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1 Introduction

Hecke theory of modular forms gives rise to various Dirichlet series L(s)
enjoying distinguished analytic properties including the functional equation and
the Euler product expansion =

∏
p H

(p)(p−s)−1, where p runs over all prime

numbers and each H(p)(u) is a polynomial. The famous Ramanujan-Petersson
conjecture (abbrev. RPC) was on the absolute values of zeros of each Hecke
polynomial H(p)(u). On the other hand, Hasse’s zeta function ZV (s) of an
algebraic variety V , say, over the rational number field Q is defined as the Euler

product
∏

p Z
(p)
V (p−s), where Z

(p)
V (u) is the congruence zeta function of the

reduction mod p of V (for almost all primes p) which is a rational function. The

properties of zeros and poles of Z
(p)
V (u) (resp. ZV (s)) are in direct connections

with the arithmetic geometry of V (mod p) (resp. V ). The most basic Weil

conjecture (abbrev. WC) was on the absolute values of zeros and poles of Z
(p)
V (u)

when V mod p is complete and non-singular. The former Hecke L-function is
an L-function associtated with an automorphic representation, while the latter
Hasse zeta function is that associated with a system of Galois representations
arising from ℓ -adic cohomology groups of V . The discovery of a new connection
between these two types of Dirichlet series would transform information from
one to the other; e.g. WC to RPC.

The RPC was proved finally by P.Deligne in two steps; its reduction to some
specific case of WC ([Del1] 1968/69), and proofs of WC itself [Del2I],[Del2II]
(1974,80). Now, Sato’s contribution (1962) to RPC was crucial in the first step.
To be precise, based on Michio Kuga’s concrete speculation as to which variety
V would be relevant to the RPC, i.e., for which V the zeta function ZV (s)
would be directly connected with the Hecke’s L(s), he started trying to find an
explicit relation between L(s) and ZV (s) for the variety V proposed by Kuga,
and soon found a pathway connecting these two objects. He reached a point
far enough to make one feel convinced that Kuga’s speculation is correct and
Sato’s method is at least basically on the right track.

On this work, he made some oral communications, e.g. a colloquium talk
’62 and a seminar talk ’63 at the University of Tokyo, with some details in the
latter talk but without explanations on how his formal computations can be
justified. Then suspicions arose among some leading mathematicians in this
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field, partly because of its unfortunate note [note] distributed soon after. And
years passed (with some related papers by others published but) without any
publication by himself on this subject, until the appearance of the decisive
paper [Del1] of Deligne in 1969. Deligne also appeals to Kuga variety but his
method of proof is fairly different from that employed by Sato. Sato’s method of
using arithmetical-geometric interpretation of the trace formula was later further
developed and became a principal tool in the study of Shimura varieties, notably
by R. Langlands starting with [Lg].

The writer Y.I. of this article was a graduate student in the Master’s course
until spring ’63 and then a research associate (Math. Dept., Univ. Tokyo); he
attended Sato’s both talks mentioned above. He hopes that the readers will
allow him for writing from his own understanding (and non-understanding!)
and point of view, and to quote his own relevant paper having the subtitle to
validate M. Sato’s identity (’67) where necessary.

2 Brief history until around 1963

(II-1) The RPC is a conjecture on absolute values of eigenvalues of Hecke
operators acting on the space of modular cuspidal newforms, and can be formu-
lated in analytic terms (cf.IV-1), but the development of arithmetic algebraic
geometry especially by A.Weil made one aware of similarities and possible con-
nections between RPC and the Weil conjecture WC on absolute values of the
Frobenius eigenvalues of complete non-singular algebraic varieties V over finite
fields (cf.IV-3). Rather, it should be said that Weil’s study related to WC itself
had been motivated by this possible connection. For the one-dimensional case,
WC is his theorem WT. When n = dim V > 1, it consists of (i) the existence
of a good cohomology group Hi for each i (0 ≤ i ≤ 2n) of characteristic 0;
(ii) a conjecture on the complex absolute values of eigenvalues of the Frobenius
morphism acting on Hi for each i. Among them (i) was being established by
the ℓ-adic etale cohomology theories of A.Grothendieck and M.Artin around
1963-64. The WC before this meant a little weaker conjecture. Thus the basic
question was:

Can one find a variety (complete, non-singular) V such that the Weil con-
jecture for V implies the RPC for modular cuspidal newforms?.

