
POLYHEDRA DUAL TO THE WEYL CHAMBER
DECOMPOSITION: A PRÉCIS
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Abstract. Let VR be a real vector space with an irreducible ac-
tion of a finite reflection group W . We study the semi-algebraic
geometry of the W-quotient affine variety V//W with the discrim-
inant divisor DW in it and the τ -quotient affine variety V//W//τ
with the bifurcation set BW in it, where τ is the Ga-action on
V//W obtained by the integration of the primitive vector field D
on V//W and BW is the discriminant divisor of the induced pro-
jection :DW →V//W//τ .

Our goal is the construction of a one-parameter family of the
semi-algebraic polyhedra KW (λ) in VR which are dual to the Weyl
chamber decomposition of VR.

As an application, we obtain geometric descriptions of genera-
tors for π1((V//W )reg

C ), satisfying the Artin braid relations.
The key of the proof is a theorem on a linearization of the tube

domain in (V//W )R over the simplicial cone EW in TW,R.
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Introduction

Let VR be a finite-dimensional real vector space and W a finite group
acting irreducibly on VR generated by reflections. We denote by V the
associated scheme over R and by SW :=V//W the quotient scheme1.
Let DW ⊂ SW be the discriminant divisor defined by the zero locus
of ∆ := the square of the fundamental anti-invariant of W . The open
regular part (V//W )reg, defined as the complement SW\DW , is a simple
geometric object where several different areas of mathematics (e.g., Lie
group theory, complex and differential geometries,...,etc.) intersect.

We recall two basic results on the topology of the complexification
(V//W )reg

C :=SW,C\DW,C of the regular orbit space:
a) the fundamental group of (V//W )reg

C is an Artin group (generalized
braid group) (Brieskorn [Br1],[Br2] and [BS]), and

b) the universal covering of (V//W )reg
C is contractible (Deligne [D1]).

Interestingly, for the both results, the polyhedron KW which is dual
to the simplicial cone decomposition of VR plays an essential role.
Namely, a) the 1-skeleton and the 2-skeleton of KW determine the
generators and relations for the fundamental group of (V//W )reg

C , and
b) the contractibility of KW is a key step in the proof ([D1]) of the con-
tractibility of the nerve of a simple covering of the universal covering
of (V//W )reg

C . We remark further that c) the dual polyhedron KW also
describes the Stiefel-Whitney class of a related vector bundle ([Hu],[M]
and [N]).

A goal of the present paper is to reconstruct the dual polyhedron KW

from a completely different viewpoint. The quotient variety SW :=V//W
carries a differential geometric structure, called the flat structure (Saito
[S1,3]). Then we shall make use of a part of the real flat structure to
construct the polyhedron as follows.

A principal ingredient of the flat structure is the vector field D on SW

of the lowest degree, which is unique up to a constant factor, called the
primitive vector field (1.6.1). The integration exp(λD) of D induces a
Ga-action τ on SW (1.6.2), transversal to the discriminant divisor DW

(see [S2,3] for the role of D in the theory of primitive forms).

For ε∈{±1}, consider the real form S
[ε]
W,R of SW,C (the “quotient” of

the real form V εR :=
√

ε⊗VR of VC := C⊗ V , see (1.4.8)). The Ga-action

τ induces the one-parameter group action τ [ε] : R×S
[ε]
W,R → S

[ε]
W,R (see

1We mean by “V//W” the categorical quotient scheme (1.4.5) of V by the W -
action. Even though W is a finite group, it is convenient to use scheme-theoretic
concepts and notation, since we study mainly over the real number field R. The
set theoretic quotient space VR/W is not sufficient to describe structures we study.
TheR orC-rational point set of a scheme is indicated by the subscript R or C.
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(1.6.4)). For each fixed λ[ε]∈R>0, consider three real hypersurfaces in
S

[ε]
W,R: a) the real discriminant locus : D

[ε]
W,R and b)± the positive and

negative translations of the real discriminant locus: τ [ε](λ[ε])(D
[ε]
W,R) and

τ [ε](−λ[ε])(D
[ε]
W,R). Then, for ε∈{±1} and each λ[ε]∈R>0, one has:

Theorem A (§1.8). There exists an open semi-algebraic parallelotope

J
{ε}
W (λ[ε]) in S

[ε]
W,R, which is surrounded 2 by the hypersurfaces a) and

b)±. It is adjacent to the origin o∈S
[ε]
W,R, and the faces adjacent to the

origin are indexed by the set Π of simple generators of W .

Theorem B (§1.8). The inverse image Kε
W (λ[ε]) in V εR of J

{ε}
W (λ[ε]) in

S
[ε]
W,R is an open polyhedron which is dual to the simplicial cone decom-

position of V εR by the Weyl chambers.

See Appendix Fig. 8–12 for illustrated examples of J
{ε}
W (λ[ε]) and

Kε
W (λ[ε]) of type A2 and B2.

It was asked by Brieskorn, Deligne, and others (including the author)
to find some descriptions of the generator system of π1(SW,C\DW,C, ∗)
as an Artin group in terms of the geometry of SW . Let us give two
answers to this question as an application of TheoremsAandB (see §4
for details and proofs).

1. Let ao{ε}(λ[ε]) be the vertex of J
{ε}
W (λ[ε]) antipodal to the origin

o. Due to Theorem A, the edges of J
{ε}
W (λ[ε]) adjacent to ao{ε}(λ[ε]) are

indexed by the set Π in such a manner that the αth edge for α ∈ Π

intersects the αth face of J
{ε}
W (λ[ε]) transversally at a point, say pα,

in D
[ε]
W,R (see Fig. 4). Inside a complexification of the αth edge (an

open complex curve in SW,C containing the αth edge), take a path,
say γα, based at ao{ε}(λ[ε]) and turning counter-clockwise once around
the discriminant divisor DW,C at pα (Fig. 3). Here, the class of γα in
SW,C\DW,C is uniquely determined by the index α ∈ Π.

Corollary 1 (§4.1 and §4.2). The 1-homotopy classes of γα for α ∈ Π
give a system of generators for π1(SW,C\DW,C, ao{ε}(λ[ε])), which satisfy
the Artin braid relations as the system of fundamental relations.

2. Next, we choose an arbitrary point ∗∈J
{ε}
W (λ[ε]) and consider the

orbit τ [ε](R)·∗ which is a real line in S
[ε]
W,R. If ∗ is generic, the real line

intersects l distinct points of the real discriminant locus D
[ε]
W,R

3 (Fig.

2By the word “surrounded”, we mean that J
{ε}
W (λ[ε]) is a connected component

of S
[ε]
W,R\

(
D

[ε]
W,R ∪ τ [ε](λ[ε])(D[ε]

W,R) ∪ τ [ε](−λ[ε])(D[ε]
W,R)

)
.

3This fact is a non-trivial consequence of Theorem C stated below.
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5). One chooses paths inside the complex line τ [ε](C) ·∗ as in Fig. 6,
whose homotopy classes are called the Zariski-van Kampen generators.

Corollary 2 (§4.3 and §4.4). The system of the Zariski-van Kampen
generators is homotopic to the generator system in Corollary 1.

Theorems A and B and their corollaries are direct applications of
another basic Theorem C on the real bifurcation set which we explain
below.

The quotient space TW := SW //τ by the τ -action is a smooth (l−1)-
dimensional affine variety, and the quotient map πτ : SW → TW is a
linear projection in the direction of the primitive vector field. The
restriction πτ |DW of πτ to the discriminant divisor is a finite covering
over TW . The ramification divisor BW , i.e., the discriminant divisor of
πτ |DW , is called the bifurcation set. Decompose it as BW =∪∞p=2BW,p

according to the ramification index p, where BW,1 does not appear due
to the transversality property of the primitive vector field D to DW .
We split the bifurcation set BW into the ordinary part BW,2 and the
higher part BW,≥3 (called the stratum of Maxwell’s convention and the
caustics, respectively, in [T2]).

For each ε∈{±1}, we introduce some closed subset Oε in T
[ε]
W,R\B[ε]

W,≥3,R
(resp. AOε in S

[ε]
W,R \D

[ε]
W,R), which are defined by the help of regular

eigenvectors of the Coxeter element of W (see 2.5). They shall play
two basic roles: i) to single out particular connected components of

T
[ε]
W,R\B[ε]

W,≥3,R (resp. S
[ε]
W,R\D[ε]

W,R) containing them, and ii) to be chosen
as a base point for the fundamental group of the complexification TW,C\
BW,≥3,C (resp. SW,C\DW,C). On the other hand, they are related with the

vertex of the polyhedra J
{ε}
W (λ[ε]) as: AOε = {ao{ε}(λ[ε]) | λ[ε] ∈ R>0}

and Oε = πτ (AOε). We, therefore, call AOε the half vertex orbit axis
and Oε the half vertex orbit line (here “half” indicates that they are
isomorphic to the half line R>0).

The connected component C{ε} of S
[ε]
W,R\D[ε]

W,R containing AOε is noth-
ing but the image of a Weyl chamber in V εR , called the central com-

ponent. The connected component E
{ε}
W of T

[ε]
W,R \B

[ε]
W,≥3,R containing

Oε, called the central region, is a key object in the present paper. The
fact which makes the situation non trivial is that although the region

E
{ε}
W contains the image πτ (C{ε}), the gap E

{ε}
W \πτ (C{ε}) is “growing

exponentially” as the rank l grows.

Theorem C of the present paper concerns the central region E
{ε}
W and

its inverse image π−1
τ (E

{ε}
W ) (called the tube domain) in S

[ε]
W,R.
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Let V̂Π :=⊕α∈ΠRvα be the vector space with basis vα attached to the

set Π of simple generators for W , and let VΠ := V̂Π/RvΠ be the quotient

space for vΠ :=
∑

α∈Π vα, and let πΠ : V̂Π → VΠ be the projection.

Theorem C (§3.5). There exist i) an open simplicial cone EΓ(W ) ⊂ VΠ

depending only on the Coxeter diagram Γ(W ) in such a manner that
its faces are indexed by the edges of Γ(W ), and ii) real algebroid maps
cW and bW with the commutative diagram:

(π
[ε]
τ )−1(E

{ε}
W )

cW' (πΠ)−1(EΓ(W ))

π
[ε]
τ

y πΠ

y
E
{ε}
W

bW' EΓ(W )

where we mean by ' a semi-algebraic isomorphism. The map cW

induces a bijection

D
[ε]
W,R ∩ (π[ε]

τ )−1(E
{ε}
W ) ' (∪α∈ΠHα) ∩ (πΠ)−1(EΓ(W ))

where Hα is the coordinate hyperplane in V̂Π.

Corollary. The real discriminant locus D
[ε]
W,R cut by the tube domain

(πΠ)−1(EΓ(W )) decomposes into the union of hyperplanes Hα indexed
by α ∈ Π.

The linearization maps cW and bW of type A3 are illustrated in Fig. 2.
Precise statements of Theorems A,B and C are given in §1.8 and §3.5.

Theorems A and B and their corollaries are proved in §3 as the direct
consequences of Theorem C. However, Theorem C is not proved in the
present article, since Theorem C is a part of consequences of a gen-
eral study of the linearization maps cW and bW , whose comprehensive
treatment shall appear in [S4].

Before we go further, we explain a motivation of the present paper.
The quotient variety SW appears as the base space of the universal
unfolding XW → SW of a simple singularity [Br3]. On the total space
XW there is a special de Rham cohomology class relative to SW , called

the primitive form ζ
(0)
W [S2]. The period integral

∫
ζ

(0)
W over cycles in

the fibers of the unfolding gives a multivalued map, called the period
map, defined on SW \DW to the period domain. For the study of the
period map, we need to understand the homotopy groups of the space
SW \DW . This gives one motivation.

The primitive form induces the flat structure on SW , where ζ
(0)
W is

identified with the primitive vector field D on SW ([S2]). In the present
paper, we employ not only D but the basic framework of the theory
of primitive forms such as the τ -orbit space TW with its bifurcation
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divisor BW , the characteristic variety CW and the finite morphism
qW : CW → TW . Therefore, it does not seem an accident that the
polyhedron KW is reconstructed through the action τ , the integral of
the primitive vector field. However, we still need to clarify the relation

of the period map for ζ
(0)
W with the polyhedron KW(λ). Some natural

questions are the followings. Can one reconstruct Deligne’s proof [D1]
in terms of the semi-algebraic geometry of the spaces V and V//W as
in the present work? Is TW,C \ BW,≥3,C an Eilenberg-MacLane space?
Determine the fundamental relations for its fundamental group with
repect to the natural generators indexed by the edges of Γ(W ).

There are many precedent works on the semi-algebraic geometry of
the space SW with the discriminant divisor DW in it, among others, by
Hilbert [H], Thom [T1,2], Arnold [Ar1,2], Looijenga [Lo1,2], Springer
[Sp1,2] and Tits [?]. In particular, Thom’s idea on the universal un-
folding ([T2]) influenced either directly or indirectly on the idea of the
primitive form and the primitive vector field. We also note an arti-
cle on the semi-algebraic geometry of the orbit spaces of compact Lie
groups by Procesi-Schwarz [P-S], though we do not know yet its direct
relation with the present paper.

Let us explain the construction of the present paper.
The first half of §1 is an elementary preparation on the quotient va-

riety SW :=V//W by the finite reflection group W . Then, we introduce
the τ -action on SW and on its real forms. After these preparations, we
formulate Theorems A and B in §1.8.

