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Abstract. We study degenerate curves in pseudo-Euclidean spaces of
index two by introducing the Cartan reference along a degenerate curve.
We obtain several different types of degenerate curves and present ex-
istence, uniqueness and congruence theorems. We also give some ex-
amples of such a curves in low dimensions.

1. Introduction

The aim of this paper is to find a good Frenet frame for degenerate curves
in pseudo-Euclidean spaces of index two. The study of this type of curves is
motivated because of the growing importance that degenerate geometry (null
curves, null hypersurfaces, etc) plays in mathematical physics (see for instance
[2,7-10]). Null curves in Lorentzian (index one) space forms has been studied
by several authors ([1,3,5]) due to its importance in General Relativity. It is
well known the important role played by the anti de Sitter space, so we focus
on ambient spaces of index two. A first approach to this question has been
made by Duggal and Jin, [4], from a different point of view.

Here, we are going to study degenerate curves in pseudo-Euclidean spaces of
index two from a mathematical viewpoint.

2. Preliminaries

Let V be an n-dimensional real vector space endowed with a symmetric bilinear
mapping g: V x V — R. We will say that g is degenerate on V' if there exists
a vector £ # 0 of V' such that

g(&,v)=0, forallveV
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otherwise, ¢ is said to be non-degenerate.
The radical of (V, g) is the subspace of V' defined by

RadV ={£ € V; g(&v)=0 forallv e V}.

It is clear that V' is non-degenerate if and only if Rad V' = {0}.

A pseudo-Euclidean space (V, g) will be an n-dimensional real vector space
V' equipped with a symmetric non-degenerate bilinear map ¢g. The dimension
q of the largest subspace W C V on which g|yy is definite negative is called
the index of g on V. (V. g) will be denoted by R7.

Let B = {Vi,...,V,} be an ordered basis of a pseudo-Euclidean space and let
r; and g; be the dimension of the radical and the index of span{V,,..., V;} for
all 4, respectively. The sequences {r;; 0 < i <n} and {¢;; 0 < i < n}, where
ro = qo = 0, will be called the nullity degree sequence and the index sequence
of the basis B.

It is easy to see that |r; —r;_,| and ¢; —¢;_; are either O or 1, foralli = 1,... n,
as well as r, =0 and ¢, = q.

Definition 2.1. Let B = {Vi,...,V,} be an ordered basis of a pseudo-
Euclidean space and let {r;; 1 <i < n} be the nullity degree sequence. The
positive number

1 n
T = 5 2_:‘7"1 —Tz’,1|
i=1

is said to be the degeneration degree of the basis B.

The following result, that extends the Gram-Smidt’s orthonormalization
method, will be used in next sections.

Lemma 2.1. Let (E, (,)) be a bilinear space and let I be a hyperplane. Sup-
pose that F' = F| 1L Fy, where Fy = span{L,,..., L.} is totally lightlike and
F5 is non-degenerate. Then we have:

i) If dimRad(E) =r + 1 (Fy & Rad(FE)), there exists a null vector L (not
unique) such that

E=F 1F,1span{L}.

i) If dimRad(E) = r (F; = Rad(FE)), there exists a non-null unit vector V
such that

E = F1J_F2J_ Span{V} .
Moreover, if Rad(E) = {0}, then V is unique (up to the sign).
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iii) If dimRad(E) = r — 1 (Rad(F) & F), there exists a null vector N;
such that (L;, N;) =n, n= %1, and
E = (span{L,} & span{N,}) Lspan{Li,...,L;j,..., L} LF;.
Furthermore, if Rad(E) = {0}, then N; is unique.
Definition 2.2. 4 basis B = {Ly,Ny,..., L., N,, Wi, ..., W, } of R}, with

2r < 2q < n and m = n — 2r, is said to be pseudo-orthonormal if it satisfies
the following conditions.

<Li7Lj> = <Nz’7Nj> =0, <L2'7Nj> = 77152'3' )
<Li7Wo¢> - <Ni7Wo¢> :07 <Wa7Wﬁ> :€Q5Qﬁ7
where i,5 € {1,...,r}, n; = (Li, Nj) = x1, a, B € {1,...,m}, e, = =1 if
1<a<qg—rande,=1lifqg—r+1<a<m.
Corollary 2.1. Let B = {Vy,...,V,,} be an ordered basis of a pseudo-
Euclidean space and let v be the degeneration degree of B. Then:
1) 7 is well-defined, that is, it is an integer.
11) r < q, where q is the index of V.

