa =L_w= T ( x + c(t) 2 x, c(t) >It—0
= d(c(t) X ]xc(t) x) =v ]xv
~dt 7™ o —n 5%
Hence we have the assertion. O

Similarly we define Ty( +) — To{ +),u — u,. and T,( ) — To( ),w — w;.

Since is abelian, we have L, 'w = w; for w € T,( ). Hence we can write
w =w,. Letx € andv € T,( ). Expressing x and v as x = y + z and

v=vi+vywhereye t,ze ,vie Ty( 1) and v, € T, ) we obtain
_ 1
Lv= (v, + (Vz 7 ¥ vy ) : C))

Proposition 1. Let x(t) = y(t) + z(t) be a curve in , where y(t) € -+ and
z(t) € . Assume that y(0) = 0. Then x(t) describes the motion of a charged
particle (3) if and only if

1
90, buona () =U(0), 2O Su,HU =20l ©)

Proof: Taking the inner product of (3) and the Killing vector field X* for X €

we have

g (6 X7) = QX5 %) = (UXT)Q) ().
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Using Lemma 3 we find

d

5 (6 XY = (X)) (&) = Zn(Xy).

Since Tx(N) = span{X}; X € 1}, the equation (3) is equivalent to

d
a((k(t)>xi(t]> (X)) = 0.

By the definition of 1, we have
ﬂ(Xi(t]) — < X(t],X >a0> = <d)ao (y (ﬂ)) X>
Since (, ) is left invariant

<X>X;kc(t]> - <L;]X>L;]Xi>
. S
:<y3l+(z Ey)ygi ))X+ X,X>

2

where we have used Lemma 2 and equation (4). Hence the equation (3) is equiva-
lent to

1
:<ggiax>+<z _y’ggi>X+ X,X,>

d
dt
Taking X € , we have

1
(<93L d)ao(y),x>+ <Z zyygai )X+ X)H >) =0.

: 1 . .
2t 5 y(t),yt)e =2(0)
where we have used the initial condition y(0) = 0. Next, taking X €

% (@f Pa,(¥), X) + (2(0), X,y >) —0.

Taking into account the initial condition y{0) = 0, we finally have

y(t),r  dora,ult) =4(0).

-, we have

O

Proposition 2. The motion of a charged particle (3) with y(0) = 0 is given by the
equations

t
y(t) = exp td z0)+q, Jo exp( tdo0)+aq,)u(0)dt

z(t) = z(0) + tz(0) + !

3 || vl ferp oy o000 at.

0
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Proof: Using the first equation of (5) with y(0) = 0, we have

t
y(t) = exptdy0)+a, L exp( tdz0)t+a,)u(0)dt.

Hence
Gx0)+a,Y(t) = (exptdyo)4q, 1U(0)
which implies that
P 01+a,Y(t) +19(0) = (exp td o)1, )u(0).

Using the second and the first equation from (5)

1 rt
z(t) = z(0) + tz(0) + 7], y(t),ylt),r dt
1 it
=z(0) +12(0) + 5 . y(t), dx0)+a,Y(t) +y(0) dt
1 it
= z{0) +12(0) + 5 . y(t), (exp tdhy0)+q,)u(0) dt.
Hence we get the assertion. O

When ¢50)+q, = 0, then, using the above Proposition, we get y(t) = ty(0) and

t
z(t) = z(0) + tz(0) + %J ty(0),u(0) dt = z(0) + tz(0).
0

Lemma 5. The equation of motion (3) implies the following relation
d

1 1
3 (2(1), 2(0) + ao) + 5 (y(t), y(0))) = 2(0)]* + (2(0), ao) + §|1'43L|2-

2

Proof: Taking the inner product of the second equation of (5) with z(0) + ap, we
have

(20) + a0)  3(u, Gy 1£(0) + ao) = 2(0)% + (2(0), ao).

Using equation (5) again produces
< yvggl vZ(OJ + (l()> = <¢'z(0]—|—aoy>ggl>
= (g, ©(0),u,)

d
= Yt (0,0, 900) = Gt (U], 9(0).
Hence
S ({00,200 + ag) + 3 (u(1),5(0)) = 2(0)+ (2(0), ag) + 19,0
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Applying the lemma above for geodesics, we can re-demonstrate the following
theorem of Naitoh-Sakane.

Theorem 2. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply con-
nected two-step nilpotent Lie group with a left-invariant Riemannian metric does
not intersect itself.

Proof: Let x(t) = y(t) + z(t) € N be a geodesic with y(0) = 0. Applying
Lemma 5 with ap =0
d
dt

1

((z(t),z'(OD + §<y(tJ,y(0)>) = [2(0)]* + %maql > 0.

