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Abstract. The Poisson structures and Hamiltonian formulation ofehdie
mensional systems is considered in general. A class of @egenstructures
in higher dimensions is also briefly discussed.

1. Introduction

In a recent work we [1] have considered the Poisson struzinf@?. We showed
that, locally all such structures must have the form

JU = 1€k, 1)
wherey and ¥ are arbitrary differentiable functions af, i = 1,2,3 ande* is
the Levi-Civita symbol. Here we use the summation conventibhis has a very
natural geometrical explanation. Lét = ¢; and H = ¢, define two surfaces
S; and S, respectively, inR3, wherec; andc, are some constants. Then the
intersection of these surfaces define a curvim R3. The velocity vectordz/ dt

of this curve is parallel to the vector product of the normedtersV¥ andV H of
the surfacess; andSs,, respectively, i.e.,

d
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wherey. is any arbitrary function ifR3. Equation (2) defines a Hamiltonian system
in R3. In [1] we proved that all Hamiltonian systemst are of the form (2).

In many examples the general form (1) of a Poisson strucsysesiserved globally,
including the irregular points (points where the rank ofdtrecture changes). That
is a Poisson structure has the same form on different symipleaves [8].

The general form (1) allows to construct the compatible $amisstructures and
the corresponding bi-Hamiltonian systems. The bi-Hami#o representation of
a system is closely related to the notion of integrabilityve®d a bi-Hamiltonian
system one can construct an infinite hierarchy of commutirsg ifitegrals, using
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