GLOBAL STRUCTURE OF AN ELLIPTIC FIBRATION
NOBORU NAKAYAMA

ABSTRACT. J-étale topology is introduced for analytic spaces with boundary as an
analog of étale topology for schemes. A locally projective elliptic fibration is bimero-
morphically considered as a torsor in the d-étale topology of the associated basic elliptic
fibration. The related 0-étale cohomology groups have much information on the struc-
ture of elliptic fibrations. In particular, an answer to Ueno’s extension problem, a
relation to Tate-Shafarevich groups and their finiteness properties , characterizations of
projective and Kéhler elliptic fibrations, and a generalization of logarithmic transforma-

tion to arbitrary dimension are obtained. This article is a revised version of [513]
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0. INTRODUCTION

An elliptic fibration is a proper surjective morphism f: X — S of normal complex
analytic varieties with general fibers being elliptic curves. In this paper, we fix the base
space S and consider the classification of elliptic fibrations up to the bimeromorphic
equivalence relation over S. We assume that there is a Zariski-open subset S* C S
such that the open immersion is a toroidal embedding [KKG]. Let f* be the restriction
X*:= f~18* — S* of f. Assume that X is non-singular and that f* is bimeromorphically
equivalent to a smooth elliptic fibration over S*. Then the sheaf H(f) := R f{Zx~ forms
a variation of Hodge structure of rank two and of weight one. H(f) depends only on
the bimeromorphic equivalence class of f: X — S. This is naturally Z-polarized by the
trace map R*f*Zx~ — Zg~ and induces a period mapping from the universal covering
space of S* into the upper-half plane H := {z € C | Imz > 0} and a compatible
monodromy representation m(S*) — SL(2,7Z). As a method of classification, we fix also
a variation of Hodge structure H of rank two and of weight one on S* and consider marked
elliptic fibrations (f: X — S, ¢) associated with (S, D, H), where D := S ~\ S*, defined
as follows: f: X — S is an elliptic fibration from a non-singular variety such that its
restriction f* = f|g« is bimeromorphically equivalent to a smooth elliptic fibration; ¢ is an
isomorphism H(f) = H as variations of Hodge structure. Two marked elliptic fibrations
are called mutually bimeromorphically equivalent if there is a bimeromorphic mapping
between them over S that commutes with each markings ¢. We denote by (S, D, H)
the set of bimeromorphic equivalence classes of marked elliptic fibrations (f: X — S, ¢)
associated with (S5, D, H) such that, locally over S, f is bimeromorphically equivalent to
a projective morphism. We also consider its subset EP™I(S, D, H) consisting of all the
marked elliptic fibrations (f: X — S, ¢) such that f is bimeromorphically equivalent over
S to a projective morphism.

There is an elliptic fibration p: B(H) — S uniquely up to the bimeromorphic equiva-

lence relation over S satisfying the following three conditions:

e p is smooth over S*;

e There is a meromorphic section S -— B(H) of p;

e There is an isomorphism ¢: H(p) = H.
The p is called a basic elliptic fibration associated with H. The element (p: B(H) —
S,¢) € £(S, D, H) is independent of the choice of ¢. The restriction

p*:=p|s: B(H)" :=p ' (S*) — S~

is uniquely determined up to isomorphisms over S* is called a smooth basic elliptic fi-

bration. A construction of B(H)* from the data of period mapping and monodromy



representation is explained in [K7]. For a given section o*: S* — B(H)*, p* has a group
structure with o* being zero: p* is a group object in the category An/S* of complex ana-
Iytic spaces over S*. For a given meromorphic section o : S -~— B(H), the sheaf G, of
germs of meromorphic sections has an abelian group structure with o being zero. There
is an identification £(S*,0, H) «— H'(S*,&y/s). This means that any smooth elliptic
fibration is a torsor of a smooth basic elliptic fibration. Let &(S,D,H) C &£(S,D, H)
be the subset consisting of all elliptic fibrations f: X — S such that f admits mero-
morphic sections locally on S. We infer that if dim S = 1, then & (S, D, H) is identified
with H'(S, S p/s) by Kodaira’s theory of elliptic surfaces. It is not enough to use Spyg
for describing £(S, D, H). We introduce a new category 0SP of 0-spaces containing the
category An of analytic spaces and a Grothendieck topology called 0-étale topology on
it. The OsP is the localization of the category AB of analytic spaces with boundary by
0-isomorphisms. The pair (5, D) defines a 0-space S and H defines a similar sheaf Gy/g
of S in the 0-étale topology. We shall show that £(S, D, H) is regarded as a subgroup

6.3.4, 6.3.8). The following results are also obtained by the d-étale cohomology theory:

(1) An elliptic fibration f: X — S is bimeromorphically equivalent to a projective
morphism if and only if there is a prime divisor of X dominating S (cf. 5:3:8)

(2) The description of local structure of projective elliptic fibrations (cf. :6:2::1:2, -5:3:9)

(3) The answer to the following question posed by Ueno (cf. [F4, II, 1.15]) is neg-
ative: Does a smooth elliptic fibration Y — A%~ {(0,0)} admitting no holo-
morphic sections extend to an elliptic fibration over A%? Here A? stands for
the two-dimensional unit polydisc (cf. 0.3). A proof in a general form is given in
Section 7_1.

(4) Tate-Shafarevich groups in algebraic situation are described by some 0-étale co-

the boundedness of Calabi-Yau manifolds are generalized in Section 7.2

(5) A generalization of a result of Miyaoka [M5], [M6] is given in the following form
in 7.4.4: For a compact complex manifold X having an elliptic fibration over a
d-dimensional compact Kdahler manifold S, X is bimeromorphically equivalent to
a compact Kdihler manifold if and only if H*4(S,C) — H?¥(X,C) is not zero.

(6) The induced homomorphism H%(S, Qp/g) — H*(S, Spys) from the distinguished
triangle (6.8) describes logarithmic transformations (cf. Section 7.3).

(7) A logarithmic transform of a modular elliptic surface [S8] along its singular fiber

is still a projective surface. On the other hand, a logarithmic transform of the



modular elliptic surface along some smooth fiber is not projective. These are

shown in Section 7.6.
0.1. Background

We shall recall the background of the study of elliptic fibrations.

Kodaira’s theory
First of all, we recall Kodaira’s theory of elliptic surfaces ([K7], [K§]). This treats the

case S is a non-singular curve, i.e., elliptic fibrations over a non-singular curve. We recall
this along the following four parts:

(I) Minimal Model. An elliptic surface is called minimal, if there exist no exceptional
curves of the first kind in any fibers. This is equivalent to the condition that some multiple
of the canonical bundle is the pullback of a line bundle on the base curve S. The minimal
model of an elliptic surface is obtained by a successive contraction of exceptional curves of
the first kind contained in fibers. If two elliptic surfaces are mutually bimeromorphically
equivalent over the base curve, then their minimal models are isomorphic to each other.
Thus the study of elliptic surfaces is reduced to that of minimal elliptic surfaces. A fiber
f71(s) = X x5 {s} of an elliptic surface is called a singular fiber, if f is not a smooth
morphism along the fiber. Kodaira classified singular fibers of minimal elliptic surfaces
by numerical calculation [K7]. The list of types is as follows: I, I, 14, 11, IT*, III, III*,
IV, IV*, where a > 0 and m > 2.

(IT) Basic fibration. Let H be a Z-polarized variation of Hodge structure of rank two
and of weight one on S* and let p*: B(H)* — S* be the associated smooth basic elliptic
surface with a section o*: S* — B(H)*. Kodaira constructed an extension p: B(H) — S
of p* as a minimal elliptic surface and an extension o: S — B(H) of *. The fibration
p is uniquely determined up to isomorphisms over S, which is called the basic fibration,
basic family, or basic elliptic surface, etc. We recall briefly the construction. Assume that
the base curve S is a unit disc A and S* is the punctured disc A ~\ {0}. First, suppose
that the order of monodromy of H is finite. For the order m, let A’ 3 ¢t — t™ € A be
the finite cyclic covering. Then the monodromy of the pullback of H is trivial. Thus
the associated smooth basic elliptic surface defined over the punctured disc A" ~\ {0}
canonically extends to a smooth basic elliptic surface B" — A'. The Galois group Z/mZ
acts holomorphically on B” and the quotient space is a partial compactification of B(H)*.
By taking a resolution of the quotient singularities and by contracting exceptional curves
of the first kind, we have the minimal elliptic surface B(H). Next, suppose that the
order of monodromy of H is infinite. Then we may assume that the monodromy matrix

is unipotent by the same argument as above to a suitable cyclic covering. In this case,



Kodaira’s description of B(H) is interpreted by means of toroidal embedding. B(H)* is
regarded as the quotient of C* x S* by a suitable action of Z induced from H. There
is a toroidal embedding C* x S* C X over S* C S such that the fiber over {0} is an
infinite chain of smooth rational curves and that the action of Z holomorphically extends
to a properly discontinuous and fixed point free action on X. The quotient Z\X is the
minimal elliptic surface B(H). (cf. [A], [NT], [N4]).

(I1I) Torsor. Let B(H)* be the maximal open subset of B(H) at which the fibration
p: B(H) — S is smooth. Then the restriction p*: B(H)* — S has a group structure
over S which is an extension of p*. There is a relative action of p* on p compatible with
the open immersion B(H)* C B(H). The p* is the so-called Néron model [N7]. Let G5
be the sheaf of germs of sections of p*. The cohomology group H'(S, Sy s) is identical
to the set of isomorphism classes of torsors of p*. By the action of p* on p, an element
n e H'(S,S&y/s) defines a minimal elliptic surface p”: B(H)" — S. If a minimal elliptic
surface has a section over a neighborhood of arbitrary point of S, then it is isomorphic
to B"(H) — S for some n € H'(S, Sy/s).

(IV) Multiple fiber. A multiple fiber is a fiber which has no reduced components. It
is of type I, with m > 2. A non-multiple fiber appears as a fiber of a minimal basic
fibration. A multiple fiber f~!(s) turns to be non-multiple by a suitable ramified covering
over a neighborhood of s. In other words, a multiple fiber is locally obtained as a fiber of
the quotient of basic elliptic surfaces. Kodaira fixed a finite Galois covering S — S and
considered the set of isomorphism classes of minimal elliptic surfaces f: X — S over S
with an isomorphism H(f) = H such that the pullback by S” — S turns to be an elliptic
surface without multiple fibers. This set is described as a suitable cohomology group
determined by S’, H, and the Galois group of S’ — S. In [K8], Kodaira gave another
description of multiple fibers by means of logarithmic transformation. The logarithmic
transformation does not change the complement of the given fiber but a neighborhood
of the fiber. A multiple fiber is obtained by a logarithmic transformation from a non-
multiple fiber. The induced isomorphism between the complements of fibers is written
by a logarithmic function and is not algebraic: it does not extend to a bimeromorphic
mapping.

As a consequence, an elliptic surface is constructed by a variation of Hodge structure
H, the twist by an element € H(S, & u/s), and by logarithmic transformations. This
theory is one of the origins of studies of degenerations of curves, surfaces, and abelian
varieties. In the study of purely algebraic elliptic fibrations, there are other important

objects such as Néron models, Tate—Shafarevich groups, and Mordell-Weil groups.



Generalization to higher dimension

A degeneration should be a fibration over a curve or, more generally, a flat fibration.
Non-flat fibrations are not yet studied well. Secondly, we recall known results on elliptic
fibrations over a higher dimensional base space S along the same four parts.

(I) Minimal Model. The minimal model theory for higher dimensional projective va-
rieties was developed in 1980’s, but the main difficult conjectures, flip and abundance
conjectures, are proved only in dimension up to three (cf. [M7], [[K4], [M§], [K3]). Under
the assumption of the flip conjecture, the construction of minimal model is generalized to
the case of relatively projective morphisms of complex analytic varieties [N2]. A projec-
tive elliptic fibration f: X — S is called minimal if X has only terminal singularities and
the canonical Q-line bundle K is relatively nef: Kx -y > 0 for any curves v contained
in fibers. However, the minimal model for a given variety is not necessarily uniquely
determined if the dimension is greater than two. These minimal models are connected
by a successive operations called flops. Projective elliptic fibrations over a surface are
studied by the method of minimal model theory in [N4, Appendix]. As a consequence,
the study is reduced to that of standard elliptic fibrations, which are equi-dimensional
and locally Q-factorial over the base surfaces.

There are interesting examples of non-projective elliptic fibrations. For example, an
elliptic fibration over a two-dimensional polydisc is smooth outside the origin but the
central fiber is isomorphic to a Hopf surface or its multiple (cf. [N4, §3]).

(I) Basic fibration. Suppose that S is non-singular and that S~ S* is a normal crossing
divisor. Let H be a Z-polarized variation of Hodge structure of rank two and of weight
one defined over S*. In the case S is a surface, Kawai [KI] constructed an extension
p: B(H) — S of the smooth basic elliptic fibration p*: B(H)* — S* as a projective
elliptic fibration with holomorphic section. Ueno [U1] generalized the construction to
arbitrary dimension and obtained a desingularization of B(H). But the induced fibra-
tion is not always minimal in the sense of minimal model theory. A Weierstrass model
p: W — S is defined as a relative effective divisor of a P2-bundle over S whose local
defining equation is expressed as a Weierstrass form: Y?Z = X3 + aXz? 4 3Z3 for a homo-
geneous coordinate (X : Y : Z) of P? and for suitable functions a, 3 locally defined over S.
For the precise definition, see [N3] or Section §.L. The following theorem is easily shown

in algebraic situation and is proved also in analytic case [N3, 2.1]:

Theorem. Let X — S be an elliptic fibration admitting a meromorphic section S -— X.
Then there is a bimeromorphic mapping X -— W into a Weierstrass model which sends

the meromorphic section to the canonical section X = Z = 0.



The author showed in [N3, §2] that a Weierstrass model W (H) is canonically constructed
from a given variation of Hodge structure H as an extension of B(H)* and that W (H)
has only rational Gorenstein singularities with relatively trivial canonical sheaf. Hence
W(H) is a minimal model with only canonical singularities. If S is a curve, then W (H)
is obtained from the minimal elliptic surface B(H) by contractions of irreducible com-
ponents of singular fibers away from the zero section. We define a basic elliptic fibration
p: B(H) — S associated with H to be an elliptic fibration admitting a meromorphic
section and an isomorphism H(p) = H.

In purely algebraic situation, for a given algebraic elliptic fibration £: X — S, the
generic fiber X, is a smooth projective curve of genus one defined over the function field
C(n) = C(S). It is called an elliptic curve only when it contains a C(n)-valued point,
equivalently, f has a rational section. The Jacobian J(X,) of X, is well-defined over C(n)
and it extends to a basic elliptic fibration J — S. The Jacobian J(X,) is considered as
an invariant instead of the variation of Hodge structure H. A basic fibration is therefore
called a Jacobian fibration in some articles.

Miranda [M4] studied minimal models for elliptic fibrations over surfaces having global
sections by using Weierstrass equations. He obtained a resolution of singularities of
the Weierstrass model by blowing up the base surface and by looking at the change of
equations. The obtained threefold gives a minimal and flat elliptic fibration over the
blown up surface.

(IIT) Torsor. Ueno [UT] described the set of elliptic fibrations over a surface S which
have meromorphic sections locally over S as a suitable cohomology group similar to
H'(S,Sy/s). In the definition of cohomology group, there is a delicate thing over double
points of the discriminant locus. In purely algebraic situation, Tate—Shafarevich group
II1s(B,,) corresponds to the cohomology group. Here, p: B — S is an algebraic basic
elliptic fibration associated with H, n is the generic point of S, and B,, is the elliptic curve
over Spec C(n). The Tate-Shafarevich group classifies birational equivalence classes of
pairs

(£: X =S, X, Xcm) Xy = By X Xy)
consisting of a projective elliptic fibration £ and an isomorphism @ between elliptic fi-
brations over X, via the second projections such that f admits a section étale locally
over S and that @ sends the diagonal to the zero section. The group is expressed as
the étale cohomology group H'(Sgt, t«B,) for the étale sheaf B, over Spec C(n) and for
t: SpecC(n) — S (cf. [D7)).
(IV) Multiple fiber. Ueno [U2] constructed some examples of multiple fibers. He per-

formed a logarithmic transformation along a smooth divisor in the case local monodromies



are trivial. The logarithmic transformation is also studied by Fujimoto [F4]. Letp: B — S
be an algebraic basic elliptic fibration that is smooth over S* C S. Then Tate-Shafarevich
group s« (B,) over S* describes projective elliptic fibrations over S that are smooth over
S*. Thus a fibration having multiple fibers belongs to the complement I1ls.(B,,) \IIs(B,).
Dolgachev and Gross [D#], (4] considered Tate-Shafarevich groups in order to analyze
multiple fibers.

Local structure

In local situation on the base space S, projective elliptic fibrations f: X — S that
are smooth outside a fixed normal crossing divisor D are bimeromorphically classified in
[IN4]. Thirdly, we recall results obtained in [N4]. Assume that S is a unit polydisc A% and
that D is a union of coordinate hyperplanes. In the case the variation of Hodge structure
H on S* = S~ D has only unipotent monodromies, a toric model (or a smooth model)
is constructed as a non-singular minimal model of B(H) — S. The construction is a
generalization of that by Nakamura [N1] for degeneration of principal abelian varieties.
The flops between toric models are described by suitable graphs. Further the following

result is obtained:

Theorem ([N4, §4]). Let f: X — S = A% be a projective elliptic fibration smooth over
S~ D. Then there is a finite ramified covering S' = A — S such that

(1) 8" — S is ramified only along D,

(2) the pullback X xgS" — S’ is bimeromorphically equivalent to a toric (or a smooth)

model over S'.

An essential idea of the proof is considering torsors over S \ Sing D. The corresponding
results to the four parts above are as follows:

(I) A minimal model is constructed as a toric or a smooth model in the case H has
only unipotent monodromies.

(II) The variations of Hodge structure H on S* are classified. The list of types of
monodromy of H is as follows (cf. 4.L1): Tp, 1§, 1), 1110, TV 1V 1) 10 The
period functions are written explicitly in each types. A basic elliptic fibration B(H) — S
can be chosen to be a relatively minimal model over S ~\ Sing D.

(III) and (IV) Even if there are no multiple fibers over D \ Sing D, the fibration may
not admit a section. But, there is a finite Galois covering S’ — S ramified only along
D such that the pullback admits a meromorphic section. The covering depends on the
monodromy of H and the multiplicities of fibers over D ~\ Sing D. Let G be the Galois
group of S — S and let &' be the sheaf of germs of meromorphic sections of the associated

basic elliptic fibration B’ — S’. Then an elliptic fibration corresponds to a cohomology
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class of H'(G, H°(S',&")) for such a covering S” — S. The possible Galois actions on B’,
which are sometimes only meromorphic actions, are classified. Thus we can list all the
collision of singular fibers including multiple fibers. For an ideal classification of germs of
projective elliptic fibrations, we need to obtain a suitable quotient by such meromorphic

action and to describe its minimal model.

0.2. Global structure: The results

The purpose of this paper is a globalization of the local classification in [N4]. We shall
explain our results more precisely than before. We fix a normal complex analytic variety S
and a reduced effective divisor D such that S* := S~ D C § is a toroidal embedding. We
also fix a Z-polarized variation of Hodge structure H of rank two and weight one defined
on S*. Our aim is to describe the set £(S, D, H) of all the bimeromorphic equivalence
classes of pairs (f: X — S, ¢) consisting of an elliptic fibration f: X — S and a marking

¢ satisfying the following conditions:

e The restriction f|;-1g+: f~15* — S* is bimeromorphically equivalent to a smooth
elliptic fibration f*: X"* — S* over S*;
e Locally over S, f is bimeromorphically equivalent to a projective morphism;
e ¢ is an isomorphism H(f) := H(f"™) := R'f';Zx~ = H of variations of Hodge
structure.
Note that, in algebraic situation, the definition of £(S, D, H) looks like that of Tate-
Shafarevich group Ills«(B,), where B — S is a basic elliptic fibration inducing H as a
variation of Hodge structure. However, information only from the complex analytic space
S* = S~ D and from H is not enough to determine £(S, D, H) in the complex analytic
situation (cf. §.2).

In order to treat multiple fibers, we introduce the category OSP of J-spaces and a
Grothendieck topology named 0-étale topology on it; Let [X, B] be a pair of complex
analytic space X and its nowhere-dense analytic subset B. An object of JSP is an
equivalence class (X, B) of such pairs [X, B]. A morphism f: [X, B] — [Y, D] is called
a O-étale morphism, if f: X — Y has only discrete fibers, B = f~!(D), and if X \ B —
Y '~ D is a local isomorphism. The 0-étale morphisms define the d-étale topology on 0sp.
We next establish 0-étale cohomology theory. As a result, these cohomology groups can
be calculated by Cech cocycles and there exist Leray’s spectral sequences for morphisms
in dsp. We define the space sp(X) of a d-space X := (X, B) as a reduced analytic space
and define the stalk F) of a sheaf F' at a point € sp(X). The stalk has a structure
of discrete 71°¢(X; z)-module, where 71°¢(X; x) is the local profinite fundamental group
at z. Let e: X = (X,B) — X = (X,0) be the canonical morphism and assume that
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X is homeomorphic to sp(X). Then the stalk of RPe,F' at a point x € X is isomorphic
to the continuous group cohomology HY, . (#1°°(X;z), F,). In particular, HP(X, F) =~
HP(X,e,F) for any sheaves F' of Q-vector spaces. In the case X \ B C X is a toroidal
embedding, HP(X,Z) are calculated in 8.4.2.

Let (f: X — S,¢) be a marked elliptic fibration as before. Then there is a 0-étale
covering family

{U, = (Ux,Ax) = S := (S, D) }ren,

such that each X xg Uy — U, has a meromorphic section. This is proved in 6.3.4 by
a different method from [N4, §4]. Thus we have bimeromorphic mappings X xg Uy «—
B(H) xg Uy, where p: B(H) — S is a fixed basic elliptic fibration associated with H.

The induced meromorphic transition mapping
B(H) Xs (UA Xg UH) e — B(H) Xg (UA Xg UH)

over Uy xg U, is expressed as the translation mapping of a meromorphic section of
B(H) x5 (UxxsU,), since it preserves the marking phi. Let &g be the sheaf in 0-étale
topology on S of germs of meromorphic sections of p: B(H) — S. Then the marked
elliptic fibration defines an element in H'(S,&y/s). Roughly speaking, such elliptic
fibrations look like torsors of the basic elliptic fibration with respect to 0-étale topology.
We have:

Theorem (6.3.2, 6.3.4, 6.3.8). There is a natural injection E(S,D, H) — H*(S,Sp/s)

under which the subset EP™(S, D, H) is identified with the torsion part H*(S, Sh/s)tor-

Therefore, a projective elliptic fibration is really constructed from a torsion element of
HY(S,&p/s). For the calculation of H'(S,&ps), the fundamental diagram FIGURE 3

(cf. 6.1.5) is important. In particular, the exact sequence

0—J,H— Lus — Suys = Tnys — 0

and the distinguished triangle (6-_8)

S TR H — Lyys ® Qpys[—1] — Gpys — -

are very useful. Here, j: S* < S is the J-open immersion and Lp/g is the invertible
sheaf determined as the Gr) of the canonical extension of H with respect to the filtration
F induced from the Hodge filtration (cf. 4.2.1). The sheaf Ty /s is a subsheaf of R'j H
defined in the argument preceding §.1.5 and Qp/g = R'j H/Tp)s. If S is a curve, Ty s
is the sheaf of the groups of irreducible components of singular fibers of Néron model. It

of the complement of £(S, D, H).
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The construction of this paper is as follows: The category of 0-spaces is introduced
in Section &, and the d-étale cohomology theory is developed in Section 2. In Section 3,
some O-étale cohomology groups are calculated in the case of toroidal embeddings. Fur-
ther, a relation between reflexive sheaves in the 0-étale topology and parabolic sheaves
is mentioned in Section 8.5. Section 4 is devoted to the study of local nature of variation
of Hodge structures of rank two and of weight one which are defined on the open part
of a toroidal embedding. The set £(S, D, H) is introduced and a fundamental diagram
FIGURE 1 in the usual topology is obtained in Section 5. The essential use of 9-étale coho-
mology for determining £(S, D, H) appears in Section B, where most essential results are
derived. Section T is devoted to the applications. Section i7.I' treats extension problems,
algebraic situation is interpreted by means of the d-étale cohomology theory, and some
results of Dolgachev and Gross in [DF], [(G4], [(G7] are generalized. Kihler morphisms are
studied in Section 7.4. Besides a generalization of Miyaoka’s result, a characterization of
cohomologically Kahler elliptic fibration is given. The notion of logarithmic transforma-
tion is interpreted as a homomorphism of some 0-étale cohomology groups in Section 7.3.
Some partial results on the problem when the logarithmic transform of a basic elliptic

surface is projective are obtained in Section 7.6.
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0.3. Notation

Analytic space: A complex analytic space is always assumed to be para-compact
and Hausdorff. A wvariety is an irreducible and reduced analytic space. A Zariski-
open subset is the complement of an analytic subset.

Disc: The unit disc is denoted by A := {t € C | |t| < 1} and the punctured disc
A~ {0} is denoted by A*. The upper-half plane and the universal covering map
of A* are written by

e:H:={z€C|Imz >0} 32+ e(z) :=exp(2rv—1z) € A™.

The n-fold product A" = A x --- x A is called an n-dimensional unit polydisc.
Exponential sequence: We write C* = C ~ {0} for the complex number field C.
For a complex analytic variety X, Ox denotes the sheaf of germs of holomorphic
functions. O% is the sheaf of germs of unit (or invertible) holomorphic functions
whose abelian group structure is given by the multiplication. Let Ox — O%
be the homomorphism given by f — e(f) = exp(2mv/—1f). The induced exact
sequence
0—-Zx -0x -0 = {1} =0
is called the exponential sequence of X.
Complex: Let K* = [--- — K? g --+] be a complex of objects of an
abelian category A. The shift K*[k] by an integer k is defined by

orr1\P
(Be[K)" = KP¥F, gy = (~1)F i

K* is called bounded if K» = 0 for p < 0 and for p > 0. A morphism of
complexes K7 — K3 is called a quasi-isomorphism if it induces isomorphisms on
cohomologies. The derived category D(A) is the localization of the category of
complexes of A by quasi-isomorphisms. We write K7 ~qs K3 if K7 and K3 are

quasi-isomorphic. There is a notion of distinguished triangle

N

in D(A). We call it simply by a triangle and write it in the form

A

B

A Bso i
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For an integer k, the truncations 7<; and 7> are defined by
T K® = - KP - KP' — ... & KM S Kerd® - 0— -],
TZkK. = [--~—>0—>Imdk_1_>Kk_>..._>KP_)KP+1_)“.]‘

These are well-defined in D(.A) and there is a natural triangle

+1 +1
= T K = K = o K — -

Hypercohomology: Let F'* be a bounded complex of sheaves of abelian groups
on an analytic space X. Let RI" be the derived functor of the global section
functor I' of X: I'(F) = H°(X, F) for a sheaf F. The hypercohomology group
HP(RI(F*)) is denoted by H?(X, F*).

Local cohomology: Let Z C X be a closed subset and let F'* be a bounded
complex of sheaves of abelian groups on X. For the complement U = X \ Z
and for the embedding j: U < X, there is a natural morphism F'* — Rj.(F*|y)
in the derived category of sheaves of abelian groups on X. An object RI,(F*)
of the derived category is defined by the triangle

RN RI,(F*) — F* — Rj.(F*|y) REN

The p-th cohomology sheaf HP(RIL ;(F*)) is denoted by H%(F*®). If F is a sheaf
of abelian groups, then H%(F') is the p-th local cohomology sheaf supported in Z.
Note that RI", is right adjoint to Ri, for the closed immersion ¢: Z — X. For
the derived functor RI" above, the derived functor RI; := RI" o RI’, calculates
local cohomology groups supported in Z. HP(RI'z(F*)) is denoted by HY (X, F*).

Topological dualizing complex: Let ¢: X — SpecC be the natural morphism
from a complex analytic space. Let w'®® denote the twisted inverse ¢'Z defined
by Verdier [V2]. We call wE?p by the topological dualizing complex of X. If X is
non-singular of dimension d, then wf)?p ~qis Zx|2d]. There is a natural morphism
Rfiw'® — wi® called trace map for a morphism f: X — Y of complex analytic
spaces. Moreover, RI ,(w'e?) ~qis wiy” for a closed subspace Z C X.

Residue field: For a point x of an analytic space X, the residue filed Ox ,/m, is
denoted by C(z).

Torsion: Let M be an abelian group and let m be a positive integer. ,, M denotes
the subgroup {x € M | mz = 0}. The torsion-part Mo, is the union U,,~q mM.
For the subgroup u,, := m™'Z/Z C Q/Z, M =~ Tori(m,,, M) and M, =~
Tor,(Q/Z, M) hold.

Meromorphic mappings: A holomorphic mapping (map) f: X — Y of complex

analytic varieties is often called a morphism. A meromorphic mapping (map)
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f: X =Y is defined as a closed analytic subvariety I'y C X x Y in which the
first projection I'y — X is proper and is an isomorphism over a dense Zariski-open
subset of X. f is called proper if I'y — Y is proper. f is called a bimeromor-
phic mapping (map) if I'y — Y is proper and is an isomorphism over a dense
Zariski-open subset of Y. In the scheme theory, ‘meromorphic map’ corresponds
to ‘strictly rational map’ and ‘bimeromorphic map’ corresponds to ‘proper bira-
tional map’ in the sense of litaka [I, §2.12]. A meromorphic function on X is
regarded as a meromorphic mapping X --— P! into the projective line.

Section: Let f: X — Y be a holomorphic mapping of complex analytic varieties.
A (holomorphic) section of f is a holomorphic mapping ¢: Y — X such that
f oo = idy; the identity mapping. This is also called a global section over Y.
A subvariety ¥ C X is also called a section if the composite ¥ C X — Y is an
isomorphism. A meromorphic section of f is a meromorphic mappingo: Y -— X
such that f oo =idy. A subvariety ¥ C X is also called a meromorphic section
if ¥ — Y is a bimeromorphic morphism. f is called to have local holomorphic
(resp. meromorphic) sections over Y if there is an open covering {Y\} of ¥ such
that each f~'Y) — Y} have holomorphic (resp. meromorphic) sections.

Reflexive sheaf: Let X be a normal variety and let F be a coherent Ox-module.
The dual Homo, (F,Ox) is denoted by FY. The double-dual of F is F¥V. F is
called a reflexvive sheaf if F = FVV. If F is reflexive, then HY(F) =0 for p <1,
for any analytic subset Z C X of codimension greater than one. For a reflexive
sheaf £ of rank one and for an integer m, the double dual of £L®™ is denoted by
L™ A reflexive sheaf £ of rank one is called Q-invertible if, locally on X, there
is an integer m # 0 such that £I™ is invertible.

Cartier and Weil divisors: Let X be a normal variety. A prime divisor is an
irreducible subvariety of codimension one. A Weil divisor B is an element

(br) € 11 Z
I': prime divisors
that is locally finite on X, i.e, the support
SuppB:= |J T
br#0
is an analytic subset. We usually write B as a formal combination } brI'. The
coefficient br is written by multr B. A reduced divisor is a Weil divisor B with
Supp B # () and multr B = 0 or 1 for any I'. The reduced divisor is identified
with Supp B. We write B > B’ or B’ < B for two Weil divisors B, B’, if
multr B > multy B’ for any I'. If B > 0, then B is called an effective divisor.



The group of Weil divisors of X is denoted by WDiv(X). It forms a sheaf wDiv x
of X with H*(X,wDivx) ~ WDiv(X). The sheaf of germs of meromorphic
functions of X is denoted by 9ix. We define M5 to be its subsheaf (as sets)
consisting of invertible meromorphic functions. The abelian group structure of
MY is derived from the multiplication. The sheat Divx of germs of Cartier
divisors is defined to be the quotient M5 /O%. A Cartier divisor of X is an
element of Div(X) := H°(X, Divx). For a prime divisor I and for a meromorphic
function ¢ € H°(X, M%), let ordr(p) be the order of zeros of ¢ along I' (or the

minus of order of poles). The Weil divisor

div(p) := > ordpr(p)l

is called a principal divisor. The map ¢ +— div(yp) defines injective homomor-
phisms Divy — wDivx and Div(X) < WDiv(X). X is called locally factorial
or locally Q-factorial, if Divx ~ wDivx or Divy ®Q ~ wDivy ®Q, respec-
tively. X is locally factorial if and only if every local rings Ox , are UFD. Let
7% X° < X be the open immersion from a non-singular Zariski-open subset with
codim(X \ X°) > 2. Then wDivyx ~ j° Divxo and WDiv(X) ~ WDiv(X°) =
Div(X°). A Weil divisor B defines a reflexive sheaf Ox(B) of rank one by

H(U,Ox(B)) = {¢ € H(U,MX) | div(¢) > Blv} U{0}.

The sheaf Ox(B) is invertible if and only if B is Cartier. If B is Cartier, then
Ox(B) is determined by the connecting homomorphism Div(X) — Pic(X) =
H'(X,0%) of the exact sequence

0={1} - Ox - My — Divy — 0.

Normal crossing divisor: Let X be a non-singular variety of dimension d and
let D be a reduced divisor. D is called a normal crossing divisor, if D is locally
defined as div(z122 - - - ) for a coordinate system (z1, 2, . . ., z4) of X and for some
1 <1 <d. D is called a simple normal crossing divisor if D is normal crossing
and if all the irreducible components of D are non-singular.

Round-up and round-down: The round-up ™" and the round-down r, of a real

number r are defined by
7 c=min{n € Z|n>r}, and |r,:=max{ne€Z|n<r}.

A Q-divisor of X is an element of WDiv(X, Q) = H°(X, wDivx ®Q). The round-
up and the round-down of a Q-divisor B = > brI" are defined by

'B':=> "br'l, and B, :=) brT.
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Desingularization: For a variety V', Sing V' denotes the singular locus of V. A
bimeromorphic morphism p: Y — V' is called a desingularization or a resolution
of singularities, if Y is non-singular and g is isomorphic over V ~ Sing V. The
existence of desingularization is proved by Hironaka [H1], [H2].

VHS: A Z-polarized variation of Hodge structure H of rank two and of weight one
defined over a complex variety S consists of a locally constant system H of a
free abelian group of rank two, a skew-symmetric bilinear form Q): H x H — Zg
inducing an isomorphism A* H = Zg, and of a subbundle F*(H) of H := H® Og
such that (Hy, Qs, F'(H) ® C(s)) forms a polarized Hodge structure of weight one
for every s € S (cf. [(33], [83]). We call a Z-polarized variation of Hodge structure
of rank two and of weight one by VHS for short.
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1. O-SPACE

We introduce the category dsp of complex analytic 0-spaces and the 0-étale topology. In
the category AB of complex analytic spaces with boundary, we define special morphisms:
0-isomorphisms, 0-open immersions, and 0-étale morphisms. The OSP is defined as the
localization of AB by O-isomorphisms and the 0-étale topology is defined by 0-étale
morphisms. A 0-space X is an object of 9SP. A reduced analytic space sp(X) is associated
and an element x of sp(X) is called a point of X. The local profinite fundamental group

7lo¢(X; x) is defined by 0-étale morphisms over z.

1.1. Category of J-spaces

Let X be a complex analytic space and let B be a closed analytic subset. B is called
nowhere-dense in X if X ~ B is dense. If B is nowhere-dense and if I' is an irreducible

component of X, then I' N B is also nowhere-dense in I'. In particular, I' . B # 0.

Definition. The category AB of complex analytic spaces with boundary is defined as

follows:

e An object is a pair [ X, B] consisting of a complex analytic space X and a nowhere-
dense closed analytic subset B;
e A morphism f: [X, B] — [Y, D] is defined to be a holomorphic mapping X — Y
satisfying f~!(D) C B.
An object [X, B] is called a complex analytic space with boundary and B is called its

boundary.

By considering objects [X, B] with B = (), we have a natural fully faithful functor from
the category An of complex analytic spaces into AB. Note that fiber products always
exist in AB. In fact, for two morphisms [X, B] — [Z,A] and [Y, D] — [Z,A] in AB,
we have the fiber product X x, Y in An and a closed subset p;'(B) U py* (D), where
p1: X XzY — X and po: X Xz Y — Y are projections. Let E be the union of all the
irreducible components of X x, Y that are contained in p;*(B) U py ' (D) and let E* be
its interior: this is the maximal open subset of X Xz Y contained in £. Then the fiber
product [X, B] Xz, [Y, D] in AB should be

[X xz Y~ EXp; (B)Upy (D) \ EY].

Definition 1.1.1. Let f: [X, B] — [Y, D] be a morphism in .AB such that

(1) f has only discrete fibers, and
(2) f71(D) = B.
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It is called a O-étale morphism, a 0-open immersion, and a J-isomorphism according to

the following conditions:

0-étale morphism: X~ B — Y~ D is an étale morphism, i.e., a local isomorphism.
OJ-open immersion: X \ B — Y ~ D is an open immersion.
O-isomorphism: X\ B — Y ~\ D is an isomorphism and X — Y is a finite (proper)

morphism.

Let P be one of the three conditions above. Then the following properties hold:
e An identity mapping satisfies P;
e The composite of morphisms satisfying P also satisfies P;
e The condition P is stable under base change.

Two pairs [X, B] and [Y, D] are called 0-isomorphic, if there exist J-isomorphisms
[Z,A] — [X,B] and [Z,A] — [Y,D] from another pair [Z, A]. The relation being
O-isomorphic is an equivalence relation on the objects of AB and an equivalence class
is called a complez analytic 0-space (O-space, for short). A O-space is written by an
underlined capital letter, e.g., X. The O-space corresponding to [X, B] is denoted by
(X,B). If X = (X, B) for a pair [X, B], then [X, B] is called a realization of X and we
write [X, B] € X. For any realizations [X, B] of a fixed X, the open subspaces X \ B
are canonically isomorphic. It is denoted by X™* and is called by the interior or the open
part of X.

Definition. The category OSP of (complex analytic) 0-spaces is defined as follows: An
object is a 0-space. For two 0-spaces X := (X, B) and Y := (Y, D), the set Homps (X, Y)
of morphisms is well-defined to be
lim Homus([X', B], [Y, D]),
[X’,B'|—[X,B]

where the direct limit is taken over all the 0-isomorphisms [X’, Bl — [X, B].

A O-space (X, B) with B = () is considered as an analytic space X. Then there is a
fully faithful functor An < 0sp. Fiber products also exist in dsP, which are induced

from those in AB. However, these are different from usual fiber products.

Example. Let A be a unit disc {t € C | |t| < 1}. We shall consider two morphisms
Ci =A3t—tmre A= Csand Cy := A >t+—t" € A = (Cs for mutually coprime
positive integers m and n. Then the usual fiber product C x¢, Cs is an irreducible curve
['in C; x Cy ~ A? defined by 2™ = y" for a coordinate system (z,%) of A% But the
fiber product (C1,{0}) X (¢ 101) (C2,{0}) is isomorphic to (A, {0}) and the projections
to (C1,{0}) and (Cy, {0}) are given by t — t" and ¢ — t™, respectively. Here A — I is

the normalization.
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Definition. An analytic space with boundary [X, B] is called locally connected at a point
x € X (with respect to the boundary B), if for any open neighborhood U of z, there is
an open subneighborhood U’ C U with U’ \. B being connected. [X, B] is called locally

connected, if it is locally connected at every points of X.

Remark. In the case X is reduced and B is the singular locus of X, [X, B] is locally
connected at x if and only if X is locally irreducible at x. In particular, the locally

connectedness is not an open condition.

Lemma 1.1.2. Let [X, B] be a complex analytic space with boundary, f: [Y, D] — [X, B]
a 0-étale morphism, and let x € f(Y) C X be a point at which [ X, B] is locally connected.
Then f(Y') is a neighborhood of x. Suppose further that f is a 0-open immersion. Then
(1) f~'(x) consists of one point, and
(2) for an open neighborhood V of f~'(z), there is an open neighborhood U of x such
that f~Y(U) C V and that f~(U) — U is a finite morphism.
In particular, if [X, B] is locally connected, then f(Y) is open. If further f is a 0-open

immersion, then f is a homeomorphism onto f(Y).

Proof. For a point y € f~'(z), there exist open neighborhoods V and U of y and z,
respectively, such that f induces a finite morphism V — U and that i/ \. B is connected.
This property is derived from the conditions: f~!(z) is discrete and [X, B] is locally
connected at x. Thus V N~ D — U ~ B is a finite surjective étale morphism. Hence
U C f(Y). If fis a 0-open immersion, then Y\ D — X ~\ B is an open immersion.
Therefore f~!(z) = {y} and f7'(U) ~ D = V ~ D. Thus f~'(U) = V, since D is

nowhere-dense. In particular, f~*(U) — U is a finite morphism. O

Let j: X N~ B — X be the open immersion for an analytic space with boundary
[X, B]. The image of Ox — 7.Oxp is the structure sheaf of a closed analytic subspace
X'. Since B is nowhere-dense, X and X' are homeomorphic and [X', B] — [X, B]
is a O-isomorphism. The [X, B] is called refined if X ~ X', i.e., the homomorphism

Ox — 7.0x_p is injective.

Lemma 1.1.3. Let [X, B] be a complex analytic space with boundary and let x € X be a
point. Then there exist an open neighborhood U of x and a 0-isomorphism f: [Y, D] —
[U, BN U] such that [Y, D] is refined and is locally connected at every point of f~(x).

Proof. We may assume that X is refined. By considering the irreducible decomposition
of the germ (X, z), we have an open neighborhood U of = and a finitely many closed
analytic subspaces U, C U (1 < r < k) such that
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(1) U= Ul::l UT>
(2) restriction homomorphisms induce an injection Oy — @F_, Oy,

(3) U, is locally irreducible at x for any r.

Since B is nowhere-dense, U, \. B is non-empty. We may assume that U, \. B is connected
and the immersion \.: U, ~ B — U, induces an injection Oy, — A, Op,..p. Let us

consider the following commutative diagram:

Oy —— oF_, Oy,

| l

§:Ovp —— @1 \.Ou, 5,
and an Oy-algebra A defined by

k
A= j.0u sNEPOy,.

r=1
Then A is a coherent Op-module. Thus we have a finite morphism f: Y — U with a

commutative diagram:

Ut v —— .U

T |

UNB «—— |I' U, \ B,
such that Oy C f.0y = A C @F_, Op,. In particular, f : [V, f~'(B)] — [U,BNU] is a
d-isomorphism and [Y, f~1(B)] is refined. We shall show [Y, f~!(B)] is locally connected
at every point y € f~!(z). Suppose that V ~ f~!(B) is not connected for a connected
open neighborhood V of y. By replacing V', we may assume that non-empty intersections
VNU =Vnf1(U) are connected. Now we have two open subsets Wy, W5 with
V . f7Y(B) = Wy U Ws. Let us consider the following sets:

R={1<r<k|VNU #0}, R:={reR|Vn(U ~B)CW1}

for i = 1,2. Let W; be the subspace of V' whose structure sheaf is the image of Oy —
@rer, Ovrv,. Then Wi\ B ~ W;. Therefore Ow, ® Ow, C (5.0x5)|v N (D, Ou,)|v.
Hence Oy = Ow, &0y, and V = W;LIW,. This contradicts the property: V' is connected.
Therefore [Y, f~!(B)] is locally connected at y. O

Definition. An analytic space with boundary [X, B] is called top, if for a d-isomorphism
f: 1Y, D] — [X, B], there is a 0-isomorphism g¢: [X, B] — [Y, D] such that f o g is the
identity mapping.
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A top realization [X, B] of d-space X is unique up to isomorphisms in AB. If it exists,
then
Homygp (X, (Y, D)) ~ Hom ([ X, B, [Y, D])

for any [Y, D].

Lemma 1.1.4. If the interior of a 0-space is a reduced analytic space, then there is a

top realization.

Proof. Let [X, B] be an analytic space with boundary with X ~ B being reduced. We
may assume that [X, B] is refined and hence X is reduced. Let ¢: W — X be the nor-
malization and let j: X ~\ B — X be the open immersion. Then we have a commutative

diagram:
OX — g« OW

l l

J-0xp —— ju(a.0w)|, -

Here, every arrows are injective. The Ox-algebra
A= j*OX\B N Q*OW

is a coherent Oy-module. Thus we have a finite morphism p: X’ — X such that A ~
p«Ox. Here [X', B'] — [X, B] is a 0-isomorphism for B’ = p~*(B). For a d-isomorphism
[Y,D] — [X', B'], W is also a normalization of Y. Thus we have a unique factorization
[X', B'] — [Y, D]. Hence [X', B'] is a top realization. O

Definition. A J-space X is said to be reduced, if X is reduced for a realization [X, B]
of X. This condition is equivalent to that X™ is reduced. For a d-space X, the reduced
0-space (Xied, B) is independent of the choice of realizations [X, B] € X. This d-space
is denoted by X, .q-

Example. If X is not reduced, then we have no top realization in general. For example,
let C' be a non-singular curve, x a point and let F be a non-zero locally free sheaf of finite
rank on C'. We can give an algebra structure on O¢ @& F as follows: For (a,v), (b,w) €
Oc¢ @ F, the multiplication is given by (ab, bv + aw). Then we have a non-reduced curve
C(F) such that C' C C(F) and its nil-radical is just F. Let us consider the pair [C'(F), z].
For arbitrary injection F — G of locally free sheaves whose cokernel is supported only
at {x}, we have a 0-isomorphism [C(G), z] — [C(F),x]. Thus it is impossible to obtain
the top realization of (C'(F), z).

