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Minimal technical elements from convex analysis are given in this section. For
comprehensive account, the reader is referred to books on convex analysis [1,2,3,5,
6, 7, 8, 9, 10].

2.1 Convex Sets

For two vectors a = (a1,a2, . . . ,an),b = (b1,b2, . . . ,bn) ∈ (R∪{−∞,+∞})n we de-
fine closed interval [a,b] and open interval (a,b) as

[a,b] = [a,b]R = {x ∈ Rn | ai ≤ xi ≤ bi (i = 1,2, . . . ,n)}, (2.1)
(a,b) = (a,b)R = {x ∈ Rn | ai < xi < bi (i = 1,2, . . . ,n)}, (2.2)

where, if ai =−∞, for example, ai ≤ xi is to be understood as −∞ < xi.
A set S ⊆ Rn is called convex if it satisfies the condition

x,y ∈ S, 0 ≤ λ ≤ 1 =⇒ λx+(1−λ )y ∈ S, (2.3)

where an empty set is a convex set. A convex polyhedron is a convex set S described
by a finite number of linear inequalities as

S = {x ∈ Rn |
n

∑
j=1

ai jx j ≤ bi (i = 1,2, . . . ,m)}, (2.4)

where ai j ∈ R and bi ∈ R (i = 1,2, . . . ,m; j = 1,2, . . . ,n).
For a finite number of points x1,x2, . . . ,xm in a set S, a point represented as

λ1x1 +λ2x2 + · · ·+λmxm (2.5)
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with nonnegative coefficients λi (1 ≤ i ≤ m) having unit sum (∑m
i=1 λi = 1) is called

a convex combination of those points. If S is convex, any convex combination of
points in S belongs to S, and the converse is also true. Therefore, S is convex if and
only if S = S, where S denotes the set of all possible convex combinations of a finite
number of points of S.

The intersection of any (finite or infinite) number of convex sets is a convex
set. For any set S, the intersection of all the convex sets containing S is the smallest
convex set containing S, which is called the convex hull of S and denoted as conv(S).
The convex hull of S coincides with the set of all convex combinations of points in
S. That is, we have conv(S) = S. The convex hull of a set S is not necessarily closed
(in the topological sense). The smallest closed convex set containing S is called the
closed convex hull of S. For a finite set S, the convex hull is always closed.

The affine hull of a set S is defined to be the smallest affine set (a translation
of a linear space) containing S, and is denoted by affS. The relative interior of S,
denoted as riS, is the set of points x ∈ S such that {y ∈ Rn | ∥y− x∥ < ε}∩ affS is
contained in S for some ε > 0. In other words, the relative interior of S is the set of
the interior points of S with respect to the topology induced from affS.

For two sets S and T , the set

S+T = {x+ y | x ∈ S,y ∈ T} (2.6)

is called the Minkowski sum of S and T . If S and T are convex, the Minkowski sum
S+T is a convex set.

A set S is a cone if it satisfies

x ∈ S, λ > 0 =⇒ λx ∈ S. (2.7)

A cone that is convex is called a convex cone. In other words, a set S is a convex
cone if and only if it satisfies the condition

x,y ∈ S, λ ,µ > 0 =⇒ λx+µy ∈ S. (2.8)

2.2 Convex Functions

For a function f : Rn → R∪{−∞,+∞} we define

dom f = domR f = {x ∈ Rn | −∞ < f (x)<+∞}, (2.9)

which is called the effective domain of f .
A function f : Rn → R is said to be convex if it satisfies

λ f (x)+(1−λ ) f (y)≥ f (λx+(1−λ )y) (x,y ∈ Rn;0 ≤ λ ≤ 1). (2.10)
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Note that −∞ is excluded from the possible function values of a convex function, and
that the inequality (2.10) is satisfied, by convention, if both sides are equal to +∞.
A convex function having a nonempty effective domain is called a proper convex
function. A function is strictly convex if it satisfies (2.10) with strict inequalities,
i.e., if

