ADDENDUM TO "CURVES AND SYMMETRIC SPACES, II"

SHIGERU MUKAI

Let C be a curve of genus 9 and assume that C has no g_5^1 . We denote by $M_C(3, K)$ the set of isomorphism classes of rank 3 stable vector bundles E on C with canonical determinant, *i.e.*, $\bigwedge^3 E \simeq K_C$. In this note we prove the following, which was announced in [14, Proposition 2]:

Theorem 1. The maximum $\eta_3(C)$ of the number $h^0(E)$ of linearly independent global sections of E, when E runs over $M_C(3, K)$, is equal to 6. Moreover, $E_{max} \in M_C(3, K)$ with $h^0(E_{max}) = 6$ is unique (up to isomorphism).

Let E be a stable rank 3 vector bundle on C of canonical determinant.

Lemma 2. (1) $h^0(\xi) \leq 1$ for every line subbundle ξ of E. (2) $h^0(F) \leq 3$ for every rank two subbundle F of E. Moreover, if $h^0(F) = 3$, then

$$\lambda_2: \bigwedge^2 H^0(F) \longrightarrow H^0(\bigwedge^2 F)$$

is injective and deg $F \geq 8$.

Proof. We have deg $\xi \leq 5$ by stability and have (1) by non-pentagonality. By stability we have deg $F \leq 10$ also. By non-pentagonality (or nontetragonality more precisely), C has no g_6^2 . By Serre duality, C has no g_{10}^4 , either. Hence we have $h^0(\det F) \leq 4$. Assume that $h^0(F) = 4$. Then, by Proposition 3.2, F contains a line subbundle η with $h^0(\eta) \geq 2$, which contradicts (1). Hence we have the first half of (2). Assume that $h^0(F) = 3$. By (1), $\lambda_2(s_1 \wedge s_2)$ is nonzero for every pair of linearly independent global sections s_1 and $s_2 \in H^0(\bigwedge^2 E)$. Therefore,

$$\bigwedge^2 H^0(F) \longrightarrow H^0(\bigwedge^2 F) \subset H^0(\bigwedge^2 E)$$

is injective and we have $h^0(\det F) \ge 3$. By non-pentagonality C has no g_7^2 . Hence, we have deg $F \ge 8$.

Date: April 5, 2010.

Supported in part by the JSPS Grant-in-Aid for Exploratory Research 20654004.

Proposition 3. (1) $h^0(E) \le 6$.

(2) If $h^0(E) = 6$, then E has a rank two subbundle F with $h^0(F) = 3$. (3) If $h^0(E) = 6$, then |E| is free and semi-irreducible.

Proof. We may assume that $h^0(E) \ge 6$. By Proposition 3.2, there exists a 3-dimensional subspace $W \subset H^0(E)$ such that the evaluation homomorphism $ev_W : W \otimes \mathcal{O}_C \longrightarrow E$ is not injective. Let G be the saturation of the image of ev_W . By the preceding lemma, F is of rank two and $h^0(G) = 3$, which shows (2).

Let F be an arbitrary rank two subbundle of E with $h^0(F) = 3$ and set $\beta = E/F$. By (2) of the preceding lemma, we have deg $\beta = 16 - \deg F \leq 8$. Since C has no g_8^3 , we have

$$h^{0}(E) \le h^{0}(F) + h^{0}(\beta) \le 3 + 3 = 6.$$

This and (2) show (1). Since $h^0(E) \ge 6$, we have $h^0(\beta) = 3$. Hence β is a g_8^2 . Since $\alpha := \bigwedge^2 F$ is isomorphic to $K_C \beta^{-1}$, α is a g_8^2 , too. Therefore,

$$\bigwedge^2 H^0(F) \longrightarrow H^0(\bigwedge^2 F)$$

is an isomorphism, by (2) of the preceding lemma. Since $|\bigwedge^2 F|$ is free, so is |F|. This shows the semi-irreducibility of E by Proposition 3.5. Since β is also free and since

$$0 \longrightarrow H^0(F) \longrightarrow H^0(E) \longrightarrow H^0(\beta) \longrightarrow 0$$

is exact, |E| is free, too. This shows (3).

Proof of Theorem 1. (1) of the proposition implies $\eta_3(C) \leq 6$. Since the vector bundle E_{max} constructed in Section 5 is stable by its semiirreducibility and (1) of Proposition 3.5, we have the first assertion.

If E is stable and if $h^0(E) = 6$, then |E| is semi-irreducible by (3) of the proposition. Hence the second assertion follows from Proposition 5.8.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: mukai@kurims.kyoto-u.ac.jp

 $\mathbf{2}$