§2 studies the τ -quotient variety TW with its bifurcation set BW . Af-
ter introducing the base point loci Oε in TW,C\BW,≥3,C, we introduce the

central regions E
{ε}
W in §2.5, and algebroid functions ϕα,ε in §2.6. This

section is an extract from §2-§9 of the forthcoming paper [S4]. Leaving
a general treatment to [S4]., we restrict our attention only to the real
structures [ε]. We also omitted the study of the characteristic vari-
ety CW (which plays an important role to understand the discriminant
divisor DW ).

In §3, we study the linearization map cW . The target spaces V̂Π, VΠ

and the simplicial cone EΓ(W ) are introduced in §3.1 and §3.2. The map
cW is introduced as an algebroid map in §3.4. Using them, Theorem C
is formulated in §3.5. As its application, Theorems A and B are proved
in §3.6 and §3.7. The proof of Theorem C is not given in the present
paper but it is given in [S4], where we formulate cW as an algebraic
correspondence, which is more appropriate for our purpose.
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§4 studies the generator systems of the fundamental group of the
space SW,C\DW,C. A pair of generator systems depending on ε ∈ {±1}
is constructed by use of the polyhedra J

{ε}
W (λ[ε]) in §4.1 and is identified

with Brieskorn’s generator system in §4.2. A pair of the Zariski-van
Kampen generator systems depending on ε by the use of τ -pencil is
described in §4.3. It is identified in §4.4 with the one in §4.1. The
relationship between the generator systems for ε=+1 and for ε=−1 is
given in §4.5.

Appendix studies the rank two case in detail. The polyhedra J
{ε}
W (λ[ε])

and Kε
W (λ[ε]) of types A2 and B2 are illustrated in Fig. 8, 9 and 11.

Concluding Remarks: The study of the polyhedra J
{ε}
W (λ[ε]), Kε

W (λ[ε])

and the real region E
{ε}
W has just started. The proofs are rather in-

volved. On the other hand, we have observed a new aspect of the
geometry of V , V//W and V//W//τ : the interaction between the
semi-algebraic geometry of their real forms and the topology of their
complexification, where the flat structure combines them. We may
briefly summarize the present work as a combinatorial aspect of the
flat structure on the quotient variety by a finite reflection group. These
new features of the geometry seem to the author quite attractive and
worthwhile to be studied further. Perhaps (and hopefully), the study
in the present paper is the first fortunate model case 4 of a certain new
mathematical research subject.

The author would like to express his hearty gratitude to Professors
Masaki Kashiwara and Takahiro Kawai for their supports and helps
during the preparation of the present paper, to Professor Hiroaki Terao
for careful reading of the manuscripts and many useful pieces of advice,
and to Mrs. Kumiko Matsumura for her beautiful drawing of figures.

The author would like to express his deep sorrow to the early death
of the late Professor Nobuo Sasakura (March 5, 1941 – June 16, 1997),
who constantly showed interests in the present work when it was in a
preparatory form.

4One next model may be the case of elliptic root systems, which admit again
the flat structure. Since the complement of the complex discriminant divisor may
have 2-homotopy classes, we need to study the non-simply connected polyhedra.
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1. Parallelotopes J
{ε}
W (λ[ε]) and polyhedra Kε

W (λ[ε])

We construct our main objects J
{ε}
W (λ[ε]) and Kε

W (λ[ε]) of the present
paper, and give precise statements of Theorems A and B announced in
the introduction.

In 1.1–1.5, we recall basic results on a finite reflection group W and
its invariants from [B,Ch.4,5]. In 1.6 and 1.7, we introduce the new

concept: the τ -action on the W -quotient varieties S
[±1]
W,R. By the use

of the τ -action, Theorems A and B in §1.8 describe the polyhedra

J
{ε}
W (λ[ε]) and Kε

W (λ[ε]).

1.1. Finite reflection group W .
Let VR be an R-vector space of rank l equipped with the classical

topology. An element α ∈ GL(VR) is a reflection if there exist eα ∈
VR and fα ∈ V ∗R := HomR(VR,R) with 〈fα, eα〉 = 2 such that α(x) =
x−fα(x)eα for x ∈ VR. Two vectors eα and fα are not unique but
eα ⊗ fα is uniquely determined by α. If I is an α-invariant symmetric
bilinear form on VR such that I(eα, eα) 6= 0, then fα(x) = I(e∨α, x) for
e∨α := 2eα/I(eα, eα). The kernel Hα :=ker(fα)=ker(1− α) is called the
reflection hyperplane of α.

Let W be a finite group generated by reflections on VR and I a W -
invariant positive-definite symmetric bilinear form on V . Assume that
W acts irreducibly on VR. Then, I is unique up to a positive constant.
Put

(1.1.1) R(W ) := {α ∈ W | α is a reflection}.
We recall some basic facts on W in [B].

1. A connected component of VR\∪α∈R(W )Hα, called a Weyl chamber,
is a simplicial cone. The group W acts simply transitively on the set
of chambers.

2. Put Π(C) := {α ∈ R(W ) | Hα is a wall of C} for a chamber C.
Then (W, Π(C)) is a Coxeter system with respect to the Coxetermatrix
MW :=(mαβ)α,β∈Π(C) with mαβ :=ord(αβ) (see [B, Ch.IV,§1 no1.3.]).

3. The closure C̄ of a chamber C is a fundamental domain of the
action of W on VR, that is, C̄ → VR/W is a homeomorphism.

4. The vectors {eα | α∈Π(C)} form a basis of VR. Choose eα so that
C = {x ∈ VR | 〈fα, x〉 > 0 for α ∈ Π(C)}. Then i) I(eα, eβ) ≤ 0 for α 6=
β ∈ Π(C) , and ii) the coefficients of the expression eγ =

∑
α∈Π(C) cαeα

for any γ ∈ R(W ) are either all non-negative or all non-positive.

1.2. Simplicial cone decomposition of VR.
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For a subset F ⊂ R(W ), consider the subspace HF := ∩β∈F Hβ of VR
and the set of hyperplanes of HF induced by reflection hyperplanes:

(1.2.1) A(HF ) := {HF ∩Hα | α ∈ R(W ), Hα 6⊃ HF}.
A point in HF is called generic if it lies in ḢF := HF \∪G∈A(HF )G. A

connected component of ḢF is called a facet of VR. Let Γ be the index
set of all facets of VR and let us denote by Vγ the facet corresponding
to γ ∈ Γ. Then the vector space VR decomposes into a disjoint union:

(1.2.2) VR = tγ∈Γ Vγ .

Put γ≤δ for γ, δ ∈ Γ iff Vγ⊂ V̄δ. The decomposition is a stratification,
i.e., it satisfies the boundary condition: if Vγ ∩ V̄δ 6= ∅ then Vγ ⊂ V̄δ.
The minimal element of Γ is denoted by 0 (i.e., V0 ={0}). The maximal
elements of Γ correspond to chambers. Any stratum is a cone over a
simplex, and hence (1.2.2) is called the simplicial cone decomposition.

1.3. Polyhedron dual to the simplicial cone decomposition.

Definition. 1. A compact subset P in Rl with a fixed semi-algebraic
stratification (a finite decomposition of P into smooth semi-algebraic
sets satisfying the boundary condition) is called a semi-algebraic poly-
hedron, if there is a semi-algebraic diffeomorphism, say ϕ, from P to a
polyhedron in Rl (a convex hull of finite points in Rl which has non-
trivial interior points). More precisely, ϕ induces an isomorphism from
each stratum to a facet of the polyhedron. A stratum of P correspond-
ing to a face, facet or vertex is called a face, facet or vertex of P ,
respectively. The set P of interior points of P is called an open semi-
algebraic polyhedron. We say the faces of P are crossing normally at
a point x ∈ P , if there is a real-analytic diffeomorphism from a neigh-
borhood of x in Rl to a neighborhood of the origin of Rl which maps
locally (P, x) to (Rk

≥0 × Rl−k, 0) for some 0 ≤ k ≤ l.

2. A semi-algebraic polyhedron K in VR is called dual to the simpli-
cial cone decomposition (1.2.2), if it has the facet decomposition:

(1.3.1) K̄ = tγ∈ΓKγ

indexed by the same index set Γ as in (1.2.2) such that
i) K̄γ ⊃ Kδ if and only if γ ≤ δ,
ii) Kγ ∩ Vδ 6= ∅ if and only if γ ≤ δ, for any γ,δ ∈ Γ,
iii) if γ ≤ δ, then Kγ and Vδ intersects transversally at each point

of Kγ ∩ Vδ. There exists a real analytic diffeomorphism from a neigh-
borhood of Kγ ∩ Vδ to a neighborhood of the cube [0, 1]k of dimension
k = dim(Vδ)−dim(Vγ), which induces a homeomorphism from Kγ ∩ Vδ

to [0, 1]k. In particular, dim(Kγ) + dim(Vγ) = l for γ ∈ Γ.
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The last condition iii) implies the following property:
iv) the faces of K are crossing normally everywhere on K.

The definition implies that K0 is an open cell in VR containing 0 ∈ VR
such that K = K0. The simpliciality of the cone decomposition (1.2.2)
implies that K̄ is a manifold with corners.

1.4. Invariants for W and the quotient variety SW .
We recall basic facts on W -invariants S(V ∗R )W ([B, Ch.v, §5]) and fix

notation on the W -quotient space.
1. A product c := Πα∈Π(C)α is called a Coxeter element. Its conju-

gacy class in W is independent of the order of the product. The order
h of c is called the Coxeter number. The eigenvalues of c are given by
exp(2π

√−1mi/h) (i = 1, . . . , l) where 0 < mi < h are called the expo-
nents of W and are ordered as m1 = 1 < m2 ≤ . . . ≤ ml−1 < ml = h−1.

2. Let S(V ∗R ) be the symmetric tensor algebra of V ∗R . We denote by
S(V ∗R )W the subring consisting of W -invariants in S(V ∗R ). Chevalley’s
Theorem [Ch] states that S(V ∗R )W is generated by l algebraically inde-
pendent homogeneous elements of degrees mi + 1 (i = 1, . . . , l). In the
rest of the paper, we fix a homogeneous generator system (P1, . . . , Pl)
with di := degPi = mi +1. Therefore, we have S(V ∗R )W 'R[P1, . . . , Pl].

3.Themoduleofanti-invariantsS(V ∗R )−W :={P∈S(V ∗R ) |g(P )=det(g)−1

P for all g∈W} is a free S(V ∗R )W-module of rank one generated by

(1.4.1) δW :=
∏

α∈R(W ) fα.

The Jacobian of the generator system (P1,. . ., Pl) of invariants with re-
spect to a linear coordinates (X1,. . ., Xl) of VR is a basic anti-invariant:

(1.4.2) det( ∂(P1,...,Pl)
∂(X1,...,Xl)

) = c δW for c ∈ R6=0.

4. Let Ω := exp(π
√−1/h) be a primitive (2h)th root of unity. The

eigenvector ξ of a Coxeter element belonging to the eigenvalue Ω2 in the
complexification VC = C⊗VR is regular, i.e., δW (ξ) 6= 0 ([B, Ch.V,§6]).
This implies an equality (c.f. §2.4 Fact 1):

(1.4.3) #R(W ) = h · l/2.
5. The square ∆W := δ2

W is a W -invariant called the discriminant.
Express ∆W as a polynomial in Pl. In view of the degree counting:
deg(Pl) = h and deg(∆) = hl, we know that it is of the form:

(1.4.4) ∆W = A0P
l
l + A1P

l−1
l + . . . + Al

where Ai is a homogeneous polynomial of degree ih in P1, . . . , Pl−1.
Then A0 6= 0 (since, by the degree condition, one has P1(ξ) = . . . =
Pl−1(ξ) = 0. Then ∆W (ξ) 6= 0 implies A0 6=0 and Pl(ξ) 6=0).
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6. The categorical quotient variety V//W as a scheme over R is given
by

(1.4.5) SW := V//W := Spec(S(V ∗R )W ),

and its C-rational point set is given by

(1.4.6) SW,C := Homalg
R (S(V ∗

R )W ,C) = Homalg
C (S(V ∗

C )W ,C),

where Homalg is the set of algebra homomorphisms. The image in SW,C
of the origin of VC is denoted by o and is called the origin of SW,C.

For ε∈{±1}, we consider the real form V εR of VC :=VR⊗RC where

(1.4.7) V +1
R := VR and V −1

R :=
√−1VR.

The C-linear W -action on VC leaves the real forms invariant such that
S((V εR)∗)W⊗RC'S(V ∗C )W . Thus, we introduce two real forms of SW,C:

(1.4.8) S
[ε]
W,R := Homalg

R (S((V εR)∗)W ,R)

for ε∈{±1}. These two real forms coincide if −idVR ∈W . Note that a

real coordinate system of S
[ε]
W,R is given by (Pi/

√
εmi+1)l

i=1 so that

(1.4.9) (P1/
√

ε2, . . . , Pl/
√

εh) : S
[ε]
W,R

∼−→ Rl,

where we put
√

1 := 1 and
√−1 :=the unit of pure imaginary number.

7. For any point x∈ VC, the evaluation homomorphism: S(VC)W 3
P 7→ P (x)∈C induces the W -invariant morphisms:

(1.4.10) πW,C : VC → SW,C and πε
W,R : V εR → S

[ε]
W,R (ε ∈ {±1}).

These morphisms are finite and closed maps with respect to the classical
topology. The morphism πW,C induces a homeomorphism VC/W '
SW,C, and πεR induces an embedding V εR/W ⊂ S

[ε]
W,R onto a closed semi-

algebraic set (see Assertion 1.1 (4)).

1.5. Discriminant divisor and the central component C{ε}.
The discriminant divisor DW in SW is defined by ∆W = 0. Its C-

rational point set in SW,C or R-rational point set in S
[ε]
W,R for ε∈{±1}

(called also the complex or real discriminant locus) are given by

(1.5.1) DW,C := {t ∈ SW,C | ∆W (t) = 0} and D
[ε]
W,R := DW,C ∩ S

[ε]
W,R.