λ f (x)+(1−λ ) f (y)> f (λx+(1−λ )y) (x,y ∈ dom f ;0 < λ < 1). (2.11)

A function g : Rn → R is concave if −g is convex, that is, if

λg(x)+(1−λ )g(y)≤ g(λx+(1−λ )y) (x,y ∈ Rn;0 ≤ λ ≤ 1). (2.12)

The epigraph of a function f : Rn → R, denoted as epi f , is the set of points in
Rn ×R lying above the graph of α = f (x). Namely,

epi f = {(x,α) ∈ Rn+1 | α ≥ f (x)}. (2.13)

Then we have

f is a convex function ⇐⇒ epi f is a convex set. (2.14)

A function f is said to be closed convex if epi f is a closed convex set in Rn+1.
The indicator function of a set S ⊆ Rn is a function δS : Rn → {0,+∞} defined

by

δS(x) =
{

0 (x ∈ S),
+∞ (x ̸∈ S). (2.15)

Then we have

S is a convex set ⇐⇒ δS is a convex function. (2.16)

For a family of convex functions { fk | k ∈ K}, indexed by K, the pointwise max-
imum of those functions, f (x) = sup{ fk(x) | k ∈ K}, is again a convex function,
where the index set K here may possibly be infinite. In particular, the maximum of
a finite or infinite number of affine functions

f (x) = sup{αk + ⟨pk,x⟩ | k ∈ K} (2.17)

is a convex function, where αk ∈ R and pk ∈ Rn for k ∈ K and

⟨p,x⟩=
n

∑
i=1

pixi (2.18)

denotes the inner product of p = (p1, p2, . . . , pn) and x = (x1,x2, . . . ,xn).
A function defined on Rn is said to be polyhedral convex if its epigraph is a

convex polyhedron in Rn+1. A polyhedral convex function is exactly such a function
that can be represented as the maximum of a finite number of affine functions (i.e.,
(2.17) with finite K) on an effective domain represented as (2.4).
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For two functions f ,g : Rn →R, their sum is the function f +g : Rn →R defined
naturally by

( f +g)(x) = f (x)+g(x) (x ∈ Rn), (2.19)

and their infimal convolution is the function f2g : Rn →R∪{−∞,+∞} defined by

( f2g)(x) = inf{ f (y)+g(z) | x = y+ z, y,z ∈ Rn} (x ∈ Rn). (2.20)

The sum of two convex functions is convex, and the infimal convolution of two
convex functions is convex if it does not take the value of −∞. If f and g are the
indicator functions of sets S and T , then f +g and f2g are the indicator functions
of the intersection S∩T and the Minkowski sum S+T , respectively.

For a function f and a vector p, we denote by f [−p] the function defined by

f [−p](x) = f (x)−⟨p,x⟩ (x ∈ Rn). (2.21)

This is convex for a convex function f .

2.3 Minimization and Subgradients

The most appealing property of a convex function is that local minimality is equiv-
alent to global minimality. A point (or vector) x is said to be a (global) minimizer of
f if the inequality

f (x)≤ f (y) (2.22)

holds for every y. A point x is a local minimizer if the inequality (2.22) holds for
every y in some neighborhood of x. Obviously, global minimality implies local min-
imality. The converse is not true in general, but it is true for convex functions.

Theorem 2.1. For a convex function, local minimality implies global minimality.

Proof. Let x be a local minimizer of a convex function f . Then we have f (z)≥ f (x)
for all z in some neighborhood U of x. For any y, we can choose λ < 1 sufficiently
close to 1 such that z = λx+(1−λ )y belongs to U . Then it follows from (2.10) that

λ f (x)+(1−λ ) f (y)≥ f (λx+(1−λ )y) = f (z)≥ f (x).