Lemma 1.1.5. (1) The top realization of a O-space is locally connected.
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(2) If [X, B] is locally connected at a point v and if 7: [Z,A] — [Xyea, B] is the
d-isomorphism from the top realization of (Xred, B), then m=1(z) consists of one
point. In particular, if [X, B] is locally connected, then m: Z — Xyeq is a homeo-

morphism.

Proof. (1) is derived from 1.1.3. In (2), [X,eq, B] is also locally connected at z. Thus the

assertion follows 1.1.2. O

Lemma 1.1.6. Let f: [Y, D] — [X, B] be a 0-open immersion.

(1) For a point v € f(Y) C X, there is an open neighborhood U of x such that
7Y U) — U is a finite morphism.

(2) If f(Y) =X, then f is a O-isomorphism.

(3) The second projection

P2 [Y, D] X[X,B] [Y, D] — [Y, D]
is a 0-isomorphism.

Proof. (1) Let u: [X’,B'] — [U, B NU] be a d-isomorphism such that I is an open
neighborhood of x and that [X’, B'] is locally connected at any point of p='(z) (cf.
ﬂ:l:g) Then by the proof of 1.1.2, the second projection

Y, D] xixp [X', B] — [ X', B’
[X.5]

is a finite morphism, if we replace U by another open neighborhood of z. Thus f~!(U) —
U is a finite morphism.

(1) is a consequence of (1)), and (3) is a special case of (). O

Definition. (1) A morphism Y — X of O-spaces is called a 0-open immersion if it is
induced from a d-open immersion of each realizations. The Y is called a d-open
subspace of X.

(2) A 0-étale morphism Y — X is defined to be a morphism induced from a J-étale

morphism of each realizations. The Y is called a 0-étale space over X.

The second projection U xx U — U is a 0-isomorphism for a d-open subspace U of X
by 1.1.6.

Let [X, B] be a complex analytic space with boundary and let ([Y, D], y, f) be a triplet
consisting of a complex analytic space with boundary [Y, D], a point y € Y, and a 0-open
immersion f: [Y, D] — [X, B] such that [Y, D] is locally connected at y. A morphism
h: ([Y1, D1], 1, f1) — ([Y2, D2], y2, f2) of such triplets is defined to be a d-open immersion
h: [Y1,D1] — [Ya2, Ds] such that fo o h = f; and h(y1) = y2. Two triplets are called

equivalent if there exist morphisms from another triplet to each triplets.
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Lemma 1.1.7. Let X = (X, B) be a 0-space and let w: [Z,A] — [Xyea, B] be the top
realization of (Xiea, B). Then Z is set-theoretically identified with the set of all the
equivalence classes of the triplets ([Y, D], vy, ).

Proof. For a triplet ([Y, D], y, f), we have a d-isomorphism

q¢: [Z, A] X(x,q,8] [Yred, D] = [Viea, D]
and a J-open immersion

p: (2, Al X(x,00,8] [Yeea, D] — [Z, A].

Then ¢~'(y) consists of one point, since [V, D] is locally connected at y. Thus ([Y, D], vy, f)
defines a point p(q~*(y)) of Z. This is independent of the choice of equivalent triplets.
A point z € Z defines an equivalence class of triplets as follows: Let z = 7(2) € X
be the image. By 1.1.3, there exist an open neighborhood U of z and a d-isomorphism
f:[Y,D] — [U,BNU] such that [Y, D] is locally connected at every point of f~*(z).
There is a d-isomorphism A: [ (Ured), A N 7 (Used)] — [Yiea, D]. By 1.1.2 or 1.1L5,
h=tf=1(x) — f~'(z) is bijective. Thus 2z € Z is determined by the triplet ([Y, D], v, f)
for a point y € Y. O

Definition. For a d-space X, let [Z, A] be the top realization of X 4. The reduced
analytic space Z is called the space of X and is denoted by sp(X). An element of sp(X)
is called a point of X. The X is called connected if sp(X) is connected, equivalently X*

is connected.

Lemma 1.1.8. Let X be a complex analytic 0-space.

(1) If [X, B] is a locally connected realization of X and if U — X is a 0-open immer-
sion, then there is an open subset U C X such that U — X is induced from the
0-open immersion (U, BNU] — [X, B].

(2) If U — X is a O-open immersion, then sp(U) — sp(X) is an open immersion.

(3) If sp(Uy) = sp(Us) in sp(X) for 0-open subspaces U; and U, of X, then Uy and

U, are 0-isomorphic over X.

Proof. (1)) There is a realization f: [U’,A] — [X,B] of U — X. The image U := f(U’)
is an open subset by 1.1.2. Thus [U’, A] — [U, BN U] is a d-isomorphism by 1.L.6. In
particular, sp(U) — sp(X) is injective.

(Q) We may assume that X and U are reduced. Hence the 0-open immersion is induced
from that of each top realizations. Thus (2) is a consequence of (I)).

(B) Let Us be the fiber product U; x x U, and let p;: Uy — U, be the i-th projection

for i = 1, 2. Then p; and p, are O-isomorphisms by 1.1.6. 0
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A 0O-open subspace U of X is called a 0-open neighborhood of x € sp(X) if x € sp(U).

Lemma 1.1.9. Let X be a complex analytic O-space and let x be a point of X. Then for
any open neighborhood U of x in sp(X), there exist a 0-open neighborhood U of x such
that sp(U) C U.

Proof. Let [X, B] be a realization of X that is locally connected at the image = = u(x)
under the morphism p: sp(X) — Xyeqa. Then there is an open neighborhood U of z such
that u='(U) c U by 1.1.2. Thus sp(U) c U for U = (U, BNU). O

Thus the topology of sp(X) is generated by sp(U) for d-open subspaces U.

Problem. For any 0-space X, does there exist a locally connected realization [X, B]

such that X,.q ~ sp(X) as reduced analytic spaces?

1.2. Profinite fundamental group

We introduce and study profinite fundamental groups of 0-spaces by using 0-étale

morphisms.

Lemma 1.2.1. For a 0-étale morphism Y — X, the induced morphism sp(Y) — sp(X)

1S an open map.

Proof. Let f: [X,B] — [Y, D] be a realization of the morphism such that f is 0-étale.
Then [Xed, B] — [Yied, D] is also 0-étale. Thus we may assume that X and Y are reduced
and that [X, B] and [Y, D] are top realizations. Then the assertion follows 1.1.2. O

A morphism Y — X of J-spaces is called surjective and finite, respectively, if the
induced morphism sp(Y’) — sp(X) is so. If a 0-étale morphism Y — X is finite and if X

is connected, then it is surjective by 1.2.7.

Definition. Let X be a connected O-space. A 0-étale morphism Y — X is called
Galois, if there is a left action of a discrete group GG on Y in the category 0sp such that
the morphism

GxY 3> (g,y)— (gy,y) €Y xx Y

is an isomorphism in Jsp. In this case, Y* is étale and Galois over the image of Y* — X™.
The Galois group G is denoted by Gal(Y /X).

Lemma 1.2.2. Let f: Y — X be a 0-étale morphism of connected 0-spaces. Suppose
that the second projection Y xx Y — Y 'is a finite morphism. Then there exists a 0-étale
finite morphism Z — Y from a connected O-space Z such that the composite Z — X is

Galois.
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Proof. It f itself is Galois, we have nothing to prove. Otherwise, ¥ X x ¥ has a connected
component which is not isomorphic to Y by the second projection. Let Y™ be one of such
component. Then the second projection Z(l) X x Z(l) — Z(l) is also finite. If Z(l) — X
is Galois, we take Z = Y. Otherwise, we can choose a connected component Y ? of
Z(l) X x Z(l) which is not isomorphic to Z(l). Next we shall examine Z(Q) — X to be
Galois or not. By continuing the process, we have a sequence of 0-étale finite morphisms
y® — y®=1) ... Y. But this is not an infinite sequence, since the length of the

restriction to X* is finite. Thus we can take Z = Z(k) for some k. OJ

The Z obtained by the method of 1.2.2 is minimal in all such Galois morphisms. This is

called the Galois closure of f.

Lemma 1.2.3. Let f: Y — X be a 0-étale Galois morphism with a finite Galois group
Gal(Y/X) =G. If H C G is a subgroup, then there exists a 0-étale morphism Z — X
with a 0-étale finite Galois morphismY — Z such that Gal(Y./Z) = H and the composite
Y - Z — X is the original f.

Proof. Since G is a finite group, we can find a realization [Y, D] € Y such that G acts
holomorphically on Y. Let Z be the quotient of Y by H and let A C Z be the image of
D under the quotient morphism. Then Z := (Z, A) satisfies the condition. O

Corollary 1.2.4. Let f: Y — X be a 0-étale morphism. Assume that the second pro-
jection Y xx Y — Y is a finite morphism. Then f is the composite of a finite 0-étale

morphism Y — U and a 0-open immersion U — X.

Proof. We may assume that X and Y are connected. Let Z — Y — X be the Galois
closure with G = Gal(Z/X). Let U be the quotient of Z by G by 1.2.3. Then U — X is

a J-open immersion. O

Problem. Let X be a connected d-space and let U — X* be a finite étale morphism.
Then does there exist a d-space Y finite and 0-étale over X such that Y™ is isomorphic
to U over X*7

We have an affirmative answer in the case X* is a normal variety, by a theorem of
Crauert-Remmert [(G2].

A pointed 0-space is a pair (Y;y) consisting of a d-space Y and a point y € sp(Y).
A morphism of pointed 0-spaces should be a morphism of 0-spaces preserving the given
points. Let X be a connected 0-space and let 2 be a point of the interior X™*. We shall
define the profinite fundamental group of (X;x) to be

#1(X32) = lim Gal(Y/ X)),
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where the limit is taken over all the pointed d-spaces (Y;y) over (X;x) such that Y is
connected and Y — X is finite 0-étale and Galois.

Let 71 (X*, x) be the usual fundamental group, X — X* the universal covering mapping
and let 7 € X be a point over z. For a finite d-étale morphism f: Y — X and for a point
y € f~1(x), there exists uniquely a morphism 7, X — Y* over X* that sends 7 to .
Thus the set HomX(XV, Y') of morphisms X — Y over X isidentified with the fiber ().
Let L,: X — X be the left action of v € 7 (X*,z). For a morphism ¢ € Homy (X,Y),
we define ¢? := ¢ o L,. Then f~'(z) admits a right action of m (X*, z). By 1.2.2, there
is a finite 0-étale Galois morphism Z — X satisfying the following conditions:

(1) Z is connected;
(2) For a point z € Z* and for a point y € Y* both lying over z, there exists uniquely

a morphism Z — Y over X which sends z to y.

If we fix a point z € Z* lying over z, then the fiber f~!(z) is also identified with the set
Homyx(Z,Y) of morphisms over X. Thus there is a group homomorphism m(X*, z) —
Gal(Z/X) (which depends on the choice of z) such that the action of 7 (X*, z) on f~(x)
is derived from that of Gal(Z/X). In particular, we have a natural homomorphism
(X" ) — (X 2).

Definition. For a topological group II, the category Fin(II) of finite discrete sets with
continuous right action of II is defined as follows: an objects is a pair (S, p) consisting of

a finite discrete set S and an anti-group homomorphism p: II — Aut(S) such that
Sx 1> (s,p) — p(p)(s) €S

is continuous. A morphism (Si,p1) — (S2,p2) is defined to be a map f: & — S»
satisfying f o p1(p) = pa(p) o f for any p € II. The subcategory consisting of all the
objects (S, p) with transitive action of p(II) is denoted by Fin"*"(II).

Lemma 1.2.5. The category Fin(71(X; )) is equivalent to the category of 0-spaces finite
and O-étale over X. Here, the subcategory Fin"** (7, (X; x)) is equivalent to the category

of connected 0-spaces finite and 0-étale over X.

Proof. For a finite 0-étale morphism f: Y — X, the fiber f~!(z) admits a continuous
right action of 71 (X;z), by the argument above. Let S be a finite discrete set with a
continuous right action of 71 (X;z). By considering the decomposition by orbits, we may
assume that the action is transitive. Then there exist a finite 0-étale Galois morphism
Z — X from a connected O-space Z and a point z € Z* lying over z such that the
action is derived from that of Gal(Z/X) on S. Let U C Gal(Z/X) be the stabilizer
of a point of §. Then § ~ U\ Gal(Z/X) as sets with right action of Gal(Z/X). We
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associate U with the quotient 0-space U\ Z, which is finite 0-étale over X. Thus we have

the equivalence. O

Let x be any point of X. We fix a continuous path ®: [0, 1] — sp(X) such that ®(0) = z
and ®(t) € X* for t # 0. For a d-open neighborhood U of z, there is a number 0 < t5 < 1
such that ®(¢t) € sp(U) for any t < t;. The profinite fundamental groups 71(U; ®(t))
for 0 <t <ty are isomorphic to 71 (U; ®(to)) by the path ®. We consider couples (U, t)
consisting of a d-open neighborhood U of x and a number ¢ such that ®(¢') € sp(U) for
any t' < t. For two couples (U;,t1) and (Us, t2), we denote (U;,t1) < (U, t2) if Uy C U,
and if t; < t5. By considering the projective system {71 (U;®(¢))} induced from <, we
define the local profinite fundamental group by

(X, ©) = i i (U (1))

Lemma 1.2.6. If &; and 5 are two continuous paths [0, 1] — sp(X) such that ®1(0) =
$5(0) = x and that ®1(t), Po(t) € X* fort # 0, then there is an isomorphism between
floc(X; o, ®1) and 719Xz, @y).

Proof. We may assume that o ¢ X*. Let U be an open neighborhood of x in sp(X)
such that there is a closed embedding U — A" into an n-dimensional unit polydisc A"
sending z to the origin. By a coordinate system (21, 29,...,2,) of A" at x = 0, we
define p(z) := 3|z Let B: be the ball {z € A™ | p(z) < €} and let S. be the sphere
{z € A" | p(z) = €} for a positive number ¢ < 1. Then by the existence of Whitney
stratifications and by Thom’s first isotropy lemma, there exist positive numbers ¢ < &

and a homeomorphism
o: B, NUNX" — (S, nUNX") x(0,e9)

such that py o ¢ = p for the second projection ps. Then for some positive number § < 1,
®; and P, restricted to [0, d] are considered to be paths starting from the vertex in the
cone

C:= (S, NUNX*) x [0,20) / (S, NUNX*) x {0}
of S;; NUNX*. Thus there is a homotopy h: [0,0] x [0, 1] — C such that h(t,0) = ®1 (),
h(t,1) = ®q(t) for any ¢t € [0,6] and h(0,s) = 0 for any s € [0,1]. Hence we have an
isomorphism 71°¢(X; x, ®1) ~ #1°¢(X; x, ®3) by the homotopy h. O

We denote 71°¢(X; z) = #1°¢(X; 2, ®) when we consider only the group structure.
Definition 1.2.7. A germ of pointed 0-spaces is an equivalence class of pointed 0-spaces

with respect to the following relation: Two pointed O-spaces (Y;;y1) and (Y;y2) are

equivalent if there exist d-open immersions (Ys;y3) — (Y;v:) for i = 1, 2, from another
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pointed O-space. A 0-étale morphism (Y;y) — (X;x) is called a 9-étale neighborhood of

x. A germ of 0-étale neighborhoods of z is a germ of pointed O-spaces étale over (X; z).

Lemma 1.2.8. The following two categories are equivalent:

(1) The category of germs of 0-étale neighborhoods of x;
(2) Fin™(70(X; )).

Proof. The functors between two categories below give the equivalence.

(1) = (@) Let (Y;y) — (X;x) be a d-étale neighborhood. Since we consider only
germs, we may assume that X and Y are connected, f~'(z) = {y} for the morphism
f:sp(Y) — sp(X), and that f: Y — X is a finite 0-étale morphism. There exist a
path U: [0,1] — sp(Y) and a homeomorphism ¢: [0,1] — [0,¢] for 0 < € < 1 such that
foW = ®op. Thus by El:Q:B, we can attach a finite discrete set S with a transitive
continuous right action of 7 (X; ®(¢)) to Y /X. It also admits a transitive continuous
right action of #1°¢(X;x) by definition. Since S is essentially the fiber f~1(®(e)), this is
independent of the choice of ¥ and ¢.

(2) = (1) Let S be a finite discrete set with a transitive continuous right action of
7l¢(X; ). Then the action is derived from 71(U; ®(t)) for a d-open neighborhood of x
and for some 0 < t < 1. Thus by 1.2.5, it is associated with a finite J-étale morphism
(Y;y) — (U;z), where Y is connected. The germ of this étale neighborhood does not
depend on the choice of U and t. O
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2. O-ETALE COHOMOLOGY

The 0-étale topology of the category OsP is defined by 0-étale morphisms. A 0-étale
covering family of a O-space X is a collection of 0-étale morphisms {h;: U, — X }ics such
that

U hi(sp(L)) = sp(X).

i€l
In Section 2, we shall study sheaves (of abelian groups) on X with respect to the 0-
étale topology and their cohomology groups. For a presheaf F', the stalk F, at a point
r € sp(X) is defined as a discrete #1°°(X; r)-module. The enough-injectiveness of the
category of sheaves on X is proved and the cohomology groups H'(X, F') are defined.
The Cech cohomology group HP(X, F) is shown to be isomorphic to HP(X, F). Leray’s
spectral sequence exists for a morphism of J-spaces. In particular, for the morphism
e: X = (X, B) — X to arealization, H (X, F') are calculated by H?(X, Rie.F). If [ X, B]
is locally connected at x, then the stalk of R%,F at x is isomorphic to the continuous

group cohomology HZL . (7#1°°(X; ), F;). Coherent Ox-sheaves are also studied.

2.1. Sheaf

A presheaf F of abelian groups of X is a contra-variant functor from the category
(0-ét)/X of O-spaces 0-étale over X to the category of abelian groups. This is called a
sheaf if for a 0-étale morphism U — X and for a d-étale covering family {U, — U };er,
the sequence

0—FU) —[[FU) = I FU; xuUy)
icl ijel
is exact.
Remark. Let m: Y — X be a 0-étale Galois morphism with the Galois group G. If F' is
a presheaf of X, then F(Y) is a right G-module, since G x Y >~ Y xx Y. If F' is a sheaf
and if 7 is surjective, then the G-invariant part of F/(Y) is F'(X).

Example. Let X be a 0-space and let M an abelian group. For a 0-étale morphism
U — X, we attach the group

. 0

limy, pjep 270 M).
This forms a sheaf My called the constant sheaf. If U is connected, then Mx (U) ~ M.

For a 0-étale morphism U — X, we attach the group

: 0
lim; ajey (U Ov).

This forms a sheaf of rings in J-étale topology. This is called the structure sheaf and is
denoted by Ox.
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We introduce Cech cohomology groups. Let F be a presheaf of X and let I := {U, —
X}aca be a d-étale covering family of X. For a = (o, 1, . .., og) € AT we define
Upyi=Uny XxUqsy Xx - Xx Uy,
The group of ¢-th Cech cochains is defined to be
CfU/X F) = T FU)

acAatl
Then we have the Cech complex C*(U /X, F) and its cohomology groups HY(U /X, F) as
usual. A refinement of U is a 0-étale covering family ¥ = {V 3 — X} 3cp of X with a map
a: B — A and with 0-étale morphisms ¢g: V3 — U, gy over X. For the refinement, we
have homomorphisms H9(U /X, F) — HY(V/X, F) as usual, which do not depend on the
choices of a and ¢g. For a given 0-étale covering family, we have a refinement {V; — X}

such that each V5 is 0-étale Galois over X with a finite Galois group. Thus we may

assume that V5 is determined by a finite quotient group of floe(X; w5) for some point x5

of X. Therefore we can define the inductive limit
HY(X, F) := lim H'(U/ X, F)
and call this the g-th Cech cohomology group.

Lemma 2.1.1. Let U — X be a surjective O-étale Galois morphism with the Galois group
G. Then for a sheaf F' of X, we have

H'(U/X, F) ~ H"(G, F(U)),

where we consider {U — X} as a 0-étale covering family and the right hand side is the

group cohomology of the right G-module F(U).

Proof. For a non-negative integer ¢, we have an isomorphism
GI'xU~UxxUxx---xxU ((q+1)-fold fiber product).
Thus CYU/X, F) ~ Map(G?, F(U)). The complex Map(G®, F'(U)) is nothing but the

complex defining HP(G, F'(U)), which is derived from the non-homogeneous free resolu-
tion of the trivial G-module Z. O

We define presheaves H?(F) of X for non-negative integers ¢ by
HI(F)U) = H(U, F)

for 0-étale morphisms U — X. In the case ¢ = 0, the following properties are well-known:



32

(1) H°(F) is a separated presheaf, i.e.,
0 — H(F)(U) — H HO(F
i€l
is exact for a 0-étale covering family {U; — U }icr;
(2) If F itself is a separated presheaf, then H(F) is a sheaf;
(3) If F is a sheaf, then F' ~ H°(F);
(4) For an exact sequence of presheaves 0 — F' — G — H, the induced sequence
0 — H(F) — H(G) — H°(H) is also exact.
Thus F* := HO(H°(F)) is the sheafification of F.
The stalk F, x in the weak sense of a presheaf F' at a point x € sp(X) is defined to
be the inductive limit
Fyyx += lim F(U)
for 0-open neighborhoods U of z. We attach the stalk F}, )y in the weak sense to a germ
(V;v) of a 9-6tale neighborhood of z. Then by considering 1.2.8, we can define an abelian
group F,[S] for a finite discrete set S with a transitive continuous action of #1°¢(X; z).
In particular, F,[I'] is a right I-module for a finite quotient group I" of #1°¢(X; ). If F
is a sheaf and if I" is a subgroup of I', then the [”-invariant part of F,[I"] is F,[I"\I].
The stalk F, is defined to be the inductive limit

F o= lim F,[I]
H

for finite quotient groups #1°¢(X;z) — I'. This is a discrete 71°°(X; z)-module. If F is a
sheaf, then the F,[I'] is identified with the invariant part of F, by the action of the kernel
of #Al¢(X;x) — I'. If (V;v) — (U;u) is 0-étale, then we have an isomorphism F, ~ F,
as abelian groups. The support of F'; Supp F', is defined to be {z € sp(X) | F, # 0}.
For a section s € F(U), the germ s, at u € sp(U) is defined to be the image of s by
F(U) — F,. The following lemma is proved by a standard argument.

Lemma. (1) Let F — G be a homomorphism of presheaves of X where G is a sheaf.
Then this is the sheafification of F' if and only if this induces isomorphisms F, ~
G for any point x of X.
(2) Let 0 - F — G — H — 0 be a sequence of sheaves on X. Then it is exact if and
only if 0 = F, — G, — H, — 0 is exact for any x € sp(X).
(3) Let F' be a presheaf of a 0-space X, F'* the sheafification of F' and let x be a
point of X. Then the stalk I, in the weak sense is isomorphic to the floc(X; x)-

invariant part of F,. For a 0-étale morphism U — X, we have the following
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identification:

FYU) :{(su) e ] Fayy | for any u, there exist a 0-étale neighborhood 7: V. — U
uesp(U)

of u and an element t € F(V) such that t, = s, for any v € sp(K)}.

The stalk F), is a discrete right #1°¢(X; x)-module for a sheaf F' of X. Conversely, we
can construct a sheaf 7,7 of X from a discrete right ﬂo"(l ;x)-module 1 as follows:
For a 0-étale morphism U — X, we set:

Lm@U):= [ mrrE,
sp(U)3u—x
where ! is the Il-invariant part of 7 for a subgroup Il C #1°¢(X;x). Then i,1 is a
sheaf and Supp i, 1 = {z}. Therefore we have:

Lemma. The category of discrete right #1°¢(X; x)-modules and the category of sheaves of

X supported in {z}, are equivalent.

For a sheaf F', we have the sheaf [],cq,(x) 7 F: and an injection F' — [],cq,(x) Fir Thus
the category of sheaves on X has enough injectives. In fact, if 77 is an injective discrete
wlo¢(X; x)-module, then 7,77 is an injective sheaf on X. Therefore we can consider right

derived functors, especially cohomology groups of sheaves.

Definition. The right derived functors for the global section functor given by F' — F(X)
are denoted by H*(X, F'). These are called d-étale cohomology groups of F over X.

Let f: Y — X be a morphism of d-spaces. Then for a sheaf F' of Y, the direct image
sheaf f.F is defined by:
E(U) = F(Y. xx U)
for any 0-étale morphism U — X. We also define the direct image sheaf with proper

support fiF as follows:

HF(U) = {s € FlY xxU) ’ Supp(s) — sp(U) is proper}.
Conversely, for a sheaf G of X, we have the pullback sheaf f~'G. This is defined to be
the sheafification of the presheaf

Vi— lim GU),
—
V-oU—-X
where the limit is taken over d-étale morphisms U — X with factorizations V. — U of

the composite V. — Y — X. Then there exist canonical homomorphisms f~!'f.F — F
and G — f.f7'G, by which f, and f~! are adjoint to each other:

Homy (F, f.G) ~ Homy (f'F, G).
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If f is a 0-étale morphism, we sometimes write f~'F by Fy, since this is the restriction
to (0-6t)/Y.

Lemma 2.1.2. Let f: Y — X be a 0-étale morphism and let F and G be sheaves of
Y and X, respectively. Then there exist canonical homomorphisms F — f~Y(fiF) and
H(fT'G) — G by which fi and f~' are adjoint, i.e.,

Homy (fiF, G) ~ Homy (F, f Q).

Proof. The left adjoint f{' of f ~1is constructed by the following Kan’s process (cf. [SH]):
For a 0-étale morphism U — X, let I&/X be the category of pairs (V. /Y, ¢) such that
V — Y is a 0-étale morphism and ¢: U — V is a 0-étale morphism over X. A morphism
V1 /Y, 1) — (Vo/Y, ¢o) is defined to be a 0-étale morphism h: V; — V, such that
¢o = h o ¢y. For a sheaf F' of Y, we can define a presheaf of X by

FEU) = lm  F)= P Fl),
(V/Y. 0L,y ¢peHomy (U,Y)

where U, denotes the J-étale morphism ¢: U — Y. Then the sheafification (fyF)*
induces the left adjoint functor f{. We have a natural homomorphism f{F — fiF for a
sheaf F' of Y. By comparing their stalks, we have an isomorphism f{F ~ fiF. 0
Remark. The enough-injectiveness of the category of sheaves of X is also derived from

-2:1_._2, since fiZy for all 0-étale morphisms f: U — X form a generator of the category.

Corollary 2.1.3. Let U — X be a 0-étale morphism and let F' be a sheaf of X.

(1) If F is an injective sheaf, then so is F|y.
(2) The functors F — H'(U, F|y) (i > 0) are the right derived functors of F — F(U).

For a morphism f: X — Y of 0-spaces, the right derived functors for f, are called the
higher direct images and denoted by R'f.F. There is a natural morphism ¢ = ex: X =
(X, B) — (X,0) for a realization [X, B] of X. The category of d-étale morphisms over
(X, 0) is equivalent to that of étale morphisms over X. Thus the category of sheaves of
(X, 0) is equivalent to that of X, since an étale morphism is a local isomorphism. There-
fore the direct image £, F is the functor F' restricted to the category of open subspaces
of X.

2.2. Cech cohomology and Right derived functor cohomology
For a presheaf F' of X, we define the presheaves H?(F') of X for ¢ > 0 by:

HI(F)(U) = H'(U, F),
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for a 0-étale morphism U — X. If F is a sheaf, then F' ~ H°(F). Let V := Vs — X}
be a 0-étale covering family of X. Let C/(V/X, F') be the presheaf of X defined by

C'V/X, F)U) = C"(Y xx U/U, F)

for 0-étale morphisms U — X, where ¥V x x U is the 0-étale covering family {Kg xxU —
U} of U. Then C*(V/X, F) is a complex of presheaves. The g-th cohomology presheaf
is denoted by H?(V/X, F). In particular, H1(V/X, F)(X) = HI(V/X, F).

Lemma 2.2.1. Let I be an injective sheaf on X and let U = {U, — X}aeca be a 0-étale
covering family of X. Then H'(U/X,I) =0 fori > 0.

Proof. For a non-negative integer ¢, let C,; be the sheaf

Co= P fauly,,

acAatl

where f,: U, — X is the induced morphism. Then we have an exact sequence
--—>Cq—>0q_1—>-~-—>00—>Z£—>0

such that, for a sheaf F, the Cech cohomology group H(U /X, F) is the g-th cohomology

group of the induced complex
0 — Hom(Cy, F') — Hom(C1, F') — --- — Hom(Cy, F') — - - -

If I is an injective sheaf, then Hom(e, I) is an exact functor. Hence H'(U/X,I) = 0 for
1> 0. U

Lemma 2.2.2. Let [X, B] be a realization of X, e: X — X the natural morphism, and
let U = {U, — X}aca be a 0-étale covering family of X. Then we have the following

spectral sequences for a sheaf F' of X:

E'(U/X) = HP (U)X HI(F)) = H"(X, F);

=

EYY(X) = H"(X, H!(F)) = H""(X, F);

=

EYY(X) = HP(X, e, H(F)) = H"™(X, F).

==

Proof. Let

0 =F S0 S5t ... P ...

be an injective resolution of F'. The presheaf H(F") is the ¢-th cohomology of the complex

I* of presheaves. We consider the double complex
KP .= 0P(U/X, T9).

Then HP(K*9) = 0 for p > 0 by 2.2.1. Since H(K*9) = H°(X, I9), the p-th cohomology
of the total complex of K** is isomorphic to H?(X, F'). On the other hand, H?(K?*)
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is isomorphic to CP(U /X, HI(F)). Thus we have the first spectral sequence EY?(U/X).
By taking the inductive limit for refinements of V, we have the second sequence F5?(X).
Let {U,} be an open covering of X. Then ¢~}(U,) form a d-étale covering family U of
X. Then

HY(U/X, HI(F)) ~ H'({Ua}, e HY(F)),

for any p, g. Thus we have the third sequence E5?(X). O

Corollary 2.2.3. Let f: Y — X be a morphism of 0-étale spaces and let F' be a sheaf

on Y. Then there exists Leray’s spectral sequence:
EYY = HP(X,Rf.F) = H"* (Y, F).

Proof. 1t is enough to show that H"(X, f.I) = 0 for » > 0 and for any injective sheaf [
of Y. We know H? (X, foI) =0 for p > 0 by 2.2.1. Let us consider the spectral sequence

EY(X) = HP (X, H(fud)) = EP* = H'WI(X, ).

Then EZ°(X) = 0 for p > 0. Moreover, Ey*(X) = HY(X, H(f.I)) = 0 for ¢ > 0, since
the sheafification of H%(f,I) is zero. In particular, Ey°(X) = EY'(X) = 0. Suppose that
for a positive integer 7, E5¥(X) =0 for 0 < p+ ¢ < r. Then E' = 0 for any 0 < i < r.
Thus H'(f.I) = 0 by 2.1.3. Therefore E5?(X) = 0 also for p + ¢ = r. Hence we have
E" =0 for any r > 0. 0J

Lemma 2.2.4. Let U be a 0-étale neighborhood of a point x of X and let
W U™ =UxxUxx-xxU ((qg+1)-fold fiber product)

be a O-étale morphism for a non-negative integer ¢ > 0 such that sp(W) — sp(U%™) is
surjective over x. Then there exist a 0-€étale neighborhood V. of x and a 0-étale morphism
V. — U over X such that

(1) the induced morphism sp(V) — sp(U) is surjective over x,

(2) there is a factorization vt L w — gttt

Proof. By taking base changes, we may assume that U is a 0-étale Galois neighborhood
determined by a finite quotient group I" of #1°¢(X; x) and that W — X is a finite 0-étale
morphism. Since U™ ~ I'? x U is a disjoint union of copies of U,

W= .,|a|~q W,
for 0-étale finite morphisms W., — U. We may assume that each IV, is also determined
by a finite quotient group I, of #1°°(X;x). There are surjections #1°%(X;z) — Iy — I

Hence we have a finite quotient group I of #1°¢(X; z) with #°¢(X;x) — I" — I, for
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any v € ', Let V — X be a 0-étale Galois neighborhood corresponding to I"'. Then it
factors through each W, — X. Let V. — U be a 0-étale Galois morphism corresponding
to the I" — I'. Then VI ~ [ x V and we can take a factor I"" x V. — W of
yatt ettt 0

Corollary 2.2.5. Let F' be a presheaf of X and let e: X — X be the natural morphism
to a realization [ X, B] of X.

(1) If F, =0 for a point x € sp(X), then for any q, we have

(2) Let F* be the sheafification of F. Then for any point x € sp(X) and for any
q > 0, we have isomorphisms
lim), \ HO(V/X, F)yx = HO(F)oyx = H(F)yx.
(3) The group of (2) is also isomorphic to the continuous group cohomology

Hgont.(ﬁioc(XS z), Fy) =~ h_r)n HY(I, F, (1),

TP (X)) I
where the limit is taken over all the finite quotient groups of #1°¢(X; x).
(4) If F is a sheaf, then RPe,F is the sheafification of e, HP(F).
(5) If F' is a sheaf and if [X, B] is locally connected at a point T € X, then
(Rpg*F)f = Hgont.(ﬁioc(ls .CE), FI)>
where x € sp(X) is the unique point lying over T.
Proof. (1) Let U — X be a 0-étale neighborhood of z and let s € CY(U/X,F) =
FU q+1). Then there is a 0-étale neighborhood V over U of x such that the restriction
sy € C1Y(V /X, F) is zero, by 224
() By (2), we have
lignz/xﬂq(z/17 F)I/X = h_r)nz/xﬂq(z/17 FG)I/X7
HI(F)gyx o~ HI(F),)x.

Thus we may assume that F is a sheaf. By localizing spectral sequences in 2,2.2, we have

the following two spectral sequences of presheaves of X:
lim, (V)X HF) = HUF),  and - HP(HU(F)) = H(F).
Since HY(F'), = 0 for ¢ > 0, we have the isomorphisms

&)nz/xﬂq(k/ly Flajx =~ HU(F)a/x = HI(F"))x.
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(8) We may assume that F is a sheaf. By definition,

/
where the limit is taken over all the 0-étale neighborhoods of . If U — X is a 0-étale
Galois neighborhood with the Galois group I', then H%(U /X, F) ~ HY(I', F(U)) by 2.1.1.
Thus we have HY(F),/x ~ H.. (71°9(X; x), F,).

(4) For a point y € X, let us choose an open neighborhood & and a d-isomorphism
f:[Y,D] — [U, BNU] such that [Y, D] is locally connected at any point of f~!(y) =
{y1,92, ..., }. Then by (2), we have

(c0F), = @), = D), = (c.31(F),

Y

Therefore the stalk of the natural homomorphism e, H?(F) — &, H?(F) is an isomor-
phism for any point y € X. Since RPe, F is the sheafification of e, HP(F), it is also the
sheafification of £, HI(F).

(B) is derived from (B) and (4). O

Corollary 2.2.6. Let F' be a sheaf of abelian groups on a 0-space X and let [X, B] be a

realization of X. Then for the natural morphism ¢: X — X, we have
(Re.F) & Q ~gis ex(F @ Q).
In particular, if F is a sheaf of Q-vector spaces, then HP(X, F) ~ HP(X, e, F).
Proof. Let G be a finite group and let M be a G-module. Then H°(G, M) ® Q =~
H(G,M ® Q) and HP(G,M) ® Q = H?(G,M ® Q) = 0 for p > 0. Since an inductive

limit and a tensor product are commutative, we have (RPe, [F'), ® Q = RPe,(F ® Q), for
p>0and (RPe.F), ® Q =0 for p > 0, for any point x € sp(X). O

Example. Let X be a 0-space with a realization [X, B] and let ¢: X — X = [X, (0] be
the natural morphism. If M is a Q-vector space, then H?(X, Mx) ~ H?(X, M) for any
p >0, by 2.2.6. Similarly for an Ox-module F, we have HP (X, F) ~ H?(X,¢e.F).

Lemma 2.2.7. Let U = {U, — X}aeca and ¥ = {V5 — X}gep be two 0-étale covering

families of X such thatV is a refinement of U. Then there is a spectral sequence

for a presheaf F of X.
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Proof. Let us consider
Kpa=C'U/X.C'V/X )= [ [I F(UsxxVy),
a€Artl ge Batl
for p, ¢ > 0. Then KP? form a double complex. Let &/ UV be the union of the two
O-étale covering families. Since U and V are refinements, we have a natural surjective
homomorphism
C'UVY/X F)—C"U/X, F) & C(V/X, F)
for r > 0. Let L* = L*(U,V, F) be the kernel complex of

“a, v

C*UVYV/X, F) = C(U/X, F) © C*(V/X, F).

Then the shift L*[1] is isomorphic to the total complex of K**. Since V is a refinement
of U, the union U U Y is also a refinement of Y. Hence the homomorphisms H" U u
V/X,F)— H"(U/X, F) are isomorphic. Thus

H'(V/X, F) = HH LUV, F)).

We have the expected spectral sequence since H4(K?*) ~ CP(U/X, HI(V/X, F)). O

We recall the following well-known:

Lemma 2.2.8. Let X be a para-compact and Hausdorff topological space. Assume that
the sheafification of a presheaf G of X is zero. Then all the Cech cohomology groups
HY(X,G) are zero.

Now we are ready to prove the following:

Theorem 2.2.9. The Cech cohomology groups are isomorphic to the cohomology groups
induced as right derived functors. More precisely, for any presheaf F' and its sheafification

F = F'*, we have canonical isomorphisms
HY(X, F') ~ HP(X, F) ~ H(X, F)
forp > 0.

Proof. Let F’ be a presheaf of X such that F, = 0 for any = € sp(X). Let e: X — X be
the natural morphism for a realization [X, B] of X. Then by 2.2.5,

(=i, HOV/X, ) =0

for any point # € X. Let U = {U;}icr be an open covering of X and let ' be the
induced 0-étale covering family {(U;, BN U;) — X}. Then we have a spectral sequence

EY(U) = B (=7 lim, | V)X, F')) = HP(XL F)
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by 2.2.7. Since the inductive limit lim E5(U) for open coverings U is isomorphic to the

usual Cech cohomology group
HP (X, £, “—%/gﬂq(ﬁ/i F/))7

we have lim £5(U) = 0 for any p, ¢ by 2.2.8 Thus HP(X, F') = 0.
Therefore, for any presheaf F’ and its sheafification F = F'*, we have HP (X, F') ~

HP(X, F). Let us consider any short exact sequence
0O—-F—-G—H—=0

of sheaves of X. Then, for the cokernel F" of G — H as the presheaf, we have F/ = 0

for any x € sp(X). Therefore we have a long exact sequence:
- — HY(X,F) - HY(X,G) —» HY(X,H) - H*"YX,F) — ---

Since H(X, F) = F(X) for any sheaf F' and since H?(X, G) = 0 for any injective sheaf
G by 2:2.1, we see that H9(X, F) ~ HY(X, F) for any ¢ and for any sheaf F on X. [

2.3. Coherent sheaf

Proposition 2.3.1. Let X be a complex analytic O-space. Let ex denote the natural
morphism X = (X,B) — X = (X,0) for a realization [X, B]. Then the following
conditions are equivalent:
(1) There is a top realization [Z, A] of X such that [U, ANU] is also a top realization
for any open subset U C Z;
(2) For any realization [X, B], ex.Ox is a coherent Ox-module;
(3) There is a realization [X, B] of X such that ex.Ox is coherent.

Proof. (1) = (¥) Let [Z, A] be the top realization. Then the natural homomorphism
Oy — €2.0x is an isomorphism. Let [X, B] be a realization of X. Then there is a
unique O-isomorphism p: [Z, A] — [X, B]. Hence ex,.Ox ~ p.e2.0x ~ (1,0z. This is
coherent.

(2) = (8) is clear.

(8) = (1) There is a d-isomorphism yu: [Z, A] — [X, B] such that 1,0z ~ ex.Ox
as Ox-algebras. The direct image of the natural homomorphism Oy — ¢2,Ox under p,
is an isomorphism. Since p is a finite morphism, we have Oy ~ €,.0x. If f: [Y,D] —
[U, AN U] is a O-isomorphism for an open subset U C Z, then there is a sequence of
homomorphisms Oy — f.Oy — €2.0x . Hence f admits a splitting [U,ANU] —
[V, D]. Thus [U,ANU]J is a top realization. O

A reduced 0-space satisfies the condition above.
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Definition. An Ox-module F is called coherent if the following two conditions are
satisfied:

(1) F is 0-étale locally finitely generated;
(2) Let U — X be a 9-étale morphism and let O — F|y be an Oy-linear homo-

morphism. Then the kernel is also 0-étale locally finitely generated.

Let X be a O-space such that for any 0-étale morphism U — X, U satisfies the
condition of 2.3.1. Let [X, B] be the top realization of X. Then Ox ~ .0y for the
natural morphism ¢ = ex: X — X (cf. 2.3.1). Let £* denote the right exact functor

F e 'F®.10, Ox from the category of Ox-modules to that of Ox-modules.

Lemma 2.3.2. Let X = (X, B) ande: X — X be as above and let F be an Ox-module.
Then F is coherent if and only if there exist a O0-étale covering family {U, — X} and
coherent sheaves Fy of Uy = sp(Uy) such that

Flu, ~ ey, Fi
for the natural morphism ey, : Uy — U,.

Proof. If F is coherent, then for any point z € X, there exist an open neighborhood V/,

a finite Galois covering 7: U — V étale outside B, and an exact sequence
OF — Of — Fly — 0

for U = (U, 77! B). By taking the exact functor ey, (cf. 2

OF — OF — ep«(Fly) — 0.

Hence Fyy := ey (F|y) is a coherent Op-module. Next we apply ;. Then we have an
isomorphism F|y =~ €, Fp.
Conversely, suppose that F|y ~ ¢, F for the finite Galois covering 7: U — V étale

outside B and for a coherent sheaf F' of U with an exact sequence
Op — O — F — 0.

Then F|y is finitely generated, Fyy := ey.(F|u) is also a coherent sheaf of U, and Fl|y =
ety 1t Ogt — Flu is an Oyp-linear homomorphism, then it is determined by an Op-

linear homomorphism OF' — Fy;. Therefore the kernel is also finitely generated. 0

In particular, Oy is coherent. A lemma of Serre on the heredity of coherency on short

exact sequence also holds.

Corollary. Under the situation above, £, F is coherent for a coherent Ox-module F.
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3. COHOMOLOGY GROUPS OF TOROIDAL EMBEDDINGS

We shall calculate some 0-étale cohomology groups on the d-space X = (X, B) associ-
ated with a toroidal embedding X* = X \ B C X. The local cohomology sheaf H%(Zx)
is canonically isomorphic to the sheaf H%(Divy) of germs of Cartier divisors supported
in B. In the 0-étale version, H%(Zyx) ~ H%(Divy) turns to be a sheaf of Q-vector
spaces. In particular, a Q-Cartier divisor on X whose fractional part is supported in B
is regarded as a Cartier divisor of X. This correspondence of divisors is generalized in

Section B.5: we show that a reflexive sheaf of X corresponds to a parabolic sheaf of X.

3.1. Torus embedding

Let N be a free abelian group of rank [ and let M be the dual Homz(N,Z). A convex
rational polyhedral cone 0 C N ® R is written by

k k
g = ZRZ()I/Z' = {Z’I"Z’I/Z'

i=1 =1

r; € Rzo}

for some v; € N. We assume that {R>ov4, ..., Rsovg} is the set of one-dimensional faces
in o, v; are primitive elements of N, and that o is strictly convezx, i.e., o N (—o) = {0}.
The v; are called vertices of o. The dual cone 0¥V C M® R consists of linear functions on
N ® R that are non-negative over o. Then ¢V is also a convex rational polyhedral cone in
M ® R and the semi-group o¥ N M is finitely generated. The semi-group ring C[o" N M]
and the group ring C[M] define an open immersion Spec C[M] < Spec C[o¥ N M] of affine

schemes. We write the associated analytic spaces by
Ty := SpecC[M]** and Ty(c) := SpecCle N M]*.

The algebraic torus Ty ~ N ® C* acts on Tn (o) and the open immersion Ty < Tn(o) is
Tn-equivariant. The open immersion is called an affine torus embedding. Let N(o) be the
subgroup N N (0 4+ (—=0)). Then Tn(0) =~ Ty (o) X Thnynee)- A face 7 < o defines a Ty-
equivariant open immersion Tn(7) C Tn(o). The complement Q, of the union of all the
Tn(7) with 7 < o, T # 0, is the unique closed orbit of Ty in Tyn(c). Any orbit in Ty(o)
is of the form O, for some 7 < 0. More explicitly, O, = Spec C[r+ N M]*® ~ Ty/n(r),
where 71 denotes the vector subspace of M ® R consisting of functionals vanishing along
7. Note that Hom(7+ N M,Z) ~ N/N(7). The immersion O, C Ty(o) is induced from
the ring homomorphism f: C[oc¥ N M] — C[r+ N M] defined by

0, ifmgrtnM;

C[Tlﬂ M] > f(m) =
m, ifmertnM,
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for m € ¢V NM. The closure Q, is of dimension [ — dim 7 and is isomorphic to Ty /N(T) (@)
for the image @ C N/N(7) ® R of ¢. For a vertex v;, O,, and Tn(v;) stand for O, and
Tn(T), respectively, for 7 = Rsov;. Let B; be the prime divisor @Vi. We define a filtration

TN(U).I TN(O’) = TN(U)Z D) TN(O')Z_I DREEEED) TN(U)i DEEE

by setting
TN(U)l—i = m BxlﬂBMﬂ---ﬂB)\..