The equalities (1.4.1) and (1.4.2) imply:
i) The critical values of πW,C lie in the discriminant divisor DW,C.
ii) The inverse image π−1

W,CDW,C is the union
⋃

α∈R(W ) Hα,C.
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Assertion 1.1. (1) The stabilizer subgroup of W at any point x ∈ VC
is generated by the reflections whose reflection hyperplanes contain x.

(2) The complement of the discriminant locus SW,C\DW,C is the space
of regular orbits (i.e., stabilizer free) of the W -action on VC.

(3) πW,C : VC\∪α∈R(W )Hα,C → SW,C\DW,C is a normal covering whose
covering transformation group is W .

(4) For ε∈{±1}, there exists a connected component C{ε} of S
[ε]
W,R\D[ε]

W,R
such that for any connected component (chamber) C of VR\∪α∈R(W )Hα,
the morphism πε

W,R induce the homeomorphisms:

(1.5.2)
√

εC ' C{ε} and
√

εC ' C{ε}.
We call C{ε} the central component of S

[ε]
W,R\D[ε]

W,R.

(5) As a consequence of (4), C{ε} is a semi-algebraic simplicial cone
with the vertex at o, whose faces are indexed by Π = Π(C).

1.6. Primitive vector field D and Ga-action τ on SW .
We fix a particular vector field D on SW , which we shall call the

primitive vector field ([S3,(2.2)]). The vector field D is transversal to
the discriminant divisor DW and plays a basic role throughout the
present paper.

Let DerSW
be the module of derivations of the algebra S(V ∗R )W over

R, which is a graded S(V ∗R )W -module. Using the generator system
P1,. . .,Pl for S(V ∗R )W (see 2. of §1.4), its free basis are given by ∂Pi

(i=1,. . ., l) with ∂Pi
Pj = δij and deg(∂Pi

)=−deg(Pi). The maximality
deg(Pl) > deg(Pi) for i = 1, . . . , l − 1, implies that the lowest graded
piece of DerSW

is a vector space of dimension one spanned by

(1.6.1) D := ∂Pl
.

In the rest of the paper, we fix a basis (1.6.1) and call it the primitive
vector field.

Remark 1. The primitive vector field is one of the basic building blocks
for the flat structure on SW , but we do not go into details ([S1,3]).

Integrating D, we introduce a group action

(1.6.2) τ : Ga × SW −→ SW ,

whose co-action τ ∗ on S(V ∗R )W is given by

(1.6.3)
τ ∗ : S(V ∗R )W −→ S(V ∗R )W ⊗ R[λ],

Pi 7→ Pi (i = 1, . . . , l − 1) and Pl 7→ Pl + λ.

Note that (τ(C)·o)∩DW,C={o} where o is the origin of SW,C, since the
leading coefficient A0 in (1.4.4) does not vanish.

For each ε∈{±1}, let us choose and fix the real valued function
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λ[ε] :=λ/
√

εh

on the real form Gεh

a =
√

εhR ⊂ Ga,C = C as its real coordinate. Then,
recalling (1.4.9), one obtains the real one-parameter group action:

(1.6.4)
τ [ε] : R× S

[ε]
W,R → S

[ε]
W,R

λ[ε] × (P1/
√

ε2, . . . , Pl/
√

εh) 7→ (P1/
√

ε2, . . . , Pl/
√

εh+λ[ε]).

A domain in S
[ε]
W,R is called a tube domain if it is τ [ε]-invariant.

1.7. The opposite components C[ε]
± of S

[ε]
W,R\D[ε]

W,R.
Since the half lines τ [ε](R>0) · o and τ [ε](−R>0) · o do not intersect

the discriminant locus, we have the following definition.

Definition. The opposite components of S
[ε]
W,R\D[ε]

W,R are

(1.7.1)
C[ε]

+ := the connected component which contains τ [ε](R>0) · o,
C[ε]
− := the connected component which contains τ [ε](R<0) · o.

One has: C[ε]
+ 6=C{ε} 6=C[ε]

− (except for type A1), since the eigenvectors
for exp(2π

√−1/h) of the Coxeter element do not belong to V εR . Each of

the opposite components C[ε]
± is the interior of the quotient of a certain

twisted real form of VC. We shall give another expression of opposite
components in (2.5.5) by determining the twisted real form.

1.8. Semi-algebraic sets J̄
{ε}
W (λ[ε]) in S

[ε]
W,R and K̄ε

W (λ[ε]) in V εR .
We state Theorem A announced in the introduction.

Theorem A. For λ[ε] ∈ R>0 and for ε ∈ {±1}, put

(1.8.1) J
{ε}
W (λ[ε]) := C{ε} ∩ τ [ε](−λ[ε])C[ε]

+ ∩ τ [ε](λ[ε])C[ε]
− .

Then J
{ε}
W (λ[ε]) is an open semi-algebraic polyhedron in S

[ε]
W,R isomorphic

to the l-dimensional parallelotope (0, λ[ε])l adjacent to the origin o ∈
SW,C. Let ao{ε}(λ[ε]) be the vertex of J

{ε}
W (λ[ε]) which is antipodal to the

origin. Then faces in J̄
{ε}
W (λ[ε]) are crossing normally at any point of

any closed edge adjacent to ao{ε}(λ[ε]).

Remark 2. The explicit identification cW : J
{ε}
W (λ[ε]) ' [0,−λ[ε]]l1 ×

[0, λ[ε]]l2 with l = l1 + l2 is given in Theorem C in §3.5.

In an assertion in §3.4, we prove a stronger normal crossing property

of faces of J̄
{ε}
W (λ[ε]), which implies that the inverse image in V εR of any

facet of J̄
{ε}
W (λ[ε]) adjacent to ao{ε}(λ[ε]) is smooth. This gives the next

theorem, stated as Theorem B in the introduction.
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Theorem B. For λ[ε] ∈ R>0 and for ε ∈ {±1}, put

Kε
W (λ[ε]) : = (πε

W,R)−1
(
J
{ε}
W (λ[ε])

)

= (πε
W,R)−1

(
τ [ε](−λ[ε])C[ε]

+ ∩ τ [ε](λ[ε])C[ε]
−

)
.

Then Kε
W (λ[ε]) is an open semi-algebraic polyhedron in V εR dual to the

simplicial cone decomposition (1.2.2). The W -action induces

(1.8.3) K̄ε
W (λ[ε])/W ∼= πε

W,R(K̄ε
W (λ[ε])) = J̄

{ε}
W (λ[ε]).

Remark 3. The change D to ωD for ω ∈ R× induces the change

Kε
W (λ[ε],D)=| λ[ε]

λ[ε]′ω|1/hKε
W (λ[ε]′,ωD) for λ[ε], λ[ε]′∈R>0, i.e. the polyhedra

for any scale ω and any parameter λ[ε] are homothetic to each other.
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2. The central region E
{ε}
W in T

[ε]
W,R

The concept of a universal unfolding and its bifurcation set is due to
Thom [T2] and is studied by several authors (e.g. [Ar],[Lo1],[Ly],[Te]).
We re-introduce the bifurcation set in the setting of W -τ -invariant the-

ory, and then introduce the central region E
{ε}
W , which is a key concept

in the present paper. Several results are extracted from [S4]. For a
comprehensive study of them, one is referred to [S4].

2.1. τ-quotient space TW and τ-quotient morphism πτ .
We first introduce the τ -quotient space and the τ -quotient morphism.

Recall the co-action (1.6.3) and consider the ring of its invariants:

(2.1.1)
S(V ∗R )W,τ := {f ∈ S(V ∗R )W | τ ∗(λ)f = f}

= {f ∈ S(V ∗R )W | Df = 0}.
The associated τ -quotient variety is denoted by

(2.1.2) TW := Spec(S(V ∗R )W,τ ).

One has the τ -quotient morphism

(2.1.3) πτ : SW −→ TW

induced by the inclusion S(V ∗R )W,τ ⊂ S(V ∗R )W . Using the coordinates
P1, . . . , Pl, one has the explicit expressions:

S(V ∗
R )W,τ = R[P1, . . . , Pl−1] and S(V ∗

R )W = S(V ∗
R )W,τ [Pl].

Namely, TW is an affine variety with the coordinates (P1, . . . , Pl−1) and
πτ is the projection forgetting the last coordinate Pl.

2.2. Bifurcation divisor BW = ∪∞p=2BW,p.
We introduce the bifurcation set BW in TW as the ramification divisor

of the finite cover πτ |DW :DW →TW . Recall that the discriminant ∆W

is a monic polynomial in Pl (1.4.4). The resultant of ∆W and D∆W =
∂Pl

∆W with respect to Pl is an element in S(V ∗R )W,τ . Decompose it as

(2.2.1) δ(∆W , D∆W ) =
∏

p≥2 ωp
W,p.

according to its multiplicity (=ramification index), where ωW,p are
multiplicity-free polynomials in S(V ∗R )W,τ . Using the p-th factor ωW,p,
the p-th bifurcation divisor is defined by the equation:

(2.2.2) BW,p := the divisor in TW defined by ωW,p = 0.

We define the ordinary part BW,2, the odd part BW,odd := ∪p:oddBW,p

and the higher part BW,≥3 := ∪p≥3BW,p of the bifurcation divisor.
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Note. The pth bifurcation divisor BW,p is the image of the union of
two-codimensional subspaces of V where p reflection hyperplanes are
intersecting (see the last formula (∗) at the end of Appendix in order
to justify the decomposition (2.2.1)).

One basic formula which plays a key role in the sequel is the following:

(2.2.3) det
(

∂(∆W ,D∆W ,...,Dl−1∆W )
∂(P1, P2, ... , Pl)

)
= c ·∏p≥2 ωp−1

W,p ,

The proof uses the degree of ωW,p, obtained by the case by case study
(see [S4,(3.6.1)]). The author does not know any other proof.

2.3. Real forms of the τ-action and the τ-quotient space.
Let u∈GL(VR) be an element of the normalizer N(W ) of W . We denote
by [u] its W -coset class in N(W )/W . Assume [u]2 = 1 and define an
anti-C-linear automorphism [u]a∗ :S(V ∗C )W →S(V ∗C )W by [u]a∗P :=P ◦u.

Then the twisted real form S
[u]
W,R := HomR(S(V ∗C )W,[u]a∗ ,R) is given by

the subalgebra S(V ∗C )W,[u]a∗ of [u]a∗-invariants (see [Lo2],[S4]).

Assertion 2.1. There exists b[u]∈{±1} making the following diagram
commutative:

(2.3.1)

S(V ∗C )W τ∗→ S(V ∗C )W ⊗C C[λ]y[u]a∗
y[u]a∗ ⊗ (b[u] ◦ complex conjugation)

S(V ∗C )W τ∗→ S(V ∗C )W ⊗C C[λ] .

One can choose a generator Pl satisfying [u]a∗Pl =b[u]Pl so that P
[u]
l :=

Pl/
√

b[u] is a [u]a∗-invariant. The co-action τ ∗ (1.6.3) turns out to be

(2.3.2) τ ∗ : S(V ∗C )W,[u]a∗ → S(V ∗C )W,[u]a∗ ⊗R R[ λ/
√

b[u] ].

Accordingly, we introduce a new real variable λ[u] := λ/
√

b[u] so
that we obtain a twisted real τ -action

(2.3.3)
τ [u] : R× S

[u]
W,R −→ S

[u]
W,R

λ[u] × (P
[u]
1 , . . . , P

[u]
l ) 7→ (P

[u]
1 , . . . , P

[u]
l + λ[u]).

The τ [u]-invariants S(V ∗C )W,[u]a∗,τ defines a twisted real form

(2.3.4) T
[u]
W,R := Homalg

R (S(V ∗
C )W,[u]a∗,τ ,R)

of the space TW,C together with the twisted real quotient morphism

(2.3.5) π[u]
τ : S

[u]
W,R −→ T

[u]
W,R.

One sees from the coordinate expression that the morphism (2.3.5) is
an honest set-theoretical quotient map. In the present article, we are
interested in the case [u]=[ε] for ε∈{±1}. In such a case, b[u]=εh.
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2.4. Subspace SW (I2(h)) of SW .
We introduce a canonical two-dimensional subspace SW (I2(h)) of SW

based on the study of regular eigenvectors of a Coxeter element due to
Coleman [C] and Kostant [K] (cf. [B, Ch.5, §6, no2, lemma 2]).

Let C be a Weyl chamber in VR of W and let Π = Π(C) be the set of
simple reflections. Recall the Coxeter diagram structure Γ(W ) on Π,
where one puts an edge between two vertices α and β if mαβ ≥ 3. Since
Γ(W ) is a tree, one has a unique decomposition up to a transposition:

(2.4.1) Π = Π1 t Π2

where each Πj is a totally disconnected subset in Γ(W ). Put

(2.4.2) ci := Πα∈Πi
α, c := c1c2 and d := c1 + c2,

where c and d are called the Coxeter element and the Killing element.
c = c1c2 is of order h, and d has only real eigenvalues 2 cos(πmi/h). Let
e be an eigenvector of d belonging to the largest eigenvalue 2 cos(π/h)
(which has multiplicity 1). We can choose e such that its expression
with respect to the basis eα (α ∈ Π) (see 1.1, 4.) has all positive
coefficients, so that e is unique up to a positive constant multiple. Put

(2.4.3) U := Re1 + Re2,

where we use the decomposition e = e1 + e2 with ej ∈
∑

α∈Πj
R>0eα.

