タイトル TITLE	Structure and randomness in II_1 factors		
講演者 NAME	Sorin Popa	所属 INSTITUTION	京大 & UCLA

II₁ factors are non-commutative versions of the function algebra $L^{\infty}([0, 1])$, the way matrix algebras $M_{n \times n}(\mathbb{C})$ are analogue to finite spaces. They arise as infinite tensor products and ultra products of matrix algebras, but also from groups Γ and their measure preserving ergodic actions on probability spaces $\Gamma \curvearrowright X$. A key analysis tool to study II₁ factors is *deformation-rigidity theory*, which exploits the tension between "soft" and "rigid" parts of the algebra to unravel its building data. This fits within the fundamental dichotomy *structure versus randomness*, which appeared in many areas of mathematics in recent years. I will present several classification results obtained through this technique, showing for instance that factors arising from Bernoulli actions of property (T) groups $\Gamma \curvearrowright X$ "remember" both the group and the action, and that free ergodic actions of the free groups \mathbb{F}_n remember the rank n.