1I<A <Ao< <\ <k '
Twn(co); is the union of all the orbits of dimension < i. The stratum Tn(0); \ Tn(0);—1 is

the union of i-dimensional orbits. Thus Tn(c)e gives a Whitney stratification.

Remark. The variety X = Tn(c) has only rational singularities, i.e., Ox ~qs ROy for
a desingularization p: Y — X (cf. [Kﬁ])

L3, we assume that N(o) = N, i.e., o generates N@R. Then

In Section 3:1_', except for 3
the closed orbit @, consists of one point which we denote by 0. Let {m1, mo,...,m,} be a
generator of the semi-group o¥NM. We denote by 2™ € C[M] the monomial corresponding
to m. Then we have a closed embedding Tn(c) < C” by 2™ which sends 0 to 0. Let
Int o denote the interior of . We fix an element v € Into and set v; := (m;,v) > 0,
where ( , ) stands for the natural pairing Mx N — Z. Let A, for a > 0 be the following
polydisc in C":

A, ={(y1,y2, - ,yr) € C" | |y;] < " for any j}.
We denote the intersections with A, as follows:
Tn(o)<*:= Ay NTn(o), TRN*:=AsNTn, Tn(o)F*:= A, NTn(o):.
There is an isomorphism Ty' ~ T® given by
(W y2, - yr) = (@Y1, a%ys, . 0™ yy).

Example. Let N be a free abelian group generated by 14, s, ..., and let o be the first
quadrant Y!_, R>ov;. For the point v = 1+ +-- -+, € Int o, the open subset Ty (0)<*

is just the open polydisc
{(s1,82,--+,81) € c! | [si] < « for any i}.

Definition. Let the abelian group N of rank [, the strictly convex rational polyhedral cone
o with N(o) = N, the vector v € Int o, and the generator me = {my, ma, ..., m,} of ¢¥NM
be as above. An open immersion X* C X into a normal analytic space together with a
point © € B = X\ X" is called an n-dimensional toroidal embedding of type (N, 1, o, v, ms)

or of type (N, 1, o) for short, if there is an isomorphism X ~ Ty(o)<' x A" such that
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X* corresponds to Ty x A" and that  corresponds to (0,0) for the zero-dimensional
orbit 0 € Ty (o) and for the origin 0 € A™™.

The Ty(0) is identified with the set Hom(o¥NM, C) of semi-group homomorphisms into
the multiplicative semi-group C = (C, x). By considering the multiplicative semi-group
]RZO = (]RZ()? X), we define

Men(o) := Hom(o¥ N'M, Rsg)
(cf. [OT], [O2]). This is realized as a subset of Ty(c) and as the quotient space of Ty(o)
by the the action of compact torus
N ® S' ~ Hom(M,S") € N ® C* ~ Ty,
where S! stands for the circle as well as the unitary group U(1). The quotient map
v: Tn(o) — Men(o)
is induced from the norm map C > z — |z| € R>¢ and is proper and open. An orbit O; is
identified with Hom(7+NM, C*) ~ N/N(7)®C*. The immersion O, = Hom(7+NM, C*) C
Tn(o) = Hom(o¥ N M, C) is described as the zero extension: For w € 7 N M — C*, the
semi-group homomorphism w: ¢¥ N M — C is defined by
0, if m¢rtnNM;
w(m), ifmertnM.
The image v(Q,) is written by
v(0,) = Hom(7- N M, R+g) ~ N/N(7) ® R,
where we consider R~ as a multiplicative group. We have O, = v~ }(v(0,)) and O, ~
v(0,) x (N/N(1) @ S'). The images Mcn(0); := v(Tn(0);) define a filtration of Mcy(o).
The stratum Mcy(o); \ Mcn(0);-1 is a disjoint union of v(0,) with dim7 = —4. Thus
Tn(o); ~ Tn(o)i—1 is topologically a trivial fiber bundle over Mey(o); ~ Mcen(0);—1 with
fiber (S')? = S! x --- x St (i-fold product). The image Mcy(a)< of Ty(c)<“ is identified
with
Men (o)< = {w € Hom(c" N M, Rx) ’ w(m;) < a" for any j}
and Ty(0)<* = v~ (Men(0)<9).

Claim 3.1.1. Let v and @ be the images of v and o, respectively, under the projection
N®@R — N/N(7) ® R. Then Mcy(0)<* N v (0,) is identified with

—(loga)v 4+ IntT C N/N(7) ® R.
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Proof. For a point w € v(Q,) = Hom(r+ N M,R5), w is contained in Mcy(0)<® if and
only if w(m;) < a% for any m; € 7. This condition is also written as logw(m;) <
(mj,v)loga. Let v(0;) — N/N(7) ® R be the homeomorphism

Hom (7 N M, R+g) 3 w +— —logw € Hom(7- N M, R).
Then the condition is equivalent to that (loga)v —logw € N/N(7) ® R is contained in

Into. ]

In particular, any connected component of Mcy(o); \ Men(0);—1 and its intersection with

Men(o)<® are contractible.

Corollary 3.1.2. The open subsets Tn(o)<* form a base of open neighborhoods of 0. For
a connected component U of Tn(0)iNTn(0)i—1, U and UNTN (o) are both homotopically
equivalent to an i-dimensional compact torus St x --- x S,

Lemma 3.1.3. For a face 7 < o, the universal covering space of O, N Tn(0)<* is

1somorphic to the domain
HN/N(T)(IntE) = N/N(T) QR ++v—1Inta C N/N(T) ® C.

Proof. The space Q=% := O, NTn(0o)<* is homotopically equivalent to O, ~ N/N(7)®C*.
Let en/niry: N/N(7) ® C — N/N(7) ® C* be the morphism id ® e for the exponential
mapping e: C 3 z — exp(2my/—12) € C*. We have

. 0, ifmingﬂM;
™ (enn(r) (u)) = ' |
e((m;,u)), ifm;er-NM,
for w e N/N(7) ® C. Therefore,
eN}N(T)(@fQ) = {u € N/N(7) ® C | =2m(m;,Imu) < (m;,v)loga for m; € 7}
={u e N/N(7)®C| (loga)v + 27 Imu € Int7}

= HN/N(T)(Int 5) — (log CM)@.

7
This is the universal covering space of O=*. O

A bounded complex F'* of sheaves of abelian groups on Tn(c) is called constructible
with respect to the filtration Tn(co)e if the cohomology sheaves of the complex restricted
to any strata Tn(o); \ Tn(0);—1 are locally constant systems of finitely generated abelian
groups (cf. [GIY).
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Lemma 3.1.4. Let F'* be a constructible bounded complex of sheaves on Tn(c). Then

we have isomorphisms

HP(Tn(0), F*) ~ HP(Tn(0)<*, F*) ~ HP(F'*),
for a > 0 and for any p. In particular,

HP(Ty(0)<®, F*) ® Q ~ H?(Ty(0)<%, F* & Q).

Proof. Suppose first that F'* ~gs Rj;. Fy for a bounded complex F§ on Ty(o); \Tn(0)i—1
with locally constant cohomology sheaves, where j; denotes the immersion Ty(o); ~
Tn(o)i—1 < Tn(o). Then we have

HP(Tn(0), F°)

12

HP(Tn(0)i \ Tn(0)i-1, F5)
H°(Men(0); ~ Men(0)i1, RPV,FY),
(T (o) \ Tn(0)im1, )

~ H°(Men(0)7 ~ Men(0)i—1, RPv.FY).

12

HP(Tn(0)*, F*) ~ H?

12

Since RPv,Fy are constant sheaves, we have the isomorphism for F°.
Next we consider general F'*. We have a triangle

+1 . . . . +1
-5 Ry, (F*) = F* = Rjry (F¥lnyo)yta(on ) —

Then every complex is constructible and the statement holds on the third complex. By the
induction on the dimension of the support of cohomology sheaves, we have the required

isomorphisms. O

Corollary 3.1.5. Let 0 C N® R be a strictly convexr rational polyhedral cone. Then the
homomorphism
HP(TN(U)> Z) - HP(TN> Z)

is isomorphic to the natural injection \P(c+ N M) — AP M.

Proof. There is an isomorphism Tn(o) ~ Ty (o) X Tn/n(), where Hom(N/N(o), Z) ~
ot NM. We have H?(Tn(»)(c),Z) = 0 for p > 0 by 8.1.4. Thus the homomorphism in

[ S A

question is derived from the projection Ty — Tn/n(o)- O

3.2. Normal varieties with boundary

Let us consider a complex analytic space with boundary [V, D] such that V' is normal
and that the open part V* := V ~ D is non-singular. This is a top realization of the
O-space V. = (V, D). Let j: V* < V denote the open immersion. The analytic subset
Z = Sing V U Sing D satisfies codim Z > 2. Let V° .=V ~\ Z, D* := DN V® and let

J°: Ve =V, 5% V*— V° be the associated open immersions.
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Let QF.(log D*) be the sheaf of germs of logarithmic p-forms along D*. We define
%, (log D) to be the direct image j°Q%.(log D*). Then €% (log D) are reflexive sheaves,
since ). (log D*) extends to the coherent sheaf Q% (log u=D) for a desingularization
p:Y — V with p='D being normal crossing. Let X be an affine torus embedding Ty(c)

and let B be the complement of Ty. Then we have a natural isomorphism

0% (log B) ~ Ox &y /P\ M.
Moreover, we have the so-called logarithmic de Rham complex
0% (log B) = [-++ — Q% (log B) % O (log B) — -+ ].
There is a natural quasi-isomorphism
Rj.Cx+ ~qis Q% (log B)

by [D2], [DJ], [DI, §15]. In particular, the natural morphism Rj,Cx. — Rj.Ox- is
decomposed as Rj.Cxx — Ox — j.Oxx =qs Rj.Ox+. This is generalized to 399

[ N

below.

Definition 3.2.1. Let k£ be a positive integer. A normal variety V is said to have only

k-rational singularities if for a desingularization pu: Y — V, Riu, Oy =0 for 0 < i < k.

Lemma 3.2.2. If V has only k-rational singularities, then the morphism 1< Rj.Cy« —
Rj.Oy+ factors through Oy — Rj.Oy«. In particular, 7<p41RLH(Cy) — RLp(Ov) is

zero in the derived category.

Proof. Let u: M — V be a bimeromorphic morphism from a non-singular variety such
that 1D is a normal crossing divisor and that p is isomorphic over V*. Then for the
open immersion jy: V¥ ~ M ~ p'D — M, we have the factorization Rjy;,Cy+ —
Oy — Rjn O+ as above. By taking Rpu., we also have Rj.Cy« — Ru. Oy — Rj.Oyx.
The result follows the assumption Oy ~gis T<x R Op. Since RIp(RjCyv) ~vgis 0, we
have

T<ip1 RL p(T<i RjCys) ~gis T<pr1 (RLp (k41 Rj«Cy ) [—1]) ~gis O.

Thus 7<p4+1 R p of the composite Cy — 1<, Rj.Cy« — Oy is zero. OJ

Definition. For the sheaf 9}, of germs of invertible meromorphic functions of V', we
define
Oy (xD)* := M} N 7.0 C 5. .
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The sheaf Divy of germs of Cartier divisors is defined to be M, /Of,. Thus the sheaf
Oy (xD)* is the kernel of the composite

M;, — Divy — Divy /HY(Divy).

Lemma 3.2.3. (1) Let u: Y — V be a bimeromorphic morphism from a normal
variety that is isomorphic over V*. Then Oy (xD)* ~ u,Oy (xu~'D)*.
(2) Assume that V' has only 1-rational singularities. Then Oy (xD)* is isomorphic to
the mapping cone of <1 Rj.Zy~ — Oy, which is induced from 7<1Rj.Cyx — Oy
in 3.2.2.
(3) Assume that V' has only 1-rational singularities. Let HY (Divy) — Hp(O%) and
HH(OF) — H3(Zy), respectively, be the connecting homomorphisms for the exact

sequences
0— 0y =M, — Divy —0, and 0—Zy — Oy — O — 0.
Then the composite H%(Divy) — H3,(Zy) is an isomorphism.
Proof. (1) For the open immersion jy: V* = p71V* — Y. we have Oy (xu~'D)* =
My N jy,Of.. Thus Oy (xpu™ ' D)* = M N 5. OF. = Oy (xD)*, since I ~ N},
() Assume that the assertion holds when V is non-singular and D is normal crossing.
Let u: Y — V be a bimeromorphic morphism from a non-singular variety such that ;=D

is normal crossing and that Y ~ p='D ~ V ~ D. For the open immersion jy: V* — Y,

we have the triangle
-t Rjy Ly — Oy — Oy (su~'D)* 5 o
by the assumption. Applying Rpu., we have a triangle
- 25 Ry (<1 Rjy  Zy+) — Rp.Oy — Rp Oy (+p~' D)* 15 -
From quasi-isomorphisms Oy ~gis 7<1 ROy and
<1 (Rp(t<1 Rjy Zy+)) ~qis T<1 Rjx Ly,

we infer that Oy (*u~'D)* is quasi-isomorphic to the mapping cone of 7<; Rj.Zy+ —
Oy . Therefore, we are reduced to the case V' is non-singular and D is normal crossing. Let
Z'(log) denote the kernel of d: Qi (log D) — Q% .(log D). Then the truncation 7<; Rj,Cy«
is represented by the complex [0 — Oy — Z!(log) — 0]. Thus the mapping cone of
7<1Rj.Cy+ — Oy is Z'(log). Similarly, let Z* denote the kernel of d: Q. — Q..
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Then the mapping cone of 7<1 Rj.Cy+ — Rj.Oy« ~qis Oy is quasi-isomorphic to j. 2.
There is a homomorphism dlog: j.O%. — j.Z!. It appears in the commutative diagram

+1 . . . +1
A — TSIR]*ZV* EE— ]*OV* — J« T/* _—

+1

- = TaRLCye —— Oy —— j20
For a unit holomorphic function v on V*, if dlogu = du/u is a logarithmic 1-form along
D, then u is meromorphic along D. Therefore, the kernel of j,.0%. — j.Z'/Z(log) is
Oy (xD)*. Therefore, we have a commutative diagram

S TR Ty —— Oy —— Op(xD)* s .

| l l

+1 . . . +1
- — Tgle*Zv* —_— ]*OV* e Jx T/* JR N

(8) The commutative diagram

1 1
R N Ty —_— Oy —— O} o

1

- PR Zye —— Oy —— Op(xD)* — ..

induces the isomorphism. O

Remark. () is well-known in the study of Deligne-Beilinson cohomology groups ([B1,

[F]). In fact, when V is a projective variety, then H°(V, Oy (xD)*) = H5(V*, Z(1)).

Remark. There is another proof of (3) for a toroidal embedding. Let X* C X to-
gether with a point x € B be a toroidal embedding of type (N,[,0). For the sheaf
Ox(*B)*/O% ~ H%(Divy), the stalk H%(Divx), is identified with M = Hom(N, Z).
The connecting homomorphism H%(Divyx) — HE(O%) is derived from an injection
Ox(*B)* C j.O%. Thus the image of m € M in H%4(Zx) ~ R'j.Zx+ corresponds to

the functional

1 dx
N ~ 7 (X*) 3 / ,

mX) 3= T )
where ™ stands for the meromorphic function corresponding to m. The functional is
derived from the natural isomorphism M ~ Hom(N, Z). Therefore H%(Divx) — H%(Zx)

is an isomorphism.

The sheaf wDivy of germs of Weil divisors is isomorphic to j2 Divy.. Hence, we have

an isomorphism H% (wDivy) =~ j°HY. (Divys).

Lemma 3.2.4. (1) 751 R Zy+ ~qis RLp«(Zyo)[l] ~qs Zp<[—1]. In particular,
le:ZV* ~ ZD* .
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(2) HY(wDivy) ~ v Zp =~ j°H2.(Zys), for the normalization v: D — D.
(3) Assume that V' has only k-rational singularities. Then
T<kRLp(OF) ~qis T<kRLp(Ov) & (T<er1 RLp(Zy))[1].
(4) Assume that V' has only k-rational singularities for k > 2. Then RPjSO%. ~
RPjeOvo ® RPTY° 7o forp <k —1.
(5) Assume that V' has only 1-rational singularities. Then R'jZye ~ H%(Zy) = 0
and Ry, Zy = 0 for a desingularization u:Y — V.

Proof. (1) The first quasi-isomorphism is derived from the triangle
(3.1) oo 2N RE b (Zyo) — Zyo — RjF s =5 -
The second is induced from the natural quasi-isomorphism RI p. (wyF) ~qis Wiy (cf. Sec-
tion 0.3).

(8) B* itself is an element of H°(X° H%(Divx)). Thus we have a homomorphism
Zg« — H%.(Divx.). This is an isomorphism by (1) and 8.2.3-(8). The application of ;°

to the isomorphism induces the expected isomorphisms.
(8) We have a triangle

- 2% R p(Zy) — RLp(Oy) — RLp(OF) 5 - ..

from the exponential sequence of V. By 8.2.2, the morphism 7«41 RL ,(Zy) — RLp(Oy)
is zero in the derived category.

(4) follows from the decomposition
T<kRL7(Oy) ~qis 7w RL2(Ov) © (T<hin R 2(Zy ) [1]

that is induced from (8) and from RI, ~qs RL 7 o R p.
(B) We may assume that y~'Z is a divisor by replacing Y. The exponential sequence

of Y induces an injection R'y,Zy — R'j,Oy = 0. We have a triangle
- 55 R RL, 1 4(Zy) — RuZy — RjSZyo = -
and it induces an exact sequence
0 — R'YuZy — R'j{Zyve — pHo 14 (Zy) — RPp.Zy.
Here, the last homomorphism is decomposed as
pH, 15 (Divy) — R' 1,05 — R*p,Zy .

For a p-exceptional divisor £ = Y a;F; of Y, if Oy(E) ~ Oy, then E = 0. Thus
0= Rl,u*Zy ~ le;)ZVo. O
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Remark. Let M be a non-singular complex analytic variety, D a reduced divisor, and let
v: D — D be the normalization. Let us consider the following commutative diagram:

0O — Oy — My, —— Diwy —— 0

| T |

0 —— Oy —— Onu(xD)* —— HY(Divy) —— 0.

Then we have connecting homomorphisms H?(D,Z) — HPT'(M,©%,). By combining
with connecting homomorphisms HP™ (M, O},) — HPT?(M,Z) of the exponential se-
quence of M, we have the so-called Gysin homomorphisms H? (D, Z) — HP*2(M,Z).

We define Divp(V) := HL(V, Divy) and WDivp (V) := HY(V, wDivy ). These are the
groups of Cartier and Weil divisors supported in D, respectively. In fact, WDivp (V) ~
HO(D,Z) by 8.2.4-(2). This is a free abelian group generated by irreducible compo-

nents of D provided that D has only finitely many irreducible components. The sheaf

wDivy | Divy = Hy(Divy) of local divisor class groups canonically contains the sheaf
HY (wDivy ) /HY(Divy) = H,(HY (Divy)). We have an exact sequence

0 — Hy(Hp(Zv)) = Hy(Zy) — Hy(H}(Zy))

from the quasi-isomorphism RI;(Zy) ~qs RL ;(RLp(Zy)).
We introduce the following conditions for [V, D]:

Condition 3.2.5. H,(H}%(Divy)) — Hy(Zy) is an isomorphism.

Condition 3.2.6. The composite
WDivp(V) — HY(V, Hy,(H%(Divy))) — H(V, HY(Zy))
is surjective.

Remark. If V has only 2-rational singularities, then H}(Divy) ~ H3(Zy) by [F1, 6.1].
We will show in 8.3.1-(8) that if V \. D C V is a toroidal embedding, then [V, D] satisfies
8.2.5. If V is non-singular (cf. -3:2::7'.—(':1})) orif V~\.D C V is a toroidal embedding without
self-intersection in the sense of [KG, Chapter II], then [V, D] satisfies both conditions
8.2.5 and 3.2.0.

Example. Let V be a normal surface with one A;-singular point P as the singular locus
and let D be an irreducible curve through P. Assume that, for the minimal desingular-
ization p: Y — V, the (—2)-curve p~' P intersects with the proper transform D’ of D at
two points and the intersections are transversal. Then D is a Cartier divisor and hence
WDivp (V) = Divp(V), while the stalk of H3,(Zy) at P is isomorphic to Z/2Z. Thus
[V, D] does not satisfy 3.2.6.
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Lemma 3.2.7. Let u: Y — V be a bimeromorphic morphism from a non-singular variety

such that Y ~ p='D — V* is an isomorphism. Let us consider the following pullback

homomorphisms
iy HY(V,Z) — H (Y, Z) w's HY(V,Z) — HY(Y, Z);
M*D,*: H%(V> O{(/) - Hfj—lD(Y> O;)a :ui Hp(v> O{(/) - Hp(Y> O;)

(1) If V is non-singular, then they are all injective.

(2) pp and p* are injective for p < 1. pp, . and pi are isomorphic for p = 0.

(3) If V has only 1-rational singularities, then p}, and p* are injective for p = 2, and
Wp.,. and i are injective for p = 1.

(4) If V has only 1-rational singularities and if [V, D] satisfies both conditions 3.2.5
and 8.2.6, then Wy and p* are injective for p = 3, and Wp.s and iy are injective

for p=2.

Proof. There is a commutative digram
HYV* Zy) —— HY(V,Zy) —— HP(V,Zy) —— HP(V*Zy)

| | |- !

= (V*, Zy) —— Hy . p(Y,Zy) —— HP(Y,Zy) —— HP(V*,Zy).

We infer that, if u}, is injective for p < k for some integer k, then u* is also injective for
p < k. By considering a similar commutative diagram instead of Z by O*, we see that if
Wh., is injective for p < k, then p is also injective for p < k.

(i) The trace map Riu.Zy [2n] ~qis Rpwy? — wi® ~qs Zy[2n] gives a splitting of
Zy — Rp.Zy. Thus Hp(V,Z) and HP(V,Z) are direct summands of H7 ., ,(Y,Z) and

HP(Y,Z), respectively. There is a splitting RI'p(O5,) ~gis RLp(Ov) & RLp(Zy)[1] by
8.2.4-(3). Thus Wp . is also injective for any p.

(¥) The assertion follows HY(V,Z) = HL(V,Z) = HY(V,O%) = 0 and 1, 0% ~ Of.

8) pp: HH(V,Z) ~ H? ,,,(Y,Z) is isomorphic to the injective pullback homomor-
phism Divp (V) — Div,-1p(Y). The injectiveness of 7}, , follows from the decomposition
T REp(OF) ~qis T RLp(Ov) @ (T<2RLp(Zy))[1].

(4) By the argument above and by the decomposition 7<o RI ,(O%) ~qis T<o RL (Ov)®
(T<sRI'p(Zy))[1], we have only to show pj, is injective for p = 3. Now there is an exact
sequence

0 — Hp(Zv) = jiHD(Zye) — Hy(Zy) — 0

by 8.2.5. Thus H%(Zy) — H%(RjSZy-) is injective. By 8.2.6,

HY (V. Hp(Zy)) — HN (V. j7HD (Zyo))
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is also injective. There is a commutative diagram of exact sequences
0 — H{VHL(Zv)) —— HH(V,Z) ——  HY(V.Hp(Zv))

l | l
0 —— HI(V>H2D(RM*ZY)) - Hi—lD(Y>Z) - HO(V>H3D(RM*ZY))

Since left and right vertical arrows are injective, the middle is also injective. 0

3.3. Toroidal embedding

Let X be an n-dimensional complex analytic normal variety and let B a reduced
divisor. We denote the complement X ~ B by X* and denote the open immersion by
7: X* — X. We assume that the complement X* defines a toroidal embedding X* C X
in the sense of [K6]. This is equivalent to that, for any point x € B, there exists an open
neighborhood U in X such that & N X* C U is an n-dimensional toroidal embedding of
type (N,l,0,v,m,) for a free abelian group N of rank [ < n, a strictly convex rational
polyhedral cone 0 C N® R with N = N(o), a vector v € Int o, and for a generator m, of

;1:.:2, there is a base of open neighborhoods Uy D Uy D -+ in
X such that Uy N X* D Uy N X* D --- are all homotopically equivalent to N ® S'. The
rank [ = [(x) depends on z. Let {(z) := 0 for x € X*. For a non-negative integer i < n,

let X (B); be the subset of X consisting of points x with [(xz) > n —i. Then the filtration

the semi-group ¥ NN. By 3

X(B)e: X = X(B)y D X(B)u_1 D -+ D X(B)o

is a generalization of Tn(o)e of Tn(o). We infer that B = X(B),—; and that X (B),_; is

locally the intersection of mutually distinct i-irreducible components of B for ¢ > 0.

Notation. For the n-dimensional toroidal embedding X* = X ~ B C X, we define
Z = Z(X,B) to be the analytic subset X(B),—2 = Sing X U Sing B = Sing B. We
set X° := X N\ Z and B* := B~ Z. The related open immersions are denoted by
Jr X = X0, 4% X° — X,

Lemma 3.3.1. Let j: X* = X\ B — X be a toroidal embedding as above and let ;'Y —
X be a bimeromorphic morphism from a non-singular variety that is an isomorphism over
X~
(1) The homomorphism NP R'j.Zx+ — RPj.Zx~ induced from cup product is an iso-
morphism.

(2) The homomorphism
(3.2) HY%(Zx) — Hiy(RjSZxe) ~ RP2j L p-
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18 1njective for any p > 2. In other words,
(3.3) HY(Zx) — Hy(Zx)

s zero for any p.

(3) Let w'® be the topological dualizing complex of X. Then
7 wy) = Hy(Zx) ~ Hy(Hp(Zx)).

In particular, [X, B] satisfies the condition B.2.5.

(4) p*: H5(Zx) — HY(Ru«Zy) is injective for any p. If [ X, B] satisfies the condition
8.2.6, then HL(X,Z) — oy . p(Y,Z), HY(X,Z) — HP(Y,Z) are injective for
p <3, and HY (X, 0%) — HL(Y,0%), H? (X, O%) — HP(Y,0%) are injective for
p<2

(5) There is a canonical exact sequence:
0 — Hy(Divx) — pHy-15(Divy) — Ry — 0.
(6) HL(X,Z) — HY%(X,Q) is injective for p < 2. If [X, B] satisfies the condition

B.9.6, then this is injective also for p = 3.

Proof. (1) The stalk at a point is isomorphic to A? H*(Ty,Z) — HP(Ty, Z).

(2) The homomorphism (8.2) is isomorphic to RP~5,Zx+ — RPjS(RL g.(Zx-)) derived
from Rj° of the triangle (3.1). We have only to consider the homomorphism of stalks
at a point x € B. Thus we may assume that the toroidal embedding is of type (N,/, o).

The homomorphism of stalks is isomorphic to
k
HP (X*,2) — HB.(X°, Z) ~ @ HY, (X°,2),
i=1

and hence to .

H*Y(Tn,Z) — @ Hp, (Tn(vi), Z).
i=1 ‘
1:3 the kernel is
k p—1

ﬂ /\ 1/ N M)
=1
We have an exact sequence
= Hy(Zx) —» Hp(Zx) = RPj(RLp-(Zxe)) ~ Hp(Rj Zxo) —

by the quasi-isomorphism RI'; ~gis RI'z o RI'g. Thus (:3 3) is zero.
(8) There is a triangle

+1 top 1

5 WP — WP — Rj°Zxe[2n]
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It induces isomorphisms H 2" (w'P’) ~ Zy, H' 2 (wP) ~ R'jZyo, H* 2" (w'P) ~

R?j°Zxo, since HP (wy®) = 0 for p < —2dim Z = 4 — 2n. There is a triangle
- 2% RI,(Zx) — RLp(Zx) — RLp(RjZxe) 5 - -
It induces an exact sequence
0 — H3(Zx) — jJ(MHE(Zx)|xo) — Hy(Zx) — 0
by (2).

(4) In the case X is non-singular, this is proved in 3:2::7:-(:1:) Thus we may assume
that p is a desingularization. In particular, y is isomorphic over X°. Let us consider the
composite Zx — Ru.Zy — Rj2Zx.. Thus the result follows from (-2) and 5.-2-.?'.-(-3).

(5) This is derived from the triangle
. +—1> REB(ZX) - REB(RM*ZY) - REB(TZQR/L*Zy) +—1> e

and from (4).

(6) Both cohomology groups are zero for p < 1. In the case p = 2, H%(Zx) ~
R'j,Zx~ is a sheaf of torsion-free abelian groups. Thus it is reduced to the injectiveness
of H%(Zx) — H%(Qx) ~ H%(Zx) ®Q. Finally, we consider the case p = 3. We consider
the commutative diagram

0 — HY(X,H3(Qx)) — H(X,Q) —— H°(X,H3(Qx)).
It is enough to show 7; and 75 are both injective. There is an injection
H' (X, H3(Zx)) — H (X, jHe (Zx-)) = H'(B, )

for the normalization B — B by 8.2.6. Further Hl(B,Z) — HI(B,Q) is injective
(cf. 8.3.2 below). Thus 4; is injective. Since H%(Zx) is a sheaf of torsion-free abelian

group, i is also injective. 0

Remark 3.3.2. Let V be a complex analytic space and let L; — Ls be an injection of
abelian groups. Then the induced homomorphism H*(V, L;) — H'(V, Ly) is also injec-
tive. Because, H(V, Ly) =~ Ly — H%(V, Ly/L;) =~ Ly/L, is surjective if V is connected.

In particular, H'(V,Z) is a torsion-free abelian group.

Corollary 3.3.3. Let x be a point of X for a toroidal embedding X* C X.
(1) H3(Zx). = 0 if and only if the germ (X, z) is non-singular.
(2) H3(Qx). = 0 if and only if (X, ) is a quotient singularity.
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Lemma 3.3.4. The vanishing RPj2Oxo = 0 holds for p > 2. Assume that X* C X 1is
one of the following toroidal embeddings:
(1) X =Tn(o), B =Tn(0)i—1 for a free abelian group N of rank | and for a strictly
convex rational polyhedral cone 0 C N ® R;
(2) X* C X is a toroidal embedding of type (N, [, o).
Then HP(X°, Oxo) =0 and H1(X, R'j°Oxo) =0 hold for p > 2, ¢ > 1, and fori > 0.

Proof. Suppose that X = Tyn(0). We have
k k
X° = UTN(VZ'), X =Ty, and B*= |_|@Z,i.
i=1 i=1

Hence

k
Hg* ()(O7 Oxo) ~ @ H(g)’/z (TN(I/Z'), Ox)
i=1
Since Tn(v;) and X* are Stein, the cohomology group vanishes for p > 2 by the long

exact sequence:
PR pp— Hp_l(X*7 OX) — H(g),, (TN(Vi)7 OX) — HP(TN(Vi)7 OX) e

The same argument works for the case (4). Thus we have RPj°Oxo. = 0 for p > 2 for

general X. Again suppose that X = Ty(o). By considering Leray’s spectral sequence
EY?= HP(X, R1j2Ox.) = EPT1 = HPTI(X° Oxo),

we have F2° = 0 for p > 0, E?? = 0 for ¢ > 2, and E” = 0 for r > 2. Thus E¥' ~ EP! =0

for p > 0. This argument also works for the case (2). O

The Picard group Pic(X) is defined to be H*(X,O%). A reflerive sheaf G of X is a
coherent O x-module which is isomorphic to its double-dual. If G is of rank one, then G|xe
is an invertible sheaf and G ~ j2(G|xo). Let WPic(X) denote the set of isomorphism
classes of reflexive sheaves of rank one of X. It has a group structure such that the
product is given by the double-dual of tensor product. Then Pic(X) is a subgroup. A
Weil divisor A of X naturally defines a reflexive sheaf Ox(A) of rank one. Conversely,
a section of a reflexive sheaf of rank one defines an effective Weil divisor. A natural
injection Zx — Ox is factored by Rj.Zx~ — Ox by 8992 Let L% = T<oRj;Zx- and let

O% be the mapping cone of Z%§ — Ox. Then we have

Lx, for p =0,
HP(Z) ~ 0, forp=1, and HP(O%) ~
HY(Zx), for p=2,

0%, for p =0,
H3(Zx), forp=1.
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Lemma 3.3.5. The natural morphism RL 5(7Z%) — RI 5(Ox) is zero in the derived

category. In particular,
RIp(O%) ~as RLp(Ox) & RLp(Z%)[1].

Proof. The morphism Z% — Ox is factored by Rj.(Z%|x+) ~ Rj.Zx+ — Ox. Hence
RI5(Z%) — Ox is zero. Thus we have the property by taking RI g to the zero map. O

Lemma 3.3.6. (1) We have an isomorphism H*(RL g(Z%)) ~ joH%(Zxo). In par-
ticular, H3(X,7%) ~ WDivp(X) ~ H(B,Z) and H'(RL5(0%)) ~ HL(Ox) @
HY (wDivx).

(2) There exists a commutative diagram of triangles:

- HO(Divy)[-1] —— HY(wDivy)[—1] ® O% 0y, —
. Diug[-1] ——  wDivx|[-1]® O% 05, —H

(3) WPic(X) ~ HY(X,0%).
(4) There is an injection Pic(X°)/ WPic(X) — H(X, R'j2Ox.).

Proof. (1) We have <o RI'5(Z% ) ~qis T<2oRL 5(Rj;Zx-). Thus
M (RLp(ZY)) = M (RjZRL - (Zixo)) = jiHp (Zxe).

(¥) We have a morphism H% (wDivx)[—1] — RL 5(O%) by (1), which induces the first
triangle. We know wDivx / Divx ~ H%(wDivx)/H%(Divx) by 3.3.1-(8). This induces
the second triangle.

(8) We have an injection WPic(X) < Pic(X°). An invertible sheaf of X° comes
from WPic(X) if and only if its image in H(X, R'j°O%.) is contained in the subgroup

H°(X,wDivy / Divx). By the definition of O%, we have a commutative diagram of

triangles
L 0% —— TR0 ——  RUO%[-1]
L) p— O% —— wDivy / Divx[-1] ——

Thus H'(X, 0%) ~ WPic(X).
(4) The cokernel of wDivyx /Divy — R'j2O%. is isomorphic to R'j°Ox. by B.

2
(4.

1-

O
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3.4. O-spaces associated with toroidal embeddings

Let X be the associated J-space (X, B) and let j: X* = (X*,0) — X denote the
0-open immersion. For the open subset X°, let j°: X° := (X°, B*) — X be the induced
J-open immersion. We always denote by ¢ the morphism X = (X, B) — X = (X, 0).

Suppose that X* C X together with x € X is an n-dimensional toroidal embedding of
type (N, [, o) as before. Then a J-étale finite morphism Y — X from a connected 0-space
is induced from its open part Y* — X*, which is determined by a finite index subgroup
No of N >~ 71 (X*). Thus sp(Y) =Y for the toroidal embedding Y* C Y associated with
0 C Ng®R and Y — X is always Galois. The open immersion Y* C Y together with
the unique point y lying over x is a toroidal embedding of type (No,/, o). The stalk Ox ,
is written as the inductive limit of Oy, for such 0-étale neighborhood (Y;y) — (X;z).
This is considered as the ring of Puiseux series with respect to monomials in 0¥ N Mg.

The sheaf QPX (log B) of germs of logarithmic p-forms along B is naturally defined as
the sheafification of

Ui lim HO(U, O (log A).
[U,AleU
For a 0-étale morphism f: [Uy, A1] — [Us, Ag] in which Uy N Ay C Uy and Uy N\ Ay C Us
are toroidal embeddings, we have an isomorphism f*QZZ}Q(log Ag) =~ Q@l(log Ay). Thus
Q%(log B) ~ 5*Q§(log B) for the natural morphism ¢: X — X. In particular, this is a

locally free Ox-module. We have a logarithmic de Rham complex
Q'X(logB) = — Q%(logB) 4, ngl(logB) — .

If X* C X together with 2 € B be an n-dimensional toroidal embedding of type (N, [, o),
then Q%(log B), ~ N’M ® Ox_,. We infer that the natural morphism Q'X(log B) —
Rj Q% ~qis Rj Cx~ is quasi-isomorphic by considering similar quasi-isomorphisms over
Y = sp(Y) for all 0-étale neighborhoods (Y;y) — (X;z). In particular, Rj,Cx —
Rj Ox- factors through Ox.
We define the sheaf Mx of germs of meromorphic functions of X by
My (U) = lim H(U,My),
[U,Alel

for J-étale morphisms U — X. Let E)ﬁ*i be its subsheaf (as sets) consisting of invertible
meromorphic functions, whose abelian group structure is derived from the multiplication.
It contains the sheaf O% of germs of invertible holomorphic functions as a subsheaf. We
define the sheaft Divx of germs of Cartier divisors of X to be E)ﬁ*i/ O*ﬁ and define the

sheaf wDiv x of germs of Weil divisors of X to be l: Divxe. Let

Ox(xB)* := My N j. O%. C j My
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be the sheaf of germs of meromorphic functions that are unit functions on X*. Then, by

8.2.3-(2), we have the triangle

- 1R} Ty — Ox — Ox(xB)* 25 .

Lemma 3.4.1. Let X = (X, B) for a toroidal embedding j: X* = X \ B — X.

(1)

2
3
4

(
(
(
(5

)
)
)
)

Let x € B be a point such that UNX* CU is a toroidal embedding of type (N, [, o)

for an open neighborhood U of x. Then (RPj Zx+)s =~ (e+RPj Zx+). =~ N"M® Q.

In particular, RT5(Zx) ~qs R p(Zx) ® Q ~qs RC5(Qx).

RPeZx ~Hy(Zx) @ Q/Z for p > 0. In particular, R*'e,Zx = 0.

RE(O%) ~a RL5(Ox) & RL5(Z0)[1].

The composite H(Divyx) — Hp(O%) — Hi(Zx) is an isomorphism.
HY(Divy) and HY(wDivy) are sheaves of Q-vector spaces and there exist iso-
morphisms H%(Divx)RQ ~ e, HY (Divx) and HY(wDivx)®Q ~ e, HY(wDiv x).
There exist injections €, Divy — Divy ®Q and e, wDivxy — wDivx ®Q, and

exact sequences
0 — HY(Divx) — (Hy(Divy) @ Q) ® Divy — &, Divy — 0;
0 — HY(wDivy) — (H%(w@z’ux) ® @) ® wDivx — e, wDivxy — 0.
H%(Zx) = 0, the natural homomorphism Hy(Zx) — HY5%(Zx) is zero for any p,
and there are isomorphisms
HY (wDivy)/HY(Divy) ~ wDivy | Divx ~ Hy(Zx).

In particular, e,(wDivyx /Divy) ~ (wDivx / Divy) @ Q.

Let 2 Y — X be a bimeromorphic morphism from a non-singular variety such
that u=' B is a normal crossing divisor and that u induces an isomorphism Y ~
pw B — X N\ B. Then, for p: Y = (Y, p'B) — X = (X, B), there is an ezact

Sequence:

0 — Hy(Divx) — p Hy-15(Divy) — R*u Zy — 0.

Proof. (1) By definition, the stalk (RPj Zx+), is the inductive limit of (RPj) Zy+), for

O-étale neighborhoods (Y;y) — (X;z), where j¥ stands for the open immersion Y* —

Y =sp(Y). We may assume that ¥ — X is a finite 0-étale covering corresponding to a

subgroup Ng C N of finite index. Thus the stalk is isomorphic to

P P
lim /\Hom(No,Z) ~ AM® Q.

NoCN
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We see that #1°¢(X; ) ~ N ® Z for the profinite completion Z of Z. Since this is an
abelian group, the action on the stalk is trivial. Therefore, (RPJ*ZX*)I ~ (5*RPZ*ZX*)35
by 2.2.3.

(2) We have quasi-isomorphisms

R&kRﬂB(Z&) ~qis R&kRﬂB(@g) ~qis REB(@X)

by (ﬂ}) and by 2.2.6. The triangle
- 2L ROp(Zy) — Zx — Rj Zxe = -
induces an exact sequence
c— R 2y — HY(Qx) — RPeZx — RPjZxs — -+

By 3:3::]]—(-_1:), the stalk of R?j,Zx~ ~ H%’LI(ZX) for ¢ > 0 is of the form A?M. Hence
R, Zx. — HE" (Qx) are injective and we have RPe,Zy ~ H%(Zx) @ Q/Z for p > 0.
(B) is derived from the factorization Rj Cx+ — Ox — Rj Ox- (cf. 8.2.2).
(4) follows the same argument as 8.2.3-(3).
(B) is a consequence of (1)) and (4).
(6) By applying &, to the commutative diagram of exact sequence:

0 —— O*X —_— Sﬁ*& —_— Divx — 0

! T |

0 — 0% —— Ox(¥B)" —— H}(Divy) — 0,

we have another commutative diagram of exact sequence:

0 — Divx —_— Ex 'DZ"UX " ng*O’X
(3.6) I I
0 —— H%(Divx) e €*H% (DZ"UX) —— ng*O’X,

We have an isomorphism R'e, 0% ~ R?e,Zy ~ Hj(Zx) ® Q/Z by (2). Thus the right

arrows of top and bottom sequences in (:'3:6) are both surjective. Hence we have the

expected exact sequence for Divx by (1) and (2). In order to show the sequence for

wDivx is derived from that on X°, it is enough to prove that
R HG (Zixe) — RUjEHE. (Qxe)

is injective. Since H%.(Zx-) is isomorphic to the constant sheaf Z g, the homomorphism
isomorphic to the injection R'j°Zp. — R'j°Qp-~ (cf. 8.3.2).

HY%(Zx) is zero. The triangle

- 2% RI,(Zx) — RLp(Zx) — Rj°RLp.(Zxe) 5 - -
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induces an exact sequence
0 — Hy(Zx) — RP2j°Hy. (Zxo) — HY ™ (Zx) — 0.

Hence H%(Zx) = 0 and Hy(H%(Zx)) ~ H3(Zx).
(8) is derived by the same argument as 8.3.3-(5). O

The group Div(X,Q) of Q-Cartier divisors and the group WDiv(X, Q) of Q-Weil
divisors is defined to be H(X, Divx ®Q) and H°(X, wDiv x ®Q), respectively. Note that
Div(X) ® Q # Div(X, Q) for some non-compact analytic space X. We define similarly
Divp(X,Q) := HY(X, Divx ®Q) and WDivg (X, Q) := HY(X, wDivx ®Q). For the 0-
space, we also define the group Div(X) of Cartier divisors of X and the group WDiv(X)
of Weil divisors of X by Div(X) := H°(X,Divy) and WDiv(X) := H°(X, wDivy).
Similarly, we define Divg(X) := H3 (X, Divy) and wDivp(X) := H%(X, wDivx). Then
by B4L, H3(X,Z) ~ H°(X,H%(Zx)) ~ Divp(X) ~ Div(X,Q) and WDivg(X) =~
WDivg (X, Q). Moreover, 3.4.1-(6) implies that WDiv(X) can be identified with the
group consisting of locally finite sums > ¢;I'; for prime divisors I'; and for rational numbers
¢; such that ¢; € Z if I'; ¢ B. The sum ) ¢;I"; in WDiv(X) is contained in Div(X) if
and only if it is (locally) a Q-Cartier divisor, i.e., Div(X) = Div(X,Q) N WDiv(X) C
WDiv(X, Q).

Theorem 3.4.2. Let X* = X ~\ B C X be a toroidal embedding. Then the following two
sequences are exact:

3.7 - — H"YX,Z) — H%(X,Z) — H%(X,Q) ® H"(X,Z) — H"(X,Z) — - --
(38) - — H" (X", Q) — H"(X,Z) — H"(X,Q) & H"(X*,Z) — HP(X*,Q) — -
Moreover, we have an isomorphism H'(X,Z) ~ H(X,Z) and an eract sequence:

0— H3(X,7Z) — H*(X,Z) ® H5(X,Q) — H*(X,Z) — Hy(X,Z) — Hp(X,Q).

If [X, B] satisfies the condition 3.2.8, then

H*(X,Z) ~ (H*(X,Z) © H5(X,Q))/Hp (X, Z).

Proof. We have the quasi-isomorphism Re,RI 5(Zx) ~qs RL5(Qx) by 8.4.1-(). From

the commutative diagram

. L RI'p(Qx) —— ReZy —— RjZx. ——

T T |

. s RIy(Zx) —— Zx —— RjZx. —

we have another triangle

- 2L RIp(Zx) — RL5(Qx) @ Zx — ReZx s -
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This induces the long exact sequence (3 ) Similarly, from the commutative diagram

. RI'y(Qx) —— Re,Zy —— RjZx. —

| l l

_tr RI3(Qx) — Qx —— Rj.Qx- . .

we have another triangle
- Re,Zx — RjZx+ — Rj.Qxv =5 - -

and the long exact sequence (8.8).
-

The isomorphism for H' is derived from the vanishing R'e,Zy = 0 by 8.4.1-(2) and
from Leray’s spectral sequence for &,.

For H?, we look at the following exact sequence appearing in (3.7):
H(X.Z) — H3(X,Q) & H*(X,Z) — HX(X,Z) — H}(X,Z).

The left homomorphism is injective by 8.3.1-(6). If [X, B] satisfies the condition 8.2.6,

[ A

O

then the right homomorphism is surjective also by 8.3.1-(6).

Next, we shall study the Picard group Pic(X) := H'(X, O%).

Proposition 3.4.3. Suppose that [X, B] satisfies the condition 3.2.6. Then we have the

following two isomorphisms:

(3.9) Pic(X) =~ (Divg(X, Q) @ Pic(X)) / Divy(X);
(3.10) Div(X) ~ (Divg(X, Q) ® Div(X)) / Div(X).

