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Given a countable setX (usually taken to beN or Z), an infinite permutationπ of X is a linear
ordering≺π of X, introduced in[6]. This paper investigates the combinatorial complexity of infinite
permutations onN associated with the image of uniformly recurrent aperiodicbinary words under the
letter doubling map. An upper bound for the complexity is found for general words, and a formula
for the complexity is established for the Sturmian words andthe Thue-Morse word.

1 Introduction

Permutation complexity of aperiodic words is a relatively new notion of word complexity which is based
on the idea of an infinite permutation associated to an aperiodic word. For an infinite aperiodic wordω ,
no two shifts ofω are identical. Thus, given a linear order on the symbols usedto composeω , no two
shifts ofω are equal lexicographically. The infinite permutation associated withω is the linear order on
N induced by the lexicographic order of the shifts ofω . The permutation complexity of the wordω will
be the number of distinct subpermutations of a given length of the infinite permutation associated with
ω .

We start with some basic notation and definitions. Some properties of infinite permutations are given
in Section 2. In Section 3 we introduce a mapping,δ , on the set of subpermutations of an uniformly
recurrent word, and an upper bound for the complexity function is calculated for the image of an aperiodic
uniformly recurrent word under the letter doubling map. We then show that when the mappingδ is
injective it implies that restricting an image ofδ is also injective in Section 4. The complexity function
is established for the image of a Sturmian word in Section 5, and for the image of the Thue-Morse word
in Section 6.

1.1 Permutations from words

In this writing aword overA will be a right infinite sequence of symbols of the formω = ω0ω1ω2 . . .

with eachωi ∈ A , and the set of all words overA is denotedA N. A finite wordoverA is a word of
the formu= a1a2 . . .an with n≥ 0 (if n= 0 we sayu is theempty word, denotedε) and eachai ∈ A ,
with the set of all finite words over the alphabetA is denoted byA ∗. The lengthof the wordu is the
number of symbols in the sequence and is denoted by|u|= n. Fora∈ A , let |u|a denote the number of
occurrences of the lettera in the wordu.

Any word of the formu = ωiωi+1 . . .ωi+n−1, with i ≥ 0, is called afactor of ω of length n ≥ 1.
The set of all factors of a wordω is denoted byF (ω). The set of all factors of lengthn of ω is
denotedFω(n), and letρω(n) = |Fω(n)|. The functionρω : N → N is called thefactor complexity
functionof ω and it counts the number of factors of lengthn of ω . For a natural numberi we denote by
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ω [i] = ωiωi+1ωi+2ωi+3 . . . the i-letter shift ofω . For natural numbersi ≤ j, ω [i, j] = ωiωi+1ωi+2 . . .ω j

denotes the factor of lengthj − i +1 starting at positioni in ω .
For wordsu∈ A∗ andv∈ A∗∪AN whereω = uv, we callu aprefixof ω andv asuffixof ω . A word

ω is said to beperiodicof periodp if for eachi ∈ N, ωi = ωi+p, andω is said to beeventually periodic
of period p if there exists anN ∈ N so that for eachi > N, ωi = ωi+p; or equivalently,ω has a periodic
suffix. A wordω is said to beaperiodicif it is not periodic or eventually periodic.

The infinite wordω ∈ A N is said to berecurrentif for any prefix p of ω there exists a prefixq of ω
so thatq= pvpfor somev∈A ∗. Equivalently, a wordω is recurrent if each factor ofω occurs infinitely
often inω . The wordω ∈ A N is uniformly recurrentif each factor occurs infinitely often with bounded
gaps. Thus ifω is uniformly recurrent, for each integern> 0 there is a positive integerN so that for each
factorv of ω with |v|= N, Fω(n) ⊂ F (v).

A morphism onA is a mapϕ : A ∗ → A ∗ so thatϕ(uv) = ϕ(u)ϕ(v) for any u,v ∈ A ∗. The
morphismd : A ∗ 7→ A ∗ defined byd(a) = aa for eacha∈ A is called theletter doubling map.

The idea of an infinite permutation that will be here used was introduced in[6]. This paper will be
dealing with permutation complexity of infinite words so theset used in the following definition will be
N rather than an arbitrary countable set. To define aninfinite permutationπ, start with a total order≺π on
N, together with the usual order< onN. To be more specific, an infinite permutation is the ordered triple
π = 〈N,≺π ,<〉, where≺π and< are total orders onN. The notation to be used here will beπ(i)< π( j)
rather thani ≺π j.

