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Abstract. We consider the sigma models where the base metric is pro-
portional to the metric of the configuration space. We show that the
corresponding sigma model equation admits a Lax pair. We also show
that this type of sigma models in two dimensions are intimately related
to the minimal surfaces in a flat pseudo-Riemannian 3-space. We define
two dimensional surfaces conformally related to the minimal surfaces
in flat three dimensional geometries which enable us to give a con-
struction of the metrics of some even dimensional Ricci flat (pseudo-)
Riemannian geometries.

1. Introduction

Let M be a 2-dimensional manifold with local coordinates =* = (x,y) and
A#" be the components of a tensor field in M. Let P be an 2x2 matrix with a
nonvanishing constant determinant. We assume that P is a Hermitian (P! = P)
matrix. Then the field equations of the sigma-model we consider is given as
follows
0 os 1 O
e <A P &I;ﬁ)_o. (1.1)

The integrability of the above equation has been studied in [1] where the matrix
function P and the tensor A’ were considered independent. The sigma model
equation given above is integrable provided A satisfies the conditions

Oa (%Aaﬁaﬁa> =0, Da (%Af‘aam) =0, (1.2)
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where o and ¢ are determinant and antisymmetric part of the tensor A%’ re-
spectively.

We have classified in [1] possible forms of the tensor A*? under these conditions
of integrability. The case where A and P are related has been considered in
[2]. As an example, let P = g where g is a 2 x 2 symmetric matrix. Letting
also A% = ¢g*7_ the inverse components of the metric ¢,3, then (1.1) becomes

0 dg
ore (g g OxP ) 0. (1-3)

The above sigma model equation is integrable and the Lax equation is simply
given by [2]
0 1

aﬁ_\p —
¢ oxP k240

(kg"‘ﬁ — aeaﬁ)g_l %\P ) (1.4)

Integrability conditions are satisfied because det g = o (a constant) and g is
symmetric. Here k is an arbitrary constant (the spectral parameter), €*° is the
Levi-Civita tensor with ¢'2 = 1.

In the theory of surfaces in R? there is a class, the minimal surfaces, which have
special importance both in physics and mathematics [3,4]. Let S = {(z,y, 2) €
R?; z = h(z,y)} define a surface S € R* which is the graph of a differentiable
function ¢(x,y). This surface is called minimal if ¢ satisfies the condition

(1+ ¢2)buy — 2000y Pay + (1 + 6}) 0w = 0. (1.5)
The Gaussian curvature K of the surface S is given by
42
K = rzPuy o (1.6)

(1+ ¢34+ 7))

Here in this work we generalize the above treatment to more general geometries.
Instead of R?® we take a pseudo-Euclidean manifold M5 and two surfaces with
any signature.

Let (5, g) denote a two dimensional geometry where S is a surface in a three
dimensional flat manifold M3 and g is a (pseudo-)Riemannian metric on S
with a non vanishing determinant, det g. Furthermore we assume that the
metric components g,z satisfies the following conditions

0,(g"g710,9) =0, (1.7)

1
R+ 7 Trlg" L9 0,9] =0, (1.8)
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where R is the Ricci scalar of S. We shall see in the following sections that
some surfaces which are conformally related to minimal surfaces satisfy the
above conditions.

The importance of such surfaces arises when we are interested in even dimen-
sional Ricci flat geometries. By the utility the metric g of these surfaces we
shall give a construction (without solving any further differential equations)
of the metric of a 2N dimensional Ricci flat (pseudo-)Riemannian geometries.
Ricci flat geometries are important not only in differential geometry and general
relativity but also in gravitational instantons and in brane solutions of string
theory [6].

2. Locally Conformal Minimal Surfaces

Let ¢ be a differentiable function of z' = x and 2> = y and S, be the
surface in a three dimensional manifold M3 with a pseudo-Euclidean metric
g3 defined through ds* = go,, da* dz” + e(dz?)?, where p,v = 1,2, e = £1
and go 1S a constant everywhere in M3, invertible, symmetric 2 X 2 matrix.
In this work we assume Einstein summation convention, i.e., the repeated
indices are summed up. Let Sy be given as the graph of the function ¢, i.e.,
So = {(z',2*, 2%) € Ms; 2* = ¢(x',2*)}. Then the metric on Sy is given by

hw/ = gO;u/ + €¢/A¢V . (21)
Since det h = (det go)p where
p=1+¢€g"du0r, (2.2)

then h is everywhere (except at those points where p = 0) invertible. Its inverse
is given by

R (2.3)

where g4 are the components of the inverse matrix g; ' of g,. Here the indices
are lowered and raised by the metric g, and its inverse g; ' respectively. For
instance, ¢*, = g,” ¢,.. The Ricci tensor corresponding to the metric in (2.1)
1s given by

€ € 1
TV:—VQ V__aua+_ v 2.4
7 ,0( ?)Pu ,0¢H¢ 42 Pup (2.4)

where

v L .
VQQb = h/w¢ul/ = gg ¢ul/ - %d) Pa - (25)
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The Ricci scalar or the Gaussian curvature K and the mean curvature H are
obtained as

K = %[(W — 7% o] (2.6)
RS
\/ﬁ

The following equation is valid only for the case of two dimensional geometries.