Now we must specify the weight k of the modular form in question, and
sometimes also its level N .

(II-2) The case k = 2. In this case, RPC was solved by M.Eichler [E1] and
G. Shimura [Sh1](for almost all p), J-I. Igusa [Ig](for individual p not dividing
N), by reduction to the WT for the modular curve of level N .

(II-3) The case k > 2. (i) Inspired by an earlier work of Eichler [E2], Shimura
constructed in [Sh2] a Z-latticeDk of rank = 2dimSk in the complex vector space
Sk of modular cusp forms of weight k (w.r.t. a given congruence subgroup of
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the modular group). The lattice consists of all those forms in Sk having rational
integral real parts for all the periods w.r.t. the Eichler integration. It is such
that (a) the quotient Ak = Sk/Dk carries a natural structure of a polarized
abelian variety over the complex number field C, which in the case of k = 2
is nothing but the Jacobian of the associated modular curve, (b) each Hecke
operator leaves Dk stable and induces an endomorphism of Ak. This work of
Shimura contained a crucial key to the problem. It was, dazzling as it seemed,
not the abelian variety Ak itself as the “wanted V ”. It was the Z-module Dk

on which the Hecke operators act, or rather, its base change ⊗Zℓ (cf. III-3,4).
(ii) A new candidate, so simple and straightforward, occurred to M. Kuga on

some happy day (Kuga’s usual way of saying) for the above basic question. It
is a fiber variety whose base is the modular curve parametrizing elliptic curves
with level N structures and whose fiber is the product of (k − 2) copies of the
parametrized elliptic curve, or its quotient Kummer variety by the diagonal
±1 . To be precise, some smooth compactification of this (k − 1)-dimensional
variety. This family turned out to be the correct candidate. Those who know
his once-hidden but decisive contribution well enough started calling it Kuga
variety, and I shall follow this naming.

(iii) Kuga and Sato were both staying at IAS, Princeton, in the academic
year 1961–62 (Sato’s second year, Kuga’s first), and Y.I. heard from each of
them that Kuga mentioned this idea to Sato on some day in some conversation
between them.

(iv) In 1962, around summer or autumn, news reached Japan: “Sato suc-
ceeded in reducing RPC to WC”. Non-specialists only murmurred “what con-
jecture to what conjecture?”, but for us this was surprising news. On his return
to Tokyo (Tokyo University of Education), he was invited to give a talk in the
autumn colloquim, and then a seminar talk in winter, both at the University of
Tokyo. As a graduate student there, I (Y.I.) attended both. I felt I understood
the basic outline. But the proof related to justification of formal calculations
was not given and we were not able to fill this ourselves. We tried to make
contact with him, but he was even busier as he was going to leave Tokyo soon.
On April ’63, Sato moved to Osaka Universiy and his main interest in number
theory was already on his new conjecture, the “Sato-Tate conjecture”.

(v) Then appeared a note1, to be cited [note], of his seminar talk taken
by a young faculty member in “Sugaku-no-Ayumi”, an informal periodical dis-
tributed among “new generation mathematicians” in Japan. This caused two
waves among specialists concerned:

(!) Observation that the variety which Kuga proposed must be the correct
one, and the full proof would be obtained along a line not too far from what
Sato indicated.

(?) A question about whether it has really been proved. In [note] the points
of proofs are too ambiguous; the main technical difficulty encountered is not
indicated. Is this, then, the fault of the speaker or the note-taker?

1It was without any approval of Sato, and though quoted here just following previous series
of quotations, it is not worth translating/reproducing it in this Volume for several reasons.
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What I can say are that [note] reflected almost faithfully what was written
on the blackboard, that some additional arguments should be necessary for the
proof, and that the final active efforts of the note-taker, even to see Sato, ended
in vain.

(vi) As far as this subject is concerned, Sato was a passer-by. His main
interest by then included his new theory of hyperfunctions and that of zeta
functions of prehomogeneous vector spaces, each as the theory-founder. We
know that he also possessed strong interest and amazing power of penetration
in number theory. But a passer-by has technical handicaps. As regards the
technical problem, I understood three years later [?] that had Sato found some
basic old papers of Deuring’s (cf. IV-4), either in the library of IAS or by
learning from some colleague in number theory, then he would have completed
the proof by himself.