Given an infinite aperiodic wordω = ω0ω1ω2 . . . on an alphabetA , fix a linear order onA . We
will use the binary alphabetA = {0,1} and use the natural ordering 0< 1. Once a linear order is set
on the alphabet, we can then define an order on the natural numbers based on the lexicographic order of
shifts ofω . Considering two shifts ofω with a 6= b, ω [a] = ωaωa+1ωa+2 . . . andω [b] = ωbωb+1ωb+2 . . .,
we know thatω [a] 6= ω [b] sinceω is aperiodic. Thus there exists some minimal numberc≥ 0 so that
ωa+c 6= ωb+c and for each 0≤ i < c we haveωa+i = ωb+i . We callπω the infinite permutation associated
with ω and say thatπω(a) < πω(b) if ωa+c < ωb+c, else we say thatπω(b)< πω(a).

For natural numbersa≤ bconsider the factorω [a,b] =ωaωa+1 . . .ωb of ω of lengthb−a+1. Denote
the finite permutation of{1,2, . . . ,b−a+1} corresponding to the linear order byπω [a,b]. That isπω [a,b]
is the permutation of{1,2, . . . ,b− a+ 1} so that for each 0≤ i, j ≤ (b− a), πω [a,b](i) < πω [a,b]( j)
if and only if πω(a+ i) < πω(a+ j). Say thatp = p0p1 · · · pn is a (finite) subpermutationof πω if
p= πω [a,a+n] for somea,n≥ 0. For the subpermutationp= πω [a,a+n] of {1,2, · · · ,n+1}, we say
the lengthof p is n+1.

Denote the set of all subpermutations ofπω by Permω , and for each positive integern let

Permω(n) = { πω [i, i +n−1] | i ≥ 0 }

denote the set of distinct finite subpermutations ofπω of lengthn. Thepermutation complexity function
of ω is defined as the total number of distinct subpermutations ofπω of a lengthn, denotedτω(n) =
|Permω(n)|.

Example Let’s consider the well-known Fibonacci word,

t = 0100101001001010010100100101. . . ,

with the alphabetA = {0,1} ordered as 0< 1. We can see thatt[2] = 001010. . . is lexicographically
less thant[1] = 100101. . ., and thusπt(2) < πt(1).

Then for a subpermutation, consider the factort[3,5] = 010. We see thatπt [3,5] = (231) because in
lexicographic order we haveπt(5)< πt(3)< πt(4).
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Infinite permutations associated with infinite aperiodic words over a binary alphabet act fairly well-
behaved, but many of the arguments used for binary words break down when used with words over
more than two letters. Given a subpermutation of lengthn of an infinite permutation associated with a
binary word, a portion of lengthn−1 of the word can be recovered from the subpermutation. This is not
always the case for subpermutations associated with words over 3 or more letters. For binary words the
subpermutations depend on the order on the symbols used to composeω , but the permutation complexity
does not depend on the order. For words over 3 or more letters,not only do the subpermutations depend
on the order on the alphabet but so does the permutation complexity.

2 Some General Permutation Properties

Initially work has been done with infinite binary words (see[2, 6, 9, 10, 11]). Supposeω = ω0ω1ω2 . . .

is an aperiodic infinite word over the alphabetA = {0,1}. First let’s look at some remarks about per-
mutations generated by binary words where we use the naturalorder onA .

Claim 2.1 ([9]) For an infinite aperiodic wordω overA = {0,1} with the natural ordering we have:
(1) πω(i)< πω(i +1) if and only ifωi = 0.
(2) πω(i)> πω(i +1) if and only ifωi = 1.
(3) If ωi = ω j , thenπω(i)< πω( j) if and only ifπω(i +1)< πω( j +1)

Lemma 2.2 ([9]) Given two infinite binary words u = u0u1 . . . and v= v0v1 . . . with πu[0,n+ 1] =
πv[0,n+1], it follows that u[0,n] = v[0,n].

We do have a trivial upper bound forτω(n) being the number of permutations of lengthn, which isn!.
Lemma 2.2 directly implies a lower bound for the permutationcomplexity for a binary aperiodic word
ω , namely the factor complexity ofω . Thus, initial bounds on the permutation complexity can be seen
to be:

ρω(n−1)≤ τω(n)≤ n!

For a∈ A = {0,1}, let ā denote thecomplementof a, that is0̄= 1 and1̄= 0. If u= u1u2u3 · · · is a
word overA , thecomplementof u is defined to be the word composed of the complement of the letters
in u, that is ū = ū1ū2ū3 · · · . The following lemma shows the relationship of the complexity function
between an aperiodic binary wordω and its complementω . This lemma will be used when calculating
the permutation complexity of the image of Sturmian words under the doubling map in Section 5.