Proof. From the quasi-isomorphisms
L
R&’*REB(O*X) ~qis REB(O;() & @ ~qis REB(O}(( ® @)
by 3

4.1, we have the following commutative diagram of triangles:

. L RIE(0%®Q) — Re,0f —— RiLO% — ...

T T |

_tr RI4(0%) —— 0% —>Rj*(9§(*+—1>---

This induces another triangle
- L RIp(0%) — RL3(0% ® Q) ® O% — Re, 0% 5 -,
and the associated long exact sequence

- = Hp(X, 0%) — Hp(X, 0% ® Q) & Pic(X) — Pic(X) — Hp(X, O%) —
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2::4 we have
Hg(X> O;() = Hg(X> OX) & HJ%—H(X? Z)>
HY (X, 0% ® Q) ~ HY(X,0x) @ HE (X, Q),

for any p. The homomorphism H%(X,7Z) — H%(X,Q) is injective for p < 3 by 8.3.1-(6).

Hence H% (X, 0%) — H%(X, 0% ® Q) is injective for p < 2. Thus (8.9) follows.

The isomorphism (B-_i_(j) for Div(X) is derived from the exact sequence (3:4') in B.4.

A.Jan
the injectiveness of H'(X, H%(Divx)) — H' (X, H%(Divyx) ® Q) proved in 8.3.1-(6).

O
Let Z% = 7<2Rj’Zx- and let O% be the mapping cone of the composite Z% —
Rj Cx+ — Ox. Let WPic(X) be the group of isomorphism classes of reflexive sheaves

of rank one on X. Then we have a triangle

- L HY (Divy )[~1] — HY(wDivy)[~1] @ O — 0%

and an isomorphism WPic(X) ~ H'(X,0%) as in 8.3.

6. We can generalize 3.4.3 as

follows:

Theorem 3.4.4.

(3.11) WDiv(X) ~ (WDive(X,Q) & WDiv(X)) /WDivg(X);

(3.12) WPic(X) ~ (WDivp(X,Q) & WPic(X)) / WDivg(X).

Proof. (3.11) follows 8.4.3 for X°. By comparing O% and O%, we see that the mapping
cone of O% — 7<; Re.O% is quasi-isomorphic to Hy(wDivx) ® Q/Z[—1]. Thus we have
a triangle

L HY (wDivy)[—1] — HY (wDivy) ® Q[—1] & O% — <1 Re. 0% A

This induces a commutative diagram of exact sequences:
0 —— WDivg(X) —— WDivp(X,Q) & WPic(X) —— WPic(X)

| l

0 —— Divp«(X°) —— Divp«(X°, Q) ® Pic(X°) —— Pic(X").
The bottom right arrow is surjective by 8.4.3. The cokernels of the middle and right

vertical arrows are both contained in H°(X, R'j2Ox-), since the mapping cone of 0% —
T<1Rj?0% is quasi-isomorphic to R'j°Oxe[—1]. Hence WDivp(X,Q) ® WPic(X) —
WPic(X) is surjective. O

Let Vp(X) and Vp(X), respectively, be the images of the natural homomorphisms
WDivp(X) — WPic(X) and WDivg(X) — WPic(X).
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Corollary 3.4.5. Let u:' Y — X be a bimeromorphic morphism from a non-singular
variety such that p is isomorphic outside B and that =B is a normal crossing divisor.

We denote Y = (Y, ' B). Then there exist canonical isomorphisms
WPic(X)/Vp(X) ~ WPic(X)/Vp(X) ~ Pic(Y)/ V,-15(Y).
In particular, if X has only quotient singularities, then
Pic(X)/ V(X) = Pie(Y)/ V1 5(Y).

Proof. By 3.4.4, we have isomorphisms WPic(X)/Vp(X) ~ WPic(X)/Vp(X) and
Pic(Y)/V,~15(Y) ~ Pic(Y)/V,-15(Y). The surjective homomorphism p,: Pic(Y) —
WPic(X) induces an isomorphism Pic(Y)/V,-15(Y) — WPic(X)/Vp(X). If X has
only quotient singularities, then Pic(X) ~ WPic(X). O

3.5. Reflexive sheaf and parabolic structure

The notion of parabolic sheaf is introduced by Mehta and Seshadri [M2] on Riemann
surfaces and is generalized to higher dimensions by Maruyama and Yokogawa [M1]. In
[B2], Biswas shows that a lot of parabolic sheaves are considered as orbifold sheaves.
Here, we consider this from the view point of d-étale topology.

Let X be a normal variety and let B be a reduced Weil divisor of X. We assume that,
locally on X, B is the support of an effective Cartier divisor. This condition is satisfied
if X \ B — X is a toroidal embedding, for example. Let X denote the 0-space (X, B)

and let ¢ = ex be the natural morphism X — X.
Lemma. There is an inclusion WDivg(X, Q) C WDiv(X).

Proof. We can replace X by an open neighborhood of any point. Then by the assumption,
there is an effective divisor D such that Supp D = B and that Ox ~ Ox(D). In this
situation, for any positive integer m, we can construct a cyclic covering 7: ¥ — X of
degree m branched only over B such that 7D is divisible by m. This implies that
Ox(gD) is an invertible Ox-module for any ¢ € Q. If A is a Q-Weil divisor supported
in B, then 7*A is a Z-Weil divisor for a finite covering 7: Y — X branched only over B.
Thus A is a Z-Weil divisor of X. O

A reflezive sheaf of X is a coherent reflexive Ox-module by definition.

Lemma 3.5.1. Let F be a coherent Ox-module. Then F is reflexive if and only if,
0-¢étale locally, F ~ &*F for a reflexive Ox-module F.

Proof. By 2.3.2, we may assume F ~ ¢*F, and FY := Homoé(]:, Ox) ~ ¢*F; for

coherent sheaves Fy and F} of X. Moreover, we can assume that there is an exact
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sequence OF° — OF" — Fy — 0. Thus the sequence OF° «— Of «— FY « 0 is also
exact. Hence e, F" ~ Fy. Therefore, from the first, we may assume that F, = F/. By

considering the same thing to Fi, we see that F is reflexive if and only if Fj is so. 0

Corollary. The following properties hold for a reflexive sheaf F on X:
(1) ey«F is reflexive for a 0-étale morphism U — X with U = sp(U).
(2) .7:21:.73@0.

The dual G¥ = Homoy(G,0x) of any coherent sheaf G is reflexive.

Let A be a Q-Weil divisor contained in WDiv(X) = WDiv(X) 4+ WDivg(X, Q). Then
the sheaf Ox(A) is a reflexive sheaf of rank one. For a reflexive sheaf F of X, we define
F(A) to be the double-dual of F ® Ox(A). Similarly, for a reflexive sheaf F' and an
effective divisor D of X, we define F'(D) to be the double-dual of F' ® Ox (D).

We consider parabolic sheaves in the following sense:

Definition 3.5.2. Let F' be a reflexive sheaf of X and let D be an effective Weil divisor
supported in B. A parabolic structure of F' with respect to D is a family {F}} of subsheaves
of j.(F|x+) indexed by t € Q satisfying the following conditions:
(1) F; are reflexive sheaves of X;
(2) Fi, C Fi, for t; > t;
(3) F = Fy;
(4) Fiym = Fi(—mD) for m € Z;
(5) Any point of X has an open neighborhood V' such that, for any t € Q, there is a
rational number § > 0 satisfying F;_s|v = Fy|v.

A reflexive sheaf endowed with a parabolic structure with respect to B is simply called a

parabolic sheaf .

Remark. Let F' C F be an injection between reflexive sheaves on X such that the support
of @ := F/F' is contained in B. Then, for a point # € Supp ), an associated prime of
the Ox ,-module ), corresponds to an irreducible component of the germ of B at z. In

particular, if Supp Q contains no irreducible components of B, then F = F’.

Suppose that B has only finitely many irreducible components and let {F;} be a par-
abolic structure with respect to an effective divisor D supported in B. Then there exist

a filtration of coherent subsheaves
FO/F1:G0 DG DGy D - DG DG[.H :0,
and a set of rational numbers

0<ay<ap<a<---<a<aqq =1
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such that F;/Fy = G for a;_; <t < j and for j > 1 and that F;/F; = Gy for 0 <t < ay.
We call {F}} is m-periodic if a; € (1/m)Z. The condition is equivalent to: Fy = Frpp/y,.

Lemma 3.5.3. Let F be a reflexive sheaf of X and let D be an effective Weil divisor of
X supported in B. We set
Ft = 5*(f(—tD))

fort € Q. Then {F;} is a parabolic structure with respect to D.

Proof. 1t suffices to show that, for any ¢, locally on X, there is rational number o with
F,_s = F;. For a point x of X, there are an open neighborhood V', a finite Galois
morphism f: U — V étale outside B, and a reflexive sheaf Fy; of U such that F|y ~ epFu
for U = (U, By), By = f~'B, by 8.5.1. Let Fy; be the sheaf ¢y, F(tB), which admits a
natural G-linearization for the Galois group G of f. Then Fy; = Fy( —tf*D,), and F}
is the G-invariant part of f.Fy ;. Thus F} ~ Fy_; for small 6 > 0. O

Lemma 3.5.4. Let {F;} be a parabolic structure of a reflexive sheaf Fy of rank one with
respect to B. Then there exists a reflezive sheaf F € WPic(X) of rank one uniquely up
to isomorphisms such that Fy ~ ¢,(F(—tB)).

Proof. For an irreducible component B; of B, there is uniquely a rational number 0 <
B; < 1 such that Fp, = F, and that the support of Fy/F; contains B; for t > ;. Let
A =Y, 0;B; and set F) := F;(— A —tB,). Then we have F} = F| for any t. Hence
F, = Fi(\A —tB,). The double-dual F of ¢*Fj ® Ox(A) satisfies the condition. O

Theorem 3.5.5. Let {F;} be a parabolic structure with respect to B. Then there ezists
a reflexive sheaf F of X uniquely up to isomorphisms such that F; ~ ¢, (F(—tB)).

Proof. We consider the double-dual F; of ¢*F; and
F/ =Y Fl_\(=AB) C F(B).

0<A<I1
Then we have /| = f{’(—B). For 0 <t <1,
Fl= > Ful-t+wB)+ > F,(-({t+pb)
—t<u<0 0<pu<l—t
= Y F(—=(t+uB)=Fj(-tB).

0<u<l
If {F3} is m-periodic, then 7} = F7, /. Thus

m—1

F= Y Fm(AB) = S F (—(s/m)B).

s=0 s/m<A<(s+1)/m s=0
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Hence F{ is coherent. Let F be the double-dual of F{. Then F(—tB) is the double-dual
of F}'. The direct image ¢,F(—tB) is isomorphic to the double-dual of
Z Ft—/\( I__)\J B)'
0<A<1
If 0 < A <1, then Fi_(,—A\,B) C F;_1(—B) = F;. Therefore, ¢, F(—tB) = F;.
Suppose that G is another reflexive sheaf of X such that F}; ~ ¢,G(—tB) as parabolic

structures. Then we have injections F, C G(—tB) for any t. Since

Y. G(=(t=NB)(=AB) = G(~tB),

0<A<1

we also have injections F(—tB) C G(—tB). In order to show this is isomorphic, we may
assume that X is isomorphic to a polydisc and B is a coordinate hyperplane. There is
a finite cyclic covering 7: Y — X étale outside B satisfying the following condition: For
the Galois group I' ~ Z/NZ of 7, there exist ['-linearized reflexive sheaves Fy and Gy
of Y such that

Fly ¥y Fy  and  Gly ~ 5.Gy.
Let By denote the pullback 77'B = (7*B)q. Then &,F(—(i/N)B) is isomorphic to
the [-invariant part of 7. Fy(—iBy). This is the eigenspace of 7. Fy with respect to the
eigenvalue exp(2mv/—1(i/N)). Since e, F(—tB) ~ £.G(—tB), we have 7.Fy ~ 7.Gy.
Therefore, Fy ~ Gy and F ~ G. O

Example 3.5.6. Let X* C X be a toroidal embedding and let X = (X, B) for B =
XN X*. Let H be a locally constant system of a finite-dimensional C-vector space defined
on X*. If the local monodromies are unipotent, then we have the canonical extension
HE" of H = H ® Ox+ to X in the sense of Deligne [D—_Z-] as a locally free Ox-module.
Even if the local monodromies of H are only quasi-unipotent, we have the canonical
extension HY" as a J-étale locally free sheaf of X. When X is non-singular, the sheaf
HE = e, HE" is locally free and is usually called the canonical extension in the sense
of Deligne. We call this by the lower canonical extension (cf. [K9], [MY]).

Example 3.5.7. The sheaf Qli of Kéhler differentials is defined by the universal property
for derivations to Ox-modules as usual. It is not necessarily coherent even if X is non-
singular. To see this, we consider the one-dimensional case: X = A, B = {0}. We can
write Q% = Ox dt for a coordinate function ¢ of X. Let X’ = A — X be the cyclic
covering u — u™ =t. Then

dt
Q;—/ = OX/ du = Ox/i

t(=1/m)”
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Hence the stalk Ql&o is isomorphic to

) 1
Sy O

Thus Q is not coherent. The double-dual of Q is isomorphic to QY (log B).
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4. LOCAL NATURE OF VARIATION OF HODGE STRUCTURE

Let S* C S be a toroidal embedding. We consider a Z-polarized variation of Hodge
structure H of rank two and of weight one defined over S* (cf. [(i3], [S3]): it consists of a
locally constant system H of a free abelian group of rank two, a skew-symmetric bilinear
form Q: H x H — Zg~ inducing an isomorphism A? H 2% Zg., and of a subbundle F!(H)
of H := H ® Og- such that (H,, Qs, F'(H) ® C(s)) forms a polarized Hodge structure of
weight one for every s € S*. We call by VHS a Z-polarized variation of Hodge structure
of rank two and of weight one, for short. In Section :4, except :ZL:Z, we shall study the local
nature of H. Thus we mainly suppose that S* C S together with a point 0 € S is a d-
dimensional toroidal embedding of type (N, [, o). Thus we can write S = Ty(o)<* x A%,
Note that the fundamental group m1(S*) of S* is identified with N. Let {v1,1a,..., %}

be the set of vertices of o and let
D; =D, := (0, NTn(s)<") x A4

denote the corresponding prime divisor to v;. The complement D := 5 ~ S* is written
by ¥ | D;. We set S° := S\ Sing D. The open subset Sg, := (Tn(r;) N Tn(0)<t) x A%
is non-singular and its fundamental group is isomorphic to N(»;) = NN Ry; = Zv;. Note
that S; = S° \ (UjxD;). According to 8.1.3, the universal covering mapping of S* is

given by
én: Hy(Int o) x A3 2 = (2, t) — (en(2), ) € TR x AT ~ §*

for 2/ € Hy(Into), t' € AT

4.1. Monodromy and periods

From the VHS H, we have a period mapping w: Hy (o) x A% — H and a monodromy
representation p: m(S*) = N — SL(2,Z) such that
o= o= ()
Borel’s lemma [S3, 4.5] asserts that p(1;) are all quasi-unipotent, since p(v;) is the local
monodromy along D;. Hence p(v) is quasi-unipotent for any v € N, since N is commu-
tative. Any quasi-unipotent matrix in SL(2,Z) is conjugate to one of the matrices in
TABLE 1, uniquely. Suppose that the image p(N) of p: N — SL(2,7Z) is a finite group.
Then it is the cyclic group of order 1, 2, 3, 4, 6, according as the image p(N) is generated
by the matrix Iy, I§, IV*, III*, IT* in TABLE 1. up to conjugates in SL(2,Z). If the order

is m, then p is essentially determined by a surjective group homomorphism N — Z/mZ.
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TABLE 1. Monodromy matrices

I, (a>0) 11 111 vV
1 a 11 0 1 0 1
o o) o) o) ()
I (b>0)| II Ir v*

-1 —b 0 —1 -1 -1
0 -1 1 0 1 0
Suppose next that p(N) is infinite. Then there exist unique homomorphisms a: N — Z,

c: N — Z/27, and a matrix P € SL(2,7Z) such that

P_lp(ﬁ)/)P = (_1)6(7)1(1('\/)

for v € N. By a property of period mapping, we have a(v;) > 0, since p(v;) is the local
monodromy in the right direction along D;. Thus a is considered to be an element of
o MM such that a(y) = (a, ).

Definition 4.1.1. [Type of monodromy representations]

(1) Suppose that p(N) is finite. The monodromy representation p: N — SL(2,7Z)
is called of type Io, I(()*), 11, I, IV®) according as: p(N) is generated by a
conjugate of the matrix Io, I§, IT*, III*, IV™.

(2) Suppose that p(N) is infinite and that ¢: N — Z/27Z is zero, i.e., any matrices in
p(N) is unipotent. Then p is called of type Ir;). More precisely, it is called of type
I, for the homomorphism a: N — Z. We define « to be the positive integer such
that o~ 'a is primitive. In other words, « is the index of the image of a: N — Z
in Z.

(3) Suppose that p(N) is infinite and that ¢: N — Z/27Z is not zero. Then p is called
of type I(*)). For a and ¢, we define a*: N — Z by a*(y) = (—1)*@a(y). Then

(+

p is called of type IE:))(O), Igf)(l), IE:))(Q) according as: a* =0 mod 2, a* = ¢

mod 2, a* Ac #Z 0 mod 2. The case IE:))(Q) does not occur if [ = 1.

Remark. The definition of types is slightly different from that in [N4]. The type IV_
there is included in II above and the type IV, is now IV.

On the period mapping w: Hy(Into) x A4l — H, we have the following result by an
argument of [N4]:

(1) If H is of type 1y or of type I(()*), then w descends to a holo-

morphic function on S.

Proposition 4.1.2.



71

(2) Suppose that H is of type 14y or of type IE*JF)). Let a € 0V N M be the functional
determined by the monodromy as before. Then there is a holomorphic function h
on S such that Imh(t) >0 fort € S and that

w(z) = (a,z') + h(&n(2)).

(3) The J-function is defined on S* by J(&n(z)) = j(w(z)) for the elliptic modular
function j. It extends to a holomorphic mapping J: S — P*.

4.2. Canonical extension

The Hodge filtration FP(H) of H is defined on S*. If S is non-singular, we have
canonical extensions of H and FP(H) in the sense of Deligne [D2] by the nilpotent orbit
theorem by Schmid [S3]. Even if S has singularities, we have also locally free canonical
extensions in the case H has only unipotent monodromies. This is shown as follows:
Suppose that S is in the local situation: S* C S is a toroidal embedding of type (N, [, o).
If H is of type Iy, then H is originally defined on S and thus the Hodge filter F!(H) is
defined naturally by the period function w. Suppose that H is of type I(;), more precisely
of type I, for 0 # a € 0¥ N M. We see that

0 0

o (4)-(4)

for t = &y(z). This means that H = H ® Og- is a trivial module O%? in which F!(H)
is generated by the column vector %(h(t),1). Hence we have naturally the canonical
extension HE" = OF? and the extension F*(HZ") of F'(H) as a subbundle of HE".

This construction is compatible with the canonical extension over S ~\ Sing S.

01
log p(v) = a(y)N  for the matrix N := ( ) .

By 4.1.2, we have

Even in the case the monodromy of H is not unipotent, we can extend to S the
lower-canonical extensions defined over S \ Sing S by taking direct images for the open
immersion. But they are not necessarily locally free. To see this, assume that S* C S
is a toroidal of type (N,l,0). Let Nyni, € N be the submodule consisting of all v € N
with p(7) being unipotent. The toric variety Ty, () induces a finite abelian covering
708 = Ty, (o)<t x AT" — S with the Galois group N/Nynip. The lower-canonical
extensions ‘“HE™ and FP(“HE™) are obtained as the N/Nyp-invariant part of the direct

images of canonical extensions defined on S’. Hence these extensions are reflexive sheaves

of S.
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Next, we consider the d-space S := (5, D) for a general toroidal embedding S* =

S~ D C S, which is not necessarily of type (N,l,0). Then we have the canonical

can

extension Hg™ as a locally free Og-module (cf. 8.5.6). There is also the extended filter
FHHS") as a subbundle. For the natural morphism ¢: S — S, we have e, Hg" ~ CHEm
and 5*.7:1(7'(;“) ~ .7:1(67-{‘;&“).

Definition 4.2.1. We introduce the following sheaves:

Ly:=H/F'(H), Lus:="H/F('HS), and Lpus:=H"/F'(HE").
Note that .Lp/s ~ Lu/s. The canonical extensions éHg?‘“ and Hg™ have logarithmic
connections

Vs: "HE™ — Q(log D) ® “HE",  and  Vs: HE" — Qf(log D) ® HE™
such that Vg = €,(Vg). Then we have logarithmic de Rham complexes
Q%(log D) ® “HE™  and Q'i(log D) ® Hg™.

These are considered to be subcomplexes of j.(Q%. ® H) and j (5. ® H), respectively.

We have natural quasi-isomorphisms
L L

Jx(Q5 @ H) ~gis R H®C,  and  j (Q4 @ H) ~qis Rj H®C.
As in the case of non-singular varieties with normal crossing divisors, we have:
Proposition 4.2.2. There exist quasi-isomorphisms

L A L A

Rj.H ®C r~qs Q%(log D) ® “HE",  and Rj H®C ~g Q%(log D) © HE" .
Proof. 1t is enough to show the morphism
Qg(log D) ® HE™ — j (U @ H)
is quasi-isomorphic. Thus we may assume that S* C S be a toroidal embedding of type
(N,1,0) and that H is of type I, for some a € 0VNM. Let pu: Y — S be a desingularization
of S corresponding to a subdivision of ¢ C N ® R into a non-singular fan. Then p~!D is
a normal crossing divisor, H$™" ~ p* HG", and OF (logu™'D) ~ M*Qg(log D) for any p.
We have a quasi-isomorphism
O (log ™' D) ® HY™ =qis 1L(Q @ H)

for the open immersion j': S* = Y ~ pu~!D — Y. Therefore,

Q%(log D) @ HE™ — j.(Q% @ H)

is quasi-isomorphic, since S has only rational singularities. By considering 0-étale cover-

ings over [S, D], we have the similar quasi-isomorphism over S. O
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Corollary 4.2.3. The natural morphism RZ*H — RZ*EH ~gis Z*EH 18 decomposed into
Rj H — Luss — j Lu. In particular, the morphisms RLp(j H) — RLp(Luys) and
RI'p(jsH) — RL p(Luys) are zero in the derived categories.

Lemma 4.2.4. Let p: Y — S be a bimeromorphic morphism from a non-singular variety
such that p=*D is a normal crossing divisor. Let Hy denote the VHS p=*H defined on
Y <~ ,u_lD. Then EH/S ~qis RM*EHY/Y

Proof. This means that RPu.Lpg, vy = 0 for p > 0 and p.Lp, )y ~ Lu/s. The latter
isomorphism holds if p.Lp//y is reflexive. Thus we may consider them locally on S.
Then, there is a finite Galois covering 7: S’ — S étale outside D such that H' :=
77'H on S’ \ 77D has only unipotent monodromies. Then Ly /g is an invertible sheaf
and the invariant part of 7.Lp//¢ by the action of the Galois group G is isomorphic
to Lu/s. Let Y’ be the normalization of ¥ xg 5" and let p/: Y' — S” be the induces
morphism. Then p/* Ly /g =~ EH;//Y/ for the VHS Hy, = (/)" H defined on Y’ x5 S*.
Therefore RPM;ACH;//y/ =0 for p > 0 and /L;ACH;//y/ ~ Lys, since S" has only rational
singularities. By taking G-invariant parts, we have the vanishing RPp. Ly, v = 0 for

p > 0 and the local isomorphism Lg/s ~ pLr/y - O

Corollary 4.2.5. Suppose that S is compact and connected.
(1) If the J-function is non-trivial, then H°(S*, H) = 0.
(2) If H is not trivial, then H°(S*, H) = 0.
(3) If dimS = 1 and if H is not trivial, then H*(S,j.H) is a finite group (cf. [K7,
11.7]).

Proof. (1) This is reduced to the vanishing H°(S, L/s) = 0 by the injection j.H — Ly/s.
We may assume that S is non-singular. Then
~12 .
L5 ~ T 0 (1) ® 0s(3 a:Dy)

for integers 0 < a; < 10 for irreducible components of D; (cf. [U1], [K2], [N4, §3]). If
H(S, Lyss) # 0, then H°(P', O(1)) defines a non-constant holomorphic function on S.
This is a contradiction.

(2) H is trivial if and only if H°(S*, H) is of rank two. If H°(S*, H) contains a non-zero

element, then it defines an extension

0—Zg« — H — Zg« — 0
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of local systems. Hence the monodromy representation m (S*) — SL(2,7Z) is equivalent

to the the induced representation

(1 e(v)
p(y) = (0 . )

for the group homomorphism ¢: 71(S*) — H1(S*,7Z) — Z corresponding to the extension
above. Since J-function is constant by (1), the period function w(z) on the universal
covering space of S* is also constant. Hence ¢ = 0 and H is trivial.

(8) We have H?(S,j.H) ~ H*(S,j1H) ~ H?(S*, H). By the Verdier duality

RI.(S*, H) ~qs RHomgz(RI'(S*, HY),Z)[-2],
or as a universal coefficient theorem, we have an exact sequence
0 — Exty(H'(S*,HY),Z) — HZ(S*, H) — Homz(H"(S*, H"),Z) — 0.
Since H'(S*, HV) is a finitely generated abelian group, H2(S*, H) is finite by (2). O
4.3. Group cohomology

According to [N4], we regard Z%? as a right SL(2,Z)-module. It turns to be an N-
module by the monodromy representation p. We infer that p-th cohomology group H? =
H?(S*, H) is isomorphic to HP(m1(S*), Z®?) by a Hochschild-Serre spectral sequence.

Theorem 4.3.1. The group cohomologies H? = HP(m1(S*), Z%?) = HP(N,Z%?) are cal-
culated as in TABLE 2.

In order to show 4.3.1, we consider Koszul complexes. Let A be a commutative algebra
with a unit and let T be an A-module. We assume that 777 is originally a right A-
module. For a free A-module £ of finite rank and for an element b € &, the Koszul
complex Kosg (1, b) = Kos?, (1M, b) is defined as follows: the p-th module is

p
Kosg (M, b) := Kos’y «(1M,b) := M @4 )\ €.

The differential d? is defined by x — x A b for x € Kosk (1, b). If we choose a base of

&, then b corresponds to a row vector (b1, be,...,b). If we denote by x;, 4, . i, € TN the
(41,72, .. .,14p)-th coeflicient of x for 1 <i; < iy < --- < i, <[, then the differential d? is
written by:

V0321 yeeey Tjyeeny ip

p .
(dP(X))igsir iy = D _(—1)P77x v by
7=0
We write the p-th cohomology group by HP(11,b).

Lemma 4.3.2. (1) If Ay is an A-algebra such that M is originally an Ai-module,
then Kosg (1M, b) = Kos?y o¢ (1, b1) for the image by of b under £ — A1 ® £.
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TABLE 2. List of cohomology groups

Type of monodromy | H° HY HP (p > 2)

T, ze2 | 720) 722(,)
Iy 0 | (z/22)% (2/22)%*()
1™ 0 0 0

e 0 Z[2Z (z/22)%(-)
Ve 0 Z/3Z (2,/32)°G)
Iy Z |28 o 7)oz | 7%6) & (Z/az)®-)
* -1

() 0 | (z/22)%* (z,/22)%2G-)
* -1

17\ (1) 0 ZJAZ (z/42)%(:-)
* -1

17))(2) 0 Z.)2Z. (z/22)%(-)

(2) Suppose that € = & @ & for free A-modules & and & and that
b=(b,by) €& DE
for by € &, by € &. Then Kosg (1N, b) is quasi-isomorphic to
™M ® Kosg (A, b1) ® Kosg, (A, ba).

In particular, if by = 0, then HP (1N, b) is isomorphic to

P HT7(M, b)) @ /j\eg.

Jj=0
(3) If b' = b - P for some right A-linear automorphism P € Auta(E), then we have
an isomorphism Kosg (1, b') ~ Kosg (1, b).

We will find a resolution of the trivial N-module Z by free Z[N]-modules. Let us choose
a generator (71,72, ...,%) of N as an abelian group of rank [. We set €: N — Z[N] to be
the homomorphism defined by €(;) = v; — 1 for 1 < i <. The € does depend on the
choice of generator. We define a (right) Z[N]-linear mapping

p+1

Opt1: /\ N ® Z[N] —>/P\N®Z[N]
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from the composite of natural homomorphism AP"*N — A’ N®N and id®e: A’N®N —
AP N ® Z|N]. More explicitly, 0,+1 sends eg A ey A--- Aep, for e; € N to

P
S (=1)PTeg A Ao NeEjA-- Ne, ® e(e;).
j=0

Then we have a resolution of Z:

p+1

P
.= AN®ZN 25 AN®ZIN] — -+ — ZIN] = Z — 0.
Therefore for the right Z[N]-module 1 := Z%2 HP(N, 1) is the p-th cohomology group

of the complex

[+ — Homa (AN © ZIN], ) > Homa (A N@ ZIN], ) — -+,

Here d? is described as follows: For x € Homyzn(A? N ® Z[N], M),
!
dP(x)(eg Ner A= Nep) =D (1P x(egAer A+ A 6\/]' A Nep)e(e;).
=0

Therefore, the complex is isomorphic to the Koszul complex
Kospygzny (M, €).

We denote i := /—1 € C and w := exp(2mv/—1/3) € C. We introduce a commutative

algebra A depending on the type of monodromies as follows:

Z, in the cases Io, 1",
A Z|w], in the cases IV, TV®)
. Zl[i], in the case 111,
Zle]/(€?), in the cases (1), IE:)).

Then we can consider M = Z%? as an A-module by regarding i, w and € as:

, 0 —1 ~1 -1 0 1
1< , W ,E & .
1 0 1 0 0 0

Thus there is an algebra homomorphism p: Z[N] — A, from which the Z[N]-module
structure of MM is derived. More precisely, the () is determined by the type of the
matrix p(7) as in TABLE 3. If the type of the monodromy is neither Iy nor I((]*), then T

TABLE 3. Image of v

Typeof v |Ip| I | II | II* [III|IIT" | IV |IV® I, I
(7) 1|-1|—w|-w?|-i| i || w |1+ae|—(1+ae)

is isomorphic to A as an A module. We set b € M ® A to be the image of € € M ® Z[N]



7

under id® p: M®Z[N] — M® A. Then Kosygzm (177, €) is isomorphic to Kosyg 4 (177, b)
and hence H? = HP(m(S*), Z%%) ~ HP(N, b).

Proof of 4.3.1. The case Iy. We have b = 0 and hence

Kosyga (11, b) ~ @m®z/\M

Thus H? ~ m®/\pMNZ@()f0ranyp
The cases I(() ), 11, III™), IV™). For the generator (71,72, - - -» ) of N, we have b(v,) =
p(7;) — 1. Hence there is an a matrix P € GL(l, A) such that

(b(71),b(72), .., b()) = (4,0,...,0) - P

for an element 3 € A. Here we can choose ( as follows:

2, in the case I( )

w, in the case II** );
ﬂ =

i—1, in the case ITI™;

w—1, in the case IV,

v 4.3.2, we have
j
HP(M,b) ~ P H (M, B) @ )\ A%,

Jj=20
Here H?(M, 3) = 0 for p # 1 and H*(M,, 3) = M ® A/BA is isomorphic to the following

abelian groups:

(Z/2Z)%2, in the case 1

0, in the cases I1*);
meA/GA ~

7.)27., in the case III™):;

7./3Z, in the case IV®).

The case 1(;). We infer that 77 ~ A as an A-module and that

(b(71)7 b(72)7 S b(%)) = (CME, 0,... 70) P
for o = ged @ and for some P € GL(1, A). Thus by %.3.2,
j
H? ~ P HP (A, ae) @ \ AZ7D,
Jj=0
We have H(A,ae) ~eA =17, H (A, ae) ~ AJae ~ Z® Z/aZ, and HP(A,ae) = 0 for
p > 2. Thus H° ~ Z and for p > 1,

B ~7°(3) 0 (2@ 2/02)?6) ~ 286) ¢ (2/02)262).
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The cases IE*JF))(O) and Igi))(l). Let é: N — Z C A be the homomorphism defined by

0, ife(y;)=0;
1, if e(y;) #0.
This also depends on the choice of generator {7;}. Then b = —2¢ + ea* and
(b(11),b(72),...,b(v)) = (8,0,...,0)- P
for some f € A and for some P € GL(l, A). We can choose 3 as follows:

in the case IE*JF))(O);

é(v;) =

2

- 27 in th 1) (1
+¢€, in the case I\ (1).

Thus by 4.3.2, we have

J
H? ~ P HP (A, B) @ )\ A%D,
Jj=20
Here HP(A,3) = 0 for p # 1 and H'(A, 8) ~ A/BA is isomorphic to the following abelian
groups:
(Z/27)%%, in the case IE:))(O);

Z]/AZ, in the case IE:))(l).

The case IE*JF))(Q). The condition é A a* # 0 mod 2 implies that there exist a matrix

P e GL(I, A) such that

(b(’)/l),b(’)/g), .. ,b("yl)) = (—2,6,0, Ca ,0) - P.

A/BA ~

By 4.3.2, we have

J
H? ~ @ HP (A, (—2,e)) @ J\ A2,
J20
Moreover we have HP(A, (—2,¢)) = Z/2Z for p = 1, 2 and HP(A, (—2,¢)) = 0 for other
p. Thus

a1 ~ 7/225G0) @ 7/228G) ~ 7,/27806). O
Leray’s spectral sequence
EY?= HP(S°, RYjXH) = E"*1 = HPTY(S* H)
for the immersion j*: S* — S° induces a long exact sequence:

(4.1) -+ — HP(S°,j*H) — HP(S* H) — HP"*(S°, R'j*H) — HP™(S° j*H) — - |
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since R1j*H = 0 for ¢ > 2. The support of R'j*H is contained in D* = | [*_, D*. Thus

for a vertex v;, we have natural homomorphisms

(42) EP = HP(S*,H) _ E;)P—Ll — Hp_l(D:,le:H|D:)

As in the proof of 4.3.1, we consider Z#2, a fiber of H, as an A-module 7. The coho-
mology group HP(S*, H) is calculated by the Koszul complex Kosy,4(777,b). Suppose
that b(v;) = p(r;) — 1. This is satisfied if v; = 7; for some j or if the monodromy of
H is unipotent. Let b® be the homomorphism N/N(v;) — A/b(v;) determined by the

commutative diagram:
N LN A

l l

N/N(v) 22 A/b(v,).
Then b is considered as an element of (- N M) ® A/b(i). We define a morphism of
complexes
Kosppa (T, b) — KOSZVZ;OM)@A(?TL @4 A/b(v;), bD)[—1]
as follows: The homomorphism of p-th level
p p—1
mes(AMe A) = mea (@ NM) @ A/b))
is induced from the surjection A’ M — N(1;)" @ AP~ (v N M) and from the isomorphism
N(v;)¥ = Z which is the dual of Z 3 1 — v; € N(1;).

Lemma 4.3.3. Suppose that b(v;) = p(v;)—1. Then the homomorphism (4.2) is described

as the HP of the morphism of complexes
Kosyga (1M, b) — KoszyilnM)@aA(m ®a A/b(1), b(i))[_l]'
Proof. We consider the open subset S; = S°~\ (Ujx D;). We denote the immersion
S* — Sp by j7. Then le:H|Di* ~ lef*H|Di* and the homomorphism (4.2) is derived
from Leray’s spectral sequence for j7. The immersion j7: S* — S} is homotopically
equivalent to the projection N ®z S' — N/N(v;) ®z S'. Thus Leray’s spectral sequence
for j¢ is isomorphic to that for the projection and for a local constant system of N ®z S*
defined by the same monodromy representation m(S*) = N — SL(2,Z) as H. The
spectral sequence is then expressed as the following Hochschild—Serre’s spectral sequence:
EPT = HP(N/N(v;), H*(N(3), M) = H"™(N, m).

We have HP(MT,b(v;)) ~ HP(N(v;), M), since b(v;) = p(v;) — 1. The Koszul complex

Kospe4(1, b) is isomorphic to the total complex of

m & Kos} (A, b(r:)) ® KOSZV#OM)®A(A> v)
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for some b’ € (- NM) ® A with b = b mod b(1;). For the complex Kos® (112, b(1)),
we have a triangle

L mb) s Kost (M, b(vy)) — My /mib(u)[—1] 25 -

where M°*¥) = {2 € M, | xb(v;) = 0}. This induces the triangle

2t KOSZViLnM)(@A(mb(Vi), b') — Kosppa (M, b) —
. i +1
— Kos{, 1 qmyga (110 @ A/b(1), b)-1] 5 -

The associated long exact sequence is isomorphic to the long exact sequence derived
from Hochschild—Serre’s spectral sequence above. Because, the morphism of complexes is

naturally derived from a double complex given by resolutions of Z by free Z[N]-modules
and free Z[N/N(v;)]-modules. O

Suppose that H is of type I, for an element 0 # a € ¢V NM. Let u = a'a be the
primitive element. The set at No = {v € ¢ | a(v) = 0} is a face of o. The abelian group
N(a' No) was defined to be NN (atNo+(—at No)). We define [, := [ —rankN(a' No)
and define k; to be the number of indices 1 <i < k with a; := a(v;) > 0. Then I, < ky
and [ —1; < k—k; hold. Note that [ = k if and only if (S, 0) is a quotient singularity. Let
S* be the complement of Ua,>0 Di in S and let j%: S% < S denote the open immersion.
Then the toroidal embedding S* C S* is associated with the cone a* No C N® R. In

particular, S is homotopically equivalent to

TN(GLQU)(al N U) X TN/N(GLQU).

We know that RI'(S*, H) is quasi-isomorphic to the Koszul complex Kosy, (A, ag)
for A = Z[e]. We have the following triangle

- B Kosy(Z,0) — Kospea(A, ag) — Kospy(Z,0) 2% Kospy(Z,0)[1] — - -
Hence H?(S*, H) is isomorphic to
p ra p+l p—1 ra P
Ker(AM 2% A M) & Coker( /\ M 2% AM).
Next, we consider the complex KOSZV;OM)@)A(A/I)(VZ'),b(i)) for b = ae. Here b(y;) =
a(v;)e, and b = aWe is determined by the commutative diagram

N SN 7

l l

o

N/N(v;) —— Z/a(v;).
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Then we have a triangle
L3 Kos} . \(Z/a;Z,0) — Kos}, . e a(A/aieA, ae) —

— Kos}, y(Z,0) 225 Kosp, oy (Z/aiZ, 0)[1] — -

Lemma 4.3.4. Suppose that H is of type I, for 0 # a € ¢V N M.
(1) H'(S°, jXH) is torsion-free of rank ky — 1.
(2) HY(S*,H) ~Z ®M/Za.
(3) HO(S°, R H) ~ T & @, 50 Z/a L.
(4) The rank of H*(S°, j*H) is (l;) +k—1. The torsion part of H*(S°, j*H) is mapped
to zero in H*(S*, H). If S is non-singular, then H*(S°, jXH) is torsion-free.
(5) H*(S*, H) ~M/Zu & A\*M/(M A a).

Proof. We have known (2) and (8) by the Koszul complex. The homomorphisms (%.2)
for p = 1, 2 are described as follows:
Case p = 1. We have isomorphisms E' ~ Z & M/Za and
Z, for a; = 0;
Z®Z/a;Z  for a; > 0.

)01
Es ~

by Koszul complexes. In particular, we have (8). If a; > 0, then E' — E;)O’l is given as
the direct sum of the identity Z — Z and M/Za — Z/a;Z induced from v;: M — Z. If
a; = 0, then E* — Eéi)o’l is induced from v;: M/Za — Z.

Case p = 2. For the primitive element u = o 'a, we have isomorphisms E? ~
M/Zu & N M/(M A a) and

2 =~ .
M/Zu @ ((v- N M) ® Z/a;Z)/ZaD, if a; > 0.
In the case a; = 0, i.e., @ € v, E? — Eéi)l’l is given as the direct sum of M/Zu — Z

induced from v;: M — Z and A’M/(M A a) — (v} N'M)/Za induced from A\*M —
v+ N'M. In the case a; > 0, then E? — E;) bis given as the direct sum of the identity
M/Zu — M/Zu and N*M/(M A a) — (v N M) ® Z/a;Z)/Za" induced from A\*M —
(v N M) ® Z/a;Z.

Therefore, E' — EJ' is isomorphic to the direct sum of Z — @Pu.~0Z and M/Za —

@% | 7./a;7. We have a commutative diagram of exact sequences:

0 —— N(a*Nno)t/Za —— M/Za —— N(a*no)’ —— 0

i | 8

0 — @u0Z/aiZ —— O Z/aZ —— BDyoZ — O.
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The right vertical arrow hy is injective and the torsion-part Zu/Za of N(a* N o)t /Za
is mapped injectively into @,,-¢Z/a;Z by the left arrow hi. Hence the kernel of hy is
isomorphic to Ey° ~ H'(S° j*H) and is a torsion-free abelian group of rank I, — 1.
Thus (i) is proved. The cokernel of M/Za — er, Z/a;Z is the direct sum C; @ Co
for C; = Coker hy and C; = Coker hy. The C; is a torsion group and the rank of C,
is (k —ky)— (I —14). If S is non-singular, then C; = 0. If S% is non-singular, then
C, = 0. Thus the cokernel of E* — E5' is isomorphic to Z®*+~1) ¢ C; & C, and is of
rank k —1— (I —14).

The homomorphism E? — Ey" is the direct sum of M/Zu — @,,—¢Z & BM/Zu and
AN M/MAa — @, (vt NM)/Za & B,,-o((v;- "M) ® Z/a,Z)/Za?. Hence the kernel
of the latter homomorphism is the kernel £20 of E?> — Ey'. Thus (4) is reduced to the

following claim. O

Claim 4.3.5. We have an isomorphism
2

E20 ~ (k)(/\(yijHMAa)/MAa.

=1

Moreover, the abelian group is torsion-free of rank (l; ) — I+ — 1).

Proof. We have inclusions a; A>’M C A*(v N M) + M A a. In fact, for w € A*M, we
define 0; € M by the property 0;,(v) = w(v;,v) for any v € N. Then a,w + 6; A a €
/\2(14» N M). Hence we have the equality above. The torsion part of E%" is contained
in that of MAu/M A a. If 0 Au € A* (v N M) for some § € M and for a; > 0, then
O(vi)u(v) = u(v;)0(v) for any v € N. Thus § A u = 0. Therefore, E2° is torsion-free. In
order to calculate the rank, we may replace a by w. If a; > 0, then A*(vz;* "M) +M A a

is a finite index subgroup of A? M. We shall show
2

N (A NM) +MAw) =) /Q\(ijM)JrM/\u:/Q\N(aima)iJrM/\u.

a;=0 a;=0

Suppose that w € A? M is contained in the left hand side. Then w — ; Au € A*(v;- M)
for some 0; € M. Thus w(v;,v) = 0;(v;)u(v). Let € M be determined by w(v, x¢) = 0(v)
for a fixed 79 € M with the property u(z¢) = 1. Then w — 0 Au € A*(v N M) for any
i with a; = 0. Thus we have the equality above. Therefore, the rank of E%° is equal to
(l;) — (I4 — 1), since A’N(a* No)r "M Aw=N(atNo)t Awu. O

Lemma 4.3.6. Suppose that H is of typel, for 0 # a € 0YNM. Let Tpygo := (R'jIH )yor

be the torsion part of Rj*H as sheaf of abelian groups. Then we have the isomorphisms:

HO(SO,‘ZH/SO) >~ @ Z/GZ‘Z, and HI(SO,‘ZH/SO) = ea(l/zl N M) ®Z/GZZ

a; >0 a; >0
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3.3, RI(S°, Thy/se) is quasi-isomorphic to

@ KOS;.lﬂM (Z/GZZ, 0) [

a; >0

Proof. By the proof of 4,

4.4. 0-étale cohomology

Let S = (S, D) be the associated 0-space. We also denote S° := (S°, D*). The related
inclusions are written as follows:
j* 8 — §°, j°: 8% — S, j=7%05": 58— S,
i*:ﬁ*t_)§07 ‘Zo:ﬁo(_)§7 i::iooi*:ﬁ*gﬁ‘

We shall calculate the stalks at 0 of cohomology groups such as Rj H.

Lemma 4.4.1. The stalk at the origin of the RPj H is calculated as follows:

(1) In the case when every monodromy matrices have finite orders:

(j,H)o =~ 7%, and (RPj H)o =~ @@2(;) for p > 1.

(2) In the other cases, i.e., L1y and I(*)

(G.H)o~Z, (R'j H)y~Q%"®Q/Z, and (R*j H)o~Q%G) forp>2.
In particular, forp > 2, RPj _H is a sheaf of Q-vector spaces and there exist isomorphisms:
(RPjH)®@Q~ RPj.(H®Q) ~e.(RFj H).