Assertion 2.2. ci leaves the space U invariant and ci|U is a reflection
with respect to ei. The restriction homomorphism 〈c1, c2〉 → 〈c1|U, c2|U〉
is an isomorphism and defines a faithful W (I2(h))-action on U.

Here W (I2(h)) is the dihedral group of order 2h generated by reflec-
tions c1|U and c2|U . Therefore, we introduce

i) the quotient space SW (I2(h)) := U//W (I2(h)),

ii) a primitive vector field ∂
∂S

(which, we fix explicitly below),

iii) the τ -action on SW (I2(h)) as the integration of ∂
∂S

,
iv) the τ -quotient variety TW (I2(h)) := SW (I2(h))//τ .

The embedding U ⊂ VR induces the morphism SW (I2(h)) → SW . The
following facts are not difficult, but are not obvious (cf. [S4]).

Assertion 2.3. i) The morphism SW (I2(h))→SW is a closed embedding
Its image is independent of the choices of a chamber C, a decomposition
(2.4.1) and an eigenvector e.

ii) The primitive vector field on SW is tangent to SW (I2(h)), and in-
duces a primitive vector field on the subspace SW (I2(h)).

iii) The restriction of the τ -action on SW coincides with the τ -action
on SW (I2(h)) (up to a scaling constant).
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iv) One obtains a canonical embedding TW (I2(h)) → TW which makes
the following diagram commutative and Cartesian:

(2.4.4)

SW (I2(h)) −→ SWyπτ

yπτ

TW (I2(h)) −→ TW

The image of SW (I2(h)) in SW is called the vertex orbit plane and that
of TW (I2(h)) is called the vertex orbit line. In the sequel, we write v.o.
for vertex orbit for short (see the introduction for the naming).

2.5. V.o. axis, v.o. line and the sign factor σ(D, {Π1, Π2}).
Depending on a choice of the vector e and the partition {Π1, Π2},

we obtain some particular generators of S[U∗]W (I2(h)) (called the flat
coordinates), which leads to some new concepts and constructions.

First, we identify the vector space U with C regarded as a real vector
space R⊕Ri, where, in order to avoid the confusion with the complex
number field as the coefficient field, we use notation i for the unit of
pure imaginary number instead of

√−1.
i) The identification U ' R⊕Ri is given by the basis correspondence:

e1 ↔ i and e2 ↔ −iω, where ω := exp(πi/h) = cos(π/h) + sin(π/h)i.
ii) For z1, z2 ∈ C ' U , put I(z1,z2)=Re(z1z̄2).
iii) The generators c1|U and c2|U of W (I2(h)) are the reflections with

respect to e1 and e2: c1(z)= z̄ and c2(z)=ω2z̄ on C.
iv) The Coxeter element c|U of W (I2(h)) is identified with the mul-

tiplication by ω−2.
v) We choose the generators R and S of S[U∗]W (I2(h)):

(2.5.1)
R := R({Π1, Π2}, e) := zz̄ = x2 + y2,

S := S({Π1, Π2}, e) := Re(zh) =
∑bh/2c

k=0 (−1)kCh
2kx

h−2ky2k.

vi) The changes e 7→ re (r ∈ R≥0) and {Π1, Π2} 7→ {Π2, Π1} induce:

(2.5.2)
R({Π1, Π2}, re) = r2R({Π1, Π2}, e)
S({Π1, Π2}, re) = rhS({Π1, Π2}, e)

(2.5.3)
R({Π2, Π1}, e) = R({Π1, Π2}, e)
S({Π2, Π1}, e) = −S({Π1, Π2}, e).

After the preparation above, we can now clarify several sign problems
as follows.

1. Sign factor. The derivation ∂
∂S

is a primitive vector field on

SW (I2(h)). Due to Assertion 2.3, ii), the proportion ∂
∂S

: D|SW (I2(h)) is
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in R×. Depending on the choice of the primitive vector field D (1.6.1)
and the decomposition {Π1, Π2} (2.4.1), we introduce the sign factor:

(2.5.4) σ(D, {Π1, Π2}) := sign( ∂
∂S

: D|SW (I2(h))) ∈ {±1}.
A typical use of the sign factor is the following [S4,5.1,Sign Theorem]:

Assertion 2.4. For i ∈ {1, 2} and ε ∈ {±1}, define the twisted real
vector space with respect to εci by V εciR := {v ∈ VC | ci(v) = εv}. Then

πW (V εciR ) is the closure of a connected component of S
[ε]
W,R\D[ε]

W,R denoted

by C{εci}. The components C{εci} (i = 1, 2) and the opposite components

C[ε]
+ and C[ε]

− (1.7.1) are related by the formula:

(2.5.5) C{εci} = C[ε]

εbh/2c(−1)i−1σ(D,{Π1,Π2}) for i = 1, 2.

The sign factor appears again in TheoremC in §3.5.

2. Vertex orbit axis AO. Let us call the coordinate axis de-
fined by S = 0 in the v.o. plane SW (I2(h)) the vertex orbit axis. It is a
one-dimensional line in SW . Note the fact that the coordinate R (c.f.
(2.5.1)) is unique up to a positive constant multiple. Thus, the real
v.o. axis and the half v.o. axis

(2.5.6)
AO := {(R,S) ∈ SW (I2(h)),C | R ∈ R and S = 0},
AO± := {(R,S) ∈ SW (I2(h)),C | R ∈ ±R>0 and S = 0}

are a real line and real half lines in SW,C independent of the choices of
a chamber C, a partition {Π1, Π2} or a vector e.

Assertion 2.5. i) For any ε ∈ {±1}, the twisted real form S
[ε]
W,R con-

tains the full real v.o. axis AO (see Remark 4. below).

ii) For ε ∈ {±1}, the connected component of S
[ε]
W,R\D[ε]

W,R containing
the half v.o. axis AOε is the central component Cε (recall (1.5.2)).

In the present article, we use AO+ and AO− as the base point locus
for the fundamental group of SW,C \DW,C.

3. Vertex orbit line O. Recall the one-dimensional subspace
TW (I2(h)) of TW (called the v.o. line) which is the projection image
of the vertex orbit axis by πτ (c.f. (2.4.4)). Similarly to the case of the
vertex orbit axis, its coordinate R is unique up to a positive constant
multiple. Thus, the real v.o. line and the half v.o. lines are given by

(2.5.7)
O := {(R) ∈ TW (I2(h)) | R ∈ R},
O± := {(R) ∈ TW (I2(h)) | R ∈ ±R>0}.

They are a well-defined real line and real half lines in TW,C.
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Assertion 2.6. i) For any ε ∈ {±1}, the twisted real form T
[ε]
W,R con-

tains the real v.o. line O (see Remark 4. below).
ii) For ε ∈ {±1}, the half v.o. line Oε does not intersect the higher

bifurcation locus BW,≥3,C in TW,C.
Definition. We introduce

(2.5.8)
E
{ε}
W := the connected component of T

[ε]
W,R\B[ε]

W,≥3,R
containing the half v.o. line Oε

and call it the central region in T
[ε]
W,R.

Remark 4. The statements i) in Assertion 2.5 and i) in 2.6 are valid
for any twisted real structures [u] on SW and TW , respectively. We

study the connected component E
[u],ε
W of T

[u]
W,R \ B

[u]
W,≥3,R containing Oε

in [S4,§10].

Remark 5. Actually, the v.o. line O is contained in the ordinary bi-
furcation set BW,2 for l ≥ 3. Hence, the ordinary bifurcation set inter-
sects the central region for l ≥ 3. The description of the intersection

E
{ε}
W ∩ B

[ε]
W,2,R is reduced to certain real linear inequalities by use of

Theorem C in §3.5. It proposes a quite interesting and important com-
binatorial geometric problem.

2.6. Algebroid functions ϕα and φα for α ∈ Π.
Once we have fixed the base point locus, either O+ or O−, in TW,C, we

are able to discuss multi-valued functions and, in particular, algebroid
functions defined on TW,C\BW,≥3,C.

Recall the discriminant (1.4.4). It is a monic polynomial of degree l
in the indeterminate Pl. Let us consider the equation in Pl:

(2.6.1) ∆W = A0P
l
l + A1P

l−1
l + . . . + Al−1Pl + Al = 0,

where the coefficients Ai are polynomial functions on TW,C. One can
show that i) for any point of TW,C\BW,odd,C, there exist a neighborhood
V and l holomorphic functions f1, . . . , fl on V such that f1(t), . . . , fl(t)
are the solutions of the equation (2.6.1) at t ∈ V , and ii) the functions
f1, . . . , fl can be analytically continued to everywhere in TW,C\BW,odd,C.

As for an initial system, let us choose l functions indexed by Π:

(2.6.2) ϕα,ε (α ∈ Π)

on a neighborhood of the base point locus Oε as follows (see [S4,§8,9]).
For α ∈ Πi, let ζi ∈ U (i = 1, 2) be a point ( 6= 0) fixed by the

action of ci|U on the real 2-space U . Since ci|U is a reflection with
respect to ei (recall Assertion 2.2), we see ei · ζi = 0, where x · y is a
W (I2(h))-invariant positive symmetric bilinear form on U . Taking the
fact e1 · e2 < 0 into account, the coefficients a, b ∈ R in the expression
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ζi = ae1 + be2 are simultaneously positive or negative. We choose ζi

such that a, b > 0. Then ζi is unique up to a positive constant multiple
(see Remark 7).

For ε ∈ {±1}, put ζε
i :=

√
εζi ∈ U ε :=

√
ε ⊗ U (see Remark 8). It

projects by πW to a point pi on the discriminant locus D
[ε]
W (I2(h)),R ⊂

S
[ε]
W (I2(h)),R, and pi projects further to a point qi∈Oε ⊂ T

[ε]
W,R by πτ (c.f.

(2.4.4)). On the other hand, the reflection hyperplane Hα contains
ζi. Hence, ζε

i ∈ Hα,C. Since Hα (α ∈ Πi) are normally crossing at
ζi, the stabilizer subgroup W (ζi) of ζi is an abelian group 〈β, β ∈
Πi〉 ' (Z2)

#Πi and preserves each hyperplane Hα for α ∈ Π. Then, it
is easy to see that a neighborhood of ζε

i in Hα,C projects (by 2#Πi−1

to one) onto a neighborhood Uα of pi in one of #Πi-number of local
irreducible components of DW,C at pi. We can show that qi = πτ (pi) 6∈
BW,odd,C and that the projection πτ |Uα is a locally homeomorphism onto
a neighborhood Vα of qi in TW,C . Then, we reverse the map πτ |Uα to
a map $α : (Vα, qi) → (Uα, pi), and put

ϕα,ε := Pl ◦$α.

By definition, ϕα,ε is a solution to the discriminant equation (2.6.1) on a
neighborhood of Oε. Thus we obtain the system of algebroid functions
indexed by Π (2.6.2). By use of characteristic variety CW , we observe
that these give the full system of solutions of the discriminant equation.
That is: one has the “local factorization” of the discriminant:

(2.6.3) ∆W = A0

∏
α∈Π(Pl − ϕα,ε),

on a neighborhood of the base point locus Oε. We set

(2.6.4) φα,ε := Pl − ϕα,ε for α ∈ Π.

Since Di∆W is, up to the factor A0, equal to the (l−i)-th elementary
symmetric function of {φα,ε}α∈Π, the formula (2.2.3) can be rewritten
as

(2.6.5) ∧α∈Π dφα,ε = c
∏

p≥3 ω
p/2−1
W,p · ∧l

i=1dPi for some c ∈ R×.

Remark 6. In the next §3.4, we introduce a largest covering space of
TW,C\BW,odd,C with liftings of the base point loci O+ and O− such that
ϕα,+ and ϕα,− are lifted to functions defined on the neighborhoods of
the base point loci and are analytically continued to the same univalent
function.

Remark 7. In the above construction of ϕα,ε, we have chosen ζi in such
a manner that the coefficients with respect to the basis ei are positive.
However, we may choose −ζi as the starting point of the construction.
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Then, for ε ∈ {±1}, the function ϕα,ε changes to ϕχW (α),ε, where χW is
the bijection of Π induced by the adjoint action of the longest element
of W (see [S4,8.11], c.f. also (3.3.1)). This change is caused by the
change of the “reference” chamber from C to −C, which covers the
central component C.

Remark 8. In the above construction of ϕα,ε, we have chosen ζε
i ∈ Hε

α

to be ζi

√
ε. However, we may choose its complex conjugate ζi/

√
ε for ζε

i

as the starting point of the construction. Then the ϕα,+1 is unchanged,
but the ϕα,−1 changes to to ϕχW (α),−1 (see Remark 6 for notation and
reference). This change is caused by the change of the sign of the unit√−1 of the pure imaginary number.
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3. Linearization map cW

The system of algebroid functions φα,ε and ϕα,ε introduced in the pre-
vious section define, by analytic continuation, multivalued holomorphic
maps:

cW = (φα)α∈Π : SW,C 99K CΠ & bW = (−ϕα)α∈Π : TW,C 99K CΠ/CvΠ

where i) vΠ = (1α)α∈Π is the diagonal element, and ii) “99K” means that
the “maps” are not univalent on SW,C or on TW,C but are defined on
their suitable (branched) covering spaces. In order to clarify this mul-
tivaluedness and to give a clear setting, there may be two approaches.

1. Transcendental method: introduce a topological covering space
TW,odd,C of TW,C \BW,odd,C and lift bW to a univalent holomorphic map
bW,odd defined on it, and similarly for cW,odd.