Lemma 2.3 Let ω = ω0ω1ω2 · · · be an infinite aperiodic binary word, and letω = ω0ω1ω2 · · · be the
complement ofω . For each n≥ 1,

τω(n) = τω(n).

We would like to define some terms that will be used repeatedlyin this paper.

Definition Two permutationsp andq of {1,2, . . . ,n} have thesame formif for eachi = 0,1, . . . ,n−1,
pi < pi+1 if and only if qi < qi+1. For a binary wordu of lengthn−1, say thatp has form uif

pi < pi+1 ⇐⇒ ui = 0

for eachi = 0,1, . . . ,n−2.
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Definition Let p= π[a,a+n] be a subpermutation of the infinite permutationπ. The left restriction of
p, denoted byL(p), is the subpermutation ofp so thatL(p) = π[a,a+n−1]. Theright restriction of p,
denoted byR(p), is the subpermutation ofp so thatR(p) = π[a+1,a+n]. Themiddle restriction of p,
denoted byM(p), is the subpermutation ofp so thatM(p) = R(L(p)) = L(R(p)) = π[a+1,a+n−1].

For eachi, there arepi −1 terms inp that are less thanpi and there aren− pi terms that are greater
thanpi . Thus consider some 0≤ i ≤ n−1 and the values ofL(p)i andR(p)i . If p0 < pi+1 there will be
pi+1−2 terms inR(p) less thanR(p)i so we haveR(p)i = pi+1−1. In a similar sense, ifpn < pi we have
L(p)i = pi −1. If p0 > pi+1 there will bepi+1−1 terms inR(p) less thanR(p)i so we haveR(p)i = pi+1.
In a similar sense, ifpn > pi we haveL(p)i = pi .

The values inM(p) can be found by finding the values inR(L(p)) or L(R(p)). SinceR(L(p)) or
L(R(p)) correspond to the same subpermutation ofp, R(L(p))i < R(L(p)) j if and only if L(R(p))i <

L(R(p)) j . ThereforeR(L(p)) = L(R(p)).
It should also be clear that if there are two subpermutationsp= πT [a,a+n] andq= πT [b,b+n] so

that p= q thenL(p) = L(q), R(p) = R(q), andM(p) = M(q).

3 Uniformly Recurrent Words

Let ω be an aperiodic infinite uniformly recurrent word overA = {0,1}, andπω be the infinite permu-
tation associated withω using the natural order on the alphabet. We would like to describe the infinite
permutation associated withd(ω), the image ofω under the doubling map. In this section we will define
a mapping from the set of subpermutations ofπω onto the subpermutations ofπd(ω), and we will find
an upper bound for the permutation complexity of the image ofa uniformly recurrent aperiodic binary
word.

Sinceω is a uniformly recurrent word it will not contain arbitrarily long strings of contiguous 0 or 1.
Thus there arek0,k1 ∈ N so that 10k01 and 01k10 are factors ofω , but 0k0+1 and 1k1+1 are not. We then
define the following classes of words:

C0 = 0k0

C1 = 0k0−11
...

Ck0−1 = 01

Ck0 = 10

Ck0+1 = 120
...

Ck0+k1−1 = 1k1.

For eachi ∈ N, ω [i] = ωiωi+1 · · · can have exactly one the above classes of words as a prefix. It should
be clearC0 < C1 < · · · < Ck0+k1−1, and sod(Ci) < d(Cj) for i < j since the doubling mapd is order
preserving, as shown in Lemma 3.1. The next lemma will not only show that the doubling map is an
order preserving map, but also the order of the image ofωi under the doubling map.

Lemma 3.1 Let ω be as above. Supposeω [a] and ω [b] are two shifts ofω for some a6= b so that
ω [a] < ω [b]. Moreover, suppose Ci is a prefix ofω [a] and Cj is a prefix ofω [b] where i≤ j. Then
d(ω [a]) < d(ω [b]), and
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(a) If ωa = ωb = 0 and i< j, then d(ω)[2a] < d(ω)[2a+1]< d(ω)[2b] < d(ω)[2b+1].

(b) If ωa = ωb = 0 and i= j, then d(ω)[2a] < d(ω)[2b] < d(ω)[2a+1]< d(ω)[2b+1].

(c) If ωa = 0 andωb = 1, then d(ω)[2a] < d(ω)[2a+1]< d(ω)[2b+1]< d(ω)[2b].