This implies f (y)≥ f (x). ⊓⊔

The set of the minimizers of f is denoted as

argmin f = argminR f = {x ∈ Rn | f (x)≤ f (y) (∀y ∈ Rn)}. (2.23)

This is a convex set if f is convex.
The subdifferential of a function f at a point x ∈ dom f is defined to be the set

∂ f (x) = {p ∈ Rn | f (y)− f (x)≥ ⟨p,y− x⟩ (∀y ∈ Rn)}. (2.24)
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Note that p ∈ ∂ f (x) if and only if x ∈ argmin f [−p]; in particular, 000 ∈ ∂ f (x) if and
only if x ∈ argmin f . For a convex function f , the set ∂ f (x) is nonempty if x is in
the relative interior of dom f . An element of ∂ f (x) is called a subgradient of f at x.
If f is convex and differentiable at x, the subdifferential ∂ f (x) consists of a single
element, which is the gradient of f at x:

∇ f =
(

∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
. (2.25)

The directional derivative of a function f at a point x ∈ dom f in a direction
d ∈ Rn is defined by

f ′(x;d) = lim
α↓0

f (x+αd)− f (x)
α

(2.26)

when this limit (finite or infinite) exists, where α ↓ 0 means that α tends to 0 from
the positive side (α > 0). For a convex function f , the limit exists for all d, and
f ′(x;d) is a convex function in d. For a polyhedral convex function f , there exists
ε > 0, independent of x ∈ dom f , such that

f ′(x;d) = f (x+d)− f (x) (∥d∥ ≤ ε). (2.27)

2.4 Conjugacy

As Fig. 2.1 (a,b) shows, a convex function f (x) can be recovered from tangent lines
as the upper envelope of all tangent lines with different slopes. Let α be the vertical
intercept of the tangent line with slope p. Since α is dependent on slope p, we
denote α = − f •(p). By considering the minimum distance between the graph of
y = f (x) and the line y = px, we see that the minimum of f (x)− px over all x is
equal to α =− f •(p); cf., Fig. 2.1(c). That is,

f •(p) = sup{px− f (x) | x ∈ R} (p ∈ R). (2.28)

This function f •(p) should be equivalent to the original function f (x) in some ap-
propriate sense.

For a function f : Rn → R with dom f ̸= /0, the convex conjugate (or simply
conjugate) of f is a function f • : Rn → R defined by

f •(p) = sup{⟨p,x⟩− f (x) | x ∈ Rn} (p ∈ Rn), (2.29)

which is indeed a convex function since it is the maximum of (infinitely many) affine
functions in p indexed by x. The function f • is also called the (convex) Legendre–
Fenchel transform of f , and the mapping f 7→ f • is referred to as the (convex)
Legendre–Fenchel transformation. Similarly, the concave conjugate of a function
g : Rn → R with domg ̸= /0 is a concave function g◦ : Rn → R defined by
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Fig. 2.1 Tangent lines of a convex function

g◦(p) = inf{⟨p,x⟩−g(x) | x ∈ Rn} (p ∈ Rn). (2.30)

Note that g◦(p) =−(−g)•(−p).
For a function f , the conjugate function of the conjugate of f , i.e., ( f •)•, is called

the biconjugate of f and denoted as f ••. The biconjugate of f is the largest closed
convex function that is dominated pointwise by f .

Theorem 2.2. The Legendre–Fenchel transform f • in (2.29) is a closed proper con-
vex function for any function f with dom f ̸= /0, and f •• = f for a closed proper
convex function f .

This theorem shows that the Legendre–Fenchel transformation f 7→ f • gives
a symmetric (or involutive) one-to-one correspondence in the class of all closed
proper convex functions.

For a set S ⊆ Rn, the conjugate δS
• of its indicator function δS is expressed as

δS
•(p) = sup{⟨p,x⟩ | x ∈ S} (p ∈ Rn), (2.31)

which is called the support function of S. The biconjugate δS
•• of the indicator

function δS of a set S is the indicator function of the closed convex hull of S.
By Theorem 2.2 and the definition (2.24) we obtain the relationship

p ∈ ∂ f (x) ⇐⇒ x ∈ argmin f [−p]
⇕

f (x)+ f •(p) = ⟨p,x⟩
⇕

x ∈ ∂ f •(p) ⇐⇒ p ∈ argmin f •[−x]