Proof. A 0-étale neighborhood of 0 in S is essentially given by a finite index subgroup
N; of N. Let S; — S be the finite J-étale Galois covering corresponding to N;. Then
S1 = sp(S;) is isomorphic to Ty, (¢)<' x A", Let S7 be the open part of Sy, ji: SF < S
the open immersion, and let H; be the pullback of H by St — S*. The stalk (RFj H)o is
the inductive limit of (R?j, Hi)o ~ H'(SY, Hy) for finite index subgroups N;. Therefore,
we may assume that H has only unipotent monodromies. Thus we suppose that H is of
type I, for some a € 0VNM. Let A be the algebra Z[e]/(€?) and let us consider 1M = Z%?
as an A-module as follows: If a = 0, then the action of € on 1 is zero. If @ # 0, then M
is the same A-module as in the proof of 4,3.1. Then the Koszul complex Kospoa (MM, ag)

is quasi-isomorphic to RI'(S*, H). Let My be the dual of N;. Then there is a natural

morphism of complexes
Kospea (T, ag) — Kosy o4 (1M, ag),

whose p-th level is simply the inclusion 717 @ A" M — 1M @ AP M. Therefore (Rj H)o is

quasi-isomorphic to the inductive limit of the Koszul complexes. This is written as

0_)m Nag m@MQ /\ae m@/\MQ /\ae e
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where Mg = M® Q. The complex may be expressed by KOSKA@@)A(m, ae). If a =0, then
(Rj H)o is quasi-isomorphic to
p
Z* & @ AM® (Q*)[-pl.
p=1

Suppose that a # 0. Then we have also a triangle
- 5 Kosy, (Z,0) — Kospy .4 (M, ag) — Kospy (Z,0) = Kospy, (Z,0)[1] — ---

Hence (j H)o ~ Z, (R'j H)o ~ Qa®Mg/Za ~ Q¥ ®Q/Z, and (RPj H)o ~ (RFj,H),®
Q for p > 2. O

Leray’s spectral sequence:

*

Eé’vq — Rpl:(qu:H) — Ep+q — Rp'f'ql' H
induces a long exact sequence:
B2 BP0, g gl g0
since R7j*H = 0 for ¢ > 2.

Lemma 4.4.2. If p +q > 2, then E5" = RPj°(RYj*H) is a sheaf of Q-vector spaces
except for (p,q) = (2,0). Moreover, the following properties hold:
(1) Suppose that H has only monodromies of finite orders. Then E5? is a sheaf of
Q-vector spaces for p+ q > 0.
(2) Suppose that H is of type 1, for 0 £ a € oV N M.
(a) (Ey)o is a torsion-free abelian group with infinitely many generators and
(Ey)o ® Q isomorphic to (N(a* N o)t /Za) @ Q.
(b) (E3")o is isomorphic to ®F_, Q ® @, -0 Q/a;Z.
(c) (E3®)g is the sum of a Q-vector space of dimension (l;) +k—1 and a divisible
group. If S* has only quotient singularities, then the divisible group is zero.

Remark. If EYY is a sheaf of Q-vector spaces, then, by 8.1.4, we have isomorphisms:
(RPjLRITH) @ Q ~ RPZ((RY;H) @ Q) = RPjRYjI(H @ Q) ~ e.(RPjIRTjTH).

Proof. We have only to check stalks at the origin 0 € S and thus we replace the EP and
ED? by their stalks at 0. Further, we may assume that H is of type I,. If @ = 0, then
EP and Eé”l are Q-vector spaces by 4.4.1. Thus Eé”o also is a Q-vector space for p > 1.

Hence, we may assume that a # 0. Let N; C N be a subgroup of finite index as in the
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proof of 3..4. Then there is a positive integer ny, (i) such that Rsov; NNy = Zsonn, (i)v;.
Thus we have a commutative diagram
NM —— AP N M)
| [0
APMp —— APy N M),
where the horizontal arrows are induced from v;: M — Z and ny, (i)v;: My — Z. Then
we have also a commutative diagram of complexes:

Kosyga(A,ae) ——  Kosf,.yoa(A/(aie), ale)[~1]

l lan(i)

Kosi,ga(4, ag) —— Kost iy, )0a(A/ (0w, (Daie), ae)[-1]
Let L? denote the inductive limit of

. 7 iy (2) . . i
KOS(yiimM)®A(A/(ai€)> a' )E) — KOS(yilmml)@A(A/(an(2)016)7 a' )E)

for all the finite index subgroups N;. Since the inductive limit lim A/(nn, (¢)a;€) is iso-
morphic to Ag/a;eA, where Ag := A® Q, L? is written as

. 2 .
0 — Ag/aeA 22 Mg ® A/(aie) 225 AMg ® Af(aze) 222 ..
Then we may write
L} = Kosy, 1 gy (Aa/aie A, aVe).
The stalk By = (RPj°(R'j*H))o is isomorphic to the direct sum of p-th cohomology
groups L? for 1 <i < k. We have a triangle

- 5 Kospi o, (Q/aiZ,0) — LY —

/\a(l)

— Kos}1 4, (Q,0) = Kos}1 4y, (Q/aiZ, 0)[1] — - -
If a; > 0, then Kos;;nM@(Q/aiZ, 0) is isomorphic to the single complex Q/a;Z. Thus,
HY(L?) ~Q @ Q/a;,Z and

p -1
p

(L) ~ At M) @ Q ~ Q%)
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for p > 0. If a; = 0, then H°(L?) ~ Q and

" @ P
HP(L?) ~Ker (/\(1/Z M) @Q 22— AnNM)® Q)

p—1

@Coker(/\(wﬂM)@@M p(wﬂM)@@)
p -1
z/\(uﬂ?M)@@:Q@(ﬁ)

for p > 0. In particular, E?"' is a Q-vector space for p > 1. Thus E2° is also a Q-
vector space for p > 3. We also have isomorphisms E!' ~ Qa & Mg/Za and Eg’l ~
Bu—0Q® B,,-0(Q & Q/a;,Z). The composite of E* — EY' and the projection to the

t-the direct summand is isomorphic to written by

for a; = 0;

Qe Q/a;,Z for a; > 0.

Qa@ MQ/ZO, —

If a; = 0, then this homomorphism is induced from the evaluation map v;: Mg/Qa — Q.
If a; > 0, then this is the sum of the map Qa > a — 1 € Q and the map Mg /Za — Q/a;Z

induced from v;: Mg — Q. We have a commutative diagram

0 —— N(a*No)g/Za — Mg/Za —— N(a*No)j —— 0
h/

| | |

0 — @ux0QaZ —— & Qe — G0Q —— 0.
Here b}, is injective and h) restricted to the torsion part Qa/Za is injective. Therefore,
By’ = H! (8% jH) is isomorphic to the kernel of h; and torsion-free. The cokernel of
the middle arrow is isomorphic to C] & C;, where C] = Coker b and C;, = Coker h),. Here
Cl is a Q-vector space of dimension k — ky — (I — I4). C] is a divisible group and is zero

if S% has only quotient singularities. We have an exact sequence
0 — Q®*k+=1) g CidCy— E22’0 — E%0 — 0.

: 1,1 : .
Since E? and E," are Q-vector spaces, E%" is also a Q-vector space and dim F20 =

(l;) — (I — 1) by 4.3.5. Thus E>° is the direct sum of the divisible group Ci and a

Q-vector space of dimension (l; ) + k-1 O

Corollary 4.4.3. Let Ty g0 be the torsion part of R{Z:H as a sheaf of abelian groups.

Then we have the followings:

(1) The image of the composite j°Tp/ge — EY

(2) R?j:%pse =0 for p > 0.

1 EXY s the torsion part of E3°.
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Proof. We may assume the monodromy type is I, with @ # 0. As in the proof of 4.3.3,
4.4.2, (Rj°Tpyg°)o is quasi-isomorphic to

D Ko} o, (Q/aiZ, 0).

a;>0
Hence (j°%n/s0)o =~ @q,50 Q/aiZ. Thus (1) holds since the torsion part of E3° is iso-
morphic to Cj. Further, for p > 0, we have

P
(Rj%nys)o = D A N"M) ® Q® Q/a,Z = 0. 0

a; >0
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5. ELLIPTIC FIBRATION

The notion of basic elliptic fibration plays an important role in the classification of
elliptic fibration. A basic elliptic fibration is an elliptic fibration with a meromorphic
section. This is bimeromorphically equivalent to a Weierstrass model. If we fix a VHS
H on the open part S* for a toroidal embedding S* = S ~ D C S, then there exists
uniquely up to bimeromorphic equivalence over S, a basic elliptic fibration p: B(H) —
S. In Section 5.1, we recall Weierstrass models and properties of B(H). If D is non-
singular, then a non-singular relative minimal model of B(H) uniquely exists and it
contains a so-called Néron model as a Zariski-open subset. As a classification of elliptic
fibrations over S with the same VHS as H on S*, we introduce the set £(S, D, H) of
bimeromorphic equivalence classes of marked elliptic fibrations in Section 5.2 and some
important subsets £(S, D, H), EP)(S, D, H), and &(S, D, H). They are shown to have
abelian group structures and are analogous to Weil-Chatelet groups or Tate—Shafarevich
groups of elliptic curves defined in algebraic situation. The description of these groups
corresponds to the classification. The sheaf &p g of germs of meromorphic sections of
the basic elliptic fibration has an abelian group structure and the cohomology group
H'(S,Spy/s) is considered to be the set of meromorphic torsors of B(H). The subgroup
& (S, D, H) consisting of elliptic fibrations having local meromorphic sections is realized
as a subgroup of H'(S, Sy/s). If D is non-singular, then & (S, D, H) = H'(S, S yys).

5.1. Weierstrass model

Let S be a normal complex analytic space. Let £ be an invertible sheaf of S and let
ac H(S, L8, B € HO(S, £L29)) be sections such that the zero locus of 4a® + 273
is purely of codimension one. Let D(L, a,3) denote the divisor div(4a® + 273%). For
such a triplet (£, o, 3) above, the Weierstrass model W = Wg(L, at, 3) is defined as
follows [N3]: Let p: P — S be the projective bundle associated with the locally free
sheaf Og ® L% & L. Here the tautological invertible sheaf Op(1) is determined by the
isomorphism p,Op(1) ~ Og @ LZ? @ LZ3. According to the natural embeddings from Oy,

L2 L% into Og @ LZ? @ LP3, we have sections
Z e H(P,Op(1)), X H°(P,O0p(1) @ p*L£%%), Ye H'(P,03(1) @ p L),
The Weierstrass model W is a divisor of P defined by the section
Y27 — (X% + aXz® + BZ°) € HO(P, 0p(3) @ p*L279)).

The triplet (£, a, 3) is called minimal if there is no prime divisor I' satisfying both
div(e) > 4I" and div(8) > 6I.
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Lemma 5.1.1. (1) p: W — S is a proper surjective flat Gorenstein morphism.

(2) ww/s ~ prLEY.

(3) p: W — S is smooth outside D(L, a, 3).

(4) A fiber W, = p~i(s) of W — S is isomorphic to an irreducible plane cubic
curve: an elliptic curve, a rational curve with one node, or a rational curve with
one (2, 3)-cusp.

(5) The locus X = Z = 0 defines a holomorphic section of W — S. This is called a
canonical section. In each fiber Wy, the intersection point is a point of inflection.

(6) Let W# C W be the set of all points along which W is smooth over S. Then
W# — S has a structure of relative complex analytic Lie groups over S (i.e., a
group object in the category of complex analytic spaces over S) with the canonical
section being zero.

(7) The (relative) left action of W* on W¥ over S extends to that on W.

(8) The relative tangent bundle of W — S restricted to the canonical section is iso-
morphic to L. Let V(L) — S be the (geometric) line bundle associated with L.
Then the relative exponential mapping V(L) — W?* is a surjective local isomor-

phism.

Proof. Locally W — S is obtained as the pullback of a special Weierstrass model
W(O,z,y) — C% where (z,y) is a coordinate system of C2. Thus (1), (8), (4) hold.
(2) is induced from the adjunction and the canonical bundle formula for a projective

bundle. (b) is directly checked. (§) and (7)) are essentially derived from the group struc-

ture of the non-singular part of a plane cubic curve with a point of inflection being zero.

The first half of (8) is derived from (2). The latter half is also derived from a property

of plane cubics. O
We recall the following:

Theorem 5.1.2 ([N3, 2.1, 2.4]). (1) Let m: X — S be an elliptic fibration between
non-singular varieties. Suppose that 7 is smooth outside an effective divisor D of
S and that w admits a holomorphic section o: S — X. Then there exist a triplet
(L, a0, 3) on S and a bimeromorphic morphism p: X — Wg(L, a, B) over S such
that
(3) £ = m(Ox(0(5)) @ Ous),
(b) w is isomorphic over S\ D,
(¢) poo is the canonical section.
(2) Let (L, a,B) be a minimal triplet defined over a non-singular variety S such that
D(L, e, B) is a normal crossing divisor. Then the Weierstrass model W (L, e, 3)

has only rational Gorenstein singularities.
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Next, we consider generalized Weierstrass models (cf. [N3, 3.1]). Let £ be a reflexive
sheaf of rank one. Suppose that it is Q-invertible, i.e., the double-dual £I™ of some
multiple £&™ is invertible but the index m # 0 exists locally on S. Let o € H°(S, £I=4)
and B € H°(S,L7%) be sections such that 4a® + 273% is not identically zero on S.
We define Wg(L, o, 3) as follows: Suppose that £™ is invertible for a positive integer
m. Then there is a finite Galois morphism 7: S’ — S from a normal variety such
that the double-dual £ of 7L is an invertible sheaf. Then we can define o’ = T«
and B’ = 73 as sections of L’ ) and £/ ®(_6), respectively. The Weierstrass model
W' = W(L',a/,3) admits a natural action of the Galois group of 7 compatible with
that on S’. The quotient space W (L, e, 3) does not depend on the choice of the Galois
covering 7: S — S. In general case, we can patch these local quotient spaces and obtain
a global model W(L, ¢, 3) — S. This is called a generalized Weierstrass model. The
minimality of triplets (£, &, 3) is similarly defined.

Now we restrict ourselves to the case that there is a reduced effective divisor D such
that S* := S~ D C S is a toroidal embedding. Let H be a VHS defined over S™*.
There is a natural injection H <— Lg. As a group object over S*, H corresponds to a
relative subgroup V(H) of the line bundle V(Lg). The relative quotient group object
B(H)* :=V(Ly)/V(H) over S* defines a smooth elliptic fibration p*: B(H)* — S* and

*

its zero section. The sheaf Gy of germs of sections of B(H)* — S* is isomorphic to the

cokernel of H < L. There is an isomorphism R'p*Zpm) ~ H as VHS.

Definition. The p*: B(H)* — S* is called the smooth basic elliptic fibration associated
with H. We sometimes write B* = B(H)* if H is fixed.

By 5.1.2, we have a triplet (L, o*, %) such that B(H)* is isomorphic to W(H)* :=
W (Ly,a*, 3) over S*, where the zero section is sent to the canonical section.
Let Lps be the reflexive sheaf defined in 4.2.1. By [N3, 2.5], there exist sections
a € H(S, E[I;/g) and 3 € H(S, E[I;/ﬁ;) such that
(1) a* = e'als- and B* = €53|s- for a nowhere-vanishing function € on S*,
(2) (Luys, o, B) is minimal.
In fact, [N3, 2.5] treated the case where S is non-singular, and our case is reduced to
the case, since L5 is reflexive. Moreover, Lg/g is Q-invertible, since Lg/g is invertible
for § = (S, D). Therefore, the smooth elliptic fibration p*: B(H)* — S* extends to the
generalized Weierstrass model W(H) := W(Ly/s, o, 8) — S. We call p: W(H) — §

by the generalized Weierstrass model associated with H.

Remark. Suppose that the local monodromies of H around D are all unipotent. Let

7: S — S be a holomorphic mapping such that S’ is normal and that 7718* C S’ is
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a toroidal embedding. Then for the pullback H' = 77!(H) defined on 7715* we have
Lpysr ~ 7 Lpys. Thus W(H) x g 5" is isomorphic to W(H’).

Theorem 5.1.3. For the generalized Weierstrass model p: W(H) = W(Lpy/s, o, B) —
S associated with H, let o¢: S — W(H) be the canonical section and let ¢y be an
isomorphism R'ptZw iy <> H of VHS. Let p: B — S be an elliptic fibration having a
meromorphic section o: S -— B. Suppose that

(1) the restriction p~*(S*) — S* is bimeromorphically equivalent to a smooth elliptic

fibration p'*: B”" — S* over S*,

(2) there is an isomorphism ¢: R'p"Zg+ = H as VHS.

Then, there is a bimeromorphic mapping pu: B -— W (H) over S such that j o o is the

canonical section and ¢g = ¢ o u*|gx.

Proof. Let p: S — S be a resolution of singularities such that D = p~tD is a nor-
mal crossing divisor and that S~ D ~ S* by p. The double-dual of ,u*EH/g is Lpys.
By [N3, 2.5], there are sections & € H°(S, Ei(/;f)) and B € HO(S, Ei(/_s,ﬁ)) correspond-
ing to a and 3, respectively. Then W (L, /50 @ () is bimeromorphically equivalent to
W (Lys, a, B3) over S. Therefore, we may assume that S is non-singular. By 5.1.2, we
may assume that B = W (L', o/, 8) for a minimal triplet (£, &/, 8). Then £’ ~ Lys.
We have an isomorphism W (L', o/, 3") ~ W(Lp/s, o, @) preserving canonical sections
by [N3, 2.5]. For an automorphism ¢: H = H as VHS, we have an automorphism
f: W(Luys, o, 3) = W(Luys, o, 3) over S such that f*|g« = ¢. Hence we have a

required bimeromorphic mapping p: B -— W(H). O

Definition. An elliptic fibration is called a basic elliptic fibration if it admits a mero-
morphic section. We call the elliptic fibration p: B — S satisfying the condition of 5,1.3
by the basic elliptic fibration associated with H. We write B = B(H) with respect to H.

If Lys is invertible, then W = W (Lp/s, o, B) defined above is a usual Weierstrass
model. The image of a holomorphic section S — W is contained in the open subset W¥.
Thus we can define the sheaf 6}7}’/ ¢ of germs of holomorphic sections of W — § from the
group structure of W# — S. By the surjective exponential mapping V(Luss) — WE we

have a short exact sequence
0—juH — Lys — GYJV/S — 0.
We thus define 6}7}’/5 by the exact sequence above also in the case Lp/s is not invertible.

Lemma 5.1.4. 6}7}’/5 1s isomorphic to the sheaf of germs of automorphisms ¢: W = W
over S such that p*|s+ is identical on R'p.Zw|s+. This is also isomorphic to the sheaf

of germs of holomorphic sections of W — S.
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Proof. Let 7: U' — U be a finite Galois covering over an open neighborhood U of s € S
such that it is étale outside D and that the pullback H' = 7' H defined on &'~ 77D has
only unipotent monodromies. Then L is invertible and Lp/gy is the G-invariant part
of 7.Lp+ s for the Galois group G. Thus the G-invariant part of 7.6 w18 isomorphic
to 6}7}’/5|u. Let W' := Wy (Ly i, @, 8') be the minimal Weierstrass model.

Let 7 be a section of 6}7}’/5 defined over U. As a section of 7*6}7}5/“/, it defines a G-
equivariant section o’: U" — W' of W/ — U’. Thus we have a holomorphic section of
W — S over U. Further, n acts on W' as the translation mapping over U’ by o’. This
induces an automorphism of W over U that preserves the VHS H.

Let ¢ be an automorphism W — W over U preserving H. Then, for the Galois
covering U' — U, it defines an automorphism ¢': W’ = W' since W/ — W is finite
over Y. For the canonical section o: U’ — W', let o' := ¢' o o(. If ' = o, then ¢’
is the identity of W, since it preserves H'(W/,,Z) for any smooth fibers W/,. Thus ¢’
is the translation mapping by the section o’. By the construction, ¢’ is a G-equivariant
section of W' — ",

If o is a holomorphic section of W — S over U, then it induces a holomorphic mapping
o' U — W/ since U’ is normal and W’ — W is finite over Y. Since o’ is G-equivariant,

it is considered to be a section of 6}7}’/5. O

Let 7 be an element of H'(S, &}s). Then 7 is represented by a cocycle {nx . }auea
with respect to an open covering {Sy}xea of S, where 7, , is a holomorphic section of
W — S over SyN S, satisfying ny , = —nux and 0, + Mpp + mox =0 0n Sy NS, N S,.
By 5.1.4, we can glue p~!(S)) = W xg Sy by the cocycle. Then we have an elliptic
fibration p7: W — § that is smooth over S* with H(p"”) ~ H. This depends only on

the cohomology class 1. There is a section of p” if and only if n = 0.

Remark. The statement of [N3, 2.11] is not true. We must replace meromorphic sections

by holomorphic sections.

5.2. Classification problem

Let S be a normal complex analytic variety and let D be a reduced effective divisor
such that S* := S~ D C S is a toroidal embedding. We denote the 0-space (S, D) by S
as before. We want to classify elliptic fibrations f: X — S satisfying:

Condition 5.2.1. The restriction f~!(S*) — S* is bimeromorphically equivalent to a

smooth elliptic fibration over S*.

For the elliptic fibration f: X — S satisfying the condition 5.2.1, the smooth ellip-

tic fibration f*: X’* — S* bimeromorphically equivalent to f~1(S*) — S* over S* is



93

uniquely determined up to isomorphisms over S*. In particular, we can define a VHS
H(f):=R'fZxr.

Note that if X is non-singular, then H(f) ~ (R'f.Zx)|s+ as local constant systems.

A VHS H over S* is determined by a period mapping and a monodromy represen-
tation. By a property of Weierstrass model, H is also determined by a minimal triplet
(L, o, B) consisting of a Q-invertible reflexive sheaf £ and sections a € H(S, £I74),
B € HO(S, £79) such that div(4a® + 2768%) C D. Thus the classification of such VHS
is related to a kind of moduli problem. Hence, we fix such a VHS H and consider the
classification of marked elliptic fibrations (with respect to (S, D, H)) defined as follows:
A marked elliptic fibration is a pair (f: X — S,¢) consisting of an elliptic fibration
f: X — S from a normal variety satisfying the condition 5.2.1 and of an isomorphism
¢: H(f) = H as VHS. The ¢ is called a marking of f. Two marked elliptic fibrations
(fi: X1 — S,¢1) and (f2: Xo — S, ¢2) are called bimeromorphically equivalent over .S,
if there is a bimeromorphic mapping p: X; -+— Xy over S such that ¢ = ¢1 o u*. The
marked elliptic fibration (p: B(H) — S, ¢) for a basic elliptic fibration p associated with
H is unique up to the bimeromorphic equivalence relation by 5.1.3.

Let £ (S, D, H) denote the set of bimeromorphic equivalence classes of all the marked
elliptic fibrations with respect to (S, D, H).

The set £(S*, (), H) is identical to the set of torsors of the smooth basic elliptic fibration

p*: B(H)* — S*. Therefore, we have a one to one correspondence:

5(5*,(2),H) — H'(S*,&y).

Remark 5.2.2. In purely algebraic context, Tate—Shafarevich group is similarly defined
to € (S,D, H). Let S be an irreducible normal separated algebraic scheme over Spec C
and let D be a divisor such that S* := S~ D — S is a toroidal embedding. Assume that
S =S¥ S§* = (5%)*, and D = D*. There is a basic elliptic fibration p: B — S smooth
over S* such that p = p*": B(H) = B* — S is a basic elliptic fibration associated
with H. Let n denote the generic point of S and let B,, denote the generic fiber of p.
The curve B, is a smooth curve of genus one defined over the field C(n) = C(S) that
admits a rational point. Thus B, is a group scheme over C(n). The Weil-Chatelet group
WC(B,) is the group H'(Spec C(n)et, B,y) of isomorphism classes of torsors. The torsor
is a pair (C,®) consisting of a smooth projective curve C' of genus one over C(n) and
an isomorphism @: C' X¢q) C = B, X¢(;) C over C via second projection that sends
the diagonal to the zero section. Two pairs (C1,®;1) and (Cy, @3) are called isomorphic
if there is an isomorphism u: C; = Cy such that (id X p) o @1 = @90 (u x p). The
Tate-Shafarevich group lls(B,) is the subgroup of WC(B,)) consisting of étale locally
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trivial torsors. This is expressed as H'(Sg, t+B,) for the morphism ¢: SpecC(n) — S
(cf. [DA]). In particular, IlIs«(B,) is similar to £(S, D, H) or £(S*,0, H) (cf. 7:3).

Remark. In the complex analytic situation, the restriction map £(S, D, H) — £(S*,0, H)
is not necessarily injective. For example, an elliptic surface with multiple fibers is con-
structed from an elliptic surface without multiple fibers by means of logarithmic trans-
formations. Two surfaces are isomorphic outside the related fibers, but these are not

bimeromorphically equivalent to each other.

Definition 5.2.3. Let f: X — S be a proper surjective morphism of normal complex

analytic varieties.

n invertible shea 0 is called f-ample, i ~1(5) 18 ample for any fiber

1) An invertible sheaf A of X is called f-ample, if Al;-1(s is ample f fib
1)

(2) f is called a projective morphism, if there is an f-ample invertible sheaf on X.

(3) f is called a locally projective morphism, if there is an open covering {S\} of S
such that f=1(S)) — S, is projective for any .

(4) fis called BP, if f is bimeromorphically equivalent to a projective morphism over
S.

(5) f is called LBP, if there is an open covering {S\} of S such that f=(S)) — Sy
is BP for any .

Remark (N2, 1.6]). If A is f-ample, then there exist an open covering S = |J Sy, positive
integers my, ny, and closed embeddings f~1S) < P™ x Sy over S\ such that the pullback
of the tautological invertible sheaf O(1) of P™ to f~'S) is isomorphic to the restriction
of A*™ to f~15,.

We introduce some important subsets of £(S, D, H).

Definition 5.2.4.

E(S,D,H) :={(f: X — S,¢) € £(S, D, H) | f is LBP};
EPNS,D H) :={(f: X — S,¢) € £(S,D, H) | f is BP};
E(S,D,H;S”) :={(f: X — S,¢) € £(S,D,H) | f admits local

meromorphic sections over any points of SV };
&(S,D,H;S") :=E&(S,D,H) N&(S, D, H; S7);
EPONS, D, H; SY) := EP)(S, D, H) N &y(S, D, H; S7),

for a Zariski-open subset S* C SV C S. We write &(S,D, H) = EO(S,D,H; S) =
&(S, D, H;S), E(S,D, H) := EY(S, D, H; S), for the sake of simplicity. Here, we
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denote by (f: X — S, ¢) the bimeromorphic equivalence class of (f: X — S, ¢) by abuse

of notation.

Proposition 5.2.5. £(S, D, H) has an abelian group structure with the class of basic el-
liptic fibration being zero. The restriction map E(S, D, H) — E(S*,0, H) = H'(S*,&y)

18 a group homomorphism.

Proof. We shall define the addition + and the inverse n — —non £(S, D, H) in a natural
way. Let n = (f: X — S, ¢) be a marked elliptic fibration. We set —n := (f: X — S, —¢)
for the marking

x(—1)
—_—

—¢  H(f) S H H.
If n is a basic elliptic fibration, then n = —n. Let m1 = (fi: X1 — S,¢1) and ny =

(f2: Xo — S, ¢2) be two marked elliptic fibrations belonging to £(S, D, H). Let
n=(ff X7 =[50 — 5%, )

7

be the restriction of 7; to £(S*,0, H) for i = 1, 2. Assume that f* are smooth. Then
n% = ny + n} defines a marked smooth elliptic fibration 7§ = (fi: X§ — S*, ¢3) and a
morphism
a*: X7 Xge X5 — X3

over S* as a gluing of the addition map B(H)* xg« B(H)* — B(H)*. Let Y denote
the fiber product X; xg Xp, Y* := X} Xg« XJ and let I' denote Y* Xxx Y*. Then
[ C Y*x g Y™ is proper and smooth over Y* by the second projection and the fiber of the
projection I'* — Y* over y € Y* is isomorphic to the elliptic curve E, := (a*)~!(a*(y)).
Therefore, it defines a morphism h: Y* — Dy into the relative Douady space Y over S.
Let 7: Y — S be the structure morphism and let Y, denote the fiber 7=*(7(y)). Then
the relative Zariski-tangent space of Dy,g at h(y) is isomorphic to HO(Ey,NEy/yy) ~
H°(E,,OF,) ~ C. Thus h is smooth and h(Y*) is a connected component of Dy,g near
h(Y*). By the construction, h(Y*) ~ Xj3. By [F2], there is a subvariety X3 C Dyyg
proper over S containing h(Y™*) as a Zariski-open subset. Let I' C Y Xxg X3 be the
induced family of subspaces of Y. Then I'|s« is isomorphic to the graph of a*: Y* — X7.
In particular, the first projection I' — Y is bimeromorphic. Therefore, I' defines a
meromorphic mapping a: Y --— X3 that is an extension of a*. We can define 13 =
m + 1n2 by the induced elliptic fibration X3 — S. If f* are not smooth over S*, then we
replace S* by an open dense subset over which f7 are both smooth and apply the same

argument above. Then 77 + 1y is similarly defined and is compatible with the addition of
H'(S*,&pg). O



96

Corollary 5.2.6. 5(5, D, H) has a structure of an abelian group. The subsets E(S, D, H)
and 5(5, D, H;SY) are subgroups.

Proof. Tt is enough to show the addition + is naturally defined on & (S,D,H). Let
(f: X — S,¢) be a marked elliptic fibration associated with (S, D, H). By Hironaka’s
flattening [':H:3-], there is a bimeromorphic morphism pu: S — S such that the main com-
ponent X of X x5S induces a flat morphism f X — 5. We may assume that S is
non-singular and that D = p~ 1D is a normal crossing divisor. We infer that f is a
locally projective morphism, since R f*O} — R? f*ZX is surjective. Thus (X — S L D)
defines an element of £(S, D, H) for the induced VHS H on p'S* = S~ D and for
the pullback p*¢ of the marking. The map £(S,D, H) — 5(5’, D, H) is a group homo-
morphism. Thus the addition + of £(S, D, H) is induced from + of all £(S, D, H). The
subset £(S, D, H; SV) is then the kernel of £(S, D, H) — £(SY,D N SY, H). O
Theorem 5.2.7 (cf. [K9]). Let f: X — S be an elliptic fibration satisfying 5.2.1. Sup-

pose that X is non-singular. Then RPf.Ox =0 for p > 2 and R'f.Ox ~ Lys.

Proof. There exist an elliptic fibration f : X — S between non-singular varieties smooth
outside a normal crossing divisor D of S, a bimeromorphic morphism e S — S, and a
bimeromorphic morphism v: X — X such that utD C f), 1 is an isomorphism over S*,
and that fov = po f. Then we have RPf.O¢ = 0 for p > 2 and R'f,0; =~ Ly g by
(N4, 3.2.3] (cf. [K9], [MJ]). By the spectral sequence

R, R1f, O = RPYIf,Ox,

it suffices to show RFPu. Ly s = 0 for p > 0 and p.Ly,5 ~ Lyys. These are done in

497 O

[Eat iR

Corollary 5.2.8. Let f: X — S be an elliptic fibration satisfying 5.2.1. Suppose that

X is non-singular and that there is a subvariety T C X generically finite over S. Then
Rf.Ox ~qis Os ﬁH/S[—l] for H = H(f)

Proof. Suppose that S is non-singular. Let Y — T be a desingularization and let h: Y —
S be the composite. Let R be the ramification divisor of h: Ky ~ h*Kx 4+ R. Then we
have an injection Oy — Oy (R) and a trace map Rh,Oy(R) — Og. The composite

OS — Rf*OX — Rh*Oy — Rh*Oy(R) — OS

is the multiplication map by degh > 0. Thus gives the splitting of Os — Rf.Ogs. Next,
we consider general case. Let u: S — S bea bimeromorphic morphism from a non-

singular variety such that g='D is a normal crossing divisor and let f : X — S be an
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elliptic fibration from a non-singular variety bimeromorphically equivalent to the pullback
of f to S. Then by 5.2.7,

Rf.Ox ~qis R Rf.Ox ~qis RptnOg & Rpu L 5[—1] ~qis Os @ Liys[—1]. O

Remark 5.2.9. Let f: X — S be an elliptic fibration satisfying 5.2.1. Then the expo-
nential sequence of X induces a surjective homomorphism R!f,0% — R%f.Zx. Hence,
we infer that if X is a Kahler manifold, then f is a locally projective morphism, by the

argument of [N4, 3.3].

Notation 5.2.10. (1) In what follows, we fix a normal complex analytic variety S

and a toroidal embedding S* C S. D denotes the complement S ~ S*. We set
S° = S~ Sing D. The related open immersions are denoted by j: S* — S,
7% 8% — §° and j°: §5° — S.

(2) For an open subset U C S, we denote by U the 0-space (U, D N U). For an open
immersion \: U; <— U,, the associated 0-open immersion is denoted by \.

(3) We fix a Z-polarized variation of Hodge structure H of weight one and of rank
two, defined on S*.

Note that if S is non-singular, then D is a normal crossing divisor. S° is always

non-singular.

5.3. Minimal basic elliptic fibration over S5°

Before studying elliptic fibrations over S, we discuss basic elliptic fibrations defined
over S°. This corresponds to the case D is non-singular. The structure of these fibrations
are well-known, but we present a brief explanation. The basic fibration p: B(H) — S
is not uniquely determined up to biholomorphic equivalence relation over S, but the
following 5.3.1 asserts that we can select its unique minimal model over S°. A minimal
model of an elliptic fibration f: X — S is defined to be an elliptic fibration ¢g: ¥ — S
satisfying the following conditions (cf. [K4], [N2]):

e f and g are bimeromorphically equivalent to each other over S;

e Y has only terminal singularities and Ky is g-nef.

An elliptic fibration g: Y — S satisfying the latter condition above is called a minimal

elliptic fibration.

Lemma 5.3.1. There exists a minimal basic elliptic fibration p°: B(H)° — S° of p|se.
This is a flat morphism and is determined uniquely up to isomorphisms over S°. Further

B(H)° is non-singular.
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Proof. Let W = W(H) be the generalized Weierstrass model associated with H. By
5.1.1, 5.1.2, W° := p~15° = W x5 S° has only rational Gorenstein singularities and
the dualizing sheaf wwo is relatively trivial over S°. Since D* is a smooth divisor, a
singularity of W° is isomorphic to the singularity F' x C%~! for a rational double point
singularity F' and d = dim S. Thus we can resolve singularities of W* over S° in a natural
way to obtain the minimal model B(H)° flat over S°. The canonical bundle of B(H)° is
also relatively trivial over S°. An irreducible curve in a singular fiber of p°: B(H)° — S°

is a fiber of the restriction of p° to a prime divisor that does not dominate S°. Thus

there is no small contraction and hence B(H)® is the unique minimal model. O
Remartk. (1) There is an isomorphism
0\ * (-1
WB(H)> = (p ) (wso & ‘CH(/SO))'

(2) The canonical section of the Weierstrass model W* lifts to a section of B(H)°
since W? is non-singular along the section.

(3) A singular fiber of p°: B(H)° — S° is isomorphic to one of the non-multiple
fibers of minimal elliptic surfaces (cf. [K7]).

(4) p°~'D* is not necessarily a normal crossing divisor.
We denote by (B°)* the set of all the points of B® := B(H)® at which p° is smooth.

Lemma 5.3.2. Let I' C B° be a meromorphic section of p°: B° — S°. Then I' is a

holomorphic section, i.e., I' — S° is an isomorphism. In particular, I C (B°)*.

Proof. Assume the contrary. Then the canonical divisor Kr is not relatively nef over
S°, thus there is a curve v contained in a fiber of p° with the intersection number
Kr-y=T"-4 < 0. Over an open neighborhood of the point p°(7y), there is a prime divisor
F of B° such that v is a fiber of I — p°(F). Hence F' C I'. This is a contradiction. [

Lemma 5.3.3. A bimeromorphic mapping B° -— B° over S° is holomorphic.

Proof. Let f be the bimeromorphic mapping. Then f is an isomorphism in codimension
one, since B° is a relative minimal model. We may replace S° by an open subset and
thus assume that p°: B° — S° is the composite of a closed embedding B° — P" x S°
for a projective space P" and the second projection. If f is not holomorphic, then the
proper transform A’ of a relatively ample divisor A of B° is not p°®-nef. Thus A’ contains
a divisor F' with p°(F') # S° by the same argument as in 5.3.2. For a general relatively

ample divisor A, A’ is irreducible. This is a contradiction. 0
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Proposition 5.3.4. The S*-group structure of B(H)* extends to an S°-group structure of
(B°)*. Moreover (B°)* acts on B° over S° compatibly with the open immersion (B°)* —
B-.

Proof. Let m: T — S° be a morphism from a non-singular variety and let T* := 7=1(S*).
We denote by B7 the normalization of the fiber product B° xgo T. The canonical
section (zero section) ¥ C B° of p°: B° — S° induces a meromorphic section 3p of
p5: B} — T. For a meromorphic section o: T --— B7, we denote by I', the prime
divisor of B7. defined as the image of o. For two meromorphic sections o7 and o, let
N be the reflexive sheaf

N = Ops(l'y, + g, — X1).
Since the restriction of N to a smooth fiber of p3. is an invertible sheaf of degree one, its
the direct image (p5).N is a torsion-free sheaf of rank one. This is an invertible sheaf,
since p% is an equi-dimensional morphism. There is an effective divisor [ of B7. such
that

N = (p7)" (Pr) N ® Opg (I').
The horizontal part of I is a prime divisor dominating 7' bimeromorphically. This
is the meromorphic section corresponding to o; + o2 under the the group structure
B* xg« T* — T*, where we write B* = B(H)*. Thus we can define the sum o + o3 as

a meromorphic section. For a meromorphic section o of p7., let M be the reflexive sheaf
M = OB%(QET — Fg-).

Then its direct image (p5).M is an invertible sheaf. There is an effective divisor I of
By such that
M =~ (p7)"(p7)«M & Opg (I').

The horizontal part of I is a prime divisor dominating 7" bimeromorphically. This is the
meromorphic section corresponding to —o under the the group structure B* x ¢« T* — T™.
Thus we can define —o as a meromorphic section. If 7: T" — S° is a smooth morphism,
then B} ~ B° Xgo T and T ~. T* is a non-singular divisor. Hence the meromorphic
sections o1, @9, 01 4+ 09, o, and —o are all holomorphic by 5.3.2.

Let us consider the case T' = (B°)* xg» B°. The projections p;: T' — (B°)* — B°
and po: T' — B° induce meromorphic sections o, and o2 of p5., respectively. The

meromorphic section o1 + o5 induces a meromorphic mapping

p: (B°)* xgo B® -~ B°
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over S°. This is an extension of the addition morphism B* x g« B* — B* of the group

structure B* — S*. The first projection p; and p induce a meromorphic mapping
(p1,p): (B°)f xgo B® - (B°)* x g0 B°

over (B°)* which corresponds to the translation by o + a5. This is holomorphic by
5.3.3. Thus p is also holomorphic. Next, we consider the case T’ = B° and a meromorphic
section id of p% corresponding to the identity mapping 7' = B° — B° (or the diagonal
locus of B° X go B°). Then the “inverse” —id defines a meromorphic mapping B° --— B°
over S°. This is holomorphic also by 5.3.3 and is an extension of the inverse morphism
B* — B* of the group structure p*: B* — S*. In particular, (B°)* — S° has the

required group structure and (B°)* acts on B°. O

Remark. Let S be a normal integral scheme of finite type over C of dimension one and
let S* C S be a Zariski-open dense subset. Let p*: B* — S* be an algebraic smooth
basic elliptic fibration over C, S = S**, S* = (5%)*", and let H be the VHS defined by
p* = (p*)*. Then B(H)* ~ (B*)® and (B°)* corresponds to the Néron model of the

generic fiber of p*.

Corollary 5.3.5. Let p: B(H) — S be a basic elliptic fibration associated with H and
let o: S — B(H) be a meromorphic section. Then there exist meromorphic mappings
B(H) xs B(H) +— B(H) and B(H) -— B(H) such that their restrictions to S* are
bimeromorphically equivalent to the multiplication mapping and the inverse mapping of
the group structure of B(H)* — S* with o|g« being zero, respectively. In other words,

p: B(H) — S has a meromorphic S-group structure.

Proof. B(H) is bimeromorphically equivalent to a generalized Weierstrass model W
over S and W° = W xg S° is bimeromorphically equivalent to B(H)° over S°. Since
codim(W ~ W?) > 2/ the multiplication mapping and the inverse mapping extend to W

as meromorphic mappings. 0

Definition 5.3.6. (1) Let p°: B(H)* — S° be the minimal basic elliptic fibration
associated with H. For a holomorphic section of o° of p°, the sheaf of germs of
holomorphic sections of p° has an abelian group structure with ° being zero. We
denote the sheaf by Gpge.

(2) Let p: B(H) — S be a basic elliptic fibration associated with H. For a mero-
morphic section o: S -+— B(H) of p, the sheaf of germs of meromorphic sections
of p has an abelian group structure with o being zero. We denote the sheaf by

Su/s.
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There are natural isomorphisms:

Guyslse ~ Gnyse,  JiGms0 =~ Gpys.
The second one follows the property codim(S ~\ S°) > 2.

Notation 5.3.7. In what follows, we fix a basic elliptic fibration p: B = B(H) — S
associated with H and a meromorphic section o: S — B. The image of o is denoted
by ¥. o and ¥ are called the zero sections. We assume that B is non-singular and that
p is smooth over S*. The minimal basic elliptic fibration over S° is always denoted by

p°: B° — 5°. Note that p~1S° is not necessarily isomorphic to B°.

5.4. Fundamental diagram

Let f: X — S be an LBP surjective morphism from a non-singular variety such that
f~18* — S* is bimeromorphically equivalent to a smooth morphism. Then H(f) :=
R'f.Zx|s~ is a locally constant system. Let i: X* := f~!(5*) — X denote the open

immersion. The quasi-isomorphism
Rf.RL -1 p(Zx) ~qis RLp(RfZx)
induces two spectral sequences
1EYT = Rpf*H‘]’c_lD(ZX) = EP™. and pEY?="HL(Rf.Zx) = EP*7.
Here, ' = 0 and E? ~ Ey® = f,H3_, ,(Zx) hold.
Lemma 5.4.1. 1 E?° — EP is injective for any p. In particular, HY(R' f.Zx) = 0.

Proof. We can localize S and may assume that there exist a generically finite surjective
morphism p: Y — S and a morphism ¢: Y — X from a non-singular variety Y with

= foo. We have a trace map R,u*wgfp

— w{P for the topological dualizing complexes
by Verdier duality (cf. [V2]). Here wy® ~gs Zy[2d] and there are natural morphisms

Zs[2d] — w$® and w§P — Rj°Zso[2d]. The composite
Zs — Rf.Zx — Ru.Zy — ws®[—2d] — RjSZso

factors through the multiplication mapping Zg — Zs by the degree of u and the natural
morphism Zgs — Rj°Zs.. We know that ;1 EY 0 = HY,(Zs) are sheaves of torsion-free

abelian groups and HY,(Zs) — HY,(RjZso) are injective by 8.3. 1. Thus we are done. [

Remark 5.4.2. There is a trace map Rf,w'® — w4, The homomorphism RI™f £, 7y —
Zs obtained as H~2¢ is also called the trace map of f. If f admits a meromorphic section

> C X and if S is non-singular, then Zs — Rf.Zx has a splitting by the composite

Rf.Zs — Rf.wyP[—2d] — w§P[—2d] s Zs.
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Lemma 5.4.3 (cf. [F5, (1.5)]). Let h: Y — V be a projective surjective morphism with
connected fibers between normal varieties and let D be a Cartier divisor of Y. Assume
that

(1) V has only 1-rational singularities (cf. 3.2.1),
(2) h(Supp D) #V,
(3) D -~ =0 for any irreducible curves y contained in fibers of h.
Then, locally on V', there exists a positive integer m such that mD is the pullback of a

Cartier divisor of V.

Proof. Let pu: V — V be a bimeromorphic morphism from a non-singular variety and let
v:Y Y bea bimeromorphic morphism such that there is a morphism h: Y — V with
,uOfL = howv. Then the pullback v*D is a Cartier divisor not dominating V and v'D-4 =0
for any curves 4 contained fibers of h. For a prime divisor E contained in fL(Supp v*D),
let ap be the maximum of such rational numbers r that v*D — rh*E is effective. Then we
have v*D = h*(> apE) as Q-divisors. In particular, there is a positive integer m (locally
on S) such that mv*D is the pullback of a Cartier divisor of V. Thus we are reduced to
the case Y is non-singular and A is bimeromorphic. Then the connecting homomorphism
R0, 0% — R%h,Zy of the exponential sequence is injective by the assumption (ﬂl) Since
D is h-numerically trivial, D = 0 in any stalks (R?h,Qy ), for v € V. Hence, locally on

V', mD is the pullback of a Cartier divisor for some m. O

Lemma 5.4.4. [ Fy' = HL(R' f.Zx) is a sheaf of torsion abelian groups.

Proof. Let 1F'(E?) be the kernel of E? — nES?. Then, by 5.4.1, we have an exact

sequence

0— HE22’0 — HFI(E2) — Hf?Q171 — 0.
Since E* ~ f.H31p(Zx) = f.H} p(Div), by 5:4.3, the kernel pF'(E?) is considered

to be the sheaf of germs of Q-Cartier divisors supported in D whose pullback to X are

Cartier. Therefore, any stalk of Ey" is a torsion group. OJ

Corollary 5.4.5. If one of the following conditions is satisfied, then HL(R'f.Zx) = 0
and the sequence
0— uby’ — E? = nEy? — nby!
15 exact:
(1) S is non-singular and f admits local meromorphic sections over the complement
of an analytic subset of S of codimension > 2;

(2) f admits local meromorphic sections over S.
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Proof. In the case (ﬂ}), the assertion follows the argument of 5.4.4. For the case (-Z), we
may localize S and may assume that f admits a meromorphic section. Let Y — X be a
bimeromorphic morphism onto the meromorphic section from a non-singular variety and
let u: Y — S be the composite. We may assume also that p~!'D is a normal crossing
divisor. There is a commutative diagram

f*H?c—1D(ZX) _ HOD(RQf*Zx)

l |

M p(Zy) —— Hp(RPuZy).