Proof: We know that 7, = r, = 0 and sequence {r;} satisfies that ei-
ther r, = r,_, +1, or r;, = r,.1 — 1 or r;, = r;_y. Then, from
Lemma 2.1, we get a pseudo-orthonormal basis C = {C,...,C,} satisfying

that span{Vy,...,V;} =span{C},...,C;}, forall ¢ =1,...,n, and

Wi lf r, — i1 — O,
Ci == LZ if r, —Ti21 = 1,
Ni lf ry —Ti-1 — —1,

where (W,,W;) = £1 and (L;,L;) = (N;,N;) = 0. Then (i) is clear. To
show (i), first observe that r = card {i,; C;, = L;, }. Now, for all L;, € C,
there exists N;, € C, with k in {1,...,r}, verifying that span{L, , N, } is a
hyperbolic plane. Then r < g¢.

3. Frenet References Along Degenerate Curves

Let R} be a pseudo-Euclidean space of index two and let v: I — RY be a
differentiable curve in RY. Assume that A = {7/(¢),...,v™(¢)} is a linearly
independent system for all £ € I, and, for all 4, r;(f) and ¢;(¢) are constant
for all ¢t € I, where {r;(t); 0 <i <n} and {¢;(t); 0 <i <n} stand for the
nullity degree and index sequences of the basis .A. In this case, these sequences
will be called nullity degree and index sequences of the curve -, respectively,
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and the degeneration degree r (= const) of A will be called the degeneration
degree of the curve ~.

Definition 3.1. With the above notations, a curve v: I — Ry is said to be a
degenerate curve if r > 0. We will say that two degenerate curves C and C
are of the same type if r; = 7; and q; = @;, for all i.

The relation “to be of the same type” defines an equivalence relation and each
equivalence class defines a type of degenerate curves.

From definition and Corollary 2.1, the degeneration degree of a degenerate
curve in a pseudo-Euclidean space of index two satisfies 0 < r < 2. Observe
that the index sequence is very conditioned by the nullity degree sequence.
Indeed, two curves C and C' with degeneration degree two are of the same
type if and only if they have the same nullity degree sequence.

Remark 3.1. The nullity degree and index sequences, as well as the degener-
ation degree, of a degenerate curve do not depend on the chosen parameter
and they are invariant under pseudo-Euclidean transformations.

Observe that we are dealing not only with null curves, but also spacelike and
timelike ones. Now we aim to classify degenerate curves depending on the
nullity degree and index sequences, said otherwise, to classify the types. To do
that, we need to pseudo-orthonormalize the basis {7/(¢),...,~v"(¢)}, for all
¢t =1,...,n, such as in Corollary 2.1. The pseudo-orthonormal bases obtained
are just the Frenet references.

We will consider two cases according to whether the degeneration degree r is
one or two.

3.1. Degenerate Curves in R} with Degeneration Degree One

In this case we will get a family-type of degenerate curves. The method to con-
struct a Frenet frame is quite similar to that used in [6]. It can be proved that the
only nullity degree sequences are of the form {0,...,0,1,1,0,...,0}, where
1,1,0... can be moved along the sequence. The possible Frenet equations are
as follows:

Family I
v =&k Wy,
W = &k, W,
V_Vi/ = —éi_ll_ciWi_l + ETz‘-|-1ljbjz’—|—1V_Vi—i—l 5 2 S 2 S § = 2’
3 5/_1 — _ES—ZES—IWS—Z + ﬁSESES )
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el

L =ske1 Ly + &5 1ks oWayn
Wiy = sksrs Ly — fskoso Ny
N = =&, 1k Wy — ki Ny = g1 ks Wors + EgpakopaWigo
Wi,y = —ilsksraly + EayshsrsWeis
Wi/ = —& ki oW+ &k sWin, s+3<i<n-—2,
W! | =&, 2k, 1 W, 5

where 77; = (L;, N;) = +£1 and &; = (W;,W;) = 41, existing only one jj
such that £;, = —1.