(vii) As a flow, the stimulations (!) and (?) led to Deligne’s final solutions
of RPC. Thus, Sato’s unpublished contribution on this subject certainly had
provided a crucial step.

Kuga found the correct target,
Sato made the first breakthrough,
This stimulation led others to the final solution.

In fact, this caused stimulations and combinations of different ideas in mul-
tiple steps among a few others which led to more than the solution of the RPC;
see III.

(II-4) Sato’s idea, computations and some unclarified points.
Here, let me give a brief explanation, assuming basic Hecke theory for the

case of the level N = 1. A more precise account will be left to (V).

[The H
(p)
k (u)-side] When L(s) = Lk(s) is associated with the space Sk of

modular cusp forms of weight k, each local Hecke polynomial H(p)(u) = H
(p)
k (u)

is in a direct connection with the traces tr(Tk(p
m)) for all m ≥ 1 of the Hecke

operators Tk(p
m) acting on Sk. By Eichler-Selberg trace formula (cf.IV-2), the

characteristic part of this trace is a certain sum over the points of intersection
T(pm).∆. Here, T(pm) denotes the associated Hecke correspondence and ∆ the
diagonal, both being effective divisors on the product X×X of the base modular
curve X with itself, intersecting with each other properly. These intersection
points are parametrized by certain classes of imaginary quadratic quantities
depending on pm. Each summand depends also on k and is in fact a polynomial
of degree k − 2 of the associated quadratic quantity.

[The Z
(p)
V (u)-side] The congruence zeta function of the Kuga variety V = Vk

for weight k at a prime p is in a similar type of connection with the number
Nk(p

m) of Fpm -rational points of Vk mod p for all m ≥ 1, and this number is
naturally a sum over the Fpm-rational points ξ of X mod p. And Vk being the
Kuga variety, each summand, the number of rational points of the fiber above ξ,
is basically the (k − 2)-th power of the number of rational points of the elliptic
curve Eξ parametrized by ξ, which can be expressed by the pm-th Frobenius
eigenvalues of Eξ. Thus, each summand is a polynomial of degree k−2 of (either
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±pm/2 or) imaginary quadratic Frobenius eigenvalues.
To compare these two, Sato is led to consider the following modifications,

for m > 1, of T(pm) and Tk(p
m):

U(pm) =T(pm)− pT(p, p)T(pm−2) (a Hecke correspondence) (1)

Uk(p
m) = Tk(p

m)− pk−1Tk(p
m−2) (a linear operator on Sk) (2)

For the notations T(n, n′), cf. e.g. [Sh0]. The operator Uk(p
m) is induced from

the correspondence U(pm) in the same way as Tk(p
m) is induced from T(pm).

This simple pair of modifications led to two amazing observations.
(i)! As regards the formula for tr(Uk(p

m)), by cancellations, it appears
merely as a partial sum in the formula for tr(Tk(p

m)).
(ii)! If Π (resp.Π′) denotes the graph of the p-th Frobenius map ofX (mod p)

(resp.its transpose), then the Kronecker congruence relation T(p) ≡ Π+Π′(mod p)
leads to such a simple higher degree version as:

U(pm) ≡ Πm +Π′m (mod p). (3)

This means in particular that the points of intersection of U(pm)(mod p) and
∆(mod p) are in two-to-one correspondence with the Fpm-rational points of
X (mod p).

Now, these (i)!(ii)! apparently had inspired Sato with the following observa-
tion:

(iii)([note]? [?]!) The summation in the formula for tr(Uk(p
m)) is essentially

parametrized by the Fpm-rational points of X(mod p).

This can certainly be deduced if the divisor U(pm) were effective and in-
tersected with ∆ properly. But it is not. In fact, take, say m = 2. Then
the linear expression of the divisor U(p2) by irreducible components reads as
T(1, p2)− (p−1)∆. (Note that T(p, p) = ∆ as a divisor.) The sentense in [note]
“tr(Uk(p

m)) is a sum over the fixed points of U(pm)” only left careful readers
in confusion. Thus, what should be remedied is not the [note] unapproved by
Sato, but his intuition based on (i)!(ii)!. This later led Y.I. to a more delicate
pointwise argument using deeper results of Deuring’s to settle the proof of (iii)
(cf. III-2, V below).