He —hwo,, . 2.7)

¢au¢ﬁ'¥ - qbaﬁgbu'y = _)\O(gOaugOﬁ’y - QOaﬁQO'w) (28)

where
Yo = 316" bas — (657 29

Contracting this equation with g*° leads to

¢Z¢au - ¢g¢uv = AOQO;W .

We also have
K €
o - = ha ) A - — = QK .
Tap 5 Nlag 0 5 P
For the minimal surfaces we have I/ = 0 and the following important properties

of the metric i,z on Sy [7]

Do /PP 030] = 0, (2.10)
ds (/Ph*?) = 0. (2.11)

We now define surfaces which are locally conformal to minimal surfaces. Let
S be such a surface, i.e., locally conformal to Sy;. Then the metric on S is
given by
L h (2.12)
Gap — —=Nag - .
VP
It is clear that det g = det gy # 0. In the sequel we shall assume that the surface
So 1s minimal and hence the metric defined on it satisfies all the equivalent
conditions in (2.10) and (2.11). The corresponding Ricci tensor of g is given
as

Ros = Tag — (V10)Gas (2.13)

where 1y = —i log(p) and VQQ is the Laplace—Beltrami operator with respect
to the metric g. Then we have
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Proposition 1. The following equation is an identity related to the conformal
surface S.

1
R = —Zg“ﬁ Tr[0ag™ ' Os9] - (2.14)

Here g is the 2x 2 matrix of g,z and g~*

the standard trace operation for matrices.

is its inverse. The operation Tr is

In the following parts of the work we need some harmonic functions with
respect to the metric g. For this purpose we introduce some vectors on S. Let
v, = (1,0), v/, = (0,1) and u* = (1,0), v'* = (0,1). We now define some
functions over S.

§1= 90005, & = g™, (2.15)
wy = \/pgasuu’ Wy = \/PGasu’®u’” . (2.16)
It 1s now easy to prove
Proposition 2.
V)¢ —agR = —ag\/pK | (2.17)
Vi — (a1 + az)R =0, (2.18)
Vo — 2(by + ba)R = —(by 4 b2)/pK (2.19)
where
¢ = = log(p). (2.20)
P = ay log(&y) + azlog(és), (2.21)
s = by log(wy) + ba log(ws) . (2.22)

Here aq,ay,a-,b,, and by are arbitrary constants.

The function u defined by p = (by + b2)( — agi), satisfies similar equation as

(a3}

Hence we have two different solutions of the equation

C
Vo= =297 Trl(Gag ")D50] (2.24)
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for some function o. If o = ¢, then ¢ = a,+a., if 0 = pthen ¢ = —ag (b, +by).
It 1s straightforward to show that
Wo w
N N— = . 2.25

Hence ¢; will not be considered as an independent function. It is interesting
and important to note that under the minimality condition the matrix g satisfies
the following condition as well.

Proposition 3. Minimality of So, H = 0, also implies a sigma model [7], [8]
like equation for g, i. e.,

0a1g*" g™ 059] = 0. (2.26)
Proof: The metric g,5 and its inverse g*° are written in a nice form

Gap = —= (gOaﬁ + 6¢a¢ﬁ) s (227)

aﬁ:

S sl-

g e’ — §¢‘*¢ﬁ> (2.28)

where ¢o,5 are the components of the matrix g,. The minimality condition
H = 0 reduces to g*?¢o5 = 0 or

oo = &Pa (2.29)
2p
This condition also implies
9,9" =0. (2.30)
Hence the sigma model equation (2.26) to be proved takes the form
0,97 0,95 =0, (2.31)
where hog = \/pgags- It is straightforward to show that
(970,95 = 9% Dugpy
(2.32)

1p, €p €
:___5a___ﬂ o o b
2 5% 73 p¢ ¢6+6¢ﬁ¢u+p¢ Pus

Using the identity (2.8) and the minimality condition (2.29) we obtain the
following

Pu®sy — PePuy = 26/\0(§bu90ﬁ7 - ¢ﬁ90w) ) (2.33)
Plous = ¢%aps — 2€Ao g (2.34)
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he%9, ( 85/)) + —(1 +p)=0. (2.35)
Utilizing these identities we get
heBt = — 2620 O (2.36)
P B 5 = —%5“ o 0 v, (2.37)
B0, (¢ yy) = —%5“ 36% &, (2.38)
Pah®P0s(¢ 8,) = —46/\0(#’%. (2.39)

Now applying 9, to (2.32) then multiplying by 2** and using the above identi-
ties (by virtue of the minimality condition (2.29) ) it is easy to show (2.31). [

Hence for every minimal surface S, and its metric h we have a conformally
related surface S with metric g = % (det h = pdet gq) satisfying the condi-

tions
1
R+ 1 g*" Tr[0,g™0sg] = 0, (2.40)
Oalg* g '059] = 0. (2.41)

Here g has determinant equals to det go which is a nonzero constant. This
does not violate the covariance of our formulation because we could formulate
everything in terms of the metric A of the minimal surfaces S, but the above
identities become lengthy and complicated. We loose no generality by using
surfaces S and the metric g on them.