3.2. Degenerate Curves in R} with Degeneration Degree Two

We will find two family-types of curves depending on the nul-
lity degree sequence is given by {0,...,0,1,1,0,...,0,1,1,0,...,0} or
{0,...,0,1,2,2, 1, 0,..., 0}. To do that we proceed as follows.

Assume that ry = r, = --- = r,_; = 0. By an iterative process, using
Lemma 1, we obtain a set {Wl, e 5—1} of orthonormal spacelike vector
fields along ~. Now suppose that 7’3 = 1. From Lemma 2.1 and Corollary 2.1

the possible cases are collected in Figure 1. We will rule out those ones which
are not admissible.

//\

Ter1 =1 Tor1 = 2
1mp0551b%\ / \
Tsya = To42 = =1 Tera = =2 Toro = =1 Ts42 = =2
famlly [ impossible impossible impossible / \
Tors = =1 To13 = =2
/ \ impossible
Tora = Ts1a = =1

fam1ly [l impossible

Figure 1. Tree of possibilities
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Way a: We have the following equations:

r1 =0 v = kWi
ro =0 AW, = koW
rig1 =0 W) = — kiWi_1 + ki i Wi
rs = 1 Vi = —kso1Ws_a+ ﬁs]_fsl_ls
Ts+1 =0 If/s - ﬁs]_fs+lffs

It is clear that L, € span{y’, ... Y9}, so we Write_f/5 =AY+ F
Ay, with Ay # 0. Then L), = -+ + A4V = .k, L, and v6+D €
span{~’,...,7®}, which is a contradiction.

Way bb: Now we obtain:

Ts = 1 _5/—1 - — l;:s—lvT/s—Z +’F]s];‘sl_fs
Ts+1 = 1 I_J/s — ﬁs]_fs+ll_ls + ks+2Ws+1

Since 74,2 = 1, then Rad(E, ;) = span{L,} and (L,,v6*Y) =
(Lg, ) = 0. We deduce that (L, ~**V) = 0 and, using the above
equations, we get (W, 1,1} = 0. Therefore W,,, € Rad(E,,), which
can not hold.

Way bc: We find that:

Ts = 1 75171 = *%5—1W3—2+ﬁslgsf/s
rer1 = 1 L = fsksi1Ls + ksy2Wsi1
Ts4+2 = 2 W5/+1 - ﬁsks+3Ls +ﬁ5+1ks+4Ls+1

Then we write
O # ]%5+2 — <E;,Ws+1> —_ <WS/+1,Z-/S> — O,

getting again a contradiction.

Way ca: We have:

Ts = 1 73/_1 — _];571W572+ﬁ31;sis
Toy1 = 2 L, = 0sksi1Ls + Nay1ksyalsin
reg2 =1 | Liy1 = Nsksyals + Nsqp1ksyalopr + kN

We obtain that either N = Ny or N = N,. In the first case we find
k= (L. ,,,Ls1) = 0 and in the second one we have k = (L’ |, L,) =
— (L1, L.) = 0. In any case k = 0, which can not be hold.
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Way cbb: Now the equations are:

x7!

s = 1 s—1 — — ];s—le—2 + ﬁsffsis
Ts4+1 — 2 L/s = 'Flsks+1Ls + ﬁs+1ks+2Ls+1
Ts42 — 2 L;+1 - 775ks+3Ls+ﬁs+lks+4Ls+1+ks+5Ws+2

Working as above, we get again a contradiction.
Way chab: The Frenet equation write down as follows:

re =1 | Wi 1= —keo1Ws_a + sksLs
Tep1 = 2 L) =Nsksi1Ls + Gsr1ksioLlsin
Topo = 2 [75+1 = 775/;5+3I15 + Mst1 E5+4E5+1 + ]_€s+5Ws+2
Pops =1 | Wiio =Nsksiels + Nop1kst7Lot1 — Nksis N
Tsta = 1 N =nkeigl — ks 7Wsyo + kN + ksyoWsya

Two possibilities can be given: (i) N = N,, and therefore L = L,.,,
i = fy11 and k = k,,1; and (ii) N = N,,1, and therefore L = L,, 7j = 7,
and k = k4.

In any case, we find a contradiction.