2. Algebraic method: introduce a suitable finite covering variety
T̃W → TW (branching along BW,odd) and introduce b̃W as a scheme

morphism from T̃W to the affine space VΠ, and similarly for c̃W .
The first approach is naive and easily understandable. However,

there is a disadvantage that the “boundary points BW,odd” is excluded
from the domain of definition. In the second approach those boundary
points are naturally included in the domain of definition. Further-
more, it has another advantage that we can discuss about the twisted
real forms of the maps (which plays a basic role in our study). For
these reasons, we employ the second approach in [S4,§10]. However,
the second approach is technically more involved, and we use the first
approach to formulate Theorem C in §3.5 in the present paper.

An important role of the maps cW and bW is that they identify certain

area in SW and in TW with certain area in a linear space V̂Π and in
VΠ, respectively. In particular, the map cW identifies the twisted real
discriminant locus in a tube domain of the source space with a system
of real hyperplanes in a tube domain of the target space. This has
several fruitful consequences, since the study of configurations among
branches of the real discriminant locus is reduced to a study of a certain
system of linear inequalities. By this reason, we call these maps cW and
bW the linearization maps.

Let us explain the contents of this section.

The linear model spaces V̂Π and VΠ, which will be the target spaces
of the linerization maps, are described in §3.1. Depending only on
the Coxeter graph Γ(W ), we introduce a simplicial cone EΓ(W ) in VΠ

in §3.2. In §3.3, we introduce the covering space TW,odd,C, on which
the two algebroid functions ϕα,ε for ε ∈ {±1} in §2.6 lift to the same
globally defined univalent function, denoted by ϕα. By the use of them
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in §3.4, the linearization maps cW and bW are defined. In §3.5, we
formulate Theorem C, which states about the comparison of the real

spaces S
[ε]
W and V̂Π obtained by the linearlization maps. As applications

of Theorem C, Theorems A and B are proved in §3.6 and §3.7. We
illustrate in §3.8 the linearization maps for the type A3.

3.1. Linear model spaces V̂Π and VΠ.

We introduce two linear model spaces V̂Π and VΠ, which will be the
target spaces of the linearization maps cW and bW , respectively.

Define the real vector space with the basis {vα}α∈Π:

(3.1.1) V̂Π := ⊕α∈ΠRvα.

Translation by constant multiples of the diagonal element:

(3.1.2) vΠ :=
∑

α∈Π vα

defines a Ga-action on V̂Π:

(3.1.3) (λ, ṽ) ∈ Ga × V̂Π 7→ ṽ + λ · vΠ ∈ V̂Π.

The quotient space VΠ and the quotient map πΠ are introduced by

(3.1.4) πΠ : V̂Π −→ VΠ := V̂Π / R · vΠ.

The symmetric group S(Π) acts linearly on V̂Π by permuting the basis
vα. Since vΠ is fixed by S(Π), it induces an action of S(Π) on VΠ.

Let {λα}α∈Π be the dual basis of {vα}α∈Π, i.e., the coordinate system

of V̂Π. The infinitesimal action of the Ga-action (3.1.4) is then given
by

(3.1.5)
∑

α∈Π
∂

∂λα
.

Consider the coordinate hyperplane in V̂Π:

(3.1.6) Hα := {∑β∈Π λβvβ ∈ V̂Π | λα = 0}
for α∈Π. The projection πΠ induces an isomorphism from Hα to VΠ

for each α ∈ Π, and also an isomorphism from the intersections Hα∩Hβ

for α, β∈Π (α 6= β) to the hyperplane in VΠ:

(3.1.7) Hαβ := {v ∈ VΠ | λαβ(v) = 0}.
Here λαβ := λα − λβ is a linear form on VΠ, which satisfies

(3.1.8) λαβ + λβγ = λαγ for α, β, γ ∈ Π.

Note. The set of linear forms {λαβ |α, β∈Π, α 6=β} on VΠ forms a root
system of type Al−1, where Hαβ are the reflection hyperplanes of the
group S(Π). What is different from the usual setting is the fact that
the reflection hyperplane Hαβ is labeled by the positive integer ord(αβ).
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3.2. Γ(W )-cone EΓ(W ) in VΠ.
Depending on the graph Γ(W ) (see §2.4) and on the partition {Π1, Π2}

(2.4.1), we introduce an open simplicial cone EΓ(W ) in VΠ. Put

(3.2.1)
EΓ(W ) := the connected component of VΠ \ {ΩΓ(W ) = 0}

containing the half line R>0(vΠ1 − vΠ2)

where ΩΓ(W ) :=
∏

αβ∈Edge(Γ(W )) λ2
αβ and vΠi

:=
∑

α∈Πi
vα (i = 1, 2).

We call EΓ(W ) the Γ(W )-cone. As an immediate consequence of the
definition, we have:

Assertion 3.1. The Γ(W )-cone is given by inequalities:

(3.2.2)
EΓ(W ) = { v ∈ VΠ | λαβ(v) > 0

for α ∈ Π1, β ∈ Π2 such that αβ ∈ Edge(Γ(W ))}.
Therefore, EΓ(W ) is an open simplicial cone.

The transposition of Π1 and Π2 induces the change of the Γ(W )-cone
EΓ(W ) to −EΓ(W ). This dependence of the Γ(W )-cone on the partition
of Π is subtle but important. However, for the sake of simplicity, we
omit {Π1, Π2} in the notation EΓ(W ) unless explicitly mentioned.

3.3. Covering spaces TW,odd,C and SW,odd,C.
We introduce a covering space TW,odd,C of TW,C\BW,odd,C, where we

lift the two base point loci Oε. It turns out that two germs of algebroid
functions ϕα,+1 and ϕα,−1, lifted in their neighborhoods, are analytically
continuated to the same univalent function, denoted by ϕα, on TW,odd,C.

Consider the complexified vertex orbit line TW (I2(h)),C (recall §2.4 and

§2.5), and let γ[ε] be the generator of π1(TW (I2(h)),C\{0}, Oε)'Z turning
once around the origin counter-clockwise. Then one has ([S4,9.2]):

i) (γ[ε])2 belongs to the center of π1(TW,C\BW,odd,C, Oε).
ii) the monodromy action of γ[ε] on {ϕα,ε}α∈Π (2.6.2) is given by

(3.3.1) ϕα,ε(t̃ · γ[ε]) = ϕχ
W

(α),ε(t̃),

where χ
W
∈ S(Π) is the involution of the set Π obtained by the

adjoint action of the longest element of W .

The fundamental group π1(TW,C \BW,odd,C, Oε) acts on the universal

covering space (TW,C\BW,odd,C)̃ by choosing a base point locus Õε (i.e.,
a closed set in the covering which projects homeomorphically onto Oε).
Let us introduce the central quotient space

(3.3.2) TW,odd,C := (TW,C\BW,odd,C)̃ /〈(γ[ε])2〉
with the base point locus Oε

odd :=the image of Õε. One has the natural
covering map: $odd : TW,odd,C → TW,C\BW,odd,C with $odd : Oε

odd ' Oε.
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Remark 9. The TW,odd,C contains pull-backs of evenly labeled bifurca-
tion set BW,even,C\BW,odd,C and, in particular, the ordinary part BW,2,C.

To be precise, we have constructed two covering spaces depending
on ε∈{±1}. In the following, we identify them and consider only one
space, denoted again by TW,odd,C, by choosing the two base point locus
Oε

odd (ε∈{±1}) simultaneously as follows: The inverse image by $odd

of the complexified v.o. line TW (I2(h)),C decomposes into the connected
components, each of which is a double cover of the complex v.o. line
and is isomorphic to C× and admits a natural C×-action. Choose one
component and fix the base point locus inside it as follows:

◦
O+1

odd∗ := eπ
√−1O+1

odd = e−π
√−1O+1

odd

O−1
odd := e

π
2

√−1O+1
odd

O−1
odd∗ := e−

π
2

√−1O+1
odd

Fig.1. Four base point loci in TW,odd,C
O−1

odd

O−1
odd∗

O+1
odd∗ O+1

odd

where Oε
odd∗ are some auxiliary base point loci (see Remark 10).

The germ of an algebroid function ϕα,ε (2.6.2) is lifted to a germ of
holomorphic function, again denoted by ϕα,ε, on a neighborhood of
Oε

odd. We observe that:

i) the germ ϕα,ε for α ∈ Π and ε ∈ {±1} is analytically continued to
a unique univalent holomorphic function on TW,odd,C,

ii) for each α ∈ Π, the two univalent functions defined in i) for ε ∈
{±1} define the same function on TW,odd,C. Let us denote it by

(3.3.3) ϕα for α ∈ Π.

Remark 10. The fact i) is an immediate consequence of (3.3.1). The
fact ii) is based on the choices of the base point loci in Fig. 1 and of
the sign of ζε

i in the construction of ϕα,ε in §2.6. Namely, for ε = −1,
if we choose ζε

i to be the complex conjugate ζi/
√

ε of ζi

√
ε, we have

to take O−1
odd∗ instead of O−1

odd as the base point locus. That is: the
generator of the Galois group Gal(C/R) ' Z/2Z acts on the index set
Π of {ϕα,−1}α∈Π by the formula (3.3.1) (see [S4,8.4 & (9.3.8)]).

Let us introduce the product space: SW,odd,C := SW,C ×TW,C TW,odd,C.
On SW,odd,C, we introduce a system of univalent holomorphic functions:

(3.3.4) φα := Pl − ϕα for α ∈ Π.

3.4. Linearization morphism cW on SW,odd,C.
We introduce the linearization map bW as the map from the covering

space TW,odd,C of TW,C to the complexified model vector spaces VΠ,C, and

similarly cW from SW,odd,C to V̂Π,C.
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Definition. Using the functions ϕα (3.3.3) and φα (3.3.4) as for the
coefficients of vα, we consider the maps:

(3.4.1)
cW,odd,C=ω−1

∑
α∈Π φαvα : SW,odd,C×C×−→ V̂Π,C := V̂Π ⊗R C

bW,odd,C=−ω−1
∑

α∈Π ϕαvα : TW,odd,C×C×−→VΠ,C :=VΠ ⊗R C
and call it the linearization map, where ω ∈ C× is a scaling factor
which shall take a special value depending on the situation.

The push-forward of the primitive vector field D is given by

(3.4.2) (cW )∗(D) = ω−1
∑

α∈Π
∂

∂λα
.

namely, cW,C is equivariant with respect to the two Ga-actions: the

τ -action on SW and the diagonal translation on V̂Π (shifted by ω). One
has

(3.4.3) cW,odd,C(τ(λ)z, ω) = cW,odd,C(z, ω) + ω−1λ · vΠ,

and, hence,the following diagram is commutative:

(3.4.4)

SW,odd,C × C× cW,odd,C−→ V̂Π,Cy(πτ , id)

yπΠ

TW,odd,C × C× bW,odd,C−→ VΠ,C .

The formula (2.6.5) can be reformulated as the Jacobian formula

(3.4.5)
Jac(bW,odd,C) = c · ω−l Πp≥3ω

p/2−1
W,p ,

Jac(cW,odd,C) = c · ω1−l π∗τ (Πp≥3ω
p/2−1
W,p ).

for some constants c ∈ R×. We observe that the factor ωW,2 does not
appear in the right hand side. Therefore,

Assertion 3.2. The maps cW,odd,C and bW,odd,C are not ramifying along
the ordinary bifurcation set (πτ )

−1(BW,2,C) and BW,2,C, but are ramify-
ing along (πτ )

−1(BW,2p,C) and BW,2p,C for p ≥ 2, respectively.

3.5. Theorem C.
In the previous paragraph, the linearization maps are introduced as

holomorphic maps from the complex manifolds TW,odd,C and SW,odd,C
to the linear model spaces. In this paragraph, we restrict the do-
main of the definitions of the linearlization maps bW,odd,C and cW,odd,C
to the central region E

{ε}
W introduced in (2.5.8) and the tube domain

(π
[ε]
τ )−1(E

{ε}
W ) over the central region with a fixed scaling parameter
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ω∈{±
√

εh} (see Remark 12 below). The linearization maps for a fixed
ω are denoted by bW,ωD and cW,ωD, respectively:

bW,ωD(x) := bW,odd,C(x, ω) and cW,ωD(x) := cW,odd,C(x, ω).

It is a straightforward calculation that for these choices, the image of

the linearization maps are contained in the real forms VΠ and V̂Π (see
Remarks 11). Thus, (3.4.4) gives rise to the following commutative
diagram of semi-algebraic maps (see Remarks 12):

(3.5.1)

(π
[ε]
τ )−1(E

{ε}
W )

cW,ωD−→ V̂Πyπ
[ε]
τ

yπΠ

E
{ε}
W

bW,ωD−→ VΠ

Remark 11. Generally, we have the following result on the real form of

linearization map ([S4]). For any twisted real structure T
[u]
W,R and for any

connected component E of T
[u]
W,R\B[u]

W,odd,R, there exists an involution χ ∈
S(Π) such that the linearization map bW,ωD induces a (real multivalued)
map from E to the twisted real space V χ

Π , where the scaling constant ω

is chosen in the twisted real form: C×,b[u] =R>0

√
b[u] t (−R>0

√
b[u])

with respect to the sign b[u]∈{±1} introduced in Assertion 2.1 in §2.3.
Actually, in the present paper, we take [u]= [ε], E =E

{ε}
W , b[ε]= εh,

and χ=id∈S(Π).