3. Ricci Flat Pseudo-Riemannian Geometries

We start first with four dimensions. Let the metric of the four dimensional
manifold M, be given by

ds? = ezwgag dz® da® + €190p dy“ dy” 3.1)

where ¢/ is a function of x® and ¢; = +1. The local coordinates of M, are
denoted as z* = (z*,y*), a=1,...,4.

Proposition 4. The Ricci flat equations R, = 0 for the metric (3.1) are given
in two sets. One set is satisfied identically due to the Proposition 3 above and
the second one is given by

Vi =0. (3.2)
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There are two independent functions satisfying the above Laplace equation, ¢
and p. Using (2.23) we find that ¢» = ep¢ + e; 11 where ey and e, are arbitrary
constants and b, = —b;. Combining all these constants we find that

@2 = @20y 2 gy 2ma (3.3)

where m4 and m» are constants satisfying m +mo = 0. Then the line element
(3.1) becomes

ds® =

e?0?  h,sdz® dz”? N hop dy® dyP
wi™ws™ /P VP

where ¢ satisfies the minimality condition (H = 0) (2.7) which is explicitly
given by

[y 4+ €(dy)?]bna — 2[ko + €hudylday + [k1 + €(d2)°]dyy =0 (3.5)

where we take (go)11 = k1, (90)o1 = ko, (9o)22 = k2 and assume that det(gy) =
kiko — ki # 0. Hence the functions w; and w, are given explicitly as

wy = ky + €(¢m)27 wo = ko + €<¢y)2- (3.6)

(3.4)

The metric in (3.4) with e; = 0, m; = mo = 0 reduces to an instanton metric
[10].

We shall now generalize Proposition4 for an arbitrary even dimensional
pseudo-Riemannian geometry. Let M5, be a 2 + 2n dimensional manifold
with a metric

ds? = e®* g5 da® da® + Gup dy® dy® (3.7)

where the local coordinates of May,, are given by 2274 = (z2,y?), A =
1,2,...,2n, ® and G 45 are functions of x“ alone. The Einstein equations are
given in the following proposition

Proposition 5. The Ricci flat equations for the metric in (3.7) are given by

O,[9°"G™195G) =0, (3.8)

1 R
V2P = ggaﬁ Tr[(0,G1)9sG] + 3 (3.9)

g
where G is 2nx2n matrix of G g and G~ is its inverse.

Let us choose G as a block diagonal matrix and each block is the 2 x 2 matrix
g. This means that the metric in (3.7) reduces to a special form

ds? = emgaﬁ dz® dz® + €19ap Ay dy? +--- + €nGap Ay, dy? (3.10)
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where the local coordinates of M4, are given by o™ = (x* o, ..., y%),

e; =+1,7=1,2,...,n. Then we have the following theorem

Theorem 1. For every two dimensional minimal surface S, immersed in a
three dimensional manifold M there corresponds a 2N = 2+ 2n-dimensional
Ricci flat (pseudo-)Riemannian geometry with the metric given in ( 3.10) with

Pt (3.11)

20 —2n1

e — eQwal —2n3

Wy

where 1 is given in (3.3), wy and wy are given in (3.6), ny and ny satisfy

n—1
2

Proof: Using Proposition 5 for the metric (3.10) the Ricci flat equations reduce
to the following equation

n—1
Ve = 1

By using (2.24) and letting agb; = ny, agby = ny and ® = p+1 we find (3.11)
with the condition (3.12). Here ¢ is a harmonic function (3.2) with respect to
the metric g,5. A solution of this function is given in the previous section in
(3.3). Metric functions %, wy, ws and g,z are expressed explicitly in terms the
function ¢ and its derivatives ¢, and ¢,. This means that for each solution ¢
of (3.5) there exists a 2/V-dimensional metric (3.10). O

9*" Tr[(Bag™")0sy] (3.13)

The dimension of the manifold is 4(1 4+ n; + ny). Here n =1 or ny + ny =
0 corresponds to the four dimensional case. The signature of the geometry
depends on the signature of S. If S has zero signature then M,y has also
zero signature, but if the signature of S is 2 then the signature of M,y is
214 €+ -+ €,).
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