How to compactify and desingularize the (Kummer) Kuga variety, in order
to reduce RPC to WC, seems to me a minor point, but I may have to add that
this was totally untouched in his talks in Tokyo mentioned above.

3 Closely related results during 1964-69

(III-1) Kuga-Shimura [K-Sh](1965); cf.also [K1][K2]. In [K-Sh], the authors
took up a quaternionic analogue of RPC and of the Kuga variety, and proved in
this case that the former can be reduced to WC for the latter for almost all p.
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Their argument was based on their congruence relation T(p) ≡ Π + Π′(mod p)
not only over the base curve but also on the fiber variety, and did not need to
use T(pm) for m > 1, thereby avoiding the difficulty mentioned above. Also
in this case, the quaternions being division, the corresponding Kuga variety is
already compact. Two basic citations in [K-Sh] of Sato’s work are (i) concrete
criticisms2 in the footnote 4 in the Introduction and (ii) an acknowledgment
“We are grateful to Mikio Sato for this important observation which inspired us
to a great extent.”

This track separated itself from Sato’s track to use the trace formula, at
“the first branch point”, but it was this paper which inspired Serre the idea to
use ℓ-adic method in order to make it applicable to the original elliptic modular
case, which was then practised by Deligne (see III-3,4 below). Now, in II-3(vi),
I wrote: had Sato known Deuring’s work, then he would have completed the
proof by himself. Here in quite a similar sense, I might add: had Kuga and
Shimura some familiarity with the ℓ-adic cohomology theory, then they would
have succeeded in settling the elliptic modular case too.

(III-2) [Ih](1966-67). In the process of his own study of modular curves in
connection with congruence subgroups of SL2(Z[1/p]), Y.I. observed that Sato’s
arguments can be justified by using Deuring’s basic work [Drg1]. He was at the
IAS and at the end of his “virgin talk” in the members’ seminar (Jan.,1966),
added a few words on this observation. Then some members (A.Borel, A.Weil,
R.Langlands, etc.) kindly suggested him strongly to write down an independent
paper on this. This appeared as [Ih], with a subtitle “to validate M.Sato’s
identities”. Two ideas are involved.

First is Sato’s original idea, that each summand in the formula for tr(Uk(p
m))

has a geometric interpretation related to the number of Fpm-rational points of
the reduction mod p of Kuga varieties, and the second is that the points of
modular curves3 over finite fields can be described, in a down-to-earth way,
group theoretically. The main theorem expresses, for the case of level N = 1,
each Hecke polynomial as a product of powers of the congruence zeta functions
of i − 1 dimensional Kuga varieties for i = k and for smaller even integers
i ≥ 2. It did not reach the point to reduce RPC to WC, as the model was not
compactified. This paper did not serve as a basis of [Del1], but instead had the
following impact.

Each of the two ideas mentioned above was developed and used in a different
language (adelic instead of (∞ × p)-adic), notably by Langlands to the study
of zeta functions of higher dimensional Shimura varieties (cf. [Lg] p.499, [Lg2]
etc.)

(III-3) Serre [Ser][Ser2](1967/68). First, let us recall a conjecture of Serre
[Ser], stated in the case of N = 1, k = 12 where the space of cusp forms Sk is

2to be precise, contrary to a criticism made there, the case of higher powers of p is in fact
treated but not sufficiently, as explained in II-4 above.

3and Shimura curves as well, as shown in his later articles
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one-dimensional spanned by

∆(τ) = q

∞∏
m=1

(1− qm)24 =

∞∑
n=1

τ(n)qn (q = e2πiτ ),

and each Hecke operator T12(n) acts as a scalar multiplication of τ(n). RPC is
equivalent to that for each prime p the quadratic polynomial 1− τ(p)u+ p11u2

has imaginary roots.Serre conjectured that for any prime number ℓ there exists a
continuous representation ρℓ of the absolute Galois group over Q into GL2(Qℓ)
which is unramified outside ℓ such that for any prime number p ̸= ℓ and a
Frobenius element Fp above p one has (the inclusion ∋ and) the equality

Z[u] ∋ det(1− ρℓ(Fp)u) = 1− τ(p)u+ p11u2.

Thus, if the representation ρℓ exists and is realized in the ℓ-adic cohomology
group H11 of some complete smooth (Kuga) variety, then RPC can be reduced
to WC (cf. IV-3).