Hence, we have only to consider two admissible families. As for Family III, it
is clear that r; = 0, for ¢ > s+ 4. So the Frenet reference is given by

{le e 7Ws—17I_/saI—/s+17Ws+27Ns+17Nsav_Vs+37 . -aWn—2} .

As for Family 11, calling s; = s, there is only one sy > s, 43 satisfying r,, = 1
andr; =0, fori =s,+2,...,5,—1. We also have that r,, ,; = 1 and r; =0,
for all ¢ > s, + 2. Therefore, the Frenet reference for this Family is of the
form:

Wy, oo o W, _1, L W 41, Ng, , Wy 1o,...
K W52717 L527W82+17 N527 W52+27 R anQ} .

Summing up, the general Frenet equations for degenerate curves in R with
degeneration degree two state as follows:

Family IT
Y =W
71/ = ]_€2W2
W/ = kW, + kWi, 2<i<s—2
= —kg, 1 W _o + 75, kg, L,
L = 7o ks 41Ls, + gy 3o We, o1
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W/ = T_]S1];j81+3j;81 — 7751 ];151+2N51

s1+1

Ngl = —l_ﬁslwslq — Mgy ksl—l—lel - ]_€51—|—3V_V81—|—1 + l_fsl+4Wsl+2
WS/1+2 = =175 Esl—|—4l_/sl + E31+5W51+3

W/ = —kipoWiiq + kigsWii1, s1+3<i<s,—2
V_Vslg_l = —]_ﬁsQHWsQ—Q + s, ]_%24-2[_/52

E;Q = /’752 ];:52+3‘E82 + ]7{:52+4W52+1
V_V/ = Tss ]%52+5I/52 — Ns, ]_€82+4st

N/ = _];82+2W82—1 - 7752 E82+3NS2 - ]%32+5W52+1 =+ E52+6W82+2

W. o= =T ksrolis, + Koy siWiyis
W! = —kiaW,_1 + kipsWis1, s3+3<i<n-3
WA 2 — _]_ﬂn+2Wn—3
Family III
v = kW,
W, = kW,
W/ = kW, + kWi, 2<i<s—2
W/ | = ke W._y+ 0ok, L,
L, = sk 1L + Mok 2Ly
Loy = Tlskass Lo + Ta1kara Loy + kors Wigo
I/T/s/w = foksroLs + Mar1kssrlors — TMoy1korsNors

s+1 - ﬁsk5+8z—/s - E‘s—l—7Ws+2 - 7?3—1—1]%‘3—|—4]Vs—|—1 - ﬁsl_cs—|—2Ns

=
I

L= —k W1 — Tsp1ksrsLopr — Tor1ksra Ny
— okt 1 Ny — ko Weso + koyoWiia
st+3 = fokeroLs + kor10Wiia
W' = ki eWiii + kin:Wipr, s+4<i<n-—3

=, _
n—29o — _kn+4Wn—3

where 7; = (L;, N;).

7

4. The Cartan Reference of a Degenerate Curve

(1)

As we have seen, the Frenet equations for degenerate curves are quite compli-
cated and involve too many curvature functions. In the non-degenerate case,
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it is well-known that choosing an arbitrary parameter £, there exists only one
Frenet reference satisfying the Frenet equations. In particular, if one chooses
the arclength parameter, one obtains the usual curvature functions. However,
this is not true here. Actually, for null curves it does not exit the arclength
parameter, so we have to define a new one as follows.

Definition 4.1. Let ~v: I — R be a differentiable curve, parametrized
by t, satisfying that (Y (),¥D()) = 0 for i = 1,...,m — 1, and
(v (), 4™ ()Y = 1. Then t is said to be the pseudo-arclength parameter.

Even though we have chosen the pseudo-arclength parameter, we can not assure
the uniqueness of this Frenet reference. Then, we wondered whether there exist
any “canonical” Frenet reference, in the following sense:

1) It is unique, that is, if we have references B and B satisfying the same
equations, then B = B.

2) The number of the corresponding curvature functions is minimal.

3) The corresponding curvature functions are invariant under pseudo-Euclid-
ean transformations.