(d) If ωa = ωb = 1and i< j, then d(ω)[2a+1] < d(ω)[2a] < d(ω)[2b+1] < d(ω)[2b].

(e) If ωa = ωb = 1and i= j, then d(ω)[2a+1] < d(ω)[2b+1] < d(ω)[2a] < d(ω)[2b].

For k = sup{k0,k1}, there is anNk so any factoru of ω of lengthn≥ Nk will contain all factors of
lengthk as a subword, and sou will haveCj as a subword for eachj. One note about the factors ofd(ω).
Forn≥ Nk and two factorsu= d(ω)[2x,2x+2n] andv= d(ω)[2y+1,2y+2n+1] of d(ω), thenu 6= v.
This is because a prefix ofu will begin with an even number of one letter (either 02m1 or 12m0 for some
m), and a prefix ofv will begin with an odd number of one letter (either 02m+11 or 12m+10 for somem).

Fix a factoru of ω of lengthn≥ Nk. There is ana so thatu= ω [a,a+n−1]. For each 0≤ i ≤ n−1
there is onej so thatω [a+ i] hasCj as a prefix. In the factorω [a,a+n+k−2] of lengthn+k−1, we will
know explicitly whichCj is a prefix of the shiftω [a+ i] for each 0≤ i ≤ n−1. Letp= πω [a,a+n+k−1]
be a subpermutation ofπω of lengthn+k. The factorω [a,a+n+k−2] of lengthn+k−1 is the form
of p, and hasu as a prefix.

For eachj ∈ {0,1, . . . ,k0+k1−1} define

γ j =
{

0≤ i ≤ n−1
∣

∣Cj is a prefix ofω [a+ i]
}

.

So|γ0|+ |γ1|+ · · ·+ |γk0+k1−1|= n andγi ∩ γ j = /0 for i 6= j. Since|u| ≤ Nk, we know
∣

∣γ j
∣

∣≥ 1 for eachj.
We can seed(u) = d(ω)[2a,2a+2n−1], and letp′ be the subpermutationp′ = πd(ω)[2a,2a+2n−1].
Using Lemma 3.1 and the size of each of theγ j sets we can determine the values ofp′ based on the
values ofLk(p), thek-left restriction ofp. For eachj ∈ {0,1, . . . ,k0+k1−1} define

Sj =
j

∑
i=0

|γi |

and sayS−1 = 0.

Proposition 3.2 Let ω , u, p, and p′ be as above. For each0≤ i ≤ n−1, there is a j soω [a+ i] has Cj

as a prefix.

(a) If pi < pi+1 then p′2i = Lk(p)i +Sj−1 and p′2i+1 = Lk(p)i +Sj

(b) If pi > pi+1 then p′2i = Lk(p)i +Sj and p′2i+1 = Lk(p)i +Sj−1

Corollary 3.3 Let ω be as defined above. Ifπω [a,a+ n+ k− 1] and πω [b,b+ n+ k− 1], a 6= b, are
subpermutations ofπω whereπω [a,a+n−1] = πω [b,b+n−1] and for each0≤ i ≤ n−1, there is some j
so that bothω [a+ i] andω [b+ i] have Cj as a prefix. Thenπd(ω)[2a,2a+2n−1] = πd(ω)[2b,2b+2n−1].

Fix a subpermutationp = πω [a,a+ n+ k− 1], and let p′ = πd(ω)[2a,2a+ 2n− 1]. The terms of
p′ can be defined using the method given in Proposition 3.2. Letq = πω [b,b+ n+ k− 1], b 6= a, be a
subpermutation ofπω and letq′ = πd(ω)[2b,2b+ 2n− 1] as in Proposition 3.2. The following lemma
shows that ifp= q we knowp′ = q′, but the converse of this is not necessarily true. The objective here is
using the idea ofp′ to define a map from the set of subpermutations ofπω to the set of subpermutations
of πd(ω), and this map will be well-defined by Proposition 3.2.

Lemma 3.4 If p = q, then p′ = q′.
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Thus there is a well-defined function from the set of subpermutations ofπω to the set of subpermu-
tations ofπd(ω). Let p= πω [a,a+ n+ k− 1], and defineδ (p) = p′ = πd(ω)[2a,2a+ 2n− 1] using the
formula in Proposition 3.2. Thus we have the map

δ : Permω(n+k)→ Permd(ω)(2n)

Not all subpermutations ofπω will be the image underδ of another subpermutation.
Let n> 2Nk anda be natural numbers. Thenn anda can be either even or odd, and for the subper-

mutationπd(ω)[a,a+n−1], there exist natural numbersb andmso that one of 4 cases hold:

1. πd(ω)[a,a+n] = πd(ω)[2b,2b+2m], even starting position with odd length.