Now, Serre had not just conjectured but had an idea how to prove it. His
idea was a combination of (i) Kuga-Shimura [K-Sh], together with [E2],[Sh2],
and (ii) ℓ-adic theorysed an ℓ-adic Galois module of Qℓ-rank as small as the
desired 2dimSk, to be constructed by using the modules of ℓ-power division
points of the fiber elliptic curves and their tensor powers, on which the Hecke
operators act via the Shimura isomorphism. In other words, if Dk is the Z-
module on which the Hecke operators act, constructed by Shimura described in
II-3(i), it is Dk ⊗Zℓ. I understand that he gave a concrete series of suggestions
in his letter initially addressed to J.-L.Verdier (Feb 11, 1967)[Ser2].

(III-4) Deligne (1968/69). Deligne [Del1] reduced RPC to WC. It seems to
be basically along Serre’s suggestions mentioned above, which means that it
inherits those previous works of Kuga, Sato (indirectly), Shimura [Sh2], Kuga-
Shimura [K-Sh], and more directly, of Serre [Ser2]. But he overcame various
delicate points which, if easy for him, were probably not so for others.

In its Introduction, Deligne cites Sato’s contribution as “l’idée fondamen-
tale de Sato-Kuga-Shimura”. On the other hand, he calls such previous works
as to express Hecke polynomials by congruence zeta functions “first approxi-
mation”, and sets the target of his own paper on the construction of a (by-
Serre-conjectured) ℓ-adic representation of the Galois group as a subquotient of
an ℓ-adic cohomology group of the correct dimension of a suitable Kuga vari-
ety. Also, the problem related to the difference between cohomology groups of
the original Kuga variety and its smooth compactification is solved. An overall
strong impression was the change of epoch caused by change of language in alge-
braic geometry. For the construction of ℓ-adic representations, the Grothendieck
cohomology theory was the suitable one.

And a few years later, as mentioned above, Deligne settled the proof of the
Weil conjecture itself, in [Del2I](for V : projective),[Del2II] (general).
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4 Preparations for precise mathematical descrip-
tions

(IV-1) The Ramanujan-Petersson conjecture RPC.
For simplicity, we assume that the level N = 1. Let Sk (k positive, even)

denote the vector space of all modular cusp forms of weight k on PSL2(Z). It is
equipped with the (positive Hermitian) Petersson metric. The Hecke operators
Tk(n) act on Sk as self-adjoint linear operators. They are mutually commutative
and hence Sk is spanned by simultaneous eigenforms with real eigenvalues τν(n)

(1 ≤ ν ≤ dim Sk). The RPC asserts that for each prime p, |τν(p)| ≤ 2p
k−1
2 ,

or equivalently, that the roots of the quadratic polynomial 1− τν(p)u+ pk−1u2

are pairwise complex conjugate for all ν, or equivalently, that the roots of the
Hecke polynomial

H
(p)
k (u) = det(1− Tk(p)u+ pk−1u2) (4)

are pairwise complex conjugate. The Hecke’s Dirichlet series has the Euler
product expansion

Lk(s) = det(

∞∑
n=1

Tk(n)n
−s) =

∏
p

H
(p)
k (p−s)−1. (5)

The case k = 12, where dimS12 = 1, corresponds to the original Ramanujan
Conjecture.

(IV-2) Eichler-Selberg trace formula [E2][Sel].

tr(Tk(n)) =
∑
{ρ,ρ̄}

∑
Θ

(− hΘ

wΘ
)Fk(ρ, ρ̄) + rk(n), (6)

where {ρ, ρ̄} runs over all unordered pairs of mutually conjugate irrational imag-
inary quadratic integers with norm n, and Θ runs over all orders of imaginary
quadratic fields containing ρ, ρ̄. Here, an order of a quadratic field K means a
subring of the ring ΘK of all integers of K of the form Z + f.ΘK with some
natural number f called its conductor; wΘ is the number of roots of unity in Θ;
GΘ is the group of proper (i.e., locally principal) Θ-ideal classes (cf. e.g.[Ih]);
hΘ = |GΘ| its cardinality,