Here, the 1 F*(E?) is the kernel of the top arrow. The kernel of the bottom arrow is
HE(Zs) = nFEy? since R'yu.Zy = 0. By the argument of 5.4.4, we infer that EL! = 0
and hence HE21’1 =0 by 5.4.1. O

Let f: X — S be an LBP elliptic fibration satisfying 5.2.1 from a non-singular variety.
Suppose that f is smooth over S ~\ D’ for a divisor D C D' € X. We set Vx =
HY (R f.O%).

Lemma 5.4.6. (1) Let M be an invertible sheaf of X . Its image under H*(X, O%) —
HO(S, R'p,O%) is contained in H°(S, Vx) if and only if, for any point s € S, there
exist an open neighborhood U and a Cartier divisor E defined on p~'U such that
Supp E C p~'D’" and that M|y ~ O—1y(E).

(2) Vx does not depend on the choice of D'.
(3) Let f': X' — S be another elliptic fibration from a non-singular variety that is
bimeromorphically equivalent to f over S. Then R'f,O%/Vx ~ R f.O% /Vx'.

Proof. (1) It is enough to show the ‘only if” part. Let A be the double-dual of f,M. By
8.3.6, locally on S, N~ Og(A) for a Weil divisor A supported in D. Thus we may assume
that N' =~ Og. Locally over S, there is an effective divisor E’ satisfying codim f(E') > 2,
f(E") C D, and N ~ f,(M ® Ox(FE")). Since f*f.M — M is an isomorphism over
S\ D', we have a local isomorphism M ~ Ox(FE) for a divisor E supported in f~'D'.

(¥) If f is a smooth morphism, then the trace map R?f.Zxy — Zg is an isomorphism.
In particular, H%(R'p,O%) = 0 for any proper subset 7. Therefore, for D' C D",
HY (R f.0%)|s<pr = 0. Thus Vx ~ HY, (R f.0%).

(8) We may assume that there is a bimeromorphic morphism v: X’ — X over S. By
(1), we may assume that X’ is also smooth outside D’. Then v-exceptional divisors define

elements of V.. Thus we have the isomorphism. O
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We apply the argument above to the basic elliptic fibration p: B — S, where B is

non-singular and p is smooth over S*. Then we have the spectral sequences
(B = Rpp*HZ_lD(ZB) = EP*. and 1EY?=HY(Rip,Zp) = EPY
from the quasi-isomorphism
Rp.RL,-1p(Zp) ~qs RL p(Rp,Zp).
The exponential sequence of B induces a long exact sequence

0— R'p,Zp — R'p,Op — R'p,Of — R*p,Zp — 0,

HY(R'p,0%). Then, by 5.4.6, the quotient sheaf R'p, 0% /Vp is uniquely determined by
H. We have

by 5.2.%. The image of R'p,Op — R'p,O% is isomorphic to &Y))s by 5.4.5. We set Vg :=

VB N6&}))s = Hp(6}))s) ~ Hp(R'p.Zp) =0,
by 5.4.5. In particular, the composite Vg — R'p,0% — R*p,Zp is injective and there
is an exact sequence
(5.1) 0— &),s — R'p,03/Vs — R’p.Zp/VE — 0.
The quotient sheaf R%*p,Zg/Vp also does not depend on the choice of B.

Lemma 5.4.7. (1) HLH(O%) — HP(Rp,RL,-1p(OF)) is injective for any p. In par-
ticular, the sequence
0 — Hp(O%) — H(Rp,RLp-1p(OF)) — Vg — 0
15 ezact.
(2) For the spectral sequence nESY? = H,(Rip,Zg) = EPT above, we have nEy° =
nE20, E? /nE%Y ~ yE%? ~ Vp.
Suppose that [S, D] satisfies the condition 8.2.6. Then the following properties also
hold:
(3) Hp(S,Z) — H) 1 (B,Z) and H?(S,Z) — H?(B,Z) are injective for p < 3.
(4) HH(S,0%) — H) ., (B, O0p) and HP(S, O%) — HP(B,O%) are injective for p <

2. In particular, the sequence

0 — Hp(S,0%) — H;,_ID(B, Op) — H°(S,Vg) — 0

15 exact.
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Proof. (3) and the injectiveness of (), (4) follow from the existence of meromorphic

section of p and 8.3.1. In particular, for the spectral sequences
Hp(R'p,Op) = H'*(Rp.RL,-1p(0F)), Hp(S, R'p,0p) = H, {1 (B, Op),
we have exact sequences
0 — Hp(O5) — H'(Rp,RL,1p(Op)) — Hp(R'p.Op) =V — 0,
0 — HLH(S,0%) — H;_lD(B, O%) — HY(S,R'p,O%) = H°(S, V) — 0.

Thus (1)) and (4) hold. The equality nE° = E20 of (2) follows from 8.3.1 or 5,

=1

d. We
have a quasi-isomorphism

by 8.2.4. The second projection induces a commutative diagram of exact sequences
0 — Hp(0§) —— Hp(Rp.Op) —— Vg —— 0

l | l l

0 — k3 — E? —— nEy? —— nE3,
by 5.4.5. Here the first vertical arrow is isomorphic and the second vertical arrow is

surjective. Thus Vg ~ 1 E%2 O

The trace map R?p,Zp — Zgs derived from Verdier duality is an isomorphism over S*.
The composite R'p,O% — R?p,Zp — Zgs is the homomorphism measuring the degree of
invertible sheaves restricted to smooth fibers. The trace map and the composite are sur-
jective, since there is a meromorphic section of p. In particular, 11E21’2 =HhLH(R*p,Zp) =0
and HES’2 = H%(R*p,Zp) is the kernel of the trace map.

Lemma 5.4.8. The kernel of R'p,O%/Vp — ZLg is isomorphic to Syys.

Proof. Let V: &5 — R'p,O%/Vp be a homomorphism defined as follows: Let I' C B
be a meromorphic section of p. Then we attach an invertible sheaf Op(I' — X)), where X
is the zero section. We define W(I") to be the invertible sheaf modulo Vg. By localizing
S, we have the sheaf homomorphism W that is injective. We shall show W (&y/s) is
the kernel. Let M be an invertible sheaf such that M - p~!(s) = 0 for s € S*. Then
p, (M ® Op(X)) is a torsion-free sheaf of rank one. Hence there is a meromorphic section
I' C B and a divisor A supported in p~*D such that M ® Op(X) ~ Op(T' + A). Hence
U(I') = M modulo Vg. O
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Let /s be the cokernel of E? — HEg’Q. Then we have two exact sequences

(5.2) 0 — Tuys — R°p.Zp/VB — ZLs — 0;
(5.3) 0— &))s — Spuys — Tuys — 0.

The first sequence is split by a meromorphic section of p. Tp/g also does not depend on

the choice of B. There is an injection
Ths — uky' = Hh(R'p,Zp) ~ R'j. H
whose cokernel is 1 E%!. As a result, we have:

Theorem 5.4.9. Let p: B = B(H) — S be a basic elliptic fibration associated with H
such that B is non-singular and that p is smooth over S*. Then we have a commutative

diagram FIGURE 1 of ezact sequences.

0 —— R'p,Zp —— R'p,Op —— R'p,0%/Ve —— R’p.Zp/Vp —— 0

0 — J4H —— Lys —— Suys — /s — 0

FIGURE 1.

Lemma 5.4.10. Ty g0 = Tyy/s|se is isomorphic to the torsion part (R'j*H)tor-

Proof. We may assume S = S° and p: B — S is the minimal basic elliptic fibration.
Thus 11E§’0 ~7Zp. Let p7'D = Z?:l C; be the irreducible decomposition over a suitable
open neighborhood of a point s € D. Then p~'(s) N C; are all irreducible curves. The
stalk (E?), is a free abelian group of rank h generated by C;. The stalk (11E8’2)S is the
kernel of the trace map H?(p~'(s),Z) — Z. Thus (11Ey?%)s is also a free abelian group
of rank h — 1. By 5.4.5, the cokernel (Tp/s)s of (E?)s — (n1FE3?); is a torsion group. On
the other hand, (E3), is a torsion-free abelian group, since (Fy” = R'p,H; 1 p(Zp) and

1 By? = p.H) 1 (Zp) are sheaves of torsion-free abelian groups (cf. 8.3.2, 8.3.1). The

Y~ A A



107

vanishing 1 Ey° = H%(Zs) = 0 implies that there is an injection 1 E%' — E3. Hence
(nE%Y), is torsion-free. Therefore (Tps)s is the torsion part of (1 F3"), ~ (RYj.H)s. O

Corollary 5.4.11. Gy so is characterized by the following condition as a subsheaf of

J5& g containing 6}7}’/50 :
Siijse /S5 = (1:6n/S s ),

Proof. The commutative diagram of exact sequences

0 —— 6‘1_?/}5 E— GH/S E— ‘ZH/S — 0

0 — Ly/jsH — .6y —— R'jJ.H —— 0
is derived from FIGURE 1. Then the assertion follows 6.4.10. O

Let S* C S be a Zariski-open subset such that S* C S* and codim(S ~\ §*) > 2. Let

jor: §* — S% and j%: S* — S denote the open immersions.
Lemma 5.4.12. The natural homomorphism

R (j H) — Ry Lyyse
is zero for q > 1.

Proof. The morphism RI',(j.H) — RLp(Lpys) is zero by 4.2.3. Let Z* be the comple-
ment S\.S*. Then R ;. (j.H) — RL 75 (Lpys) is zero, since RI" yu ~gis R zoo R p. [

Proposition 5.4.13. Suppose that S* C S°. Then there exists a commutative diagram
of exact sequences:
0 —— RYYL(j&*H) —— Tus —— jE(RYYE H)yow —— R%jE(JEH)

| l l |

0 — RYP(IH) — RUyH —— jHRH) —— RGO H).
In particular, Tg/s is isomorphic to the kernel of
R'j.H — j2 (R H/(R'j:H)ior)

Proof. Let Z* be the complement of S* in S. It is enough to show that H%.(Tpy/s) ~
HYs(R'jH) and that H}. (Tyys) — Hys (R'j.H) is injective. We infer that the injection

Th/s — R'j.H is obtained as the composite
/

Hp(R p(R p*ZB/VB) - HD(GH/S) - H%(j*H)
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where the left homomorphism is derived from (5-];) Since &g /g ~ ji6 H/s®, We have an

isomorphism HY. (Tyys) =~ HZA(GH/S) and an injection Hys (Tays) — Hys (G}))g) from

.....

H%A (Trys) = Hya(6})s) = Hzo (jH) = Hya (Hp (5. H)).
Further we have an exact sequence

Hye(Zuys) — Hye (G‘Iy/s) — H?éA (JH)
is also injective. This is also obtained as the composite
Hye(Tuys) = My (RUjH) = My (Hp(5.H)) — Hya (5. H),

where the last homomorphism is derived from the spectral sequence associated with
RI7s(RLp(jsH)) ~qis RLz2(j«H). Thus we are done. O

Corollary 5.4.14. Suppose that S* C S together with 0 € S is a d-dimensional toroidal
embedding of type (N,l,0). Then

0, H is of type Iy;
(Tays)o =~ N(at No)t/Za, H is of type 1, for a # 0 (cf. 4.3.4);
(R'j.H)o, otherwise.

Lemma 5.4.15. Suppose that S = S°. Then we have the following isomorphisms:
RYj.H ~j (R H); R (52 H) = 0;
R'j. e Lryss ~ R'j! GH/SA R j*AGH/SA-

In particular, R'j2S /g0 is a sheaf of C-vector spaces.

Proof. We have R'j,H ~ j2(R'j2*H) since R'j*H is locally constant over D. Thus
the edge sequence of Leray’s spectral sequence for Rj,H ~qs Rj2(RjS*H) induces an
injection R*j2(j2*H) — R?%j.H. We have R%*j,H = 0 since S = S°. The sheaf Ty /g =
(R'j.H)gor is also locally constant over D. Hence Hy. (T s) =0 and

JE(RYEH) = j& (RYjEH/Tyyse)
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is surjective. Hence H%.(Tp/s) — HZ.(R'j.H) is injective. We have the following

commutative diagram

M (Trjs) —— Hyo (RUH)

l |

M5 (S])s) ——  Hy(iH),

where the right arrow is "E3" — ”Ey" for the spectral sequence
"EP?T =HY,(RYj.H) = H'T(RL,.(Rj.H)) = 0.

Since R?j,H = 0, the right arrow is injective. Hence the left arrow is also injective.
Therefore H7.(6}))s) ~ H%.(Snys). The rest isomorphism HZs (Lays) ~ Ha(SF)5) is
derived from H%. (j.H) = R*j2(j2*H) = 0. O

5.5. Elliptic fibration having local meromorphic sections

Proposition 5.5.1. There is an injective group homomorphism
&(S,D,H) — H*(S, G p/s).

This is bijective if S = S°.

Proof. We fix a basic elliptic fibration p: B — S associated with H. Let (f: X — S, ¢)
be a marked elliptic fibration contained in & (S, D, H). Then there exist an open covering
{U,} of S and meromorphic sections o : U, ~+— f~!(U,). Thus there is a bimeromorphic
mapping he: f71(U,) +— p~(Uy,) such that A}, induces ¢ over U, and that h, o o, is

the zero section. The transition mapping
ho o hg': p~ (Us NUg) == p~ " (Us N Up)

is the translation mapping tr(7,,s) of a meromorphic section 7, s of p over U, NUg. The
cohomology class of {1na,3} in H'(S,&pyg) does not depend on the choice of {U,} and
{ha}. Thus we have an injection & (S, D, H) — H'(S,&/s). By the construction and
by 5.2.3, we infer that this is a group homomorphism. The converse construction has
a problem on gluing p~'U, by meromorphic translation mappings tr(n,s). If S = S°,
then we can choose p: B — S to be the minimal basic elliptic fibration. Thus the

meromorphic sections 7, s are holomorphic by 5.3.2. Thus we can glue p~(U,). O

Let (f: X — S,¢) be a marked elliptic fibration belonging to &/(S, D, H) such that
X is non-singular. Let D' D D be an analytic subset such that f is smooth outside
D’. We define Vx := H% (R! f.O%). Then R'f.0%/Vx does not depend on the choice
of bimeromorphically equivalent non-singular models X over S by 5.4.6. The composite

N

Vx «— R'f,0% — R%f.Zx is injective and R'f.Zx ~ j.H by b.4.5.
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Lemma 5.5.2. Under the situation above, there exist a homomorphism ¥x: Gy g —

R'f,0% /Vx and a commutative diagram FIGURE 2 of ezact sequences.

0 0
0 —— R'fZx —— R'f.Ox —— R'f,0%/Vx —— R*f.Zx/Vx —— 0
! .
0O — 4uH —— Lysg — Guys — /s — 0
0 0

FIGURE 2.

Proof. Let {U,} be an open covering of S and let ¥, C f~!'(U,) be a meromorphic
section of f~1(U,) — U,. Let hy: f71(U,) +— p~1(U,) be the bimeromorphic mapping
over U, such that the proper transform of X, is the zero section ¥ N p~'(U,) and
that h, preserves the marking ¢ of H. By 5.4.9, over U,, we have the homomorphism
(Ux)a: Gpju, — (R f.O%/Vx)|v, with the desired property. Note that the (Ux), is
obtained as follows: A meromorphic section I' C p~!(U,) is mapped to the equivalence
class of the invertible sheaf O(T', — X,,), where I',, denotes the proper transform of I' by
h'. We have only to check (Vx), = (¥x)s on U, N Us for any «, 3. We know that
hgohi': p~Y (U, NUg) ~— p~' (U, N Up) is the translation mapping of a meromorphic
section X5, C p~1 (U, NUs). Since a translation mapping of an elliptic curve does not
change invertible sheaves of degree zero, O(I', — X,) and O(I's — Xj3) are equivalent
over U, N Ug modulo Vx. Hence we have a global homomorphism Wy with the desired

property. 0
By the construction of Wy, we have:

Corollary 5.5.3. The cohomology class in H'(S, S ys) corresponding to (f: X — S, ¢)

by 5.5.1! is identical to the image of 1 under the connecting homomorphism H°(S,7) —

H'(S,8pys) of the exact sequence:
0— S5 =25 RU,O%/Vx — Zg — 0

appearing in FIGURE 2.
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Proposition 5.5.4. Let (f: X — S,¢) be an element of (S, D, H). Then f is BP
if and only if the corresponding cohomology class in H'(S,Spys) is a torsion element.
Conversely, for a torsion element of H*(S,8pyys), there is a marked elliptic fibration
(f: X — S,¢) belonging to (S, D, H) such that f is a BP elliptic fibration smooth
outside D and that (f,¢p) represents the torsion element. In particular, we have an

identification:
EVI(S, D, H) «— H(S,S1/5)t0r-

Proof. If f: X — S is BP and if X is non-singular, then there is an invertible sheaf
M on X whose restriction to a smooth fiber has positive degree. Since the degree is
nothing but the image of the equivalence class of M in R! f,0%/Vx under the surjection
R'f,0%/Vx — Zs. Therefore the corresponding cohomology class is a torsion element.
Conversely, suppose that a cohomology class in H*(S, Sy /s) is a torsion element of order
m. Let {U,} be an open covering and let 7, s be meromorphic sections of p over U, NUp
representing the cohomology class. We want to patch p~'(U,) by the meromorphic
translation mappings tr(7,,5). Here we consider the multiplication map B 5 B over
S. The Stein factorization x: B — B is a finite morphism étale over S*. Let p': B' — S
denote the structure morphism. Then there is a commutative diagram
tr(Na,)

P UanUs) = p N UsNUp)

1t [t

p UanUs) " p (U, A U).

Since {mn, s} is cohomologous to zero, we can patch p'~!(U,). Hence we have an elliptic
fibration X’ — S and a finite morphism X’ — B over S. In particular, X’ — S is a BP

morphism smooth outside D. 0

Proposition 5.5.5. Let f°: X° — S° be an LBP elliptic fibration smooth outside D*.
If a union of irreducible components of multiplicity 1 of f*D* dominates D*, then there

exist local meromorphic sections of f° over any points of S°.

Proof. We may assume that S° is a polydisc and D* is a coordinate hyperplane and that
f°is BP. Let R C f*D* be an irreducible component of multiplicity 1 dominating D*. For
a desingularization R — R, the composite R — D* is smooth outside a proper Zariski-
closed subset T C D* C S°. Thus R — D* admits local sections over D* . T. f° is flat
over a Zariski-open subset S* C S with codim(S~S”) > 2. Let S* denote the Zariski-open
subset S” \. T of S°. Then the restriction of f° to S* belongs to &(S%, D* N S*, H) and



112

corresponds to a torsion element of H'(S”, Ghyse). For the open immersion j°4: S* —

S°, we have an isomorphism Gy g0 ~ ji*Gp/gs and an exact sequence
0 — HI(SO, GH/S") ad HI(SA, GH/SA) ad HO(SO,le:AGH/SA).

There is an isomorphism Hl(SO,GH/So)tor ~ HI(SA,GH/SA)t0r7 since le;)AGH/SA is a
for an open neighborhood U of 0. Since f° is BP, we may assume that (f°)~'(U) is
bimeromorphically equivalent over U to a closed subvariety of P x U° for some n. Since

codim(S° \ S*) > 2, the meromorphic section extends to U. O

Corollary 5.5.6. Let f°: X° — S° be an LBP elliptic fibration smooth outside D* and
let U C S° be the set of points over which f° admits local meromorphic sections. Then

U is a Zariski-open subset.
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6. DESCRIPTION OF GLOBAL STRUCTURE

In Section 5, we relate &(S, D, H) with H'(S,&p/s). However, unfortunately, the
method is not sufficient to classify other elliptic fibrations, for example, that have multiple
fibers. In Section b, we realize £(S, D, H) as a subgroup of the d-étale cohomology group
H'(S,G&pyg) for the sheaf G5 of germs of meromorphic sections in the -étale topology
on S = (5, D) defined below. Here, the group of BP-fibrations coincides with the torsion
part of H'(S,&/s). The calculus in Section 6.2 is important for the proof and other
applications.

For a basic elliptic fibration p: B = B(H) — S, let B be the d-space (B,p~'D)
and let p be the induced morphism B — S. The sheaf &y,5 of germs of meromorphic
sections of p over S is defined as follows: For a 0-étale morphism U = (U, A) — S with
U =sp(U),

Su/s(U) :={U +— B | meromorphic mapping over S }.

6.1. Fundamental diagram in 0-étale topology

Let & (S, D, H) be the subset of £(S, D, H) consisting of marked elliptic fibrations
(f: X — S,¢) such that f satisfies the following condition: For any point of S, there
is a 0-étale neighborhood (U,A) — S such that X xg U — U has a meromorphic
section. & (S, D, H) is also a subgroup of £(S, D, H) (cf. 5:2.5). We set EP*(S, D, H) :=
Eri(S, D, H)NE(S, D, H).

Let f: X — S be an elliptic fibration such that X is non-singular, f~!'D is a normal
crossing divisor, and that (f,¢) € & (S, D, H) for some marking ¢. Let X := (X, f~!D)
be the O-space and let f: X — S be the induced morphism. Let U = (U, Dy) — S be a
0-étale morphism, where [U, Dy] is the top realization of U, Xy the normalization of the
main component of the fiber product X xg U, and let fiy: Xy — U denote the induced
morphism by f. Then Xy has only quotient singularities and Xy \ f;;' Dy — Xy is a
toroidal embedding. The analytic space with boundary [Xy, fi;' Dy] is the top realization
of X xgU. We denote by iU: X xgU — U the induced morphism.

Let pu: Y — Xy be a bimeromorphic morphism from a non-singular variety such that
Dy := pu~' f;' Dy is a normal crossing divisor and that p is an isomorphism outside Dy.
Let Y denote the 0-space (Y, Dy) and let : ¥ — X xgU denote the induced morphism.

Lemma 6.1.1. We have the following isomorphisms, where p > 0:

leU*ZXU = Rl(fU o M)*ZY> (Rli*ZX) ’U = Rl (i_ © ﬂ)*ZZ>

R’ fu.Ox, ~ RP(fv o ) Oy, (R"£.0x) |, = R*(f, 0 1)-Oy.
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Proof. We have R'11,Zy = 0 and RPu,Oy = 0 for p > 0, since Xy has only rational
singularities. By considering the toroidal embedding Xy \ f;' Dy C Xy, we also have
R'pZy = 0 and RPu Oy = 0 for p > 0 from 8,42 and 2.2.6. Thus we have the
isomorphisms. O
As in Section 5.4, we consider the quasi-isomorphism
RLREf—lD(ZX) ~qis RED(RLZX)-
The cohomology sheaves have Q-structures by 8.4.1. We have two spectral sequences
Iﬂgq = Rpi*H(]]C—lD(ZX) - Ep+q> and Hﬂgq = H%(qu*Zﬁ) — Ep+q>
where E' = 0 and E* ~ (Ey? = f 'H3_,,(Zx). Let U — X and ¥ — X xg U be as

above. Then we have a similar quasi-isomorphism

R(fy, o p)+«RLp, (Zy) ~qs RLp, (R(f; o p)«Zy)
and similar spectral sequences
By = RP(f, 0 ) Hb, (Zy) = E™™,
By’ =My, (RU(f,, o p)Zy) = "

for f op:Y — U. There are natural homomorphisms

D,q Psq D,q P4 + SP+q
1By — 1y, nly'ly — nky,, and EPy — E .

Claim 6.1.2. Hﬂg’o — EP is injective for any p. In particular, Hﬂg’l = HOD(RILZX) = 0.
Proof. Let ey be the morphism U — U = (U, (). The sheaves Hﬂg’o have Q-structures
by 8.4.1. Thus aU*(HEg’O) — 5U*(Ep) is injective by 5.4.1. Since 11E§’0|Q ~ HEZ;O,

0 .
k5" — EP is injective. O

Lemma 6.1.3. The following sequence is exact:
(6.1) 0— k3’ — E* — nEY? — nB3!

We have nE' = HlD(Rli*ZX) = 0. In particular, Rli*ZX — Rli*OX is isomorphic to
j,H — Luys by the marking ¢: (R' f.x)|s» = H.

Proof. This follows the argument of 544 and 5.4.3. Because, if A -~ = 0 for any
irreducible curves v contained in fibers of fy for a Cartier divisor A with Supp A C Dy,
then A = f*(A’) for a Q-Weil divisor A’ supported in Dy. Here A’ is Q-Cartier and
hence A’ € Divp,, (U). Therefore, nkEl = Hﬂé’l = 0. O
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The exponential sequence of X induces a long exact sequence:
0— Rli*ZX — Rli*OX — Rli*O*X — R2LZ£ — 0,

by 597 The first homomorphism is isomorphic to Z*H — Lp/s by 6.3 Let 6}7}’@ be

the cokernel of j H — Lps. Then we have the the following two short exact sequences:

(6.2) 0— Rli*ZX —>R1i*(9£ — 6}’{"@ — 0;

Let D' D D be a reduced divisor such that f is smooth over S ~\ D’. We define Vx :=
HY (R'f O%). Asin 5.4.6, it does not depend on the choice of D’. We have VXHG};V/E =0

since HOD(G}’{V/E) ~ HlD(Rli*ZX) =0 by 6.1.3. Thus (6.3) induces an exact sequence

(6.4) 0— 6}’}’/§ — R! [,0%/Vx — R*f Zx/Vx — 0.

Lemma 6.1.4. Let Dy; be the pullback of D" by U — S and let
Vy :=Hp, (RY(f, 0 1)O%).
Then the sheaf Rli*O*X/VX 15 associated with the presheaf
U +—> WPic(XU)/Vf[;lDb (Xv) ~ PiC(Y)/v“_lf[;lD;J(Y).
Moreover the following isomorphisms exist:

(R'f,0%/Vx) |, = B (fy o O3 Vy, (RS Zx/Vx)|, = R(fy, 0 1)y /Vy.

Proof. The first assertion follows B.4.5. The second isomorphisms are derived from the
1.3 O

same argument as 5.4.6 and from 6.

We have a trace map R* S, Zx — Zg which is just the restriction homomorphism
R2i*Z£ - l*((R2f*ZX)|S*) =~ Zi‘

The composite R! /.0x — R? f.Zx — Zg is the homomorphism measuring the degree
of invertible sheaves restricted to smooth fibers. Since (f: X — S,¢) € & (S, D, H),
the trace map is surjective. In particular, E3° = HID(R2LZ£) = 0 and EY? =
HY(R*f Zx) is the kernel of the trace map.

Assume that B is non-singular and that p~'D is a normal crossing divisor for the
basic elliptic fibration p: B — S. We follow the argument of 5.4.8. Then the kernel of

R'p O3/Vp — 7Zs is isomorphic to &g by a homomorphism
Up: GH/§ — RIB*O*E/VQ

defined as follows: For a meromorphic section o: U ~— B of p: B — S over U, the

image I'; = o(U) C By is a prime divisor, where By denotes the normalization of the
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main component of B xg U. The pullback ¥ of the canonical section 3 C B of pis a
meromorphic section of p;;: By — U. The homomorphism W g sends o to the equivalence
class of the invertible sheaf
Opxsvu(l'e — Xv).
Even if f: X — S does not admit a meromorphic section, we can define such a homo-
morphism Wy that
0 — Guys ~ R'f O%/Vx — s — 0

is exact. This is because (f: X — S,¢) € &(S,D,H) and we can apply the same
argument as 5.5.2.

We have a quasi-isomorphism
REp(Rf Ok) ~as REp(Rf Ox) & REp(Rf Zx)[1]

by 8.4.1. The second projection induces a commutative diagram of exact sequences

'HID(OE) —_— HID(RLFOE) — Vx —— 0

| l l l

HL(Zg) —— E? —— By —— B

Hence Vyx is isomorphic to the image of E? — Hﬂg’2. Let Ty/s be the cokernel of

0,2
E? > E5y”. Then we have two exact sequences

Thus Ty/s also does not depend on the choice of X. Further there is an injection

Thys — nEy” = HhH(R' f Zp) ~ R'j H

whose cokernel is Hﬂi;}. Therefore, we have the following theorem from 5.4.9, 5.4.10,

Theorem 6.1.5. Let (f: X — S, ¢) be a marked elliptic fibration in & (S, D, H) such that
X is non-singular and f~'D is a normal crossing divisor. Then we have a commutative

diagram of exact sequences: FIGURE 3. Further, the following properties are satisfied:
(1) Tuyse = (Fuys)|se is isomorphic to the torsion part (RlizH)tor.
(2) Gpyge is a subsheaf of j*& g such that

Sy /SR = (1161/SN)s°)

(3) Tuys is isomorphic to the kernel of

tor )

R H — j° (R H) (R H)er)
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FIGURE 3.

Corollary 6.1.6. Suppose that S* C S together with a point 0 € S is a d-dimensional
toroidal embedding of type (N,l,0). Then

0, H has only finite modomoromies,
(Ta/s)o = s
N(a*No)y/Za, H has infinite monodromies, where a is defined in 4.3.

Let S* C 8% C S be the Zariski-open subset introduced in 5.4. Let S denote the
O-space (S, DN S*), and let j*: S* — S and j**: S* — S® be the related d-open
immersions. Then

0 — RPj°Lyge — RPjOG) go — R (PH) — 0
is a split exact sequence for p > 0 by 4.2.3.

Lemma 6.1.7. Suppose that S® C S°. Then the following properties hold:

(1) The natural homomorphisms
RPj(TH) — RPGL (G H)
are isomorphic for p < 2.

(2) The sequence
0— RYj(GH) — Tuys — JoTuyse — B2j2(5°H)

15 exact.

(3) The image of the composite
JFnyse = RjSH)se — B (GH)

is the torsion part of R*j%(j%* H).
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(4) The composite R'j*Sp g0 — R?j26Y qo — R*j2(§2*H) is injective. In particu-
lar,
R Sl — B1,Guys:

18 surjective.

Proof. (1)) Let Jj°o: S £ — S° denote the 0-open immersion. Then we have an isomorphism
R'j*H ~ j°*(R'j®*H). In particular, R'j°(R'j*H) — R'j(R'j®*H) is injective. By

considering two spectral sequences:
Rpif(quf*H) — Rp+ql'*H, and Rpii(quiH) — Rp+qi*H,

we have the expected isomorphisms.

(8) By (1}), we may assume S° = S®. Then this follows 4.4.3.

(4) Let us consider the commutative diagram
R Tyyse —— RUI(RYH)
RS g ——  RjO(jH).
The top arrow is injective, since R! JiH is locally constant on D*. The right vertical

arrow is an isomorphism since R?j*H = 0 for p > 2. Next, we consider the commutative

diagram
Ry Tyyse  —— R H)

| l

SR Tyee) —— JU(RP (307 H)).
The bottom arrow is injective by the previous diagram. The left vertical arrow is an

isomorphism since RP J:TH/S =0 for p > 0 by 4.4.3. Thus we are done. O
Lemma 6.1.8. R11f6H/§A 1s a sheaf of Q-vector spaces.
Proof. Let Z* be the complement S ~. S*. Then

RSy s ~ Hye(Srys) ~ My (HyeUsingp(Shys))-

Thus we are reduced to the case S2 C S°. Then it follows 6.1.7. O
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6.2. Calculation of cohomology groups

Definition 6.2.1. (1) Let L3;/g be the object of the derived category of sheaves of

abelian groups of S corresponding to the complex
[... HOHEH/SHGH/SHOH ...]7

where Lp/g lies in the degree zero.
(2) Let LY /s be the object of the derived category of sheaves of abelian groups of the

0-space S corresponding to the complex
[... HOHEH/EHGH/EHOH ...]7

where Lp/g lies in the degree zero.
(3) Let Qp s be the cokernel of Ty — R'j. H. This is 1 £%!' of Section 5.4. Simi-
larly, let Qp/s be the cokernel of Ty /s — RIJ*H.

Lemma 6.2.2. Qp/s is a sheaf of torsion-free abelian groups supported in D. Qp/g is a

sheaf of Q-vector spaces supported in D. There exist a canonical isomorphism
€175 ~ Qp/s @ Q
fore: S — S and an exact sequence

0—R'(GIH)®Q — R'j,H®Q — Qp/s @ Q — 0.

Proof. The last exact sequence is derived from 5.4.13, since Tp/g0 is a sheaf of torsion
abelian groups. The natural homomorphism R'j.H — ¢,R'j H induces Tp/s — €.%u/s
and Qp/s — €.n/s. Thus we can check only on the stalks at a point of S. Thus we may
assume that S and D are as in Section 4 and we consider stalks at the origin 0 € S. Then
the stalk (Qp/s)o is a Q-vector space by 4.4.1. If H is of type Iy or I(4), then (Qpu/s)o is
torsion-free and (Qp/s)o ® Q ~ (£.Qp/s)o by 4.3.1 and 4.4.1. Suppose that H is not of
type Iy nor I(4). Then (R'j,H)j is a finite group. Thus (Qp/s)o = 0 and

(le*H)o ®Q ~ (le*(H ®Q))o ~ (€*R11*(H ®Q))o ~ (€*R11*H)0 ®Q@=0

0 — Trys ®Q — (R'j,H) ®Q — pzyg — 0.

Since R'e,(Th/s ® Q) = 0, we have (£,Qp/5)0 = 0. O
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Remark 6.2.3. Suppose that S* C S together with a point 0 € S is a d-dimensional
toroidal embedding of type (N,, o). Then

AL H is of type Io;
(Qu/s)o=Z® N(a*No)Y, Hisof type I, for a # 0 (cf. 4.3.4) ;
0, otherwise.
From the exact sequence: 0 — H — Ly — Gy — 0, we have quasi-isomorphisms
[+ = 0= 5Ly — 56y —0— | ~gs T<1 Ry H;
[+ —0— J.Lo — 7.6y —0— ] s TaiRj H.

Thus there are natural morphisms L}, ¢ — 7<1Rj.H and Ly, — 7<1Rj H. Their
mapping cones are quasi-isomorphic to Qp/s[—1] and Qp/g[—1], respectively. We have
morphisms Rj.H — Lyss and Rj H — Lp/s by 4.2.3. Thus the morphisms IL}{/S —
Lps and Ly, g — Lpyys are decomposed into Ly ¢ — 7<1RjsH — Lpy/s and Ly ¢ —
T<1Rj H — Lps, respectively. Hence we have the following two commutative diagrams
of triangles:

+1 . +1

e 1o H/S _— ACH/S E— GH/S -
67 | | |
s TR H —— Liys © Qpys[—1] —— Sppg ——
= Ly — Luys —— Guys — -
©8) | | |
& TélRZ*H R EH/§@QH/§[_1] — Gpnys s

Definition 6.2.4. We denote the image of H*(S*, H) — H'(S, Ly/s) ® H°(S,Qu/s) by
C(H/S), and the image of H'(S*, H) — H°(S,Qp/s) by C(H/S).

Theorem 6.2.5. We have the following long exact sequence:
H(S,&s) — H'(S*, H) — H'(S, Lyys) & H*(S,Qn/s © Q) — H' (S, & nys) —
— H*(S*,H) — H°(S, R*j.H ® Q).
In particular, we have further the following two short exact sequences:
0— C(H/S)® Q/Z — H'(S, &pys)ior = H*(S*, H)sor — 0;
0— Qs ®Q/Z — R'e.&y/s — (R?jH )ior — 0.
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Proof. We have isomorphisms H'(S,7<1Rj H) ~ H'(S,Rj H) ~ H'(S* H) and an

exact sequence

0 — H*(S, T<1Rj H) — H?*(S, Rj H) ~ H*(S* H) — H°(S, R%Z*H).

Since R*j H is a sheaf of Q-vector spaces by 1.4.1, we have e.(R*j H) ~ R*j,H ® Q.

Hence the first exact sequence is derived. The torsion part H 2(5*, H)op is contained in
the kernel of H*(S*, H) — H"(S, R*j,H ® Q). Since H'(S, Ly/s) and H'(S,Qp/s ® Q)
are Q-vector space, the homomorphism H'(S, Sy g)ior — H?*(S*, H)ior is surjective.
Further its kernel is coming from C(H/S) ® Q. Thus we have the second sequence. The
last sequence is also obtained by R'e,. We note here that Rla*EH/§ = 0, and the image
of .65 ~ Gpys — H' (Re.Rj H) ~ R'j.H is Tyys. O

Let p: B = B(H) — S be the basic elliptic fibration associated with H (cf.5.3.7). Let
i: B* — B denote the open immersion. Then we have a natural morphism Ri,Zg» — Op
as in B8.2.2.

Theorem 6.2.6. There are quasi-isomorphisms
(69) Rp:ZB* ~qis Zs* ) H[—l] ) Zs* [—2],
(610) Rp*OB ~qis OS D EH/S[—l]

The induced morphism Rj.RpZp+ ~qs Rp,Ri.Zg- — Rp,Op (cf. 8 :Z) is decomposed

into the natural morphisms Rj.Zg- — Og (cf. 8.2.2), Rj.H[~1] — Ly/s[—1] (cf. 4.2.3),
and Rj.Zs<[—2] — 0.

Proof. For the zero section ¥ C B, ¥ — S is isomorphic over S*. Thus Zg« — RpiZp~
admits a splitting. Similarly, the trace map Rp*wjyy — wif admits a splitting. Hence
we have (6.9). Let S—Yhea desingularization and let p: S — S denote the composite.
Then Os — Rp,Op — Ru.Og ~qis Og is identical. Thus we have (6.10) by 5.2.7. For the
component [j,Zg« of Rj,RpZp ~qs Rp,Ri.Zp~, the morphism into Rp,Op factors

through Og. For the component Rj,Zg:[—2], we consider the composite
Ri s [~2] ~qis RizwsP[~2d — 2] — Riwigt[—2d — 2] ~qis Ri.Zgs — Op,

for ¥* = X N B*. This factors through RI'5(Op). The morphism RIx(Ri.Zp+) —
RI5,(Opg) is zero as in 8.2.2,4.2.3 provided that ¥ Up~'D is a normal crossing divisor.
By replacing B, we may assume this condition. Hence Rj.Zgs«<[—2] — Rp,Op is zero.
There is a commutative diagram:

Rp RiZp —— R,u*Zg —— RjZg+

l l |

Rp*OB — R/L*Os: — Os.
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Since H[—1] — Rp:Zp+ — Zg~ is zero, the composite Rj.H|[—1] — Rp,Op — Og is
zero. The rest thing to show is that the induced morphism Rj,H — L5 coincides with
the morphism of 4.2.3. This is reduced to the case S is non-singular. Because, by a
desingularization p: S — S that is isomorphic over S*, Rj,H — Rp,Op is written as
Ry, of the similar morphism over S. Moreover, we may assume S is a local object: S is a
unit polydisc and D is a union of coordinate hyperplanes. By considering the unipotent
reduction of H, we may further assume that H is of type Iy or I;). This is because
Rj.H — Rp,Op is written as Re, of Rj H — Rp Op for p: B = (B,p™'D) — S.
We can also replace B by a bimeromorphic model that is isomorphic over B*. Thus we
assume that p: B — S is a toric model or a smooth model (cf. [N4]). We follow an
argument in [Z, 15.5]. Let Qp,s(logp™ D) be the cokernel of

p"Qg(log D) — Qp(logp™' D).

This is locally free by the figure of p~' D and is isomorphic to the relative dualizing sheaf
WB/S ~ p*El_{l/S. For the relative logarithmic de Rham complex Qh/s(logp_lD), there is

a triangle

- =5 Qps(logp™' D)[1] — Q% s(logp™' D) — Op = -
Since R'p,wp/s are torsion-free, we have isomorphisms

R'p, 0%, s(logp™' D) ~ R*p Oy s(logp™' D) ~ Os,

an exact sequence

0 — R'p.wp)s — R'p.Q%y s(logp™ D) — R'p,Op — 0,
and vanishings Rip, b/s(logp_lD) = 0 for ¢ > 2. Hence the Hodge spectral sequence

Rip, Q% s(logp™ D) = R p Oy s(logp™' D)

degenerates at E; and the locally free sheaf Rip (% /S(log p~'D) is isomorphic to the

canonical extension H(Sf])can of Rip*Zg+ ® Og.. Here

057 q= 07 2a
S T
0, otherwise.

Let LP be the filtration of Q%(logp™ D) defined by
L (Qg(logp~' D)) = p*Y(log D) A Q7 (log p~' D).
Then we have quasi-isomorphisms

L
Grl (Qp(log p™' D)) ~qis "% (log D) ® Qg 5(log p™' D) [—p].
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For the spectral sequence ; E?? associated with L, we have
LY = RMip, Grf (Q3(log p™' D)) =~ Qf(log D) @ R'p, Q% s(logp™' D)
~ O (log D) @ HW™,

where the complex ; E7? is isomorphic to the logarithmic de Rham complex Q%(log D) ®
H(Sf])can defined by the logarithmic connection V. For the filtration Dec(L), we have

quasi-isomorphisms
Grd oy Bp. Q5 (log p' D) — Q4 (log D) ® Hy P [p] ~qis Rj.(R7piCp+)[p]-

Since the induced filtration L on Op by the natural morphism Q%(logp™'D) — Op is
trivial, we have Gr%eC(L) Rp,Op ~qs R7Pp,Og[p]. Therefore, Rj.(H ® C) — R'p,Op ~

Lp/s is the same morphism as 193 O

Remark. The relation between logarithmic de Rham complexes both on B and on S is
mentioned in [4, 15.5, 2.16] for general fibration B — S over a non-singular curve S.
The theory of mixed Hodge modules [SI] by Saito treats more general object and shows

the similar compatibility at least in the category of algebraic varieties.

Lemma 6.2.7. Og(xD)* ~ p,Og(xp~'D)*.
Proof. We consider the basic elliptic fibration p: B — S. We have a triangle

. +—1> ngRj*Rp:ZB* — Rp*OB — T§1Rp*OB(*p_1D)* +_1> e

The left complex is quasi-isomorphic to T<yRj,Zg« @ T<1Rj.H[—1] ® Zs[—2] by 6.2.6.
Since j,H — R'p,Op ~ Lp/s is injective, we have a triangle

N T7<1Rj.Zs« — p,Op — p*OB(*p_lD)* FLo.
and the isomorphism Og(xD)* ~ p,Og(*p~' D)* by 393 O

From the morphism Ri,.Zg» — Opg, we have a triangle:
(6.11) - % RiZg — Op ® R, p(Zp)[1] — O 15 -+

Combining with a similar triangle for S and D, we have a commutative diagram of exact
sequences
H*(S*,Z) ——  H*(S,0s)® H)(S,Z) —— H?*(S,05%)

l l |

H*(B*,Z) —— H(B,0p) ® H}.,,,(B,Z) —— H*(B,0%).

If [S, D] satisfies the condition 8.2.0, then every vertical arrows are injective by 8.3.1 and

5.4 1.
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Lemma 6.2.8. (1) There is a triangle
-5 p 1 p(Zg)[—1] = 71 Rp,Op — Os(xD)* @ (Spys & Zs)[—1] - -

(2) There exist a triangle

-5 pHyp(Z)[-2) = T2 Rp.Zp — T<1 RjiZs- ® Liys[-1] ® Zs[-2] 5 - -

and a commutative diagram of triangles

. +_1> VB N Rlp*O%[—Q] N GH/S[—Q]@ZS[_Q] +_1>

N |

=2 —— T>17<2Rp.Zp —— L;{/s[_l]@ZS[_2] -

(3) If [S, D] satzsﬁes the condition (8.2.6

+1

), then the following sequence is exact:
0 — Div,-1p(B)/ Divp(S) — Pic(B)/ Pic(S) — H(S, Guys) & Z — 0.

(4) If [S, D] satisfies the condition (8.2.6), then the torsion-free group C(H/S) is

isomorphic to the image of

H*(B*,Z)/H*(S*,Z) — H*(B,0p)/H*(S,0s) ® Hy-1 (B, Z)/H},(S, Z).
Proof. (1) Let us consider the following morphism induced from (6.11):
(6.12) P.Hp1p(Z)[~1] ~qis (T<aRp. RL,-1p(Zp))[1] — 7<1 Rp, O

and let C* be its mapping cone. Note that the mapping cone of similar morphism
H2(Zs)[—1] — OF is quasi-isomorphic to Og(*D)* by 3.2.3. Since the image of the
induced morphism p,H2 1, (Zg) — R'p,Of from (6.13) is Vp, we have H(C*) =
Os(xD)*, H'(C*) = Gnys ® Zs, HP(C*) = 0 for p > 2. In particular, there is a commu-

tative diagram of triangles

. +1 (T§2R£D(ZS))[1] Em— Og N Os(*D)* +—1>

oy l l l

: —>+1 (T§2R£p—1D(ZB))[1] R TglRp*O% N C* +—1>

The zero section 3 C B is bimeromorphic to S and ¥* = ¥ N B* is isomorphic to
S*. Let Y — ¥ be a bimeromorphic morphism from a non-singular variety and let
p:Y — ¥ — Sbethe composite. We may assume that ;=1 D is a normal crossing divisor.
Note that Y\ p™'D ~ S~ D = S*. Let jy: S* — Y be the open immersion. Then
we have Og(*D)* ~ 1Oy (*u~'D)* by 8.2.3. By the restrictions Rp.RL,-p(ZB) —
Ry RL -1 p(Zy) and Rp,Op — Ru,Oy, we have a morphism C* — R, Oy (s~ 'D)*.
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Since ,u*H 1p(Zy) — R?u.Zy is surjective by 3.3.1- (5'), we have another commutative
diagram

-~ (1<sRL, 1 p(Zp))[l] —— T<1Rp, 0 —— c

l | l

- = (reeRL,p(Zy))[l] —— TaRp.0y —— pOy(xu D) — -

Thus Og(*D)* — C* has a splitting and C* ~gis Og(xD)* ® (Sp/s © Zg)[—1].
(&) The triangle

+1

. +_1> Rp*Rﬂp_lD — Rp*ZB N Rp*Ri*ZB* +_1) .

induces another triangle

. +—1> TSQRP*REP—ID(ZB) - ngRp*ZB — Tgle*ZS* D L;{/S[—l] D ZS[—Q] +—1> s

This is because 7<oRp,RI",-1p(Zp) is quasi-isomorphic to p*H ~1p|—2] and the image
of p*H p — R*p,Zp is Vp. Combined with a triangle in the proof of (1), we have the
commutative diagram.