2. πd(ω)[a,a+n] = πd(ω)[2b,2b+2m−1], even starting position with even length.

3. πd(ω)[a,a+n] = πd(ω)[2b+1,2b+2m], odd starting position with even length.

4. πd(ω)[a,a+n] = πd(ω)[2b+1,2b+2m−1], odd starting position with odd length.

Consider two subpermutationsπd(ω)[2c,2c+ n] and πd(ω)[2d+ 1,2d+ n+ 1], with n > 2Nk. The
subpermutationπd(ω)[2c,2c+n] will have formd(ω)[2c,2c+n−1], andπd(ω)[2d+1,2d+n+1] will
have formd(ω)[2d+1,2d+n]. Since the length of these factors is at least 2Nk, we knowd(ω)[2c,2c+
n−1] 6= d(ω)[2d+1,2d+n], and thusπd(ω)[2c,2c+n] 6= πd(ω)[2d+1,2d+n+1] because they do not

have the same form. Thus we can break up the set Permd(ω)(n) into two classes of subpermutations,

namely the subpermutations that start at an even position oran odd position. So say that Permd(ω)
ev (n) is

the set of subpermutationsp of lengthn so thatp= πd(ω)[2b,2b+n−1] for someb, and that Permd(ω)
odd (n)

is the set of subpermutationsp of lengthn so thatp= πd(ω)[2b+1,2b+n] for someb. Thus

Permd(ω)(n) = Permd(ω)
ev (n)∪Permd(ω)

odd (n),

where
Permd(ω)

ev (n)∩Permd(ω)
odd (n) = /0.

Thus forn≥ Nk and the subpermutationπd(ω)[2a,2a+2n−1], we see forp= πω [a,a+n+k−1],
δ (p) = p′ = πd(ω)[2a,2a+2n−1]. Thus the map

δ : Permω(n+k) 7→ Permd(ω)
ev (2n)

is a surjective map.
For p= πd(ω)[a,a+n+k−1], we can then define three additional maps by looking at the left, right,

and middle restrictions ofδ (p) = p′. These maps are

δL : Permω(n+k) 7→ Permd(ω)
ev (2n−1)

δR : Permω(n+k) 7→ Permd(ω)
odd (2n−1)

δM : Permω(n+k) 7→ Permd(ω)
odd (2n−2)

and are defined by

δL(p) = L(δ (p)) = L(p′)

δR(p) = R(δ (p)) = R(p′)

δM(p) = M(δ (p)) = M(p′)
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It can be readily verified that these three maps are surjective. To see an example of this, consider the
mapδL, and letπd(ω)[2b,2b+2n−2] be a subpermutation ofπd(ω) in Permd(ω)

ev (2n−1). Then for the
subpermutationp = πω [b,b+n+ k−1], δL(p) = L(p′) = πd(ω)[2b,2b+2n−2] so δL is surjective. A
similar argument will show thatδR andδM are also surjective.

Lemma 3.5 For n≥ Nk:

τd(ω)(2n−1)≤ 2(τω(n+k))

τd(ω)(2n)≤ τω(n+k)+ τω(n+k+1)

The mapsδ , δL, δR, andδM can be, but are not necessarily, injective maps. For this example we will
use the Thue-Morse wordT, defined in Section 6, and subpermutations ofπT . We will use subpermu-
tations of length 9, withn= 7 andk= 2, to keep the example subpermutations short, but examples like
this (as in Corollary 3.3) can be found for subpermutations of πT of length 2r +1 for anyr ≥ 3.

Let p= πT [0,8] = (4 9 7 2 6 1 3 8 5) andq= πT [12,20] = (5 9 7 2 6 1 3 8 4). So p 6= q and both of
these subpermutations have formT[0,7] = T[12,19] = 01101001. Then applying the mapδ we see:

p′ = δ (p) = (5 8 14 13 12 10 3 6 11 9 1 2 4 7) = δ (q) = q′

So p′ = q′ which impliesδL(p) = δL(q), δR(p) = δR(q), andδM(p) = δM(q). Thus these 4 maps are not
injective in general and the values in Lemma 3.5 are only an upper bound.