Fk(X,Y ) = (Xk−1 − Y k−1)/(X − Y ), (7)

and finally, rk(n), in the case of our interest k > 2, is given as

rk(n) = −
∑′

d|n,d≤
√
n

dk−1 + δ(
√
n)

k − 1

12
nk/2−1, (8)

where, in the first summand dk−1 should be replaced by (1/2)dk−1 when d =
√
n,

and δ(
√
n) represents 1 (resp. 0) when

√
n is rational (resp. irrational).
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(IV-3) The Weil conjecture [W];[SGA4][SGA5][Del2I][Del2II].
Let V be a complete non-singular algebraic variety over a finite field Fq, and
ZV (u) be its congruence zeta function; namely, if NV (q

m) for each m ≥ 1
denotes the number of Fqm-rational points of V , then

ZV (u) = exp(
∑
m≥1

NV (q
m)

m
um) (9)

as a formal power series of u. By B. Dwork, this is a rational function. Let
n = dim V , and let Hi(V̄ ,Qℓ) (0 ≤ i ≤ 2n) be the i-th ℓ-adic cohomology group,
where V̄ = V ⊗ F̄q and ℓ is any prime number not equal to the characteristic
p. The Frobenius element of V over Fq induces a linear automorphism FV,i of
Hi(V̄ ,Qℓ). The WC proved by Deligne asserts that (i)

PV,i(u) = det(1− uFV,i) (10)

is a polynomial over Z independent of ℓ; (ii)

ZV (u) =

2n∏
i=0

PV,i(u)
(−1)i+1

, (11)

and (iii) if

PV,i(u) =

dim(Hi)∏
ν=1

(1− αi,νu) (12)

denotes the linear decomposition of PV,i(u) over C, then |αi,ν | = qi/2 holds for
all i and ν. Note that

NV (q
m) =

2n∑
i=0

(−1)i
∑
ν

αm
i,ν . (13)

(IV-4) Elliptic curves over F̄p (Hasse, Deuring [Drg1][Drg2]).
The isomorphism classes of elliptic curves E over F̄p are parametrized by

their normalized j-invariants j ∈ F̄p, j ↔ Ej [Drg2]. And Deuring’s theory
[Drg1] gives a complete classification of E in terms of the endomorphism rings
Θ = End(E). The algebra Θ ⊗ Q is either an imaginary quadratic field K
such that (Kp ) = 1 (then E (or j) is called ordinary), or the definite quaternion

algebra B∞,p with discriminant p over Q (called supersingular).4 Let (i) Oord
p

denote the set of all orders Θ of imaginary quadratic fields K such that (Kp ) = 1

and that the conductor of Θ is not divisible by p, (ii) Oss
p denote the set of

isomorphism classes, or equivalently, the B×
∞,p-conjugacy classes, of all maximal

orders in B∞,p, and (iii) put Op = Oord
p ∪Oss

p .

Then j 7→ End(Ej) defines a surjective mapping F̄p → Op such that for each
Θ ∈ Op, the preimage is a union of hΘ/dΘ distinct conjugacy classes over Fp

4“singulär” vs. “supersingulär” in [Drg1].
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of elements j of degree dΘ = dj over Fp. Here, hΘ, dΘ are defined as follows.
If Θ ∈ Oord

p , then hΘ = |GΘ| as in IV-2 and dΘ is the order of the element of
GΘ represented by pΘ = p ∩ Θ, p being a prime factor of p in K. Note that
pdΘ

Θ = πΘ.Θ holds with some πΘ ∈ Θ, and that πΘπ̄Θ = pdΘ . When Θ ∈ Oss
p ,

we put hΘ = dΘ = 1 when Θ contains an element πΘ with πΘπ̄Θ = p, and
hΘ = dΘ = 2 otherwise (we may then define πΘ = ±p).

As before, put wΘ = |Θ×|. Then wΘ = 2 (i.e., Θ× = {±1}) if and only if
j ̸= 0, 123, and in this case the pair {πΘ, π̄Θ} is determined up to the sign, and
moreover, the pair of Frobenius eigenvalues {πj , π̄j} of any model of Ej over
FpdΘ is one of ±{πΘ, π̄Θ}, with the sign depending on the choice of the model.