Hence (z(t), 2(0)) + %(y(t),Q(O)) is monotone increasing. Thus x(t) is not peri-
odic. Since we have already proved that x(t) is simple by Theorem 1, we get the
assertion. 0]

The author thinks that the above proof is easier than the original proof of Naitoh-
Sakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected
H-type Lie group. First we review the definition of H-type Lie algebra according
to Kaplan. Let (U, (,)) and (V, (,)) be finite-dimensional real vector spaces with
inner products (,). Denote by End(V) the vector space consisting of all linear
transformations on V. We assume that there exists a linear mapping j : U —
End(V) such that

jla)*= la?l,  fila)x|=lax, a€clU, xeV. (6)

In other words, V is a Clifford module over the Clifford algebra generated by U.
By (6) we have

(ila)x,j(b)x) = (a,b)x%,  (j(a)x,j(a)y) = a*(x,y)
(ila)x,y) + (x,jla)y) =0, abel, xyeV
Define a bi-linear mapping , :V x V — U via the formula
<a) XY >=(j(a]x,y), aeu) XY E\/' (7)
Then , is alternative. Substituting j(b)x into y, we have
{a, x,j(b)x ) = (j(a)x,j(b)x) = (a,b)x/*.

Hence
x,j(b)x =[x/*b, bel, xeV. 8)
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We denote by = U & V the orthogonal direct sum of U and V, and define a Lie
algebra structure on by
a+x,b+y = x,y €U, a,bel, xyeV

Then the Lie algebra is called H-type. Since the H-type Lie algebra is a kind
of two-step nilpotent Lie algebra with an inner product, we can define a Lie group
structure on  with a left-invariant Riemannian metric, whose Lie algebrais itself
as we mentioned in the previous section. For ag € U, we consider the equation

Vix =jlag)x 9

of motion of a charged particle. If we express its trajectory as x(t) = y(t) + z(t)
where y(t) € V,z(t) € U, then (9) is equivalent to

y(t)yv  j(z(0) + ao)y(t) = y(0) (10)

where Ty, (V) — V,w — wy denotes the usual parallel translation in V. Here we
have used equation (5).

Theorem 3. Let x(t) = y(t) + z(t) € N (wherey(t) € V, z(t) € U) is a motion
of a charged particle (9) with x(0) = 0.

1) When z(0) + ap = 0, then x(t) = tx(0).

2) When z2(0) + ag # 0, then

_sin(t|z(0) + aol) . 1 cos(tz(0) +ao)., . _
y(t)= 20 + a0 y(0) + 200 F ag? j(2(0) + ao)y(0)
. 2 . .
2(t12(0) + 5o M (3(0) + ao) IO 00 500)2(2(0)+ ao).

The curve y(t) is a circle in'V. The motion of a charged particle is periodic if and

only if
[y(0)]? .
(Zyz(0)|2 + 1> 2(0).

In this case x(t) is an elliptic motion.

Remark 1. When x(t) is a geodesic, the condition ag = 0 implies the theorem of
Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we

have
~ sin(t2(0) + ao)) . 1 cos(t|Z(0) + aol)
YU = 0 v a0 YO TR0+ ag?

which implies that

j(2(0) + ao)y(0)

sin(t2(0) + aol)

9(t)v = cos(t[2(0) + a0y (0) + —Zr3———

i(2(0) + ao)y(0).
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Using the equation above, we have

o 1 cos(t2(0) + ag)
YUV (1) =

y(0),j(2(0) 4+ ao)u(0) .

Further the second equation of (10) gives

50 = 2(0) + 1 cos(t]z(0) + ap)

4(0),3(2(0) + ao)y(0)

22(0) + aol? (1)
iy 1 cos(t|z(0) + apl)
= £(0) + s (2(0) + a9 0]
where we have used the equation (8). Since
1 (2(0)+ao ) . . sin{[z(0) + aolt) .
9 gorrar (Gors a) V9 = E e v{o)
cos(|2(0) + aplt). / 2(0) 4+ ap \ .
w0 rag ) (200 1 ag) YO

. . . . 1 2(0)+a .
the curve y(t) is a circle in V whose center is 0 ]+ao|] (I OTa |> y(0) and the

radius is =22 . The periodic condition is as follows
12{0)+ao|

O
2|2(0) + aol?

S (12
& ag= ('”(0”|2+1>z(0).

o )
( ) Eg;)g(o))

the curve x(t) is an elliptic such that the ratio of the long axis to the short axis is
equal to \/[9(0)2 +(2(0)[2/ ¥ (0). m

x(t) is periodic & z(0) + (z(0) +ag) =0

In this case, since

2:00), (£0)Y . 2(0)] (.
<0+ 502 (G07) YO = G ( (
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