4 Injective Restriction Mappings

In this section we will investigate when the restriction mappings are injective. Ifδ is not injective, then
δR, δL, andδM will not be injective. But whenδ is injective it impliesδR andδL are injective in general,
as shown by Proposition 4.4. Unfortunately, this does not imply that the mapδM is injective, as can be
seen in Lemma 6.7.

Lemma 4.1 For the wordω , let p= πω [a,a+n+k−1], q= πω [b,b+n+k−1], p′, and q′ be as above.
Suppose Lk(p) = Lk(q), but ω [a+n−1] andω [b+n−1] each have a different Cj class as a prefix and
ω [a+n−1] < ω [b+n−1]. Then there is a j so thatω [a+n−1] has Cj as a prefix andω [b+n−1]
has Cj+1 as a prefix. Moreover,

∣

∣p′2n−2−q′2n−2

∣

∣≥ 1 and
∣

∣p′2n−1−q′2n−1

∣

∣≥ 1.

The following definitions describe patterns which can occurwithin a set of subpermutations.

Definition A subpermutationp= π[a,a+n] is of type k, for k≥ 1, if p can be decomposed as

p= (α1 · · ·αkλ1 · · ·λl β1 · · ·βk)

whereαi = βi + ε for eachi = 1,2, . . . ,k and anε ∈ {−1,1}.

Some examples of subpermutations of type 1, 2, and 3 (respectively) are:

(2 3 5 4 1) (2 5 4 1 3 6) (3 7 5 1 2 6 4)
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Definition Suppose that the subpermutationp = π[a,a+ n] is of typek so that forε ∈ {−1,1}, αi =
βi + ε for eachi = 1,2, . . . ,k. If there exists a subpermutationq= π[b,b+n] of typek so thatp andq
can be decomposed as:

p= πT [a,a+n] = (α1 · · ·αkλ1 · · ·λl β1 · · ·βk)

q= πT [b,b+n] = (β1 · · ·βkλ1 · · ·λl α1 · · ·αk)

thenp andq are said to be acomplementary pair of type k. If p andq are a complementary pair of type
k≤ 0 thenp= q.

For example, the subpermutations(2 3 5 4 1) and(1 3 5 4 2) are a complementary pair of type 1.

Lemma 4.2 For the wordω , let p, q, p′, and q′ be as above, then p′ and q′ are not a complementary
pair of type 1.

Claim 4.3 Suppose f is a restriction map, so either f= R, f = L, or f = M. If f (p′) = f (q′) then
d(u) = d(v).

We are now to the main result of this section. We show that whenδ is injective we find that both of
δL andδR are injective.

Proposition 4.4 For the wordω , let p, q, p′, and q′ be as above. Then

(a) p′ = q′ if and only if R(p′) = R(q′).

(b) p′ = q′ if and only if L(p′) = L(q′).

Therefore whenδ is injective,δR andδL are both injective as well. A troubling fact is the mapδ
being injective does not implyδM is injective. As will be shown for the Thue-Morse wordT, there
are cases of distinct subpermutationsp andq whereδ (p) 6= δ (q) but δ (p)M = δM(q). The following
sections deal with some different words and we will show whenδ andδM are injective, but these proofs
will use special properties of the words considered.

5 Sturmian Words

In this section we will investigate the permutation complexity of Sturmian words under the doubling
map. An infinite words is a Sturmian wordif for each n ≥ 0, s has exactlyn+ 1 distinct factors of
lengthn, or ρs(n) = n+1 (the only factor of lengthn= 0 being the empty-word). The class of Sturmian
words have been a topic of much study (see[3, 5, 7]). An equivalent definition for Sturmian words is
that they are the class of aperiodic balanced binary words. Aword isbalancedif for all factorsu andv
with |u|= |v|, ||u|a−|v|a| ≤ 1 for eacha in the alphabet.

First we will show when the mapδ is applied to permutations from a Sturmian word,δ is injective
and thus a bijection. Then we show the mapsδR, δL, andδM are injective as well and thus also bijections.
First we look at the permutation complexity of the Sturmian words which has been calculated.

Lemma 5.1 ([10]) Let s be a Sturmian word. For natural numbers a1 and a2 we haveπs[a1,a1+n+1] =
πs[a2,a2+n+1] if and only if s[a1,a1+n] = s[a2,a2+n].

Theorem 5.2 ([10]) Let s be a Sturmian word. For each n≥ 2, τs(n) = n .
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Fix a Sturmian words over{0,1}. Sinces is balanced, there is somek> 0 so that forα ,β ∈ {0,1},
with α 6= β , everyα is followed by eitherk or k−1 β ’s. So consecutiveα ’s will look like either αβ kα
or αβ k−1α . Let d(s) be the image ofs under the doubling map. Thenπs is the infinite permutation
associated tos, andπd(s) is the infinite permutation associated tod(s).