Theorem 4.1. Let vy: I — R} be a degenerate curve and suppose that T, ) RY
is spanned by {~'(£),7" (1), ..., ¥ (t)} for all t. Then there exists only one (up
the orientation) Frenet reference verifying the above conditions. Furthermore,
the corresponding curvature functions are given by one of the following set of
equations

Family 1
Null curves Non-null curves
v =L ~ =W
L = paeaWo Wi = e2k1Ws
Wi =mkiLy — pam N1 W) = eicikimaWis1 + e 1 kWi
N{ = —e2kiWa + e3ka W3 so1 = —€s—2ks—2Ws_2 + psns Ls
W4 = —mikal1 + c4ksWy L =esy1kem1Wsi1
W{ =—cicihkioaWic1 +eikiWigr |Wi 1 = nsksLs — nsks—1 N
o1 = —En—2kn—2Wn_2 Nl = —pscs—1Weo1 — esq1ksWor1 + st2ksr1 Wota
SI+2 = Nsksy1Ls + esy3ks2Wsys
W) =ceicikiaWic1 + g1 kiWiga
= —€n_2kn_oWn_o
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Family 11
Null curves Spacelike curves
'7/ e L1 ’}// = W1
Ly =W, Wi = kW,

Wi =mkili — m N1
N{ = kW5 + kW3
W3 = —mikaL1 + kaWa,
W/ = —kiaWi1 + kWi
1= —ks—oWi_2 + psnsLs
Ly =k 1Wsin
Wi =nsksLs — nske—1Ns
Ni=—psWei — ksWeg1 + ks 1 Woyo
Wiio=—nsksi1Lls + kepoWeis
Wi =—k;j W1+ kW1

I
n—2 — _kn—3Wn—3

W, = kicaWis1 + kiWigq
5,1—1 = —ksy2Wsy -2 + sy sy Lsy
Ly, =ksy—1Ws 1
Ws/1+1 = MNsy klesl - nslksl—lel
N;1 = Ny Ws1—1 —ksy Wey 11 + ksy 11 Wsy 42
Wiiva = —Nsiksy41Lsy + ks 12Ws 13
Wi = ki-iWio1 + kiWip
5,2—1 = —ksy—2Wss—2 + flsy sy Lsy
L'52 =ksy 1 Weyt1
W, 1 = Ny ksy Ly — Negksy 1N,
Né2 = —Nsy Wsz—l - kSQ W52+1 + k‘32+1W52+2
Wisto = —Nssksot1Lsy + Esy12Woyy3
W] =kicaWio1 + kWit
heo = —kn—3Whn_3

Family 111
Null curves Spacelike curves
v =1 v =W
Lll = /L27]2L2 Wl, = k1W2
Ly =W;3 W] = —ki-1Wi—1 + kWi

Wz =n2ki1La —n2 N2

Ny =mkaL1 — pom N1 — k1 Ws

Ni{ = —makoLo + ksWa

Wi = —mksLi + kaWs

W) =—kioaWi_1 + kWit
7/1—2 = —kn_3Wn_3

/

s—1 = —ks—aWs_o 4+ pusns Ls
L, = psy1msy1Lss1
IS+1 - k5—1W5+2
WS'+2 = 775+1l€sLs+1 — 775+1/€s—1Ns+1
Nl =nsksg1Ls — ksWogo — ts41ms N
NI = net1kst1Lsy1 — psWoe1 + ksyoWeys
ey3 = —NoksyoLs + ksysWiya
Wi =—kioiWi1 + kWi
711—2 = —kn—3Wn_3

where ¢; = (W;,W,), n; = (L

7

N;) and p; = £1. Moreover, we can

choose n; and p; so that {~',...,v9} and {C\, ..., C;} have the same orien-

tation, foralli =1,...,n—1, and {C4, ..

(..

., Cy } is positively oriented, where

., C, } represents a Frenet reference as above.



Degenerate Curves in Pseudo-Euclidean Spaces of Index Two 219

Proof: For families I and II we follow the ideas contained in [6]. As for
Family III, let B and B* be two Frenet references where we have chosen the
pseudo-arclength parameter and let k, = p, and k* = p,, where pu, = +1.
Then we have the following bases

B = {Wla ey Ws—la l—-/sa I_/s+17 V_Vs—l—%Ns—l—l)Nsa Ws+37 ey V_Vn—2}
and

B ={Wi,....,We 1, Ly, L%, W2y, Ny NI Wy, W)

with curvatures {ky = 1, koy.... ks = g, ksp1y... k) and {ky = 1,
ko,... ks = s, ki q,... k5 }, respectively. O