(2.32)

for a closed proper convex function f and vectors x, p ∈ Rn. For a closed convex
function f and a point x in the relative interior of dom f , the support function of the
subdifferential ∂ f (x) coincides with the directional derivative f ′(x;d) as a function
in d, i.e.,

(δ∂ f (x))
•(d) = f ′(x;d) (d ∈ Rn). (2.33)
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The addition (2.19) and the infimal convolution (2.20) are conjugate operations
with respect to the Legendre–Fenchel transformation. For proper convex functions
f and g we have

( f2g)• = f •+g•, (2.34)
( f +g)• = f •2g•, (2.35)

where the latter is true under the assumption that ri(dom f )∩ ri(domg) ̸= /0.

Example 2.1. The conjugate of a quadratic function f (x) = 1
2 x⊤Ax defined by a pos-

itive definite symmetric matrix A can be computed as follows. The maximizer x on
the right-hand side of (2.29) is determined from p = ∇ f (x) = Ax as x = A−1 p. Then

f •(p) = p⊤x− 1
2

x⊤Ax =
1
2

p⊤A−1 p.

Since ∇ f (x) = Ax and ∇ f •(p) = A−1 p, we indeed have the equivalence “p ∈
∂ f (x) ⇐⇒ x ∈ ∂ f •(p)” in (2.32).

2.5 Duality

The separation theorem for functions asserts that, if a convex function pointwise
dominates a concave function, then there exists an affine function that lies between
the convex function and the concave function; see Fig. 2.2 (a).

Theorem 2.3 (Separation for convex functions). Let f : Rn →R be a proper con-
vex function and g : Rn → R a proper concave function, and assume that (a1) or
(a2) below is satisfied:

(a1) ri(dom f )∩ ri(domg) ̸= /0,
(a2) f and g are polyhedral, and dom f ∩domg ̸= /0.

If f (x)≥ g(x) (∀x ∈ Rn), there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α∗+ ⟨p∗,x⟩ ≥ g(x) (∀x ∈ Rn). (2.36)

Note that the convexity assumption is critical in Theorem 2.3. In Fig. 2.2 (b), we
have f (x)≥ g(x) for all x, but there exists no affine function α∗+ p∗x that separates
f (x) and g(x).

The Fenchel duality is a min-max relation between a pair of convex function f
and concave function g and their conjugate functions f • and g◦.

Theorem 2.4 (Fenchel duality). Let f : Rn → R be a proper convex function and
g : Rn →R a proper concave function, and assume that at least one of the following
four conditions (a1)∼(b2) below is satisfied:
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(a) Convex-concave pair

f (x)

g(x)
α∗+ p∗x
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Fig. 2.2 Separation theorem

(a1) ri(dom f )∩ ri(domg) ̸= /0,
(a2) f and g are polyhedral, and dom f ∩domg ̸= /0,
(b1) f and g are closed 1, and ri(dom f •)∩ ri(domg◦) ̸= /0,
(b2) f and g are polyhedral, and dom f •∩domg◦ ̸= /0.

Then it holds that

inf{ f (x)−g(x) | x ∈ Rn}= sup{g◦(p)− f •(p) | p ∈ Rn}. (2.37)

Moreover, if this common value is finite, the supremum is attained by some p ∈
dom f • ∩ domg◦ under the assumption of (a1) or (a2), and the infimum is attained
by some x ∈ dom f ∩domg under the assumption of (b1) or (b2).

If the supremum in (2.37) is attained by p = p∗, we have

argmin( f −g) = argmin f [−p∗]∩ argmaxg[−p∗]. (2.38)

Remark 2.1. Theorem 2.4 above is formulated for a pair of convex and concave
functions. In some cases it is convenient to reformulate it in terms of two convex
functions. For convex functions f and g, the min-max formula (2.37) is rewritten as

inf{ f (x)+g(x) | x ∈ Rn}= sup{− f •(p)−g•(−p) | p ∈ Rn}. (2.39)
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