We will now calculate the permutation complexity ofd(s). By Lemma 2.3 we may assume there is a
natural numberk > 0 so that each 1 is followed by either 0k1 or 0k−11, becaused(s) andd(s) have the
same permutation complexity. There will bek+1 classes of factors ofs, which areC0 = 0k, C1 = 0k−11,
· · · , Ck−1 = 01,Ck = 10. Since Sturmian words are uniformly recurrent ([5]), there is anN ∈ N so that
each factor ofs of lengthn ≥ Ns will contain each ofC0, C1, . . ., Ck. The mapδ is injective, and thus
bijective, when applied to subpermutations associated with a Sturmian words.

Lemma 5.3 For the Sturmian word s, and subpermutations p= πs[a,a+n+k−1] and q= πs[b,b+n+
k−1] of length n≥ Ns, p= q if and only ifδ (p) = δ (q).

When Lemma 5.3 is used with Proposition 4.4 we see the mapsδL andδR are also injective, and thus
are bijections. The mapδM is also injective when applied to subpermutations associated with a Sturmian
words.

Lemma 5.4 For the Sturmian word s, and subpermutations p= πs[a,a+n+k−1] and q= πs[b,b+n+
k−1] of length n≥ Ns, p= q if and only if M(p′) = M(q′).

The following theorem will give the permutation complexityof the image of a Sturmian word under
the letter doubling map.

Theorem 5.5 Let s be a Sturmian word overA , where forα ,β ∈ A , α 6= β , there are strings of either
k or k−1 α between eachβ . There is an N so that each factor of s of length at least N will contain each
of αk, αk−1β , . . . ,αβ , β . For each n≥ 2N the permutation complexity of d(s) is

τd(s)(n) = n+2k+1

6 Thue-Morse Word

In this section we will investigate the permutation complexity of d(T), the image of the Thue-Morse
word,T, under the doubling map,d. The Thue-Morse word is:

T = 01101001100101101001011001101001· · · ,

and the Thue-Morse morphism is:
µT : 0→ 01, 1→ 10.

This word was introduced by Axel Thue in his studies of repetitions in words ([12]). For a more in depth
look at further properties, independent discoveries, and applications of the Thue-Morse word see[1].

The factor complexity of the Thue-Morse word was computed independently by two groups in 1989
([4] and[8]). The calculation of the permutation complexity ofd(T) will use the formula for the factor
complexity ofT. We will use the formula calculated by S. Brlek.

Proposition 6.1 ([4]) For n≥ 3, the functionρT(n) is given by

ρT(n) =

{

6·2r−1+4p 0< p≤ 2r−1

8·2r−1+2p 2r−1 < p≤ 2r

where r and p are uniquely determined by the equation n= 2r + p+1, with 0< p≤ 2r .
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Let πT be the infinite permutation associated to the Thue-Morse word T. In [13], the permutation
complexity ofT was calculated.

Theorem 6.2 ([13]) For any n≥ 6, where n= 2r + p with 0< p≤ 2r ,

τT(n) = 2(2r+1+ p−2).

We will now investigate the permutation complexity ofd(T). To begin, we consider complementary
pairs which occur inπT .

Theorem 6.3 ([13]) Let p and q be distinct subpermutations ofπT . Then p and q have the same form if
and only if p and q are a complementary pair of type k, for some k≥ 1.

The left and right restrictions preserve complementary pairs of typek ≥ 2, and middle restrictions
preserve complementary pairs of typek≥ 3. Proposition 6.4 follows directly from[13], Proposition 4.1.
We then see when complementary pairs of typek can occur, for eachk≥ 0.

Proposition 6.4 ([13]) Suppose p= πT [a,a+n] and q= πT [b,b+n] are a complementary pair of type
k≥ 1.

(a) L(p) and L(q) are a complementary pair of type k−1.

(b) R(p) and R(q) are a complementary pair of type k−1.

(c) M(p) and M(q) are a complementary pair of type k−2.

Proposition 6.5 ([13]) Let n> 4 be a natural number and let p and q be subpermutations ofπT of length
n+1 with the same form. There exist r and c so that n= 2r +c, where0≤ c< 2r .

(a) If 0≤ c< 2r−1+1, then either p= q or p and q are a complementary pair of type c+1.

(b) If 2r−1+1≤ c< 2r , then p= q.