As {l_—/sa Es—i—la V_Vs—l—27 Ns—|—17 N } and {Lsa 3+15 s—|—27 N:—l—la N*} are pseUdO-
orthonormal and they have the same orientation, there exist a matrix P = (p;;)
such that

L,

L

s*+2

Ny

N¢
1 0 0 0 0 L,
P21 P22 0 0 0 ]_;8+1
P31 ]9322 1 0 0 W5+2

1 p21pay

1,2 DP21D32 P21 N
—P21Pa1 — 3P 3 T, —pa —2 1 s

P22 P22

— P31P32 — P22P41

k

. 5 ks . N
By choosing poy = 2 and Po1 = =+ and using the Frenet equations (1),
Hst1 Hst1

a straightforward computation leads to £, = 0 and k; , = 1. Therefore
the problem can be reduced to the bases

B - {Wh . -7stlaE57I/8+17Ws+27Ns+17N37Ws+37 . '7Wn72}
and

B* = {W17"'7W8—17E87Z;8+17 s+27N:+17N* s*+37"'7W;:—2}
where the curvatures are given by {k1 = 1, kQ, .

k5+2—1 ks+37-- k }and{kl—l kQ,...k
Kiigooo o kot respectlvely.

’_i
.
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Now, the pseudo-ortonormal bases are related by

L, 1 0 0 00 L,
Lyit 0 1 0 00| Ly
s*+2 = P31 D32 1 00 Ws+2
Ni, Da1 —%pgz —p32 1 0 Nt
N; —%pﬁl —P31P32 — Pa1 —P31 01 N
Choose p3; = Zf and p3, = ]gf‘ and use the Frenet equations to get k7, , = 0
and %k}, = 0. Therefore, we can now suppose that Weopo = Wi, We

have again reduced the problem to a simpler one. Working as above, taking
Pa = Z“* ¢, we show that k7 ;s = 0. We only have to rename curvatures and

s+5 ?

use a suitable notation. Concerning to the orientation we stand out three cases
corresponding to the three family-types.

Family I: There exist only one j, such that e;, = —1, so we have several
possibilities.

Ifjo<s—1<n-3 wetake u, =n, = —1. If jo <s—1=n—3, we
choose p15 = 1, = x1 depending on {7} _._ is negatively or positively
oriented, respectively. In these cases we have l;jo_l < 0 and k; > 0O for all
J# {jo—1,s}.

If jo = s+1 < n—1, we choose i, =n, = 1. If jo = s+1 = n—1, then we take
s = s = £1 depending on {y} _ _ is positively or negatively oriented,
respectively. Now we obtain k,_; < 0 and k; >0 for all j # {s — 1, s}.
Finally, if jo > s+ 1 take p, =, = —1 to get k;, 1 < 0 and k; > 0 for all
J # {do — 1,5}

Family II: 1f s5 < n—3 choose s, = pts, = ns, =75, = —1. If 55 = n—3 take
fs—1 =75, = —1, and p,, = 7,, = £1 depending on {yP},_._ is negatively
or positively oriented, respectively. Then k; > 0 for all j # {3;, So}.

Family II: 1f s < n —4 take pgy; = nsy1 = —1l and py = n, = 1. If
s = n —4 choose pyy; = nsy1 = —1, and pu, = n, = £1 depending on
{y#}, ..., is positively or negatively oriented, respectively. Therefore k; > 0
for all j # {s,s+ 1}.

The uniqueness follows now from Lemma 2.1.

Definition 4.2. 4 degenerate curve v satisfying the above conditions is said
to be a degenerate Cartan curve. The reference and curvature functions given
by those equations will be called the Cartan reference and Cartan curvatures
of ~, respectively.
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Corollary 4.1. The number of Cartan curvatures of a degenerate curve v: I —
RY is n —r — 1, where r is the degeneration degree of .

Hence, degenerate curves with degeneration degree one (resp. two) have n — 2
(resp. n — 3) Cartan curvatures.

5. Congruence Theorems for a Degenerate Cartan Curve in a
Pseudo-Euclidean Space of Index Two

The following question naturally arises: Let C be a reference satisfying the
Cartan equations for certain functions k;. Is there a degenerate Cartan curve ~y
whose Cartan reference is C and his Cartan curvatures are k;? If it is affirmative,
is that curve unique?