Remark 12. So far in the present paper, the linearization maps are
defined on the covering spaces TW,odd,C and SW,odd,C. Therefore, one
should have, first, introduced the map bW,ωD on a certain covering

space Ẽ
{ε}
W embedded in TW,odd,C, namely on the connected component

of the inverse image of E
{ε}
W in TW,odd,C which contains the base point

locus Oε
odd, and similarly for cW,ωD, and then formulate Theorem C in

terms of the mapped defined on the covering spaces. Actually, as a

consequence of Theorem C, E
{ε}
W become homeomorphic to a simpli-

cial cone in a real vector space so that it is simply connected. Also,

(π
[ε]
τ )−1(E

{ε}
W ), as a tube domain over E

{ε}
W , is simply connected. Thus

the covering spaces reduce to trivial covering spaces, and bW,ωD and

cW,ωD are well defined as univalent maps on E
{ε}
W and (π

[ε]
τ )−1(E

{ε}
W ).

Therefore, in the formulation of Theorem C in the present paper, we
assume the knowledge of the simply connectedness beforehand.

We state Theorem C, announced in the introduction.
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Theorem C. Depending on the choices of the sign ε∈{±1}, the scaling

factor ω∈{±
√

εh} and the partition {Π1,Π2}, take a sign factor

(3.5.2) σ := −ω σ(D, {Π1, Π2})(
√

ε)h ∈ {±1}
(recall (2.5.4) for σ(D, {Π1, Π2})). Then the following (1)–(7) hold.

(1) The linearization map b
[ε]
W,ωD induces a semi-algebraic homeomor-

phism:

(3.5.3) b
[ε]
W,σ·ωD : E

{ε}
W

∼−→ EΓ(W ),

which extends to their closures homeomorphically.

(2) The linearization map c
[ε]
W,ωD induces a semi-algebraic homeomor-

phism:

(3.5.4) c
[ε]
W,σ·ωD : (π[ε]

τ )−1(E
{ε}
W ) ∼−→ (πΠ)−1(EΓ(W )),

which extends to their closures homeomorphically.
(3) The linearization map (3.5.4) is Ga-equivariant so that we obtain

the commutative Cartesian diagram:

(3.5.5)

(π
[ε]
τ )−1(E

{ε}
W ) ∼−→

cW,σ·ωD

(πΠ)−1(EΓ(W ))

π
[ε]
τ

y πΠ

y
E
{ε}
W

∼−→
bW,σ·ωD

EΓ(W )

(4) The linearization map b
[ε]
W,σ·ωD maps the ordinary bifurcation set

B
[ε]
W,2,R to the union of the 2-labeled reflection hyperplanes in VΠ:

(3.5.6) b
[ε]
W,σ·ωD : E

{ε}
W ∩BW,2,R ∼−→ EΓ(W ) ∩ (∪αβ 6∈Edge(Γ(W ))Hαβ),

(5) The linearization map c
[ε]
W,σ·ωD maps D

[ε]
W,R to the union of the

hyperplanes in V̂Π:

(3.5.7) c
[ε]
W,σ·ωD : (π[ε]

τ )−1(E
{ε}
W ) ∩DW

∼−→ (πΠ)−1(EΓ(W )) ∩ (∪α∈ΠHα),

(6) The linearization map c
[ε]
W,ωD maps the central component C{ε}

S
[ε]
W,R to the coordinate hyperquadrant in V̂Π:

(3.5.8) ĈΓ(W ) :={
∑

α∈Π λαvα∈ V̂Π | (−1)iλα >0 for α ∈ Πi, i = 1, 2}
homeomorphically:

(3.5.9) c
[ε]
W,σ·ωD : C{ε} ∼−→ ĈΓ(W ).

The map extends to their closures homeomorphically. The hyper-quadrant

satisfies πΠ(ĈΓ(W ))=EΓ(W ).
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(7) The linearization map c
[ε]
W,ωD maps the opposite components C[ε]

±
in S

[ε]
W,R (cf. (1.7.1) and (2.5.5)) to the hyper-quadrants in V̂Π:

(3.5.10)
ĈΓ(W ),± := {∑α∈Π λαvα∈ V̂Π | (−1)i−1λα >0 for i with

(−1)i−1 = ±1 and α ∈ Πi},
homeomorphically:

(3.5.11) c
[ε]
W,σ·ωD : C[ε]

± ∩ (π[ε]
τ )−1E

{ε}
W

∼−→ ĈΓ(W ),± ∩ (πΠ)−1EΓ(W ).

The map extends to their closures homeomorphically.

(8) For a subset Σ of Π, let FΣ be the facet of C{ε} corresponding to

the facet ∩α∈Σ{λα =0} ∩ ĈΓ(W ) by (3.5.9). Then φβ for β ∈ Σc := Π\Σ
is regular on a neighborhood of FΣ in S

{ε}
W,R, and one obtains a semi-

algebraic isomorphism:
(3.5.12)

(σω · φβ)β∈Σc : FΣ
∼−→

(∏
β∈Π1∩Σc R>0

)
×

(∏
β∈Π2∩Σc R<0

)
.

Remark 13. In Theorem C, the scaling factor ω and the sign factor σ
appear always as the product σ ·ω. In this paper we distinguished them
because of their different origins.

3.6. Proof of Theorem A.
Recall the R-equivariant isomorphism (3.5.5). Using (3.5.8)–(3.5.11),

for a positive real number λ ∈ R>0, the map c
[ε]
W,σ·ωD induces a semi-

algebraic diffeomorphism from J̄
{ε}
W (λ) := C̄{ε}∩τ [ε](−λ)C̄[ε]

+ ∩τ [ε](λ)C̄[ε]
−

to

(3.6.1)
ĈΓ(W ) ∩ (ĈΓ(W ),+ − λvΠ) ∩ (ĈΓ(W ),− + λvΠ)

= {(λα)α∈Π ∈ V̂Π | 0 ≤ (−1)iλα ≤ λ for α ∈ Πi, i = 1, 2}
where the right hand side is a parallelotope of dimension l in V̂Π. It is

the intersection of two simplicial cones Ĉε
Γ(W ) and Ĉε

Γ(W )(λ), where

(3.6.2)
Ĉε

Γ(W )(λ) := (ĈΓ(W ),+ − λvΠ) ∩ (ĈΓ(W ),− + λvΠ)

= {(λα)α∈Π∈ V̂Π | (−1)iλα ≤ λ for α∈Πi, i = 1, 2}.
Let us show a slightly stronger transversality between the two cones

in order to apply it to the proof of Theorem B in the next subsection.

Theorem A addendum. The faces of J̄
{ε}
W (λ) are crossing normally

at any point of J̄
{ε}
W (λ) \ (π

[ε]
τ )−1(B

[ε]
W,≥3,R) (recall §1.3 Definition 1.).
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Proof. Recall the formula (3.4.5) for the Jacobian
∂(φα1 ,...,φαl

)

∂(P1,...,Pl)
of the

map cW . The right hand expression means that it does not vanish on

the complement of (πτ )
−1(B

[ε]
W,≥3,R). This means that the hyperplanes

φα = const for α ∈ Π, which define faces of the polyhedra J
{ε}
W (λ), are

normally crossing on the complement of (πτ )
−1(B

[ε]
W,≥3,R). ¤

This addendum proves the transversality stated in Theorem A and
hence completes the proof of Theorem A.

Remark 14. Let ao{ε}(λ) be the vertex of J̄
{ε}
W (λ) which is antipodal to

the origin. By the definition, it is on the axis {S =0}⊂SW (I2(h)),R. For

each ε∈{±1}, one has AOε ={ao{ε}(λ) | λ∈R>0}. This is the reason
why AOε introduced in (2.5.6), is called the vertex orbit axis.

3.7. Proof of Theorem B.
We shall show that

(3.7.1) K̄ε
W (λ) := (πW )−1(J̄

{ε}
W (λ))

is a semi-algebraic polyhedron dual to the Weyl chamber decomposition
of V εR . Since the proofs for ε=1 and for ε=−1 are completely parallel,
we prove only the case ε=1 and omit the upperscripts ε, {ε} and [ε].
The proof is divided into two parts: 1. local analytic part and 2. global
combinatorial part.

1. We study the local analytic property of K̄W (λ). In this paragraph,
we mean by (X, x) ' (Y, y) that there exists an isomorphism from a
neighborhood of x in X to a neighborhood of y in Y bringing x to y.

Assertion 3.3. Let x̃ ∈ K̄W (λ) and m := dimRV
W (x̃)
R , where W (x̃) is

the stabilizer subgroup of W at x̃ and V
W (x̃)
R is the fixed point subspace

by the W (x̃)-action. Then, there exist an integer k with 0 ≤ k ≤ m
and a local real analytic isomorphism from a neighborhood of x̃ in VR
to a neighborhood of the origin of (VR/V

W (x̃)
R ) × Rm which makes the

following diagram commutative:

(3.7.2)

(VR, x̃) ' (
(VR/V

W (x̃)
R )× Rm, 0

)
⋃ ⋃

(K̄W (λ), x̃) ' (
(VR/V

W (x̃)
R )× Rk

≥0×Rm−k, 0
)
,

Furthermore, the isomorphism induces the following isomorphisms:
i) the isomorphism of the subspaces

(3.7.3) (V
W (x̃)
R , x) ' ({0} × Rm, 0)
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ii) for any facet G of J̄W (λ) which is adjacent to ao(λ)

(3.7.4)
(
π−1

W (G), x̃
) ' (

(VR/V
W (x̃)
R )×K, 0

)

where K is theclosureofafacetK of (Rk
≥0×Rm−k,0)(which may be empty).

Proof. Let Q1, . . . , Ql be a system of generators of the ring of in-
variants S(V ∗R )W (x̃), and let us consider a W (x̃)-invariant map Q =
(Q1, . . . , Ql) : (VR, x̃) → (Rl, x) for x := Q(x̃). Then, there is a local
analytic isomorphism $ : (Rl, x) ' (SW,R, x) for x := πW (x̃) such that
πW = $ ◦ Q. We may choose the first Q1, . . . , Ql−m which form the

generators of the ring of invariant polynomials on VR/V
W (x̃)
R by the

W (x̃)-action, and the last Ql−m+1, . . . , Ql which are W (x̃)-invariant

linear functions on VR whose restrictions on V
W (x̃)
R give its linear coor-

dinate system such that x = 0. By this choice of the Qi’s, the local
analytic isomorphism $ induces a local splitting of the set C at x:

(3.7.5) (C, x) '
((

(VR/V
W (x̃)
R )/W (x̃)

)× Rm, 0
)
.

We shall denote by F the stratum of C containing x in the left hand

side, which is locally the image of (V
W (x̃)
R , x̃) by πW . Then (F, x̃) is

mapped to the subspace (Rm, 0) in the right hand side.
On the other hand, the linearization map cW maps the central region

C to the cone ĈΓ(W ) (3.5.8), and hence the stratum F to a stratum of

ĈΓ(W ), which is an open cone in ∩l
i=m+1Hαi

for some {αm+1, . . . , αl} ⊂
Π. Then, φα1 , . . . , φαm for the remaining index set {α1,. . ., αm}= Π\
{α1, . . . , αl−m} form a local coordinate system of F at x (Theorem C
(8)). Therefore, replacing Ql−m+1, . . . , Ql with φα1−φα1(x), . . . , φαm−
φαm(x), we obtain a local analytic expression similar to (3.7.5), where
the subspace ({0} × Rm, 0) of the right hand side is still the image of
F by (φαi

− φαi
(x)).

The parallelotope JW , locally at x, is defined as the subset of the cen-
tral component C given by inequalities±φαi

≤λ for some i ∈ {1, . . . , m}
and suitable signs (depending on i, recall (3.6.1)). Then after a suitable
renumbering of {1, . . . , m}, we obtain further a local isomorphism:

(3.7.6) (J̄W (λ), x) '
((

(VR/V
W (x̃)
R )/W (x̃)

)× Rk
≥0 × Rm−k, 0

)
.

The facet decomposition of J̄W (λ) as a parallelotope at x coincides with
the natural facet decomposition of Rk

≥0 × Rm−k in the right hand side.
Taking the inverse images of the both sides of (3.7.6) in their cover-

ing spaces, i.e., a neighborhood of x̃ in VR and a neighborhood of the

origin in (VR/V
W (x̃)
R ) × Rm, respectively, we obtain the local analytic

isomorphism (3.7.2). Then (3.7.3) follows from the construction.
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Let us consider a facet G of JW which is adjacent to ao(λ). Since
ao(λ)∈G, G is contained in the interior of C. This implies the image of

G in the right hand side of (3.7.5) is contained in
((

(VR/V
W (x̃)
R )/W (x̃)

)◦×
Rm, 0

)
where

(
(VR/V

W (x̃)
R )/W (x̃)

)◦
is the unique open facet. Then, by

the isomorphism (3.7.6), the closure G of the stratum G is mapped to(
((VR/V

W (x̃)
R )/W (x̃)) × K, 0

)
for the closure of a suitable facet K of

(Rk
≥0×Rm−k, 0) (including empty case). By taking their inverse images,

the isomorphism in the first line of (3.7.2) induces (3.7.4). ¤

Corollary. Let G be a facet of J̄W (λ) which is adjacent to ao(λ). Then
(πW )−1(G) is a submanifold with corners in VR, which is transversal to
the system of hyperplanes {Hα,R}α∈R(W ).

Proof. Since πW |(VR\∪α∈R(W )Hα,R) is locally biregular and G \ DW,R is
a manifold with corner due to Theorem A addendum in §3.6, we only
have to show the property of (πW )−1(G) at a point x̃ ∈ (∪α∈R(W )Hα,R)∩
(πW )−1(G). Apply Assertion 3.3 at the point x̃.