Now to calculate the permutation complexity ofd(T) we need to identify the classes of factors ofT
with blocks of the same letter. SinceT is overlap-free, and thus cube free, we can identify the 4 classes
of factors ofT, which areC0 = 00, C1 = 01, C2 = 10, andC3 = 11. For eachi ∈ N, T[i] = TiTi+1 · · ·
will have exactly one the above classes of words as a prefix. Since the Thue-Morse word is uniformly
recurrent ([1]), there is anN ∈ N so that each factor ofT of lengthn≥ N will contain each ofC0, C1, C2,
andC3. It is readily verified that any factor of lengthn≥ 9 will contain these 4 classes of words.

Letu=T[a,a+n−1] andv=T[b,b+n−1], a 6= b, be factors ofT of lengthn≥ 9, soCj is a factor of
bothuandv for each 0≤ j ≤ 3. Letp= πT [a,a+n+1] andq= πT [b,b+n+1] be subpermutations ofπT .
Then define subpermutationsδ (p) = p′ = πd(T)[2a,2a+2n−1] andδ (q) = q′ = πd(T)[2b,2b+2n−1]
as in Proposition 3.2, withk= 2. The following lemma concerns the relationship ofp andq to p′ andq′.

Lemma 6.6 Let p and q be subpermutations of length n+ 2 of πT , with n≥ 9, and let p′ = δ (p) and
q′ = δ (p).

(a) If n 6= 2r −1 or 2r for any r≥ 3, p= q if and only if p′ = q′.

(b) If n= 2r −1 or 2r for some r≥ 3, p and q have the same form if and only if p′ = q′.

Thus, forn ≥ 9, the mapsδ , δL, andδR when applied to permutations associated with the Thue-

Morse word are injective whenn 6= 2r − 1 or 2r for any r ≥ 3, so
∣

∣

∣
Permd(T)
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∣.
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Whenn= 2r −1 or 2r for somer ≥ 3 the mapsδ , δR, andδL are surjective, but not injective because
complementary pairs of type 1 or 2 will give the same subpermutation underδ . In this case, ifp and
q are subpermutations ofπT of lengthn+ 2, wherep has formu andq has formv, |u| = |v| = n+ 1,
δ (p) = δ (q) if and only if u= v. Thus with Proposition 4.4 we seeδL(p) = δL(q) andδR(p) = δR(q)
if and only if u = v. Thus the number of subpermutations ofπd(T) for these lengths are determined by

the number of factors ofT, so
∣

∣

∣
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ev (2n)
∣

∣

∣
= |FT(n+1)|,

∣

∣

∣
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∣

∣

∣
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∣
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Permd(T)

odd (2n−1)
∣

∣

∣
= |FT(n+1)|.

The following lemma shows when the mapδM is injective when applied to permutations associated
with the Thue-Morse word.

Lemma 6.7 For the Thue-Morse word T , let p, q, p′, and q′ be as above. Then

(a) If n 6= 2r −1, 2r , or 2r +1 for any r≥ 3, p′ = q′ if and only if M(p′) = M(q′).

(b) If n= 2r −1, 2r , or 2r +1 for some r≥ 3, p and q have the same form if and only if M(p′) =M(q′).

Thus, forn≥ 9, the mapδM when applied to permutations associated with the Thue-Morse word are

injective whenn 6= 2r −1, 2r , or 2r +1 for anyr ≥ 3, so
∣

∣

∣
Permd(T)

odd (2n−2)
∣

∣

∣
=

∣

∣PermT(n+2)
∣

∣.

Whenn = 2r − 1, 2r , or 2r + 1 for somer ≥ 3 the mapδM is surjective, but not injective. In this
case, if p and q are subpermutations ofπT of length n+ 2, wherep has formu and q has formv,
|u| = |v| = n+1, δM(p) = δM(q) if and only if u= v. Thus the number of subpermutations ofπd(T) of
length 2n−2 which start in an odd position are determined by the number of factors ofT of lengthn+1,

so
∣

∣

∣
Permd(T)

odd (2n−2)
∣

∣

∣
= |FT(n+1)|.

We are now ready to calculate the permutation complexity ofd(T).

Theorem 6.8 For the Thue-Morse word T , let n≥ 9.

(a) If n= 2r , then
τd(T)(2n−1) = 2r+2+2r+1

τd(T)(2n) = 2r+2+2r+1+4

(b) If n= 2r + p for some0< p≤ 2r −1, then

τd(T)(2n−1) = 2r+3+4p

τd(T)(2n) = 2r+3+4p+2
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