The answer 1s affirmative and the result sets out as follows.

Theorem 5.1. Let ky, ...k, : [—0,0] — R be differentiable functions. Let p
be a point of Ry and let Cy be an admissible pseudo-orthonormal basis of
T,RY with degeneration degree 1 or 2, according to m =n—2 or m =n—3,
respectively. Then there exists a unique degenerate Cartan curve v in R,
with v(0) = p and the same nullity degree and index sequences that Cy, whose
Cartan reference at p is just Cy.

Proof: See [5] and [6]. OJ

Theorem 5.2. (Congruence Theorem) Let C and C' be two degenerate Cartan
curves which are of the same type and have the same Cartan curvatures
{ki,... kn}, where k;: [—9,0] — R are differentiable functions. Then there
exists a pseudo-Euclidean transformation of RY which maps bijectively C' into

C.

Remark 5.1. The same results can be easily obtained in the de Sitter space S}
and in the anti de Sitter space Hj. With some extra effort they can be extended
to higher dimensions.

6. Examples

Example 6.1.
Spacelike degenerate curves in RS with degeneration degree 1, ki = o > 0,
ks =0, ks = —1, g4 = —1 and nullity degree sequence {0,1,1,0,0}:

215 2/(42 1 3 2 2_1 244
2 (#) = Ut,at(t%—)’at’at(t ),t 0t+1 .
120 4/6 6 4/6 120
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Example 6.2.
Timelike degenerate curves in RS with degeneration degree 1, k, = o > 0,
ko =0, ks = 1 and nullity degree sequence {0,1,1,0,0}:

ot ot’(t2+1) ot ot*’(t>—-1) o*t®
v(t)= [t -1], , , , )
120 4v6 6 46 120
Example 6.3.
Null curves in RS with degeneration degree 1, k, = o*, ky = —20° and

ks = /20 > 0, e53 = —1 and nullity degree sequence {1,1,0,0,0}:

(1) = 1 ot . ot ? . o’t? t ot
! V2o 30v2) 7 1272 6 )7 V20 30v2
Example 6.4.

A null curve in RS with degeneration degree 2 and k, = ko = 0:

() = <t(1 —tY) 221+ £ 21 -1 t(1+t4)>

415 7 446 67 46 T 4415

Since it is similar to the null cubic of R?, we will call it the null quintic of R3.

Acknowledgments

This research has been partially supported by DGICYT grant PB97-0784. The
second author is supported by a FPPI Grant, Program PG, Ministerio de Edu-
cacion y Ciencia

References

[1] Bejancu A., Lightlike Curves in Lorentz Manifolds, Publ. Math. Debrecen, 44
(1994) 145-155.

[2] Bejancu A., Ferrandez A. and Lucas P., A New Viewpoint on Geometry of a
Lightlike Hypersurface in Semi-Euclidean Space, Saitama Mathematical Journal
16 (1998) 31-38.

[3] Bonnor W., Null Curves in a Minkowski Spacetime, Tensor, N. S. 20 (1969)
229-242.

[4] Duggal K. and Jin D., Geometry of Null Curves, Math. J. Toyama Univ. 22 (1999)
95-120.

[5] Ferrandez A., Giménez A. and Lucas P., Null Helices in Lorentzian Space Forms,
to appear in Int. J. Mod. Phys. A, 2001.

[6] Ferrandez A., Giménez A. and Lucas P., s-Degenerate Curves in Lorentzian Space
Forms, Preprint, 2001.



Degenerate Curves in Pseudo-Euclidean Spaces of Index Two 223

[7] Galloway G., Maximum Principles For Null Hypersurfaces and Null Splitting
Theorems, Ann. Henri Poincaré 1 (2000) 543-567.

[8] Nersessian A. and Ramos E., Massive Spinning Particles and the Geometry of
Null Curves, Phys. Lett. B 445 (1998) 123-128.

[9] Nurowski P. and Robinson D., Intrinsic Geometry of a Null Hypersurface, Class.
Quantum Grav. 17 (2000) 4065-4084.

[10] Samuel J. and Nityananda R., Transport Along Null Curves, J. Phys. A: Math.
Gen. 33 (2000) 2895-2905.