One may put all these into the following universal formula. For any m ≥
1 and any polynomial F (X,Y ) ∈ C[X,Y ] satisfying F (X,Y ) = F (Y,X) =
F (−X,−Y ), we have, for p ̸= 2, 3,∑

j∈F̄p ,̸=0,123

dj |m

F (π
m/dj

j , π̄
m/dj

j ) =
∑

Θ∈Op,wΘ=2
dΘ|m

hΘF (π
m/dΘ

Θ , π̄
m/dΘ

Θ ). (14)

Two remarks (i) The well-known “Mass formula” reads as

p− 1

12
=

∑
Θ∈Oss

p

2

wΘ
= Hp −

1

4

(
1− (

−1

p
)

)
− 1

3

(
1− (

−3

p
)

)
, (15)

where
Hp =

∑
Θ∈Oss

p

dΘ = the class number of B∞,p (16)

is the number of supersingular j-invariants. If Θ ∈ Oss
p and wΘ = 2, then

{πΘ, π̄Θ} = {
√
−p,−

√
−p} for dΘ = 1, and = ±{p, p} for dΘ = 2.

(ii) A hint for generalizations (higher levels, Shimura curves). If one uses the
corresponding arithmetic groups over Z[1/p] and their certain type of conjugacy
classes, then the distinction between Oord

p and Oss
p , and the description of at

least the former, can be understood in a unified and a functorial way 5.

5 Sato’s arguments in a justified form

(V-1) We continue II-4, now with formulas. A prime number p will now be
fixed and suppressed from the notations. Assume again N = 1. The p-part of
the Hecke’s Dirichlet series associated with the Hecke operators Tk(n) acting on
the space Sk of modular cusp forms of even weight k is

det(
∑
m≥0

Tk(p
m)p−ms) = Hk(p

−s)−1, (17)

5cf. the Introduction of [Ih] and, just for curious readers, perhaps also some later works of
the same author on such arithmetic groups.
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where

Hk(u) = det(1− Tk(p)u+ pk−1u2) = exp{−
∑
m≥1

tr(Uk(p
m))

m
um}. (18)

Now from the trace formula (IV-2)(6) for Tk(p
m) one can derive a simple

formula for tr(Uk(p
m)). An arrangement as a sum over Θ ∈ Op , instead of over

imaginary quadratic integers, suggested by the work of Deuring (IV-4), makes
it simple. Here, we assume p ̸= 2, 3, which assures us that the unit group Θ×,
which can be non-commutative in general, is cyclic of orders 2, 4 or 6.

−tr(Uk(p
m)) =

∑
Θ∈Op

dΘ|m

Fk,Θ + 1− δk. (19)

Here, δk = 0 for k > 2, and = pm + 1 for k = 2. Each summand Fk,Θ is given
as follows.

hΘ

wΘ

∑
ζ∈Θ×

Fk(ζπ
m/dΘ

Θ , ζπ
m/dΘ

Θ ) · · ·Θ ∈ Oord
p

Fk((
√
−p)m,−(

√
−p)m) · · ·Θ ∈ Oss

p , m:odd (hence dΘ = 1)

1

wΘ

∑
ζ∈Θ×

Fk(ζp
m/2, ζ̄pm/2) · · ·Θ ∈ Oss

p , m:even, dΘ = 1

2Fk(p
m/2, pm/2) · · ·Θ ∈ Oss

p , m:even, dΘ = 2.

Fk(X,Y ) being as in (7)(IV-2). This is a (less down-to-earth) version of Lemma
6 of [Ih]6.

Remarks (i) The collection of all Θ-terms for Θ ∈ Oss
p , with dΘ = 2, arises from

the remainder term rk(n) in the trace formula (6) for Tk(n); thus

−(rk(p
m)− pk−1rk(p

m−2)) =
p− 1

12
Fk(p

m/2, pm/2) + 1. (20)

(ii) For each Θ ∈ Oord
p , the Θ-term “corresponds to” the Deuring lifting to char-

acteristic 0 of an ordinary elliptic curve over F̄p together with its endomorphism
ring. Among the points of the intersection T(pm).∆, what remain in (the ordi-
nary part of) the trace formula for Uk(p

m) are the images of the fixed points on
the complex upper half plane of those γ ∈ M2(Z) with det(γ) = pm that are not
divisible by p in the stronger sense, i.e., not only that p−1γ /∈ M2(Z) but also
that p−1γ /∈ OK , the ring of integers of the quadratic field K = Q(γ). When
the former /∈ is satisfied, the latter /∈ is equivalent to that the conductor of the
order K ∩M2(Z) of K is not divisible by p.