B) H(S,Z) — Hg_lD(B,Z) and H?(S,0%) — H?*(B,0%) are injective by 5.4.7.

Thus we have an exact sequence
0— H. . p(B,Z)/Hp(S,Z) ~ H°(S,Vg) — Pic(B)/ Pic(S) — H(S, &y s) ® Z

from (6.13). Here, the right arrow is surjective, since an element of H%(S, Sy/s) defines
a divisor of B by W (cf. 5.4.8) and since the invertible sheaf Og(X) attached to the zero
section X goes to 1 € Z.

(4) By (8), the cokernel of the homomorphism

Pic(B)/Pic(S) — H*(B*,Z)/H*(S*,Z) ~ H'(S*, H) ® H"(S*,7Z)

induced from (6.11) is isomorphic to C'(H/S). O

Theorem 6.2.9. There is an exact sequence

(6.14) 0 — H°(S,6pys) ® Q/Z — lim H'(S*,H @ p,,) — H'(S,E1/5)ir — 0,
where p,, :=m™Z/Z C Q/Z. In particular, we also have an exact sequence

(6.15) 0—%Tps®Q/Z— R'j,(H®Q/Z) — R'e.&p/s — 0.

Suppose that [S, D] satisfies the condition (8.2.6). Then for the basic elliptic fibration
p: B — S associated with H, there is an exact sequence:
Pic(B) H*(B*, p,,)
V,-1p(B) + Pic(S) m H2(S* p )
where V,-1p(B) is the image of Div,-1p(B) — Pic(B) (cf. 3

(6.16) 0—

®Q/Z — lim — H'(S, S p/s)tor — 0,

A45).
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Proof. Let us consider the multiplication mappings by a positive integer m in the triangle

S T Rj H — Liys @ Quys[—1] — Gpys T -+

Then the map Gp/s RaliLN Gy s is surjective and its kernel ,,, & /g is isomorphic to 1*(H®

M) ~ais B (H @ p,,) by 4.4.1.. Thus we have an exact sequence
0— H0(§7 6H/ﬁ) ® My — HI(S*>H ® .u‘m) - mH1(§> 6H/ﬁ) — 0.

The inductive limit for p,, C Q/Z induces the first exact sequence (6.14). The second
sequence (5.13) follows the isomorphism &p/s ® Q/Z ~ Tys ® Q/Z. The morphism
O% — Ri,Zg+[1] of (6.11) induces a homomorphism
Pic(B) @ py, — H*(B*, ) = H*(S*, pr,) & H'(S*, H ® fu,) & phy,.
by (6.9). Then we have an exact sequence
Div, 1 (B Pic(B H2(B*,
won(B) | PeB) B
Divp(S) Pic(9) H2(S*, w,,)
& The third exact sequence (6.1G) is obtained by the inductive limit for p,, C
Q/Z. [

— mHl(ﬁ, 6H/§) — 0.

Definition 6.2.10. Let SV C S be a Zariski-open subset with S* C SV. We define the
group III(SY/S, H) to be the kernel of H*(S, Sp/g)tor — H°(SY, R'e,Spys). In the case
SY =S, we simply write II(S, H) := III(S/S, H) ~ H'(S, S /s)tor-

Proposition 6.2.11. Let S¥ C S be a Zariski-open subset with S* C SV. Then, there is

an exact sequence
L
(6.17) 0 — H°(S,6ny5) ® Q/Z — lim H'(S7,L};/5© p,,) — UI(S”/S, H) — 0.

For the basic elliptic fibration p: B — S associated with H, suppose that p is flat over

SV and set BY := p~'SY. Then we have an exact sequence
(6.18)  (Pic(B)/Pic(9)) ® Q/Z — h_r)nm H*(BY, )/ H*(S",u,,) — 1(SY/S, H).

If S is compact, then the cokernel of the right homomorphism is a finite group (cf. [D3,
2.24]).

Proof. For a positive integer m, we have quasi-isomorphisms

L . .

They induce a triangle

L
L S @y, — (TaRj(H @ )] = m(Re.Sps) 5 -
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By taking cohomology groups over SV, we have a commutative diagram of exact sequences

L
0 —— HO(SV,GH/S(X)um) _ HI(S* H®l"‘m) _ HO(SV,m(ng*GH/E))

T | T

0 —— HO(S, Suss) ® m,, —— HY(S* H®p,) — mH (S, Suss)s
where the right bottom arrow is surjective. The first exact sequence (5:1:7') follows the
quasi-isomorphism Gp/g G%um ~ais Lir/s G%,um[l] Let v: C — p~'D be the normaliza-
tion. Then H? _1D(ZB) ~ v, L& by 8.2.4. since B is non-singular. For simplicity, we write

Z¢ for v, Zs. Since RY(pov).Zg is a sheaf of torsion-free abelian groups, we have

p*H —1D(ZB) ® Koy ~ais Py (ZC’ ® l’l‘m)

For the normalization D — D, we have only an injection H2(Zs) — Zp. Now SV is
non-singular, since p is flat over it. Let DY C D be the pullback of DNSY and let C¥  C
be the pullback of C' N BY. Then H%(Zs)|sv =~ Zpv, H5(Zs)|sv Q%um ~is Lpe @ M
and Vplsv ~ p,Zgv/Zps by 5.4.7. Since Zgv — Rp,Zgo has a splitting (cf. 5.4.2), we

have an exact sequence

Ho(évnu‘m) H2(Bv>:u‘m) 1 v . 1 \%
b — — HY(S", 5®um) o, — H(S",Ve®u,)

7l’l‘m) H2(Sv7l’l’m)

from 6.2.8-(2). Here, the last homomorphism is decomposed as
L L
HI(SV7IL’;{/S ®l’l‘m) D, — HO(SV7 ‘ZH/S ® l’l‘m) - H1(5V7 VB ® l’l‘m)
Let G(m, S”) be the image of the composite. Since H'(C¥, p, ) — H (CVNp~15°, u,,)
is injective, we have injections
HY(SY, V@ u,)— H(S"NS° Vg@p,), and G(m,S")— G(m,S"NS°).
L

If m is divisible by 12, then H(SY N S°, Ty s @ p,,) =~ HH(SV N S°, Tyyyse) & HO(SY N
S°, %pyge). Thus, lim G(m, SY) is a finite group provided that S is compact. Now we

have the following commutative diagram of exact sequences

H(C,7) Pic(B)

— ® —— H°S,6 ® W, B Wy,
m0.2) ° P Pic(g) & Hom (5, 61ys) @ P, B
H(CY, ) H*(B", p,,)

L
1 v °
2D, ) (57, ) HAE" Lizjs © i) © b
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Here the left vertical arrow is surjective, since CV is a Zariski-open subset of C'. Hence
the first exact sequence (6.17) induces the second sequence (6,18). The cokernel of
H*(BY, p,,)

: v
() D
is isomorphic to lim G(m,SY). O

Remark. Assume that there exist another open immersion SV < S and a bimeromorphic
morphism p: S ~— 5" such that

(1) SV is a Zariski-open subset of ',

(2) S* C S’ is a toroidal embedding,

(3) p|sv is the identity of SV.
Then III(SY/S, H) ~ I11(SY/S', H) by 6.2.11.
Theorem 6.2.12. Suppose that S* C S together with a point 0 € S is a d-dimensional
toroidal embedding of type (N,l,0). Then we have

HY(S,8nys) =~ (R'e.Gpys)o  and  H'(S,6pn/s) ~ H'(S°, 650 )ror-

Let {v1,vs, ..., v} be the set of all the vertices of o, @, Zv; — N the induced morphism,
and let M = Hom(N, Z) — M’ be its dual. Then the cohomology groups H'(S, Sy /s) and
H'Y(S°,Gpys0), and the restriction mapping H'(S°, Sy/g0) — H(S*, &) ~ H*(S*, H)
are described as follows:
e The case H is of type Iy. There are isomorphisms H'(S,Sp/s) ~ M @ (Q/Z)%2,
HY(S*,65) ~ M® Z*?, and
HY(S°, G g0) =~ (M(’@/M)EB2 ® H'(S°, Os0).

The restriction mapping H'(S°, Sy s0) — H'(S*,Sy) is a zero map.

e The case H is of type Iy). Assume that H is of type 1o for 0 # a € 0¥ N'M and
a = au for a positive integer o« > 0 and for a primitive element w € M. For
numbers a; = {(a,v;), let M' = M? & Mt be the direct sum, where M® is dual to
PB.,—o Zv; and MT is dual to @, ~o Zv;. Then

H'(S,6y/s) ~Q/Z ® Hom(N(a' N0),Q/Z) & (MAu/MAa),
HY(S°, Gpyse) =~ H'(S°, Oge) @ My/Za & M%/Hom(N(a™ N o), Z)a
2
© M/Zu & AM/MAa.

The restriction map H'(S°, Sy s0) — H'(S*, &p) is the projection to the factor

2
M/Zu & AM/M A a~ H'(S*, &) ~ H*(S*, H).
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e Other cases. There are isomorphisms
Hl(ﬁ,GH/i) 2H2(S*,H) and H1(§°76H/§o) ZHI(SO,EH/SO)@H2(S*,H).
The restriction map H'(S°, &pjg0) — H'(S*,&y) ~ H?(S*,H) is the second

projection.

Proof. We have H'(S, Lys) = 0. Hence H'(S*, H) — H'(S°, Lys) is zero since it
passes through H'(S,Lp/s). Hence H'(S®, Gy g0) contains H'(S°, Ly/so) as a direct
factor. The rest factor is an extension of H?(S* H) by the cokernel of H'(S* H) —
H°(S°, Qp/se ® Q), since R?*j.H|go = 0.

We have H?(S*, H) ~ (RPj,H), for any p and H°(S, Qu/s) ~ (Quys)o by B.L4. The
isomorphism H'(S, Sy /s) ~ (R'e,Sp/g)o is derived from the commutative diagram

HY(S* H) —— H°(S,Qu/s®Q) —— H'Y(S,6x/5) — H*(S*, H)tor — 0

| \ l |

(R'jH)y ——  (Qus)0®Q —— (R'e«.Spy/5)0 —— (R?jiHior)o —— 0
obtained by $.2.5. Thus H'(S, GH/S) is a torsion group and hence H'(S, Sy g) =~
HY(S°,Gp/s0)ior by 6.1.8. From 6.2.5, we infer that H'(S,&p/s) is the extension of
H?(S*, H)ior by C(H/S) @ Q/Z. Since C(H/S) is a free abelian group of finite rank,
H(S, S 1y5) = C(H/S) & Q& H(S*, ).

Therefore, in order to calculate these cohomology groups, it is enough to describe the

following two homomorphisms
(6.19) H'(S*,H) — H°(S,Qu/s ® Q);
(6.20) HY(S*, H) — H°(S°,Qp/s- ® Q).

If H is neither of type Iy nor Iy, then we have Qp/s = 0. If H is of type Iy, then
R'j.H ~ Qy/s. Hence (5_1_9_) is isomorphic to the natural injection M®? — M@2 Since

k
H(S°, Qpyso) = @ HY(D;, Z%2) =~ M'®2

=0

('6-20) is isomorphic to M®?2 — M’@Q. Suppose finally that H is of type I, for 0 # a €

H(S,Qms®Q)~ Qe Hom(N(al No),Q), and H°(S°,Qu/se ® Q) ~ M;

and we infer that H°(S, Qp/s ® Q) — H°(5°, Qp/se ® Q) is isomorphic to the direct sum
of @ = M{ and the natural inclusion Hom(N(a* No),Q) — MF@. The homomorphism
(6.19) is written as Z®&M/Za — Q@ Hom(N(a'No), Q) which is the sum of Z — Q and
the natural homomorphism M/Za — Hom(N(a* N o), Q). Hence the cokernel of (6.19)
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is isomorphic to the direct sum Q/Z @ Hom(N(a* N o), Q/Z) and the cokernel of (6.20)

is isomorphic to Mg/Za @ M/ Hom(N(a' N 0o),Z). O

Remark. There is another way to calculate (R'e.&ys)o by using (6.15).

6.3. Description of £(S, D, H).

We assume that p~'D is a normal crossing divisor for our basic elliptic fibration
p: B — S. Recall that the fixed zero section o of p defines a relative meromorphic

group structure of p.

Definition 6.3.1. A 0-étale covering family {ypn: U, — S}taca is called good if the
following two conditions are satisfied:
(1) Let [Ua, Ds] be the top realization. Then the image S, := ¢a(U,) is an open
subset of S.

(2) The morphism ¢, : U, — S, is a finite Galois covering.

For a good 0-étale covering family {U, — S}aea, let H, be the pullback of H to U, \ D,.
Let p,: B, = B(H,) — U, denote a basic elliptic fibration associated with H,. For
two indices o, § € A, let U, g be the normalization of U, xg Ug. Then [U, g, Do g] is
the top realization of U, x g Uz for a naturally defined boundary D, g. We have also the
pullback H, g of H to Usp \ Dag. Let p,5: Bap = B(Hap) — Usp denote a basic
elliptic fibration associated with H, 3. Note that U, , ~ G, x U, for the Galois group
G, of po: Uy, — S,. For a given 0-étale covering family of S, there is a finer and good
0-étale covering family. Thus we need only good 0-étale covering families in order to
consider 0-étale cohomology groups.

Let (f: X — S, ¢) be a marked elliptic fibration belonging to & (S, D, H) such that X

is non-singular and that f~'D is a normal crossing divisor. Then the exact sequence
0— &pys = R f,Ox/Vx = Zs — 0

defines a cohomology class n(X/S, ¢) in H'(S, Sy s) that depends on the bimeromorphic
equivalence class of (f, ¢). The n(X/S, ¢) is also constructed as follows: By the assump-
tion, there exist a good 0-étale covering family {U, = (Ua, Do) — S} as before and
bimeromorphic mappings h,: X, -— B, over U, that preserves the marking ¢, where
X, denotes the normalization of the main component of X xg U,. The bimeromorphic
mapping hg o h': B, ++— Bp, is the translation mapping of a meromorphic section
Na,3 Of Bog — Uy, since this preserves the pullback H, 3 of H. By the construction
of Uy, we infer that n(X/S,#) above is determined by the cocycle {n. s} (cf. 5.5.2).

Moreover, the map & (S, D, H) — H'(S, Sy s) is a group homomorphism by 5.2.5.
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Lemma 6.3.2. & (S,D,H) — H'(S,Sys) is injective.

Proof. For two marked elliptic fibrations (fi: X1 — S,¢1) and (f2: Xo — S, ¢2) in
&E1(S, D, H), suppose n(X1/S, ¢1) = 1(X2/S, ¢2). Then there exist a good 0-étale covering

family {U, — S} and bimeromorphic mappings
hia: Xiq = Bs, and hoo: Xoo = B,

over U, that preserve the marking ¢, where X;, denotes the normalization of the main

component of X xg U,, for + = 1, 2. The bimeromorphic mappings
hiﬂ o) h;é Ba”g e — Ba”g

for © = 1, 2, respectively, are the translation mappings of meromorphic section 77375 of
B,s — U,p. By taking a finer 0-étale covering family, we may assume that there is a

collection of meromorphic sections o, of B, — U, such that

Mo — N = Pal(0a) = D5(0s),
where p, and pg, respectively, stand for the projections U, 3 — U, and U, 3 — Us.
Thus we have a collection of bimeromorphic mappings g, : X1, +— X2, such that the
pullbacks of ¢, and g3 to U, s are same. Therefore we can glue these ¢, to a global

bimeromorphic mapping X; --— Xj over S. 0

Lemma 6.3.3 (cf. 5.5.4).
EPNS, D, H) = HY(S, Sp/s)ior N E(S, D, H).

If (f: X — S, ¢) is contained in the set above, then there is a finite surjective morphism
7: 58" — S such that T is étale outside D and that X xgS" — S' admits a meromorphic

section.

Proof. Let (f: X — S, ¢) be a marked elliptic fibration contained in £(S, D, H). If f is
BP and if X is non-singular, then there is an invertible sheaf of X with positive degree on
a smooth fiber. Thus if further (f, ¢) € & (S, D, H), then the cohomology class n(X/S, ¢)
is a torsion element. Therefore, we have EP* (S, D, H) C H'(S, G 5/s)tor-

Next, suppose that (f,¢) € & (S, D, H) and that the order m of n(X/S,¢) is fi-
nite. There are a good 0-étale covering family {¢s: U, — Staeca and a Cech cocycle
{Na,8} of &pyg representing n(X/S,¢). Let po: Usg — U, and pg: Uy — Up stand
for projections. We may assume that there are sections o, of B, — U, such that

MNa,ps = ps(0p) — Pi(0a) for any a, B € A. Let u: B ~— B be the multiplication
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mapping by m. Then we have p o tr(n,5) = tr(mn.z) o p for the same multiplication
mapping p: By g -+— B, . Therefore, the meromorphic mappings defined by

bim tr(—oq)

X xsU, 2 B, - B, -—% B,

can be patched to a generically finite meromorphic mapping px: X -— B over S. Let
X* — S* be a smooth elliptic fibration bimeromorphically equivalent to f~'S* — S*.
Then px induces a finite étale covering X* — B*. Let S” be an irreducible component
of the proper transform of the zero section 3 of p: B — S by ux and let 8" — " — §
be the Stein factorization. Let S* C X* be the proper transform of S” N f~1S*. Then
S* is an irreducible component of the proper transform of ¥ N B*. Since ¥ N B* =~ S*,
S* — 5* is a finite étale morphism. In particular, S’ xg S* ~ S*. Therefore the finite

morphism S’ — S is étale outside D. ([l

The following theorem is proved in the case S is non-singular in [N4, §4].

Theorem 6.3.4.
&E(S,D,H)=&(S,D,H).

This means that for any LBP elliptic fibration f: X — S satisfying the condition 5.2.1;

and for any point s € S, there exist a 0-étale neighborhood (U, D) — (S, D) of s and

a meromorphic section of X xgU — U.

Proof. First we shall show & (S°, D*, H) = £(S°, D*, H). Thus we may assume that S
and D are non-singular, i.e., S = S°. Since the property is local, we can localize S if
necessarily. Let (X — S, ¢) be a marked elliptic fibration in £(S, D, H). Then there
exists locally over S a finite branched covering S’ — S such that it is étale outside D
and that the general singular fiber of X xg 5" — S’ is reduced. By 5.5.5, X xg 8" — &
admits a local meromorphic section. Hence (X — S,¢) € & (S, D, H).

Next, we treat the general case. Let (f: X — S, ¢) be an element of £(S, D, H). Then
its restriction to S° determines an element of & (S°, D*, H) ~ H'(S°,&p/g). There is

an exact sequence:

0— HY(S,6py5) = H'(S°,6pys0) — H(S, R j°Gpy50).

By 6.1.8, the image of the cohomology class n(X°/S° ¢) in any stalk of R'j°Gpg0

is zero. In particular, there is a 0-étale covering family {¢p.: U, = (Us, Do) — S}
such that X xg U, — U, admits a meromorphic section over U = U, xg S°. Since
codim(U, ~\ U2) > 2, the meromorphic section extends to U, +— X xg U,. Therefore

(f7¢)€61(S7D>H)' O

We pose the following
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Problem 6.3.5. Is the map £(S, D, H) — H*(S, &y/s) bijective?

For an element n € H*(S, Ghys), we have a good 0-étale covering family {U, — S}aea
and a Cech cocycle {5} gen Of G5 representing 7. The 7, 4 is a meromorphic section
of the pullback of p: B — S to U, >~ G, X U,. Thus it defines a cocycle contained
in Z(Ga, H'(Us, Sy, v, )). Therefore, we have a new meromorphic action of G, on B,
compatible with U,,. Since G, is a finite group, we can define the ‘quotient’ G,\ B,, up to
the bimeromorphic equivalence over S, ~ G,\U,. Let us choose a model X, of G,\B,
such that f,: X, -+— S, is holomorphic. By the cocycle condition for 71, , and 7, g, there

is a bimeromorphic mapping
Xo X5, (Sa X5 Ug) = p 1(Sa) x5 Us
over S, X g Ug. Therefore we have meromorphic mappings
hagt f5'(Sa N Sp) = f5(Sa N Sp)

such that hapgo hgy o hyo = id over S, NSz NS,. Hence if we choose models X, so
that h, s are all holomorphic, then we have a marked elliptic fibration (f: X — S, ¢)

corresponding to 7.

Theorem 6.3.6. The injection E(S°, D*, H) — H*(S°,&pys) is bijective. Further any
cohomology class is attained by uniquely a relatively minimal locally projective elliptic
fibration.

Proof. We may assume that S = S°. Thus D is non-singular. According to the argument
above, it suffices to construct models X, of G,\B, such that X, — S, is minimal and
that ha s are all holomorphic. The minimal models X, — S, are constructed in [N4,
§5]. O

Proposition 6.3.7. Suppose that mn € £(S, D, H) for an element n € H(S, Sy /s) and
for a positive integer m. Then n € E(S,D, H). More precisely, if (g: Y — S, ¢,) corre-
sponds to mn, then there exist a marked elliptic fibration (f: X — S, ¢5) corresponding
to n and a finite morphism p: X — 'Y over S such that the homomorphism

by

HY Hg) " v ZH

is the multiplication by m. In particular, if g is smooth over S*, then (f~1S* — S*, ¢) is
a marked smooth elliptic fibration corresponding to n|s< € E£(S*,0, H), and pu: X — Y is

the unique extension of a finite étale morphism f~15* — ¢g=15*
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Proof. Let {U, — S}aea be a good d-étale covering family and let {1, 5} a.sea be a Cech
cocycle of Gy /g representing 7. Let X, and h, g be the varieties and the meromorphic
mappings, respectively, defined as before. Let (g: Y — S, ¢) be a marked elliptic fibration
corresponding to mn. The multiplication mapping B -+-— B by m induces meromorphic
mappings fla: Xo +— ¢ 1(Ss) such that u, o ha s = usg over S, N Ss. By replacing X,,
we may assume that p,: X, — ¢~1S, are finite morphisms. Then ha.s are holomorphic

and thus we have a marked elliptic fibration (f: X — S, ¢) corresponding to 7. OJ

Remark. The multiplication mapping Gy /5 =0, G5 by a positive integer m is surjec-
tive, the kernel ,,, S /s is isomorphic to j_(H®p,,), and H'(S, & pys) ~ H'(S*, HOp,,).
Thus we have a commutative diagram

H(S,6nys) —— H'Y(S,mGnys) —— H'(S,Gpys)

l | l

H°(S*,&y) —— HY(S*,H®mnp,,) —— H'(S*,&g).
If mn' = mn and if n'|s» = n|s- for another ' € H'(S,Sp/s), then o' — 7 is coming
from o* € H°(S*,&y). Let (9: Y — S,¢) be a marked elliptic fibration representing
mn = mn'. Suppose that ¢ is smooth outside S*. By 6.3.7, there exist marked elliptic
fibrations (f: X — S5,¢) and (f': X' — 5',¢), and finite morphisms ux: X — Y and
px s X' — Y such that n = n(X/S, ¢), n = n(X'/S, ¢) and that px and px, are derived
from the multiplication mapping by m. Then we have an isomorphism h*: X|g« = X'|g«

such that px o h* = tr(e™*) o ux for the translation mapping tr(e*): B* — B™.

Theorem 6.3.8. The subgroup EP*(S, D, H) C £(S, D, H) is identified with the torsion
part H*(S, &n/s)tor- For an elliptic fibration f: X — S satisfying the condition 2.1, f
is BP if and only if there is a prime divisor I' C X such that f(I') = S. If f is smooth

outside S*, we can choose I' to be étale over S*.

Proof. Let m be the order of an element n € H'(S, Sh/s)tor- Let p: B — S be a basic
elliptic fibration associated with H such that p~1S* — S* is smooth. By 6.3.7, there
exist a marked elliptic fibration (f: X — S, ¢) representing n and a finite morphism
p: X — B of degree m? over S. Let ¥ C B be the zero section and let I" be an
irreducible component of '3, Then f(T') = S and T is étale over S*. O]

By 6.2.12, we have

Corollary 6.3.9. Let s € S be a point. Then (R'e.GSpyg)s describes all the germs of

marked projective elliptic fibrations defines near s that is smooth over S*.
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Theorem 6.3.10. Let S* C S together with a point 0 € S be a toroidal embedding of type
(N,l,0). Let f: X — S be a BP elliptic fibration satisfying 5.2.1. Suppose that H(f)
s not of type IE*JF)). If f has no meromorphic section, then there exist a bimeromorphic
mapping M — S and a prime divisor I' C M such that the singular fiber type along I' is

mla for somem > 1, a > 0.

Proof. Step 1. We follow the notation of 13 Let v € o NN be a primitive element. It
corresponds to a prime divisor I' of a normal variety V over S, where pu: V. — S is a
bimeromorphic mapping obtained by a subdivision of ¢ and hence V* := p~1S* ~ S*
and V* C V is a toroidal embedding. Let U C V be the complement of the reduced
divisor (41" D)yeqa — I'. Then I'* = I'N U is non-singular and jy: V* C U is also a toroidal

embedding. We have an exact sequence

(6.21) 0 — H(S,Thys) @ Q/Z — H'(S*, H © Q/Z) — H'(S, S pyg) — 0

by 6.2.9 and an isomorphism H°(S, Sp/s) @ Q/Z ~ H°(S,Th/s) ® Q/Z. According to

the argument of 4.3.3, we infer that the restriction homomorphism

(6.22) H'(S*,H® Q/Z) — H(I'", R'ju.(H ® Q/Z))
is written as H' of the following morphism of complexes:
Kosygpa (M @ Q/Z, b) — Kosy, 1 amyea (1M @4 A/b(v) @ Q/Z,b')[1],

where b’ is determined as the homomorphism N/N(v) — A/b(v) inducing the commuta-

tive diagram

N 2. A

l l

N/N(v) —2— A/b(v).
Step 2. The case H has only unipotent monodromies. We have b = 0 in the case Iy,

and b = ae in the case I,. First we consider the case Iy. Then (5:2:2') is isomorphic to
M® (Q/2)** — (Q/Z)*

induced by v: M — Z. There is a generator {7, 72, ..., } of N such that v; € o for any
7. Hence if the elliptic fibration f: X — S is not basic, then the singular fiber type over
I'is ,,Ip for some m > 0 for some v. Next, we consider the case I, with a # 0. Then

(6.22) is isomorphic to

a'M+Qa M®Q . a'Z)Z®QJZ, ifa(v)
M M+ Qa Q/zZ, if a(v) >

Y

0
0
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Here if a(v) = 0, then this is the sum of (a™'M + Qa)/M — a'Z/Z and M ® Q/(M +
Qa) — Q/Z both of which are induced from v: M — Z. If a(v) > 0, then this is
derived from the natural homomorphism (a™'M + Qa)/M — M ® Q/M = Q/Z. Let
(a™'x+ Aa,y) for A € Q, x € M, y € M® Q be a representative of («™*M + Qa)/M &
M® Q/(M + Qa) whose image under the restriction mappings are zero for all primitive
v € 0 N M. Since a™'x(v) + Aa(v) € Z for all v, we infer that a~'x + Aa € M. Since
y(v) € Z for v with a(v) = 0, we infer that y € M+ N(a* N o)+ ® Q. However, we have
M+N(@ no) @Q _
M+ Qa
Therefore, the element of H'(S*, H ® Q/Z) corresponding to (a«™'x + Aa,y) is coming
from H°(S,%p,s) ® Q/Z. Consequently, the induced marked elliptic fibration is basic.

N(a™ No)*t/Za® Q/Z ~ H(S,Ty/s) ® Q/Z.

Step 3. Good choice of a generator of N. We may assume the type of H is one of I(()*),
II®), IV, Let Nunip C N be the subgroup consisting of all v with p(y) being unipotent.
Let m be the order of N/Nyni,. Then m € {2,3,4}. There is a generator {v1,72,...,%}
of N such that y; generates N/Nypnip >~ Z/mZ and that ; € Nypip for j > 2. We want to
change it to satisfy further condition: «; € o for j > 2. For ¢ > 2, we set

v =mem + Vi,

for integers ¢;. Then {v1,7,...,7/} is also a generator of N and 7} € Ny for j >
2. For some choice of (¢;), the hyperplane cut o N @', R/ is still a strictly convex
rational polyhedral cone in @!_, Ry/. Hence there exist primitive vectors 74, ...,7/ in
the hyperplane cut. Thus {~,7%,...,7/} is a required generator.

Step 4. The cases I(()*), I, IV®. As in the argument of Step 1, we consider the
exact sequence (:'6:2:1'), and the restriction homomorphism (5:2:2-) for a primitive element
v € 0 NNynip. By Step 3, we have a generator {1, 72, ..., %} of N such that v; € o N Nypip
for j > 2. Then b(y;) =0 for j > 2. The § := b(71) is —2 in the case I(()*), +i—1in the
case IT1I™ | w*' — 1 in the case IV®). We infer that (6.23) is a factor of the homomorphism

Qb+ M@ A

Qb+M® A
derived from v; ®id: M® A — A. Let 37'x for x € M® A be a representative of the left
hand side. Then the image is zero if and only if S7'x(v;) € A + b(7;)Ag. If the images
are zero for any j, then 371X € Qb+ M ® A. Hence all the intersection of the kernels of
(6.22) is zero. O

me

— M ®A/b(1)A® Q/Z

Example 6.3.11. Let us consider the following special case of IE*JF))(O): Let S be a two-
dimensional unit polydisc A%, D = Dy + D, the union of coordinate hyperplanes, and

assume that the monodromy type of H is Ij along D; and I, along Ds. Let v; € N >~ AR
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be an element corresponding to D; for i = 1, 2. Let (e, es) be the base of M dual to
(71,72). Then b = —2e; + 2eey. Let v € o NN correspond to a prime divisor I' of a
blown-up surface from S. Then the homomorphism (6.22) for I is a factor of
Qb+2'M® A
Qb+M® A
for A = Z[e]. We have b(v)Ag = Ag if e1(v) # 0 and b(r)Ag = €Ag otherwise. The
image of v := 27 eey € Qb+2"'M® A is zero for any v, since v(v) = 27 ees(v) € b(v) Ag.

However, v ¢ Qb+ M ® A. Hence, $.3.10 does not hold in this case.

)y walea

— A/b(v) ®Q/Z,

Concerning with Problem 6.3.5, we have
Theorem 6.3.12. Suppose that n € H*(S,Sp/s) is mapped to a torsion element of
Hl(ﬁ, ‘:{H/ﬁ) by GH/§ — ‘:{H/ﬁ Then ne S(S,D,H)

Proof. By 6.3.7, we may assume that 7 is the image of § € H'(S, 6}7}’@). A section
of 6}7}’/5 over S defines a holomorphic automorphism W — W as the translation for
the generalized Weierstrass model W = W (H) associated with H by 5.L.4. In order
to construct marked elliptic fibration representing 7, let {U, — S} be a good 0-étale
covering family as before and let {f, 3} be a Cech cocycle of 6}7}’@ representing 0. We
may assume that the local monodromies around H, are all unipotent. Then we can
replace a basic elliptic fibration B, — U, by the minimal Weierstrass model W, — U,
associated with H,. Then W, xy, Uyg =~ Wg XU, U, and it is isomorphic to the
minimal Weierstrass model W, 3 associated with H, g. Since the translations by 6, s are
holomorphic, we have holomorphic quotients X, := G,\W, and holomorphic transition

mappings ha 5. Thus we have the twist W? — S of W that represents 6. O

Corollary 6.3.13. Let Z C D be the set of points x around which H is of type 14). If
dim Z <0, then E(S,D,H) = H*(S,&n/s).

Proof. If ©x ¢ Z, then (Ty/s), is a torsion group and 2(Tp/s), = 0. Let 2Ty,5 be
the image of the multiplication map Tp/s — Tgys by 2. Then H'(S,2%p,s) = 0 by

dim Z < 0. Therefore, 2H'(S, Ty/s) = 0. Thus we are done by 6.3.12. O

Example 6.3.14. Let p: X, — A% = {(t;,t5) € C | |t;| < 1( = 1,2)} be the toric
model (cf. [N4, §4]) associated with the sign function o: Z — {1,2} given by o(n) =1
for n odd, and o(n) = 2 for n even. Then p has singular fibers of type I; over both
coordinate line {t; = 0} (i = 1,2). The X, is defined as a quotient of X, which is a
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localization of a toric variety. We have an open covering {U, } of X, defined as follows:
Un = {(t27Cn777n) € C?) | |Cn77n| < 17 |t2| < 1} fOI’ n Odd?
Un = {(tme??n) € C3 | |Cn77n| < 17 |t1| < 1} fOI’ n even,

and the patching relation is given by: (.7, = ts(n) and (417, = 1. There is an isomor-
phism X, x 52 (A%)* ~ C* x (A?)*. Here, we can choose a coordinate of C* to be s := (p,
for example. Then X, is obtained as the quotient of X, by the automorphism s — st ts.
The meromorphic section {s = t;} of X, — A? induces a meromorphic section I' C X,.
Similarly, the section {s = 1} induces a holomorphic section ¥ C X,. We consider X as
the canonical section. Let g: X, -— X, be the translation by the meromorphic section
I'. For the induced VHS Hy, the group (T, a2)o is a free abelian group generated by I'.
Thus any compositions g™ are not identical except for m = 0. In fact, the ¢™ corresponds
to the meromorphic section {s = t7"}.

Let M be a complex manifold with an element ¢ € H'(M, Z) of infinite order. For the
base space S = A® x M, we define a VHS H to be the pullback of Hy to (A*)* x M. We
can find a cohomology class n € H'(S,Sp/s) as the image of ' ® ¢ € HY(A% &y, /s) @
H'(M,Z). There exist an open covering {V, }aea of M and integers c, 5 for V, N'Vz # ()

such that the collection {c, g} satisfies the cocycle condition:

Ca76 = _Cﬁ7a7

Caft oyt cya=0 for VoNVzNV,#0,

and that {c, g} represents c. If there is a marked elliptic fibration that induces n under
the map £(S, D, H) — H'(S, &pys), then it is bimeromorphic to X, x V,, over A? x V,,
and the patchings are given by:

g8 xid

XC, X (Va N Vg) e —> Xg X (Va N Vg)

It seems to be impossible to patch them. We have another description of 7. Let w1 (M) —
Z be the surjective homomorphism induced by ¢. This induces an étale covering \: M —
M with the Galois group isomorphic to Z. Let 6 be the generator 1 of the Galois group.

Then we have a meromorphic automorphism
~ 0 ~
X, x M -2 X, x M,

which is not holomorphic. The m-times composite is not holomorphic except for m = 0. If
a marked elliptic fibration associated with 7 exists, then it is bimeromorphically equivalent
to the quotient of the meromorphic action gx6 of X, x M. Does the meromorphic quotient

exist 7 In this case, the image of n under H'(S, &y,5) — H?*(S*, H) is non-zero.
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7. APPLICATIONS

We consider the following applications: Ueno’s extension problem (Section 1-7:]1), a rela-
tion between Tate-Shafarevich group and our £(S, D, H) (Section 7.2); a generalization
of some results of Gross [(Gf] on the study of minimal models with trivial canonical di-
visors and with elliptic fibration structures (Section :‘7:3), a characterization of Kahler
morphisms (Section 7.4); a new description of logarithmic transformation by means of
0-étale cohomology theory and its generalization to higher dimension (Section 7_7-._5); and

on the projectivity of logarithmic transform of elliptic surfaces (Section i7.4).

7.1. Extension of elliptic fibrations

Let V be a normal complex analytic variety and let Dy be a nowhere-dense analytic
subset such that the complement V* := V ~ Dy is non-singular. Suppose that a VHS H
is defined on V*. Let us consider the set EP™(V, Dy, H) of bimeromorphic equivalence
classes of marked elliptic fibrations (f: X — V, ¢) satisfying the following conditions:

(1) fis BP;
(2) The restriction f~'V* — V* is bimeromorphically equivalent to a smooth elliptic
fibration f"*: X' — V*;
(3) ¢ is an isomorphism H(f) := R' " Zx~ = H as VHS.
Let us fix a Zariski-open subset VV° C V satisfying the following conditions:
(1) V* C V° and the complement D}, := V° \ V* is a normal crossing divisor.
(2) codim(V ~\V°) > 2.
We denote V° := (V°, Dy).

Theorem 7.1.1. There is an identification:
gproj(u Dy,H) «—— HI(KO7 GH/Z")tor'

Proof. We have a bimeromorphic morphism p: S — V such that

(1) S is non-singular,

(2) p~*(V°) — V° is an isomorphism,

(3) D :=u~'(Dy) is a normal crossing divisor.
In particular, S* = S~ D ~ V* and H is defined on S*. Then we can identify
EPI(V, Dy, H) with EP™I(S, D, H), by considering pullbacks and compositions. There-
fore we have only to show that the restriction map EP*I(S, D, H) — EP)(V°, D}, H) is
bijective. Note that the map is identified with

(71) Hl(ﬁ, 6H/§)tor HHI(KO,GH/Z")tor
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by 6.3.8. We have a commutative diagram of exact sequences
0 —— CUH/S)®QZ —— HYS,Gushor —— HAS" How — 0

l l

0 — O(H/VO)®@/Z - HI(KO>GH/Z°)tor EE— H2(V*>H)tor — 0

by 6.2.5. Since codim(V \ V°) > 2, a meromorphic mapping V° -— B over S into
the basic elliptic fibration B — S associated with H extends to V --— B. Thus
HO(S,8&p/s) ~ H'(V°,&p,ve). Hence C(H/S) ~ C(H/V°) and (7.1 is bijective. O

Corollary 7.1.2. Any smooth projective elliptic fibration over V* extends to a BP elliptic

fibration over V.

Proof. 1t suffices to show H*(V°, &g ve )tor — H'(V*, &g )ior Is surjective. By 6.2.5, this
is surjective if C(H/V°) — C(H/V™) is surjective. Since C'(H/V°) and C(H/V*) are
both quotients of H'(V*, H), this is surjective. O

Concerning with extension of non-BP elliptic fibrations, we have the following problem
posed by Ueno (cf. [F4, 11, 1.15)):

Problem. Let ¢°: Y° — (A%~ {0}) be a smooth elliptic fibration having no global

sections. Then does it extend to an elliptic fibration over A% ?

The VHS H(g°) has only trivial monodromies, since A* \ {0} is simply connected.
Let H be the natural extension of H(g°) to S as VHS. We can attach a cohomology
class in H'((A? \ {0}),&y) to ¢°. We have an isomorphism H'((A? \ {0}),&p) ~
H'((A*~ {0}),0), which is an infinite-dimensional C-vector space. By the assumption,
the cohomology class is not a torsion element. Therefore, we can not extend ¢g° as a
projective morphism. Furthermore, by [Nél', §3], it is also impossible to extend as a
Kahler fibration. Therefore, if we have a positive answer to the problem, we will find an
interesting non-Kéahler threefold. However, here we shall give a negative answer by using
the 0-étale cohomology theory. We can treat similar extension problem also for the case
of other types of VHS and for higher dimensional case.

We assume that S is a d-dimensional unit polydisc A¢ with a coordinate system
(t1,t2,...,tqs) and that D is the union of coordinate hyperplanes D; = {t; = 0} for
1 <i <1, where 1 <[ <d. Let us fix a Zariski-open subset S® C S such that S* ¢ S*
and codim(S \ S*) > 2. The answer to the problem is negative by the following:

Theorem 7.1.3. Let g: Y — S® be an LBP elliptic fibration over S® which is smooth

over S*. Then the following two conditions are equivalent:
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(1) There is an elliptic fibration f: X — S whose restriction f~1S* — S* is bimero-
morphically equivalent to g over S*;
(2) g is a BP elliptic fibration.

Proof. The implication (2) == (1) follows 7_[.1. We divide the proof of the other impli-
cation into the following 7 steps. Let H = H(g) be the VHS defined on S™*.
Step 1. We may assume that S* C S°.
Suppose that the restriction of f to the open subset S#° := S N S° is BP. Then the
injection H*(S*, &py/s) — H'(S*°,&pys) sends the cohomology class [g] to a torsion
element. Hence ¢ is BP by 5.3.8.
Step 2. We may assume that H has only unipotent monodromies.
Let 7: 8" ~ A% — S be the Kummer covering given by 7*t; = ¢ for some positive
integers m;. We may assume that 7 is étale outside D and 77'H defined on S’ ~. 771D
has only unipotent monodromies. If the pullback of g to 7715% is BP, then so is g.
Step 3. Flattening of f.
We have a Zariski-open subset S* C S such that codim(S \ S?) > 2 and the restriction
f1S” — S is flat. By Hironaka’s flattening [13] of f, we have a bimeromorphic mor-
phism p: M — S from a non-singular variety and an LBP elliptic fibration h: X' — M
satisfying the following conditions:
e 4 induces an isomorphism p~1S” = SP;
o M~ p 'S is a divisor E = > B
e Dy :=p (D) is a simple normal crossing divisor on M;
e /1 0 h is bimeromorphically equivalent to f over S.
Note that Dy, = 22:1 DI+ FE, where D’ denotes the proper transform of D; in M. By 6.3.2
and 6.3.4, h defines a cohomology class [h] € H*(M, Spy/m), where H is the same VHS
defined on M ~\ Dy ~ S* and M stands for the 0-space (M, Dys). The original fibration
g defines a cohomology class [g] € H'(S®, Sy/s). By the condition (1), the restrictions
of h and g to the open subset u~'(S® N S°) ~ S* N S° =: S are bimeromorphically
equivalent. Thus they determine the same cohomology class in H'(S*", &p/s). By 6.L8,

[g] is a torsion element if and only if so is the image of [h] under the restriction
(7.2) HI(M> Sryum) — H1(§Ab>6H/§)'

Thus it is enough to show that the image of (7.2) is a torsion group.
Step 4.

Claim. Let jar: M ~ Dy — M be the open immersion.
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(a) There is a point x € ;~*(0) such that for an open neighborhood U in M,
s T (U N Dpr) — m(S N\ D)

is an isomorphism.
(b) H*(S*, H® Q) — H°(M, R*j).H ® Q) is injective.
(¢) The homomorphism H'(S*, H) — H'(S*, L)s) appearing in 6.2.5 is a zero map.

Proof. (a) Let W; be the intersection D1 N DyN---ND; for 1 <i <[ and let Wy, =S. We
can define inductively subvarieties M =V, D V4 D V4, D --- DV, satisfying the following
condition:

e V;,; is the proper transform of W, ; by the bimeromorphic morphism p;: V; — W;

induced from p, for ¢ < .

Then there exist uniquely irreducible components 'y, I'y, ..., Iy of Dy, such that V; =
I''N---NI; for 7 > 0. Let x be a general point of V; and let & be an open neighborhood of
z in M such that Dy, NU = (Zézl [;) NU. We may assume that there is an isomorphism
U ~ A? where I'; N U correspond to coordinate hyperplanes. It is enough to show
w*: HY(S\D,Z) — H' (U~ Dy, Z) is an isomorphism. By 8.1.4 and 3.2.4, this condition

is equivalent to that the matrix (a;;)1<; ;< defined by
!
wD; =7 ai;ljlu
j=1

is non-singular. We have a;; =1, a;; = 0 for ¢ > 1. For ¢ > 1, we have

[
11 (Dilw,) = ¥ Dilv, = ai;Tslvinu

=2
Hence, we have ass = 1 and a;2 = 0 for i > 2, since ['3]y, = V4 is the proper transform
of Dalw, = Ws. Further, for ¢ > 2,
115 (Dilws,) = (15 Di)lv, = D @i iTjlvaru
§>2

In this way, we have a;; = 1 and a; ; = 0 for 4 > j. Thus the matrix is non-singular.

(b) We have H?(S*, H) ~ (R?j.H)o. By (a), we also have (R*j,H)o ~ (R?jy.H), for
the point x.

(c) This is expressed as the composite
HI(S*,H) — HI(S, EH/S) — HI(SM,EH/S),
where H'(S, Ly/s) = 0. O
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Step 5. More reduction.

By 6.2.3 and Step 4-(b), we have a commutative diagram of exact sequences:

HY(S* H) —— H'(M,Lyn)® H (M, Qpm ® Q) ——

H |

* N HI(SM,EH/S) @HO(SM,QH/S ®@) N
—— HY(M,Guu) ——  HY (S, H)ior — 0

| |

— HY(S*,6y/5) —— H*(S*,H) —— 0.
Thus, the image of (i7.2) is a torsion group if and only if the image of

739 HOM, Qa1 © Q) — H(S™, 115 © Q)
is contained in the image of HY(S*, H® Q) — H(S", QH/S ® Q). Since Hl(S GH/S) is

the image of
(7.4) H°(S,Qp/s ® Q) — H(S*, Qps @ Q).