The fact ii) in Assertion 3.3 implies that (πW )−1(G) is a locally closed
manifold with corners. Furthermore, the fact that ((πW )−1(G), x̃) con-

tains the factor (VR/V
W (x̃)
R , 0) implies that it is transversal to the

submanifold (Rm, 0). Since V
W (x̃)
R is the intersection of the reflec-

tion hyperplanes pathing through x̃, i) in Assertion 3.3 implies that
((πW )−1(G), x̃) is transversal to every facet Vγ of VR (recall (1.2.2)). ¤

2. We describe the facet decomposition of K̄W (λ) :=(πW )−1(J̄W (λ)).
We first prepare terminology on the facet decomposition of JW .

Let F(o) = {Fγ}γ∈Γ(o) and F(ao) = {Gδ}δ∈Γ(o) be the sets of facets

of JW which are adjacent to o and to ao, respectively. Here we use the
same index set Γ(o) for the two sets by the reason i) below, and put
an overline on the index by the reason iv) below.

i) There is a one-to-one correspondence F(o) ↔ F(ao) in such a
manner that Fγ ↔ Gδ if and only if F γ ∩Gδ consists of a single point.

ii) The set Γ(o) is partially ordered such that for γ, δ ∈ Γ(o) one has

(3.7.7) γ ≤ δ ⇔ Fγ ⊂ F δ ⇔ Gγ ⊃ Gδ.

iii) Gγ ∩F δ 6= ∅ if and only if γ ≤ δ for γ, δ ∈ Γ(o). The intersection
is a closed facet of JW (' [0, 1]k) of dimension k = dim(Fδ)−dim(Fγ).

iv) Recall the index set Γ (1.2.2), on which W acts in the obvious
manner. Then, there is a bijection Γ/W ' Γ(o) (we denote by δ ∈ Γ(o)
the image of δ ∈ Γ) such that πW (V δ) ∩ J̄W (λ) = F δ for δ ∈ Γ.
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Definition. A semi-algebraic set K in VR is called a facet of K̄W (λ)
if there is Gγ ∈ F(ao) such that K is the interior of a connected
component of (πW )−1(Gγ).

Let us show that the set of all facets of K̄W (λ) is indexed by Γ. For
any γ ∈ Γ, by the definition, πW (Vγ) and Gγ intersects at a single point
transversally. Therefore, there exists a unique connected component of
(πW )−1(Gγ) that intersects Vγ. Its interior is, by the definition, a facet
of K̄W (λ), which we shall denote by Kγ. Conversely, let K be the
interior of a connected component of (πW )−1(Gγ) for some γ ∈ Γ(o).
Since F γ intersects Gγ transversally at a point, there exists a connected
component of (πW )−1(Fγ) whose closure intersects K at a single point.
Let Vγ for γ ∈ Γ be the cone in (1.2.2) which support the component
such that γ projects to γ. Thus, we find a unique γ ∈ Γ such that Vγ

intersect K at a point.
By definition, all facets of K̄W (λ) are disjoint and cover K̄W (λ). This

shows the decomposition

(3.7.8) K̄W (λ) = tγ∈ΓKγ.

The fact that (3.7.8) gives a semi-algebraic stratification of K̄W (λ)
(i.e., they satisfy the boundary condition) can be reduced to that of
F(ao). The fact that K̄W (λ) becomes a semi-algebraic polyhedron with
respect to (3.7.8) whose faces are normally crossing follows from (3.7.2).

Finaly, we have to show the three duality properties i), ii) and iii) for
KW (λ) in Definition 2 in §1.3. The proofs are reduced to the duality
between F(o) and F(ao) and to the local analysis discussed in the first
half of this proof. In particular, for the last iii), we have to show that
the intersection of the closure of a chamber C with the KW (λ)

(3.7.9) C ∩KW (λ)

is analytically isomorphic to the cube [0, 1]l in the following strong
sense: there is a neighborhood in VR of the set (3.7.9) and a real analytic
isomorphism of the neighborhood to an open subset of Rl such that the
set (3.7.9) is mapped homeomorphically onto the cube [0, 1]l. The fact
that the set (3.7.9) is homeomorphic to a cube follows from the fact
that the restriction of πW on the set (3.7.9) is a homeomorphism onto
the polyhedron JW (λ). On the other hand, we have shown in Assertion
3.3 that faces are normally crossing at any point of the boundary of
the set (3.7.9). These two show the required result.

These complete the proof of Theorem B.

Note. The set (3.7.9) is given by two systems of l innequalities on VR.

(3.7.10) (∩α∈Π{fα ≥ 0}) ∩ (∩i=1,2 ∩α∈Πi
{(−1)iφα ≤ λ}) .
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3.8. Examples of type A3.
Fig. 2. The linearization maps of type A3

The shaded area in the upper and lower right figures are the central

region E
{ε}
A3

and the Γ(A3)-cone EΓ(A3), respectively. The tube domain

(π
[ε]
τ )−1(E

{ε}
A3

) in S
[ε]
A3,R is illustrated in the upper left figure as the do-

main sandwiched by the covers of an open booklet. The tube domain

π−1
Π (EΓ(A3)) in V̂Π is illustrated in the lower left figure as the domain

sandwiched by the straight covers of an open booklet.

0 E
{ε}
A3

πτ

B
[ε]
A3,2

B
[ε]
A3,3

T
[ε]
A3,R

S
[ε]
A3,R

(πτ )−1(E{ε}
A3

)

D
[ε]
A3,R

c
[ε]
A3

0

b
[ε]
A3

V̂ΠA3

Hα1α2

EΓ(A3)
0

Hα1α3

Hα2α3

VΠA3

πΠ

(πΠ)−1(EΓ(A3))

Γ(A3) := ◦
α1
−−◦

α2
−−◦

α3

Hα3

Hα1

Hα2 0
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4. Fundamental group of SW,C\DW,C

A presentation of the fundamental group of the regular orbit space
SW,C\DW,C in terms of the Coxeter matrix MW is given by E. Brieskorn
[Br1]. A group G with that presentation, that is: generator system aα

(α ∈ Π) and the braid relations: aαaβ . . .︸ ︷︷ ︸
mαβ-letters

= aβaα . . .︸ ︷︷ ︸
mαβ-letters

for α, β ∈ Π

as for the fundamental relations, is called an Artin group [BS]. The
generators of π1(SW,C\DW,C) are described in [Br1] in terms of adjacent
chambers in VR (see also a work by P. Deligne [D1], where the Artin
group is given in terms of the galleries of chambers). Then, several
authors including Brieskorn, Deligne and the author asked to describe
the generator system of the Artin group in terms of a geometryonSW,C.

As a consequence of Theorems A, B and C, we give two different an-
swers to this question. The first one is to use the 1-skeleton of JW (λ){ε}

and is described in 4.1. Identification with Brieskorn’s generator sys-
tem is given in 4.2. The second one is to use τ -orbits as the pencil of
Zariski-van Kampen method. It is described in §4.3 and is identified
in §4.4 with the one given in §4.1. The generator systems, we have de-
scribed, depend on the choice of ε ∈ {±1} since the base points belong
to the different central component C{ε}. Their relation is given in 4.5.

In this section, we sometimes identify a path and its homotopy class.

4.1. 1-skeleton of the polyhedron J
{ε}
W (λ).

With a use of the 1-skeleton of the polyhedron J
{ε}
W (λ) (Theorem A),

we construct a generator system of π1(SW,C\DW,C). Using Theorem B,
they are identified in §4.2 with the one studied by Brieskorn [Br].

Let ao{ε}(λ) be the vertex of J
{ε}
W (λ) which is antipodal to the origin

(belonging to AOε). Due to Assertion §1.1 5, for each α ∈Π, there

exists a unique edge [ao{ε}(λ),pα] of J
{ε}
W (λ) which starts from ao{ε}(λ)

and terminates at a point pα on the αth face of C{ε} (cf. Fig. 4).

Since the edge [ao{ε}(λ),pα] intersects the discriminant D
[ε]
W,R transver-

sally at pα (Theorem A), a complexification of [ao{ε}(λ), pα] (a complex
open curve in SW,C which contains [ao{ε}(λ), pα]) intersects the discrim-
inant locus DW,C transversally at pα. In the complexification, let us
consider a closed path γα based at ao{ε}(λ) and turning once around
the discriminant locus at pα counter-clockwise as in Fig. 3.

Fig. 3. The generator γα on an edge of J
{ε}
W (λ) (cf. Fig. 4).

γα

ao{ε}(λ) = (λ, · · · , λ)pα = (λ, λ, · · · ,
α
0, · · · , λ)
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Theorem 4.1. The system of the homotopy classes of γα (α ∈ Π) in
π1(SW,C\DW,C, ao{ε}(λ)) coincides with the generator system {gα}α∈Π

given by Brieskorn [Br1, Zusatz]. Therefore, π1(SW,C\DW,C, ao{ε}(λ))
is an Artin group with respect to the generator system γα (α ∈ Π).

4.2. Proof of Theorem 4.1.
Let ãoε(λ) be the vertex of Kε

W (λ) in the chamber Cε which projects
to aoε(λ). For α ∈ Π, let α · ãoε(λ) be the image of ãoε(λ) by the
reflection α, and [ãoε(λ), α · ãoε(λ)] be the 1-edge of the polyhedron
Kε

W (λ) connecting two vertices ãoε(λ) and α · ãoε(λ), which intersects
Hε

α,R transversally at an inverse image p̃α of the point pα. Then, πW

projects [ãoε(λ), p̃α] and [p̃α, α·ãoε(λ)] onto the edge [pα, aoε(λ)].
The inverse image of the path γα (see Fig. 3), which starts at ãoε(λ),

is a path in the complexification of [ãoε(λ), α·ãoε(λ)] connecting ãoε(λ)
and α · ãoε(λ) described as follows: start at ãoε(λ) and move along
[ãoε(λ), p̃α] close to p̃α. Then, just before reaching p̃α turn along a
half circle centered at p̃α in the counter-clockwise direction (inside a
complexification of [ãoε(λ), α·ãoε(λ)], in which [ãoε(λ), α·ãoε(λ)] crosses
the discriminant locus at the point p̃α) and then to come back to a
point [p̃α, α · ãoε(λ)]. Then, again move along [p̃α, α · ãoε(λ)] till the
point α·ãoε(λ). In fact, this path is homotopic to the path gα described
by Brieskorn [Br1,Zusatz].

Note. Let us give briefly explain how the braid relations follow imme-
diately from the description of γα. For any pair α, β ∈ Π, consider the

2-dimensional facet, denoted by [aoε(λ), pα, pβ], of JW
{ε}

(λ) containing
the edges [aoε(λ), pα] and [aoε(λ), pβ] (Fig. 4.). The [aoε(λ), pα, pβ] is
a parallelogram transversal to the 2-codimensional stratum of the dis-
criminant locus of label mα,β. The inverse image of the parallelogram in
Kε

W (λ) is a union of 2mαβ-gons, whose boundary are mαβ-alternating
sequence of inverse images of [aoε(λ), pα] and [aoε(λ), pβ]. One trans-

lates a 2mαβ-gon Kαβ to K̃αβ in a complex direction in VC such that i)

K̃αβ does not meat with reflection hyperplanes, ii) the boundary of K̃αβ

is homotopic to an alternating sequence of inverse images γα and of γβ.
This implies the homotopy relation: γαγβ . . .=γβγα . . . (mαβ-terms).

Fig.4. The 2-Facet [aoε(λ), pα, pβ]

(cf. Fig.2.)

•

•

•

pβ

ao{ε}(λ)
2-mαβcusp

(label=mαβ)

pα

•

Fig.5. Pencil close to αβ-edge

(cf. Fig.6.)

•

•

•
2-mαβcusp

(label=mαβ)

•

•

•

•

∗

•

tβ

tα
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4.3. Zariski-van Kampen generator system.
We identify the generator system {γα}α∈Π in §4.1 with the well-

known Zariski-van Kampen generator system. This is achieved since
the τ -direction is transversal to the discriminant divisor, and hence the
τ -orbits in SW play a good role as the Zariski pencil.

Choose a base point ∗ε in the central component C{ε} in S
[ε]
W,R. The

real line τ [ε](R)(∗ε) and the real discriminant locus D
[ε]
W,R intersect by

l-points (counted with multiplicity). We order them as

(4.3.1) t1 ≤ . . . ≤ tl1 < ∗ε < tl1+1 ≤ . . . ≤ tl,

where u ≤ v (resp. u < v) means v ∈ τ [ε](R≥0)u (resp. v ∈ τ [ε](R>0)u).
For a generic ∗ε (precisely, if ωW,2(∗ε) 6= 0), the points t1, . . . , tl are
distinct. Inside the complexification τ(C)(∗ε) of the line, we choose
l-closed paths δ1, . . . , δl based at ∗ε and turning once around the points
t1, . . . , tl counter-clockwise as in the Fig. 6.

Fig. 6. The Zariski-van Kampen generators on a τ -orbit (cf. Fig.5.).

· · ·· · ·
δlδl1+1δ1 δl1

t1 tl1+1 tl∗εtl1

It is well-known that they generate the fundamental group of the
complement of the discriminant locus and that their fundamental rela-
tions are determined by the Zariski-van Kampen method.

We compare the two generator systems introduced in §4.1 and in the
present subsection. Let aoε and ∗ε be the base points chosen in §4.1
and §4.3. The paths in C{ε} connecting aoε and ∗ε consist of a single
homotopy class, denoted by [aoε, ∗ε], since C{ε} is simply connected.

Theorem 4.2. The conjugation by [aoε, ∗ε] induces the bijection of the
generator systems:

{γα}α∈Π ' {δi}1≤i≤l,

where the bijection {1, . . . , l} ' Π of the index sets is given by the map
cW : i ↔ α ⇔ cW (ti) ∈ Hα. The homotopy classes δ1, . . . , δl1 mutually
commute, and so do the homotopy classes δl1+1, . . . , δl.