(V-2) Now we shall connect the right side of (19) with the p-part of zeta
functions of Kuga varieties over the j-line minus {0, 123}. For this purpose

6In the formulas (45)(45”) following this lemma, −H −∆ should be read as −(H −∆).
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we treat the sum over those Θ with wΘ > 2, to be denoted by εk(p
m), as an

exceptional term and read (19) now as:

−tr(Uk(p
m)) =

∑
Θ∈Op,wΘ=2

dΘ|m

hΘFk(π
m/dΘ

Θ , π
m/dΘ

Θ ) + 1− δk + εk(p
m). (21)

Combining this with Deuring’s (14), we obtain, with a full proof, the key equal-
ity:

−tr(Uk(p
m)) =

∑
j∈F̄p, ̸=0,123

dj |m

Fk(π
m/dj

j , π̄
m/dj

j ) + 1− δk + εk(p
m). (22)

(V-3) Now for the zeta functions of Kuga varieties. Start with any choice
of a smooth fiber variety E over the affine j-line minus {0, 123}, defined over
Fp, whose fiber above each point j is isomorphic to an elliptic curve Ej over
Fp(j) with the absolute invariant j. For each k ≥ 2, let Vk = Ek−2 (the fiber
product), and V ′

k = Vk/{±1} (the fiberwise Kummer quotient). The latter is
not smooth but instead, it is canonical, i.e., independent of the choice of E.
Now, the congruence zeta functions of Vk,V

′
k over Fp are

ZVk
(u) = exp{

∑
m≥1

Nk(p
m)

m
um}, (23)

ZV ′
k
(u) = exp{

∑
m≥1

N ′
k(p

m)

m
um}, (24)

where Nk(p
m) resp. N ′

k(p
m) denote the number of Fpm-rational points of Vk

resp. V ′
k rewritten according to the base point parametrization, as

Nk(p
m) =

∑
j∈Fpm ,̸=0,123

Nk(π
m/dj

j , π̄j
m/dj ), (25)

N ′
k(p

m) =
∑

j∈Fpm ,̸=0,123

N ′
k(π

m/dj

j , π̄
m/dj

j ), (26)

where Nk(X,Y ) = ((X − 1)(Y − 1))k−2 and N ′
k(X,Y ) is its even-degree part.

Note that XY will always be substituted by (πj π̄j)
m/dj = pm.

(V-4) Sato expressed the main term of ZV ′
k
(u) as the product of powers of

Hℓ(u) for even ℓ with 2 ≤ ℓ ≤ k. By (18)(22)(26), the point is to express the

main term of N ′
k(π

m/dj

j , π̄
m/dj

j ) as a linear combination of Fℓ(π
m/dj

j , π̄
m/dj

j ).
This is reduced to expressing the polynomial N ′

k(X,Y ) by Fℓ(X,Y )’s:

N ′
k(X,Y ) = ak.Fk(X,Y ) +

∑
2≤ℓ<k
ℓ:even

Bk,ℓ(XY )Fℓ(X,Y ), (27)
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where ak = 1 (resp. 0) for k: even (resp. odd), and

Bk,ℓ(W ) =
∑

0≤µ≤k−ℓ

bk,ℓ,µW
µ ∈ Z[W ]. (28)

Combining these we obtained the proof of Sato’s assertion that “the main part”
of ZV ′

k
(u) is given as:

Hk(u)
ak ×

∏
2≤ℓ<k
ℓ:even

∏
0≤µ≤k−ℓ

Hℓ(p
µu)bk,ℓ,µ . (29)

This contributed to the reduction of RPC to WC (modulo smooth compact-
ifications). What Sato wrote down actually at the end of each of his talks was
the corresponding global identity between the zeta and the L-functions, where µ
contributes to shifting s to s−µ. Probably, he wished to stress, no less than the
possibility of the reduction of RPC to WC, an important consequence on the
other direction that the expected analytic properties of the Hasse zeta function
of Kuga varieties can be derived from Hecke theory through his argument.

Finally, to see the other direction, i.e., to express each Hecke polynomial of
weight k as a product of powers of congruence zeta functions of Vℓ’s, please refer
to [Ih]. For this direction, a passage to the Kummer quotient is unnecessary.
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