4.4. Proof of Theorem 4.2.
Let ∗ε ∈ C{ε} be the base point as above. Consider the real τ -orbit

τ [ε](R)(∗ε). Due to the homeomorphism (3.5.5), we identify the tube

domain (π
[ε]
τ )−1(E

{ε}
W ) with (πΠ)−1(EΓ(W )). For α ∈ Π1, the half line

τ [ε](σε[h/2]R>0) · ∗ε intersects the hyperplane Hα ={φα =0} at a point,
which we write tα. For α∈Π2, the other half line τ [ε](−σε[h/2]R>0) · ∗ε

intersects the hyperplane Hα ={φα =0} at a point, which we write tα.
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If πτ (∗ε) 6∈ B
[ε]
W,2,R, then all tα’s are distinct. We choose the paths as in

Fig. 6. Let us index them by the set Π: the path turning around the
point tα shall be called δα.

We first show that
i) the homotopy classes of δα for α ∈ Π1 mutually commute and so

do the homotopy classes of δα for α ∈ Π2,
ii) for two choices of base points ∗1 and ∗2 ∈ C{ε}, the conjugation by

a path connecting ∗1 and ∗2 in C{ε} induces one to one correspondences
between the generators of the same index.

They follow from the descriptions of the discriminant locus and the
central component in Theorem C, (5) and (6) as follows. Move the
line τ [ε](R)(∗) by moving ∗ in C{ε} and trace the l-points {tα}α∈Π =

τ [ε](R)(∗)∩D
[ε]
W,R in the line. The fact that E

{ε}
W does not intersect higher

bifurcation set BW,≥3 but only with ordinary B
[ε}
W,2,R implies that one

obtains only some commutative relations among generators. As far as
∗ moves inside C{ε}, the set of points {tα | α ∈Π1} and the set of the
points {tα | α ∈ Π2} are separated by the base point ∗ (Theorem C
(6)). Theorem C (5) claims that if α and β belong to the same Π1 or
Π2, then the hyperplanes Hα and Hβ are normal crossing in the tube

domain (π
[ε]
τ,R)

−1(π
[ε]
τ,R(C{ε})) ⊂ (π

[ε]
τ,R)

−1(E
{ε}
W ). This proves i) and ii).

Next, we show that
iii) the conjugation by a path connecting aoε(λ) and ∗ε in C{ε} induces

a correspondence of the homotopy class of γα to that of δα for α ∈ Π.
We prove this by ii) as follows.
For each α ∈ Π, we can choose a base point ∗α such that the line

τ [ε](R) · ∗α and the discriminant locus D
[ε]
W,R intersect at the point pα

introduced in §4.1. Let [ao{ε}(λ), ∗α] be a path in C{ε} connecting the
two vertices and let [∗α, pα] be the interval in the line τ [ε](R) · ∗α.

Then, the path [ao{ε}(λ), pα] (the edge of J
{ε}
W (λ[ε]) connecting the

vertices ao{ε}(λ) and pα) is homotopic to the composition of paths
[ao{ε}(λ), ∗α][∗α, pα] in C{ε}. This means that the conjugation by [ao{ε}(λ), ∗α]
induces the correspondence between the homotopy classes of γα and
that of δα. This fact together with ii) implies iii).
Note. That the generator system {δα}α∈Π satisfies the braid relation
can be shown by the standard Zariski-van Kampen method.

4.5. Comparison of generator systems for ε ∈ {±1}.
Our identification of the fundamental group of SW,C\DW,C with the

Artin group (either by the use of {γα}α∈Π or of {δα}α∈Π) depends on
the choice of the base point locus. Actually, depending on ε ∈ {±1},
the base point is chosen in the central component C{ε}. For a path
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γ connecting C{+} and C{−}, an isomorphism of the two fundamental
groups is given by Ad[γ], where [γ] is the homotopy class of the path
and by Ad we mean the conjugation action on homotopy classes.

Here we choose the simplest path connecting the two components
C{+1} and C{−1}. Namely, let the base points ao+ (resp. ao−) lie on the
positive (resp. negative) half v.o. axis AOε. Consider the complexifica-
tion of the v.o. axis. Inside the complex v.o. axis deleted by the origin,
let γ+ (resp. γ−) be the path connecting ao+ to ao− (resp. ao− to ao+)
by turning half around the origin counter-clockwise.

ao+

γ+

γ−

ao− oAO− AO+◦

Fig. 7 The complexification of the vertex orbit axis AO

••

By the use of them, we have the isomorphisms:

π1(SW,C \DW,C, ao+)
Ad[γ+]−→ π1(SW,C \DW,C, ao−)

π1(SW,C \DW,C, ao+)
Ad[γ−]←− π1(SW,C \DW,C, ao−)

In order to state the following Assertion, we recall the fundamental
element [BS]. Consider the monoid generated by the letters aα (α∈Π)
satisfying the braid relations as the defining relations. The fundamental
element ∆ is the shortest element in the monoid which is divisible (from
both sides) by any of the generators aα. Such ∆ exists uniquely in the
monoid. Since the monoid is embedded in the Artin group, we identify
∆ with its image.

Assertion 4.3. The homotopy classes [γ+][γ−] and [γ−][γ+] are the
fundamental element ∆ in each of the fundamental group based at ao+

and ao− regarded as an Artin group with respect to the generator sys-
tems {γα}α∈Π.

This fact follows from i) the length of [γ+][γ−] as an element of the
monoid is given by l([γ+][γ−]) = deg(∆W )/deg(R) = hl/2 = l(∆), and
ii) a description of the monodromy of [γ+][γ−] on bW : TW,C 99K VΠ,C,
see [S4,§8,9]).

Note. 1. ∆2 belongs to the center of the Artin group for any type of
W . However, ∆ does not belong to the center if W is of type An for
n ≥ 2, D2k+1 for k ≥ 2, E6 and I2(2q + 1) for q ≥ 1.

2. The fundamental element ∆ projects to the longest element of
the Coxeter group W .
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Appendix. Dihedral Group of Type I2(h)

For the dihedral group W (I2(h)) (h≥3), we describe the data 1 – 9.

1. The action of W (I2(h)) on U (recall Notation §2.5 i) – vi)):
W (I2(h)) is generated by the reflections α1 and α2 on U := R⊕ Ri
given by α1(z) := z and α2(z) := ω2z, where z := x + yi ∈ U and
ω := exp(πi/h), which satisfy the fundamental relation (α1α2)

h = 1.
2. The set of reflections of W (I2(h)) is given by

R(W (I2(h)))={αk :=α1(α1α2)
k−1 |k=1,. . ., h}.

3. The normalizer N(W (I2(h))) in GL(U) is equal to W (I2(2h)) and
N(W (I2(h)))/W (I2(h))={[1], [β]} where β is the reflection: β(z)=
ωz. One has [−1] = [1] for even h, and [−1] = [β] for odd h.

4. The twisted real vertex orbit planes are given by

S
[+1]
W (I2(h)),R = Spec(R[R, S])R and S

[β]
W (I2(h)),R = Spec(R[R, S [β]])R,

where R=R[β] =x2+y2, S =S[1] =Re((x+iy)h) and S[β] =S/
√−1.

5. For [u] ∈ N(W )/W , the twisted real discriminant locus D
[u]
W (I2(h)),R

in S
[+1]
W (I2(h)),R is defined by the equation:

∆W (I2(h)) = Rh − S2 = Rh + (S[β])2 = εh((εR)h − (S[ε])2) = 0.

This implies that D
[β]
W (I2(h)),R={0} for even h, but D

[ε]
W (I2(h)),R 6={0}

for any ε. Therefore, in 7. and 8., we consider only cases for [ε].
6. The τ [u]-action on the plane: (R,S [u]) 7→ (R,S [u] +λ[u]) for λ[u] ∈ R,

7. The equation for the inverse image (π
[ε]
W,R)

−1(D
[ε]
W (I2(h)),R + λ[ε]) by

the polar coordinates x + iy =
√

εrexp(iθ) on U ε is given by

(τ [ε])∗(λ[ε])∆W = Rh − εh(S[ε] + λ[ε])2

= εh(r2h sin2(hθ)− 2εh(h−1)/2rhλ[ε] cos(hθ)− (λ[ε])2)
= εh(rh(1− εh(h−1)/2 cos(hθ))− λ[ε])(rh(1 + εh(h−1)/2 cos(hθ)) + λ[ε])

8. The dual polyhedron is described by the polar coordinates as

K̄ε
W (λ[ε]) = {z ∈ U ε | τ [ε](λ[ε])∆(z) ≤ 0} ∩ {τ [ε](−λ[ε])∆(z) ≤ 0}

= {√εrexp(iθ) ∈ U ε | rh ≤ λ[ε]/(1− εh(h−1)/2 cos(hθ))
rh ≤ λ[ε]/(1 + εh(h−1)/2 cos(hθ))}.

9. For h=3 and 4, for ε=1 or −1 and for λ[ε] =1, we draw the figures:

i) the real discriminant locus D
[ε]
W,R and the λ[ε]-shifted real discrim-

inant locus: D
[ε]
W,R ± λ[ε] := τ [ε](±λ[ε])(D

[u]
W,R) in S

[ε]
W (I2(h)),R.

ii) the inverse images (π
[ε]
W,R)

−1(D
[ε]
W,R) and (π

[ε]
W,R)

−1(D
[ε]
W,R±λ[ε]) inU ε.

iii) the parallelograms J
{ε}
W (λ[ε]) and the polyhedra Kε

W (λ[ε]) (shaded).

iv) the two twisted real forms S
[1]
W (I2(h)),R and S

[β]
W (I2(h)),R which are

embedded in the real 3-space SW (I2(h)),C ∩ {Im(R) = 0}.
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1. h is odd and coset [1]: In this case, [β] = [−1] 6∈ [W (I2(h))].

D
[+1]
A2,R + λ[+1]

D
[+1]
A2,R

D
[+1]
A2,R − λ[+1]

π+1
A2R

3 lines in V +
A2

are the reflection hyperplanes for WA2 .

0 J
{+1}
A2

(π+1
A2,R)

−1(D
[+1]
A2,R + λ[+1])

S
[+1]
A2,R

Fig.8. Polyhedra J
{+1}
A2

and K+1
A2

for λ[+1] = 1

(π+1
A2,R)

−1(D
[+1]
A2,R − λ[+1])

V +1
A2

= VA2,R

K+1
A2

2. h is odd and coset [β] = [−1]:

(π−1
A2,R)

−1(D
[−1]
A2,R − λ[−1])

D
[−1]
A2,R − λ[−1]

D
[−1]
A2,R

D
[−1]
A2,R + λ[−1]

π−1
A2,R

S
[−1]
A2,R

0J
{−1}
A2

3 lines in V −
A2

are the reflection hyperplanes for WA2 .

Fig.9. Polyhedra J
{−1}
A2

and K−1
A2

for λ[−1] = 1

(π−1
A2,R)

−1(D
[−1]
A2,R + λ[−1])

V −1
A2

= VA2,R ⊗
√−1

K−1
A2

D
[+1]
A2,R

S
[−1]
A2,R

D
[−1]
A2,R

•0

S
[+1]
A2,R

TA2,R

Im(S)

Re(R)

Fig.10. Positions of S
[+1]
A2,R and S

[−1]
A2,R inside SA2,C ∩ {Im(R) = 0}.

Re(S)
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3. h is even and coset [1] = [−1]: In this case, −1 ∈ W (I2(h)).

S
[+1]
B2,R = S

[−1]
B2,R

DB2,R := D
[+1]
B2,R = D

[−1]
B2,R

V +1
B2

= VB2,R

V −1
B2

= VB2,R ⊗
√−1

K−1
B2

K+1
B2

reflection hyperplanes for WB2 .
4 lines in V +1

B2
and V −1

B2
are

Fig.11. Polyhedra J
{±1}
B2

(λ) and K±1
B2

(λ) for λ = 1.

π+1
B2,R

J
{+1}
B2

DB2,R + λ

π−1
B2,R

(π−1
B2,R)

−1(DB2,R − λ)

(π−1
B2,R)

−1(DB2,R + λ)

(π+1
B2,R)

−1(DB2,R + λ)

(π+1
B2,R)

−1(DB2,R − λ)

0

DB2,R − λ

J
{−1}
B2

4. h is even and coset [β]: In this case, [β] 6= [−1] ∈ [W (I2(h))].

The discriminant locus D
[β]
W (I2(h)),R in the real form S

[β]
W (I2(h)),R consists

only of the origin {o}. Therefore, we omit the figure for this case.

D
[+1]
B2,R = D

[−1]
B2,R

D
[+1]
B2,R = D

[−1]
B2,R

Fig.12. Positions of S
[±1]
B2,R and S

[β]
B2,R inside SB2,C ∩ {Im(R) = 0}.

S
[β]
B2,R

• TB2,R

S
[+1]
B2,R = S

[−1]
B2,R

0

Im(S)

Re(R)

Re(S)
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Remark 15. We compare the multiplicities of two equations of the bi-
furcation set in the vertex orbit curve TW (I2(h)) := Spec(R[R]).

i) The discriminant δ of the map R = zz̄ = x2+y2 : U → R is equal to
R itself. (The free resolution of R[x, y]/(∂xR, ∂yR) as an R[R]-module

is given by 0 → R[R]
R→ R[R] → R[x, y]/(∂xR, ∂yR) → 0.)

ii) The discriminant ω of the quadratic polynomial ∆W (I2(h)) = Rh−
S2 in S is equal to 4 ·Rh.

Comparing i) and ii), we obtain a relation:

(∗) ω = 4 · δh.
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[T1] Thom, René: L’équivalence d’une fonction différentiable et d’un poly-
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