Step 6. The case H is of type Iy.
We have j H ~ Z? and Ty = 0. Hence le H ~ Qps and €5.Qn/5 ~ D, @2

for eg: S — S. Similarly, we have Ly/n ~ On, g, H ~ ZM? Tu/m = 0, and an

_M*
isomorphism

EM«QH/M @ @%? S @ @%]2,
where j, : S* ~ M\ Dy — M is the -open immersion. Hence, (7.3) and (7.4) are both
surjective.
Step 7. The case H is of type I (4.
Suppose that H is of type I, for 0 # a € ¥ NM for the first quadrant c C N® R for the
standard free group N = @!_, Zv; of rank [ and for its dual M. Since M ~ H'(S*,Z), the

local system H is determined by the extension
0—Zg« — H — Zg« — 0

corresponding to a. We also denote by a the connecting homomorphisms RPj,Zg« —
RPT14,Zg-. The monodromy matrix around D; is of type I,, for a; = (a,v;). Let DT be
the union of D; with a; > 0, S% := S ~ D", and let j%: S* — S and j*: S* — S% be
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related immersions. Then we have the following exact sequences (cf. 4.3.4, 5.4 14, 6. :3)

0 — Zs — juH — jiZg — 0,
0— Zp+ = leEZsu — %5 — 0,
0— Tpys @ j2(R'j% L) — R'j.H — Lp+ & ji(R'j%Zs:) — 0,
0 — jH(RYZs:) — Quss — Lp+ ® (R Zs.) — 0.

We can consider similar sequences to jy;: = 2S* < M. The local monodromy around the
exceptional divisor Ej is of type I, for some e; > 0. Let DY, := p~'D7T. This is the union
of all D} with a; > 0 and all E; with e; > 0. We also define M" := M ~\ D}, = u~*S% and
denote the related injections by j]uwz M*! — M and j]u\}: S* =~ ~1S* < M?*. Further, we

write the restriction of y to M? by pf. Then we have an exact sequence
0 = jir(R'j31.2s) = Qun = Zpy © fan(R'jip.Zs+) — 0.
Note that there is an isomorphism

leiLZs* ~ @ Lpinms @ @ Lg;nnms-

a;=0 ;=0
Since HY(D},Z) = 0 and H*(E;,Z) = 0, we have H*(M, j%,.(R'j% . Qg:)) = 0. We also
have
(M, 5 (Ri1.Qs) = D Q.
E;nD},=0
Thus we have a commutative diagram of exact sequences:
0 — a@()@ — H(S,Qus®Q) —— Q — 0

l l l

0—>€B@@€B@—>H(MQH/M®@)—>@@ & Q — 0.

=0 E;nD},=0
Since D; N S # () and E; N S* = (), we have
0— @ Q— H(S”, Qpys©Q) — Q& H(52, (D, _, Qo,ns:)) — 0.
ai:O

Hence (7.3) and (7.4) have same images. O

7.2. Tate—Shafarevich group

Suppose that S is a projective variety. Let S be a normal projective scheme over
C with $*™ ~ S. For a projective basic elliptic fibration p: B — S associated with
H, we have a projective morphism p: B — S of schemes over C such that p*® ~ p.
The generic fiber B, of p is uniquely determined by H and is an elliptic curve over the
function field C(S). For Zariski-open subsets S* C S¥ of S, let S* C SY be corresponding
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Zariski-open subsets of S. We shall compare II1(SV /S, H) defined in §.2.100 with the Tate—
Shafarevich group Illse(B,) for the generic fiber B,.. Previously, we defined a similar group

with TII(SY/S, H).
Proposition 7.2.1. If SV is non-singular, then
OI(SY/S, H) ~ s+ (B,).

Proof. We fix a bimeromorphic mapping p~15° --— B° over S° for basic elliptic fibrations
p: B — S and p°: B° — S°, where p° is minimal. Let (f: X — S,¢) be a marked
projective elliptic fibration contained in (S, D, H; S¥). Then the multiplication map
by a positive integer m induces a generically finite meromorphic mapping pu: X -— B
over S. Let X C B be the zero section of p and let 3° be the corresponding section
of p° over S°. Let X' be the proper transform of ¥ in X. Let 7: T — S be the
Stein factorization of of 3 — S from the normalization 3 of ¥'. Let T¢ C T be
the maximal open subset of 7" along which 7 is étale. Then X xg 7% — T* admits a
meromorphic section. It suffices to show that SV C 7(T*%). For a point s € SY, we have
an open neighborhood ¢ C SV and a bimeromorphic mapping ¢: f~*U -— p~U. We
may assume that U is isomorphic to a unit polydisc and that D NU is isomorphic to
a union of coordinate hyperplanes. Then the generically finite meromorphic mapping
p=poet:p U -~ p U is composed of the multiplication mapping by m and
the translation by a section of p over U. Let p°: p°'U° -— p°~'U° be the induced
meromorphic mapping over U° := U N S° by p and let ¥;, be the proper transform of
S°Np°~'U° in p°~'U° by p°. The multiplication mapping B° --— B° by m is holomorphic
over the Néron model (Bo)ﬁ. Thus by 5.3.3, we have an irreducible component V' of 3
such that p°(V*) = U° for an open subset V* along which V' — U° is étale. The Stein
factorization V! — U° of V' — U° is a finite Galois covering, since it is étale outside
D and since m(U° \ D) is abelian. Thus V"’ is étale over U° and hence V' ~ U° since
m1(U°) = {1}. Therefore, V is a holomorphic section of p° over U° by 5.3.2. Let I'7, be
the proper transform of V in f~!'%° by the bimeromorphic mapping ¢ and let Oy be
the corresponding irreducible component of 7712/°. Then Oy extends to an irreducible
component Oy of 771U and ©;y — U is biholomorphic since it is finite and bimeromorphic.
Hence ©y C T* and s € 7(T%). O

The cohomological Brauer group Br'(Y) of a non-singular algebraic variety (scheme) Y
over C is defined to be H?(Y¢, Gy) for the group scheme G, := Spec C[z,z7!]. This is a

torsion group by [G@, 11, 1.4].
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Theorem 7.2.2 (cf. [DF, 1.17, 2.24]). Let S* C S be a toroidal embedding of algebraic
varieties (schemes) over C such that S = S**, S* = (S*)*". Letp: B — S be an algebraic
basic elliptic fibration such that B is non-singular and that p = p*" s associated with H.
We set B := B, B* := p~!S*, B* := B**".

(1) There is an isomorphism

Br'(B*)/Br'(S*) ~ H'(S, Gu/s)ior =~ HUI(S*/S, H).

(2) For a Zariski-open subset S* C SY C S, assume that p is flat over SY and set
BY := p~1SY, SV = (SY)*. Then II(SY/S, H) is an extension of a finite group
by Br'(BY)/ Br'(SY).

Proof. By a comparison theorem, we have isomorphisms H?(B", u,,) ~ H?(B, p,,) for

BY := BY and H?(S", u,,) ~ HP(S}, u,,). The Kummer sequence 0 — p,, — G, ——

€

Gn — 0 of étale sheaves of BY induces an exact sequence

0 — Pic(B") ® Q/Z — lim H*(B,. ,,) — BY'(B”) — 0.

2.9 and

There is an isomorphism Pic(BY) ~ Pic(B)/ V,-1(s.sv)(B). Thus (1) follows §

(2) follows 6.2.11. O

We present some sufficient conditions for III(SY /S, H) to be a finite group for a Zariski-

open subset SV containing S*. Here S is only an analytic space; not necessarily projective.

Lemma 7.2.3. III(SY/S, H) is a finite group provided that the following three conditions
are satisfied:

(1) H'(S*, H) are finitely generated abelian groups for i < 2;

(2) H°(SY,Qunys) is a finitely generated abelian group;

(3) C(H/S) — C(H/SY) is injective.

Proof. Let us consider the commutative diagram
0 — CH/SOQL —— H(S,Gushe —— HAS" Hlio

l |

0 —— HSY,Qu/s®Q/Z) —— H°(SY,R'e.Gpys).
Under the conditions (1)) and (%), the kernel of the second vertical arrow is a finite group
if and only if C(H/S) — H°(SY,Qpu/s) is injective. O

Proposition 7.2.4. Suppose that S is compact, H'(S, Ly/s) = 0, and that the restriction
map H°(S, Sy s) — HO(SY, Sy s) is an isomorphism. Then HI(SY/S, H) is a finite

group.
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Proof. Since H'(S, Lys) = 0, the homomorphism H'(S*, H) — H'(SY,Ly/s) is also
zero. Hence C'(H/S) = C(H/S) and C(H/S") = C(H/S"). Now C(H/S) ~ C(H/S").
Thus C(H/S) — C(H/S") is an isomorphism. Cohomology groups H'(S*, H) and
H(SY,Qp/s) are all finitely generated since S is compact. Thus the conditions of 7.2.3
are all satisfied. O

Let V be a normal analytic variety, Dy a reduced divisor, and let H be a VHS defined
on V* =V~ Dy as in7.1. For an open subset U C V, we define E(V, Dy, H; U) to be
the subgroup of EP™(V, Dy, H) consisting of all marked elliptic fibrations (f: X — V, ¢)
such that f admits local meromorphic sections over any points of U. Let V° C V be
a Zariski-open subset such that V* C V°, codim(V ~ V°) > 2, and that Dy NV° is

non-singular.

Corollary 7.2.5. Let p: S — V' be a bimeromorphic morphism from a non-singular
variety such that p is isomorphic over V*. If V is compact and if H(S, Lys) = 0, then
EYI(V, Dy, H; V°) is a finite group.

Proof. We may assume that D := p~'Dy is a simple normal crossing divisor. Let SV :=
p~1Ve. Then " (V, Dy, H; V°) is identified with (S, D, H; SY). Since codim(V ~
Ve) > 2, HY(S,Gpys) — H°(SY,6p/s) is isomorphic. Hence, the assertion follows
: I‘ |:|

=y

The following is a generalization of [G3, 3.2].

Theorem 7.2.6. Suppose that S is compact and let E be the complement S~ SV. Then
the quotient group 111(SY/S, H) / HI(S, H) is finite if the following two conditions are
both satisfied:

(1) For the J-function S — P!, E does not contain any connected component of
J = (00);

(2) Let U(E) be the set of prime divisors I' C E such that there is an open neighbor-
hoodU DO T, H extends to a VHS H on U, and that H|1" 18 trivial constant system.
For any prime divisor I' € U(E), there is an irreducible curve C C Upeyp) "
with I' - C' # 0.

. e L ) e« L
lim H'(S, L ® py,) — lim HI(SV>LH/S®H‘m)>

L
and hence is a subgroup of lim HZ(S, LY /s ® ). The triangle

-+—1>L;1/5—>T§1RJ*H—>QH/S[—1] £
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induces an exact sequence
L
0 — Hp(S, Qmys @ po) — Hi(S,Liyjs @ ty) — Hp (S, m(RjH)),
because RI p(m>2RjH)[—1] “qis R p(7<1Rj.H). There is also a commutative diagram

L .
H%(& IL’H/S @ M) — H%(S, m(R2J*H))

l l

L
H2(S> L;{/S ® .u‘m) - HO(S> m(R2]*H))>
where the right vertical arrow is injective. Thus the quotient group is contained in the

kernel of the composite
L L
(7.5) lim Hp(S, Qs ® py,) — lim  HE(S, LYy s @ py,) — lim  H2(S, Ly 5 @ py).

For a non-zero element ¢ € lim HY(S,Qp/s @ p,,), let D(E, ) be the set of prime
divisors I' C E such that I' C Supp 6 and let D(E) be the union of D(E,#) for all 6. If
I' € D(FE,0), then H is unipotent along I': the local monodromies along I'* := I"\ Sing D
are unipotent. If I is a prime divisor contained in D with I' NI # @, then by 6.2.3, H
is unipotent along I". Assume that H is of type I(;) along I'. If the monodromy along
I is of type I(4), then I € D(E,6) by 6.2.3. Thus any irreducible component of the
connected component of J~'(co) containing I' belongs to D(E, #). This contradicts the
condition (1). Hence the monodromy along I is trivial. Let Ur denote the open subset
S* UT*. Then H extends to a VHS H on Up and R'j,H|y, ~ Quyslop ~ H ® Zr-.
Hence H(Ur, Qpu/s @ p,,) =~ HO(T*, H @ p,,). If the local constant system H|p. is not
trivial, then H(I'*, H) = 0 by 25 Thus lim HO(I*, H ® p,,) ~ H'(I*, H)ior is a
finite group. Hence lim Hpy 1.(S, Qp/s @ p,y,) is a subgroup of lim  Hp (S, Quys @ py,)
of finite index. Thus, by replacing £ by E \ I'*, we may assume that D(E) C U(E). In
other words, there is an open subset U C S such that I' C U for any I' € D(E) and that
H extends to a VHS H on U, where H|r is a trivial local system for any T' € D(E). We

have
L;{/S|U ~qis ]*H|U ~qis H|U and QH/S|U 2]%1]>1<I{|U =~ (ZD ®H)|U
In particular, H} (U, Qu/s®@p,,) ~ Hy(UND, ﬁ@um). There is a commutative diagram

L

l |

HO(UHD>H®.U‘m) - H2(U>H®.u‘m)>
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where the bottom arrow is derived from a Gysin map for UN D C U. Let v: C — U be
the normalization of an irreducible curve such that d :=I"- v,C # 0. The bottom arrow

of the commutative diagram

HUND,H®p,) — HUH®p,)

| |

HO(F>I~{®.U‘m) - H2(O>V_1f{®.u‘m)

is isomorphic to the multiplication mapping dx : u®? — u®2. Hence the kernel of

lim H(T,H® p,,) — lim H*(C,v™'Hop,)
is isomorphic to u$*. The kernel of

lim HY(S.Qus © ) — P lim HOTH @ p,,)
reD(E)

is finite since HY(S,Qpu/s) — @rep(r) HO(T, H) is an injection to a finitely generated
abelian group and since H% (S, Qp/s)tor is a finite group. Therefore the kernel of (7.3) is
finite. 0

Remartk. (1) The conditions (1) and (2) of 7.2.6 are satisfied if there is a bimeromor-
phic mapping p: S — V such that E is py-exceptional.

(2) Under the assumption of 7.2.6, if H'(S, Ly/s) = 0, then III(SY/S, H) is also a

finite group. This is because II(S, H) ~ HI(S, Sh/s)tor and there is an exact

sequence 0 — H°(S,Qp/s) — H'(S,6p/s) — H?(S,L}s). In particular, we

have another proof of 7.2.5.

7.3. Minimal models with trivial canonical divisor

A locally projective elliptic fibration over a normal surface have a standard elliptic
fibration as a minimal model [N4, Appendix A]. A standard elliptic fibration f: Y — T

has the following properties:

(1) Y has only terminal singularities and is locally Q-factorial;

(2) f is equi-dimensional;

(3) Ky ~q f*(Kr + A) for an effective Q-divisor A with (7', A) being log-terminal.
We investigate similar elliptic fibration over higher dimensional varieties but assuming
stronger condition: Ky is relatively linearly equivalent to zero.

Let m: Y — V be a locally projective elliptic fibration between normal varieties such
that Y has only rational Gorenstein singularities and that the canonical sheaf wy =
Oy (Ky) is m-trivial, i.e., M := mwy is invertible and wy ~ 7*M. Then locally on
V', there is an effective Q-divisor A such that Ky ~q 7*(Ky + A) and that (V,A)
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is log-terminal by ['_N-_é, 0.4]. In particular, V' has only rational singularities. Further,
R'7,0y ~ wy @M (cf. 5.2.7). Let V* C V be a non-singular Zariski-open dense subset
over which 7 is smooth. Let V° C V be a non-singular Zariski-open subset containing V'*
such that codim(V \ V°) > 2 and that V° ~\ V* is a non-singular divisor. Let H denote

the VHS over V* induced from 7. Then wy ® M~ > j°Ly v for j°: Vo — V by 5.2.7.

Proposition 7.3.1 (cf. [G, 0.2]). Assume that Y has only terminal singularities, V is

Q-Gorenstein, and that m is equi-dimensional. Then V' has only canonical singularities.

Proof. By the flattening of m (cf. [[13]), there exist bimeromorphic morphisms p: S — V
and X — Y Xy S over S from non-singular varieties S and X, respectively, such that
any exceptional divisor for f: X — S is exceptional for p: X — Y. We may assume that
S* := p~H(V*) is isomorphic to V* by u and that S\ S* is a normal crossing divisor. We
write S\.S* = U; E; UU, D, for p-exceptional prime divisors F; and for non-exceptional
prime divisors D,. The singular fiber type of f along D, is not multiple, since Ky is

relatively trivial. Thus fiwx ~ ws ® EI_JI/S and
(fwf™" = wi™ @ L") © Os( S m(1l - 1/my)E; )

for m > 1, where m; is the multiplicity of singular fiber type along Fj;. Let Ly/s stand
for formally a divisor with Og(Ly/s) ~ Lu/s. If it really exists, then it is determined up
to the linear equivalence. Even if it does not exit, we consider Ly,s formally as a divisor
like a canonical divisor Kg. Similarly, let M stand for a divisor of V' with Oy (M) ~ M.
By the choice of p, we have M ~ pu,(wg ® EI_JI/S) and

Ty > 1. 0s(mKs —mLuys + X m(1 —1/m;)E; ).

Let E° be the p-exceptional effective divisor determined by Kg — Ly/s ~ p*M + E.

Claim 7.3.2. For any p-exceptional prime divisor FEj,
multg, (B + > (1 —1/my)E;) > 0.

Proof. We have Kx ~q p*Ky + > bgGg for p-exceptional prime divisors Gz and for
positive rational numbers bg. Since 7 is equi-dimensional, for any F;, there is a positive
rational number 9; such that > bgGs > 6, f*E;. Hence Kx — 0, f"E; > p*Ky ~ f*u*M
and

f*Ox(me) X OS(—mézEz) D) M*M®m
for m > 0 with md; € Z. Thus

Os(mKs —mLys+ SXm(l—1/my)E; ) ~ (fwi™)" O p* MO © Og(md; E;).

Therefore, E* + 3(1 — 1/m;)E; > §,E;. O
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Proof of 7.3.1 continued. Since Ky is Q-Cartier, Kg ~q p*Ky + > e;F; for rational

numbers ¢;. For a prime divisor " of S, let or(L) stand for the relative o-invariant [NG]

of a Q-divisor/line bundle L of S with respect to p. We have the formula
L5 ~ T 0p(1) @ Os(Y aiBi + 3 aaDa)
for integers 0 < a;,ao < 10 (cf. [UL1], 2], [N4, §3]). Thus
g; + az/12 +1-— 1/77’LZ > UEi(KS — LH/S + Z(l — 1/m])E])
= multg, E+1-— 1/m;.

In particular, g; + a;/12 > multg, E* > 0. Suppose that m; = 1. Then multg, E° > 1
by the claim above. Thus ¢; + a;/12 > 1 and hence ¢; > 0, since a; < 10. Next
suppose that m; > 2. Then a; = 0 and &; > multg, E° > 0. Thus V has only canonical

singularities. O

Corollary 7.3.3 (cf. [(i5, 3.4]). Suppose that diimV = 2 and that P € V is a singular
point. Then (V, P) is an A,-singularity for some m, the J-function is holomorphic at
P, and J(P) # oc.

Proof. We use the same notation as in 7.3.1. We may replace V by an open neighborhood
of P. Thus we assume any exceptional divisors F; are contained in E := py~'(P). We know
that the negative part of the relative Zariski decomposition of Kg— Ly s+> (1—1/m;)E;
is E” + (1 — 1/m;)E;. Thus by 7.3.2, (Ks — Ly/s — E°) - E; = 0 for any j. We write
S(a;/12 +¢;)E; — B> = S \;E;. Then )\; > 0 and

(1/12)J*Op1(1) . Ez + Z(aa/12)Da . Ez + Z )\jEj . Ez =0

for any 7. Now &; = 0 for some exceptional curve E; mapped to P. Thus m; > 2 and
Ai = 0. If \; = 0 for some exceptional curve E;, then J*O(1) - E; = 0, D, - E; = 0
if a, # 0, and E; - E; = 0 if A\; > 0. Therefore, \; = 0 for any exceptional divisor
E; C p(P) and J(u~'(P)) is a point. In particular, J: S -— P! is holomorphic at P.
Moreover if D, N u~!(P) # 0, then a, = 0. The fibration f: X — S defines a non-zero
element of II(S*/S, H) / I11(S, H) since m; > 2 for some i. By the argument of 7.2.6,
HI(S*/S, H) / HI(S, H) is contained in the kernel of

L
for E = p~'(P). The argument also implies that J(P) # oo and that we can extend
H to a VHS H on S, after replacing V by an open neighborhood of P. Let > q; L for

q; € (Q/Z)*? correspond to the element of lim Hp(S, Quys ® ) defined by f. Then
S q;E; - E; = 0mod Z** for any i. Let e be the number of irreducible components of E
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and let A be the (e x e)-matrix whose (i, j)-coefficient is E; - E;. Then A: Z%® — Z%°
is injective since A is negative-definite. If for any element (z;) € A~'Z% C Q%, the
i-th coefficient x; is integral, then m; = 1. Thus g; > 0 and F; is exceptional for the
bimeromorphic morphism S — V to the minimal desingularization Vof V. If (V,P)
is not an A,,-type singularity, then there is a component F; such that z; € Z for any
(z;) € A7'Z%¢ and that E; is not exceptional for S — V. O

We assume the following extra-conditions:
(1) V is Q-Gorenstein;
(2) m is equi-dimensional.
Then, by (1), there is a generalized Weierstrass model p: W = Wy (wy @ M~ a, B) —
V' associated with H.

Lemma 7.3.4. Under the situation above, W has only rational Gorenstein singularities
and ww = Ow(Kw) ~ p* M.

Proof. It V is Gorenstein, then W is a usual Weierstrass model. Thus an open neighbor-
hood of the canonical section ¥ has only rational singularities. Let V - Vand X —
\%% XVV, respectively, be resolutions of singularities. Then for the composite pi: X — W,
T := p*¥ is non-singular and isomorphic to S. Thus R, Op(mT) ~gs Os(mX) and
Rf.Or(mT) ~gs pxOs(mE) ~ (wy @ M™H)®™ for any integers m, where f = p o p.
Thus we infer that W has only rational singularities by the argument of [N3, 2.4]. In
non-Gorenstein case, there is a cyclic covering 7: V' — V locally on V such that it is
étale in codimension one and that wy- is invertible. Let Y’ denote the normalization of
Y xy V'. Then Y/ — Y is étale in codimension one, and hence Y’ has only rational
Gorenstein singularities. Thus the Weierstrass model W’ defined from the pullback of
H has only rational singularities. Therefore, W also has only rational singularities. In

order to show ww ~ p*M, we may replace V by V°. Then this follows from 5.L.1. O

If log-flip conjectures are true, then we have elliptic fibrations Y — V' of this kind as
minimal models. A projective variety X has numerical Kodaira dimension x,(X) = 0 if

and only if, for a non-singular projective model Z of X, the function
m— dimHO(Z, Oy(mKz+ A))

is bounded for any ample divisor A and is non-trivial for some A (cf. [NG]). If the
existence and the termination of flips are proved for varieties birational to X, then the
condition k,(X) = 0 is equivalent to that X is birational to a normal projective variety

Y with only terminal singularities and with Ky ~q 0.
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Let f: X — S be an elliptic fibration between non-singular projective varieties such
that f is smooth outside a simple normal crossing divisor D of S, the geometric genus
pg(X) = 1, and that k,(X) = 0. Let H = H(f) be the induced VHS defined on
S* =S5~ D and let p: B — S be an associated basic elliptic fibration from a non-
singular variety.

Over the open subset S° = S\.Sing D, we have a minimal elliptic fibration f°: X° — §°
which is bimeromorphically equivalent to f~15° — S° over S°. Here the canonical bundle
formula

Kxo ~g (f°)(Ks = Lrys + Y _(1—1/mq)Dy)

holds for irreducible components D = D; N S°. There is also an isomorphism
L50Y ~ T 0s (1) ® O5(Y a;D

for 0 < a; < 10 and for the J-function S — P!. There is a non-singular divisor L such

that Og(L) ~ J*Op(1) and that L + D is also a simple normal crossing divisor. We set
Aps = (1/12)(L + Y a;D;), and Axss:=Aps+ > (1—1/m;)D
Then (S, Apyg) and (S, Ay g) are log-terminal pairs. We have
Kw ~qp'(Ks +Apys) and  Kx ~q f*(Ks + Ax/s) + G

for an f-exceptional divisor Q-divisor G. In particular, the double-dual of f,w$™ is

isomorphic to Og(mKg + LmAX/SJ) for m > 0.

Theorem 7.3.5. The equalities of Hodge numbers h?°(X) = h?°(B) hold for any p,
and k(B) = ko(B) = 0. If the log-flip conjecture holds for varieties birational to S,
then there exist an elliptic fibration p: Y — V' between normal projective varieties and
birational mappings v: B =Y, p: S -—V satisfying the following conditions:

(1) pop=pow;
2) Y has only rational Gorenstein singularities with Ky ~ 0
3) V is @ -factorial;
4) u -— S contracts no prime divisors of V;
5) Efuery prime divisor D; with m; > 0 1s p-exceptional.

(
(
(
(

Proof. There are quasi-isomorphisms
Rf*OX ~qis OS D EH/S[_l] ~qis Rp*OB>

by 5.2.8. Thus h**(X) = hP?°(B). Further, fiwx/s ~ p,wp/s ~ El}l/s. Let p: W =
W(H) — S be the minimal Weierstrass model associated with H. Since W has only
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canonical singularities, we have

m m &(—m
p*(wg/s) = p*(‘”%v/s) = ‘CH(/S :

for any m > 1. Since (fuwx)®™ C f.(w%™), we have k(B) = 0.
By a flattening of f, there exist birational morphisms p: S Sand A\t X > X xg8

such that

(1) S and X are non-singular projective,

(2) p is isomorphic over S*,

(3) p~Y(L + D) is a simple normal crossing divisor,

(4) the induced elliptic fibration f: X — § is smooth outside p~ 1D,

(5) f-exceptional divisor is exceptional for X — X.
Let Ay /5 and A ¢ /8 be similarly defined Q-divisors on S. By considering the Weierstrass

model over S , we have
K(B) = k(Kg+ Ay s) = 6(Ks + Anys),  ke(B) = ko(Kg + Ay g) = ke (Ks + Apys).
For K¢, we have
K¢~ [f(Kg+Ag)5) +G
for f—exceptional Q-divisor G. Hence, for m > 0,
fuoR™ = p.Og(mKg + mAg s ).

Therefore, £(Kg + Ay /g) = ro(Kg + Ay ,g) = 0. Thus £(B) = 0.

By [N(], there is a unique effective Q-divisor N such that Kg + Ay g ~g N. Here
N is the negative part of the Zariski-decomposition of Ks + Apg/g. By replacing S by
S, we may assume K(Ks + Ax/s) = ko(Ks + Axys) = 0. Then N + > (1 — 1/m;)D; is
the negative part of the Zariski-decomposition of Kg + Ax/s. Applying the log-minimal
model program for (S,Ax/g), we have a birational mapping p: S -— V such that the
pair (V, u.Ax/s) is log-terminal, V' is Q-factorial, pu.(N + (1 — 1/m;)D;) = 0, and
that p satisfies the conditions (4), (5) of the statement. In particular, Ky + p.Apy/s =
Ky + ptuApys ~g 0 and the double-dual of i, Lp/s is isomorphic to wy, since py(B) = 1.
Let p: W = Wg(Lp/g, 0, 3) — S be the minimal Weierstrass model associated with
H for a € H(S, E%(/_SZL)) and 3 € HY(S, E%(/_Sﬁ)). We denote by same o and 3 the
corresponding sections in HO(V, wg 4]) and HY(V, wg 6]), respectively. Since Ky is Q-
Cartier, we have a generalized Weierstrass model Y := Wy (wy,a,8) — V. Then Y is
birational to B and Ky ~q 0. Hence Y has only canonical singularities of index one with

Ky ~ 0. U
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Remark (cf. [N3)). (1) Let p: Y — V be the basic elliptic fibration obtained in 7.3.5.

Under the flip conjecture, there is a birational morphism 3: T' — V from a normal

projective variety T with only terminal singularities such that T is Q-factorial
and Krp is f-nef. The sections o and B extend to sections of Op(—4Kr) and
Or(—6K7), since 3.0r(—mKr) is reflexive for m > 0. Thus for the generalized
Weierstrass model Wy := Wy (wr, o, B), Kw,. is linearly equivalent to 0. There-
fore, W has only rational Gorenstein singularities, since it is birational to Y.
However, the divisor D; with multiplicity m; > 0 may not be exceptional for the
birational mapping S -— T.

(2) Under the flip conjecture, we also have a relative minimal model of T": there is a
birational mapping 7" --— R such that it is a composition of extremal divisorial
contractions and flips with respect to canonical divisors and that any extremal
ray of R defines a contraction of fiber type. The sections a and 3 also descend
to sections of Or(—4Kg) and Or(—6Kg), respectively. Thus the generalized
minimal model Wg := Wg(wg, a, 3) has only rational Gorenstein singularities

and Kw, is linearly equivalent to zero.

By replacing X by a birationally equivalent variety, we may assume that the composite
fv =pof: X — V is holomorphic. We have a reduced effective divisor Dy of V such that
Supp 4+ A /s C Dy and that p~t: V -.— Sisholomorphic over V~\.Dy. Let V* = V~\ Dy
and let V* C V° C V be a Zariski-open subset such that codim(V \V°) > 2, BN V®°
is non-singular, and that g=': V -.— S is holomorphic over VV°. Then, for a marking
o, (fv: X — V,¢) belongs to EY(V, Dy, Hy; V°), where Hy denotes the induced VHS
defined on V* from H. By 7.2.5 or 7.2.6, Egmj(V, Dy, Hy; V°) is finite, if A*0(X) = 0.

This observation in the case dim S = 2 is due to Gross [(3] and is the first step to
show a kind of boundedness of Calabi—Yau threefolds with elliptic fibrations.

7.4. Kahler morphism

Definition 7.4.1. Let f: X — S be a proper surjective morphism between normal

complex analytic varieties.

(1) A real C>™-form w on X is called a Kdhler form if there exist an open covering
{X,} of X and strictly pluri-subharmonic functions py on X, such that w|x, =
V=10 3dp,, and that (px — pu)|x,nx, are pluri-harmonic.

(2) If there is an open covering {S,}aca of S such that f~1(S,) admit Kahler forms,
then f is called a locally Kdahler morphism.
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(3) A d-closed real (1,1)-form w on X is called a relative Kdhler form if there exist
an open covering {S, }aca of S and Kahler forms 7, on S, such that w|x, + f*na
is a Kéhler form for any «, where X, = f71(S,).

(4) If there is a relative Kéhler form on X, then f is called a Kdhler morphism.

(5) An element ¢ in H*(X,R) is called a relative Kdhler class if there is an open
covering { S }aca of S such that the restriction of ¢ in H?(X,,R) is induced from
a relative Kéhler form for X, = f71(S,) — Sa.

(6) If there is a relative Kéhler class, then f is called a cohomologically Kihler mor-
phism.

(7) f is called a cohomologically projective morphism, if there exist a cohomology
class £ € H*(X,Z) and an open covering { S, }aeca of S such that the restriction of
¢ in H°(S,, R*f.Zx) is represented by the first Chern class of a relatively ample
invertible sheaf on f~1(S,).

(8) f iscalled BK if it is bimeromorphically equivalent over S to a Kéhler morphism.
f is called LBK, if f is BK locally over S: there is an open covering {Sy} of S
such that f=1(Sy) — Sy is BK for any .

(9) f is called BCP and BCK, respectively, if f is bimeromorphically equivalent
over S to a cohomologically projective morphism and a cohomologically Kahler

morphism.

Remark. The composite of two Kahler morphisms is not necessarily a Kéahler morphism
but a locally Kéhler morphism. In fact, this is Kéahler over a relatively compact open

subset. The same property holds for cohomologically Kahler morphisms.

Let S* = S~ D — S be a toroidal embedding as before and let H be a VHS defined
on S*. We use the same notation as before, e.g. S = (5,D), j: S*— S, j: S* — S, etc.
We recall the complex Ly g defined in §.2.1. Let c: H'(S, &pys) — H*(S,1L};s) denote
the connecting homomorphism derived from

-5 Liyyg — Liys — Snys — -

Let (f: X — S, ¢) be a marked elliptic fibration associated with (S, D, H). If f is a
locally Kiihler elliptic fibration, then it is locally projective by 5.2.9, [N4, §3]. Thus, if f
is LBK, then (f: X — S, ¢) belongs to £(S, D, H).

Proposition 7.4.2. For an element n € H'(S,&p,s), we consider the following five
conditions:

(1) n is represented by a BCP marked elliptic fibration;

(2) n is represented by a BCK marked elliptic fibration;
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(3) n is represented by a marked elliptic fibration (f: X — S, ¢) such that X is non-
x. > 0 for a

singular and that a cohomology class w € H?*(X,R) satisfies degw
general fiber X, = f1(s);
(4) c(n) is sent to zero by H*(S,1Ly,s) — H*(S, L}{/EQ%R);
(5) c(n) is a torsion element.
Then (1) = (2) = (8) = (4) hold. If HP(S*, H) are finitely generated abelian groups
for p <2, then (%) = (B) holds. If [S, D] satisfies the condition 8.2.6, then (5) = (1))
holds.

Proof. (1) = (2) and (2) = (B) are trivial.

(8) = (4) We may assume that f~' D is a normal crossing divisor. The 7 is determined
as the image of 1 under the connecting homomorphism H°(S,Z) — H'(S, &y/g) of the

exact sequence:
0— &ps — R'f,Ox/Vx — Zs — 0.

Let IE.X/E be the complex
[..._)OHRli*OX_)Rli*O*X/Vi_)()_)...]7

where R'f Ox lies in the degree zero. We have HO(IE.X/E) ~ j H and Hl(IE.X/E) ~
R*f Zx/Vx. Thus there exist a natural morphism
TleggRi*ZX — i.ﬁ/ﬁ[_l]

and a triangle

N ;J/E_)IE.X/E_)ZE[_H LN

Here, the composite 7>17<oRf Zx — Zg[—2] is derived from the trace map R*f Zy —

Zs. The w € H*(X,R) goes to a positive number under the homomorphism
H*(S,m217<oRf Ry) — H°(S,R) ~ R.
Hence c(n) goes to zero under H*(S, Ly ) — H?(S, L}{/EQ%R).
(4) = (5) under the assumption above. From the triangle
N L;i/i — Tl H — Qns RN ,

we have a commutative diagram of exact sequences:

HY (S H) —— H(S,Qps®Q) —— H'S,Lyy) —— HX(S*H)

l l l l

L
H'(S*,Hz) —— H(S,Qu/s ©R) —— H'(S,Lys&R) —— H(S*, Hg),
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where Hg = H ® R. The universal coefficient theorem gives the isomorphism
HP(S*, Hz) ~ Hom(H;*™"(S*, H'),R),
for HY = Hom(H,Zs+) and d = dim S. Under the assumption, H2?~*(S*, H") are finitely
generated for ¢ < 1. Hence H?(S*, H) ® R ~ H?(S*, Hg) for p <1 and H*(S*, H) @R —
H?(S*, Hg) is injective. Further, H°(S,Qu/s ® Q) — H°(S,Qpu s ® R) is also injective.
L
Thus, H*(S,L}/s) ® R — H*(S, Ly, ®@R) is injective. Therefore, if c(n) goes to zero

in H*(S, L}{/EQ%R), then c(n) is a torsion element.

(B) = (1)) under the assumption above. The image of 1 under the homomorphism
represented by a marked elliptic fibration (f: X — S,¢) € £(S, D, H). Suppose that
c(mn) = 0 for a positive integer m. Then for a marked elliptic fibration (X’ — S, ¢)
corresponding to mmn, we have a generically finite meromorphic mapping X --— X’ over
S. Hence, we may assume that c(n) = 0. Then 7 is the image of an element ( €
H'Y(S, Lyss) under HY(S, Lys) — H'(S,Spys). Let V.= V(L s0) — S° be the line
bundle associated with the invertible sheaf Ly, 5o and let V¢ — S° be its twist by (.
Then V¢ is isomorphic to the open subset P(F¢|s0) \ P(Ogo) for the extension

0— Lys— F*— 05— 0

corresponding to (. The image 6 of ¢ in H*(S, 6}7}’/5) defines the twist 7: W? — S of
the minimal Weierstrass model W — S associated with H. We may replace X by W?.

We have an exact sequence
0— GYJV/S — R'71.0% — R?m.Znyo ~ Zg — 0.
The extension class is 6. Let us consider Leray’s spectral sequence
EYY = H?(S, Rim,Zye) = EPT1 = HPYI(W? 7).

Since 6 is the image of ¢, the generator 1 € Z ~ E5” goes to zero in Ey'. Hence
1 € EJ?. We have a natural morphism V¢ — W? whose image is the twist (W¥|g.)?.
Since V¢ — S° is an affine bundle, H?(S°,Z) — HP(V¢,Z) is an isomorphism for any p.
By the condition 8.2.6, the restriction H*(S,Z) — H3(S°,Z) is injective. Therefore, the
composite

H3(S,Z) — H*(W* Z) — H3(V,Z)
is injective and hence E5® = EPO. Thus 1 € Ey” comes from E? = H>(W? Z). Conse-

quently, m: W? — S is cohomologically projective. 0
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Lemma 7.4.3. Let n = (f: X — S, ¢) be a marked elliptic fibration such that c(n) is a
torsion element. Then there exist a family of elliptic fibrations X — S x T and points 0,
t € T such that Xy — S x {0} is bimeromorphically equivalent to f and that X; — S x {t}
15 BP.

Roughly speaking, a BCK elliptic fibration is deformed to a BP elliptic fibration up to

bimeromorphic equivalence.
Proof. In viewing the exact sequence
H'(S, Lyss) = H'(S, Snys) = H*(S,Lyg),

we find a positive integer m and an element ¢ € H'(S, Lu/s) such that ¢(¢) = m.
Then n — ¢((1/m)¢) € H'(S,Spys)tor- Thus it corresponds to a BP elliptic fibration.
Let p: S x C — S be the first projection and let p~'H be the pullback of H defined on
S* x C. Let C — H'(S, Lys) be the homomorphism sending 1 to ¢. Then it defines a

section
(€ HY(S xC,Ly1p/sxc), and  o(C) € HY(S x C,6,-151/5xc)-

Let (X — S x C, ¢) be the marked elliptic fibration corresponding to ¢(¢) + p*(n). This

exists by 6.3.12. We may assume that X — C is flat and X’ is smooth over S* x C. Then

the fiber X; — S x {t} corresponds to ¢(t¢) +7n. Thus T =C,0€ C,andt = —-1/m € C
satisfy the condition. O

A compact complex variety is called to be in the class C if it is the image of a compact
Kihler manifold under a meromorphic mapping [F2]. By [V1], a variety in the class C is

bimeromorphically equivalent to a compact Kahler manifold.

Theorem 7.4.4. Let S* C S be a d-dimensional toroidal embedding such that S 1is
compact and is in the class C. Let f: X — S be an elliptic fibration that is smooth over

S*. Then the following three conditions are equivalent:

(1) X is in the class C;
(2) f is a BCK morphism;
(3) The homomorphism H?(S,C) — H?4(X,C) is injective.

Proof. (1) = (2) is trivial.
(2) = (8) We know H~?(wgP) ~ Zg and H' 2% (w§?) = 0. Hence, the Verdier duality
RI(S,7) ~qs RHom(RI'(S, w§P),Z) and H'(S,Z)ior = 0 induce an isomorphism

H*(S,Z) ~ Hom(H"(S,Z),7) ~ Z.

The dual of the pullback H?¢(S,R) — H?¢(X,R) is the homomorphism H?*(X,R) —

top

H°(S,R) induced from the trace map Rfiw'®’ — wgP. For a cohomology class w €
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H?(X,R), the image in H°(S,R) is considered as degw|x, for a general fiber X,. Thus
H?*(S,R) — H?!(X,R) is injective if f is BCK.

(8) = (1) We may assume that S is a compact Kéhler manifold. Let H = H(f)
and let n € H'(S,Sp/s) be the cohomology class corresponding to (f: X — S, ¢) for
a suitable marking ¢. Then c(mn) = 0 for a positive integer m by 7.4.2 and by the
proof of (2) = (8) above. Let 1) and ¢ denote the homomorphisms H'(S, Lp/s) —
H'(S,6}))s) and H'(S, Lys) — H'(S,&pys), respectively. Then mn = ¢(¢) for an
element ¢ € H'(S, Lp/s). We set 0 :=(() € H'(S,G}))s) and let W? — S be the twist
of the minimal Weierstrass model W = W(H) — S associated with H. Since there is a
generically finite meromorphic mapping X -— W? over S, we have only to prove that
W? is in the class C. Let C — H'(S, Ly/s) be the homomorphism sending 1 to ¢. It
defines a cohomology class ¢ € H' (S xC, L,-11/sxc), where p~'H denotes the pullback
of H by the first projection p: S* x C — S*. The restriction of ¢ to HY(S x {t}, Luys) is
t¢ for t € C. Let  be the image w(f) in H'(S x C, GzylH/ch)- Then we have the twist

W:=(WxC)!—=8xC

of the Weierstrass model W x C — S x C. The fiber of W — S x C over a point t € C is
isomorphic to the twist W% — S where t6 := ¢(¢(). The composite 7: W — SxC —C
is a locally trivial deformation of W. By Hironaka’s resolution of singularities, we have
an open neighborhood U of the origin of C and a bimeromorphic morphism Y — (7))
such that the composite h: Y — U is a smooth morphism. Here we may assume that
the central fiber Yy = h72(0) — S x {0} of Y — S x U is a projective morphism. In
particular, Yy is a compact Kéhler manifold. Hence, Y)/, is a compact Kéahler manifold
for a positive integer n. Therefore W™ ¢ is in the class C. Since there is a generically

finite meromorphic mapping wr W? W? is also in the class C. 0

Corollary 7.4.5 (Miyaoka [M@]). A compact elliptic surface is Kahler if and only if the

first Betti number is even.

Proof. Let f: X — S be the elliptic surface and let H = H(f) be the associated VHS.
Then f is isomorphic to the twist B7 — S of the minimal basic elliptic fibration B — S
associated with H for a cohomology class n € H'(S, Ghys). We shall consider the

following edge sequence:
0— H'(S,R) — H'(X,R) — H°(S,R'f.Ryx) — H*(S,R) — H*(X,R).
Suppose that n = 0, i.e., f is a basic fibration. Then X is a projective surface. Therefore

dim H°(S, R' f,Rx) = dim H°(S, j.H ® R) is even for any 1. Since H*(S,R) ~ R, the
first Betti number is even if and only if H2(S,R) — H?(X,R) is injective. Thus by 7.4.4,
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it is also equivalent to: X is in the class C. Since a compact complex surface is in the
class C if and only if it is Kahler (cf. [M3], [F3]), we are done. O

Corollary 7.4.6. Let p: B — S be a minimal elliptic surface over a non-singular pro-
jective curve. Suppose that the VHS H is not trivial. Then any element of £(S, D, H)

represents a Kahler surface.

Proof. We have H?(S, j.H)q = 0 by 4.2.5. Hence H*(S,L};,g) ® Q = 0. Thus by T.

2
and 7.4.4, any element of £(S, D, H) represents a compact Kéhler surface. O

[LRCRE S

Example 7.4.7. Without the assumption of the compactness of S, a BCK elliptic fibra-
tion is not necessarily a BK morphism. Let S := A*~ {0} and D = (). We fix a VHS
H on S, which is determined by a homomorphic function S — H. Then we have the

smooth basic elliptic fibration B — S as well as an exact sequence:
O—)HZZ?2—>EHZOS—>6H—>O.

Then H'(S,0g) ~ H'(S,&y). Therefore, for any n € H'(S,&y), the corresponding
twist B” — S is a BCK morphism. However if 7 # 0, then there is no d-closed (1, 1)-
form w on X := B" such that [w|r > 0 for any fiber F' of f: X — S. In fact, if there is
such w, then the composite

H'(X,0x/Rx) — H*(X,R) — H(S, R*f,.Rx) ~ R

is surjective. Since H'(S,R) = 0 for i = 1,2, we see that H*(X,R) ~ R. Hence
H?*(X,R) — H?*(X,Ox) is a zero map. On the other hand, the 7 is the image of 1 under
the connecting homomorphism H°(S,Z) — H'(S, &) of the exact sequence:

0— 8y — R'f.O% - R*f.Zx ~ 7 — 0.

There is a commutative diagram:

H*(X,Z) —— H2(S,751Rf.Zx) —— H(S, R*f.Zx)

l l |

H2(X, Ox) I HI(S, le*OX) I HI(S, GH)
This contradicts n # 0. Hence B" is not Kahler.

7.5. New description of logarithmic transformations

Let j: S* — S be a toroidal embedding, D := S ~. S*, and let H be a VHS defined

over S*. From the triangle (6.8), we have a homomorphism

H°(S, Quys) — H'(S, S pys).
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We shall relate the homomorphism above with logarithmic transformations [:K8] along
D. Let us consider the morphism Rj,H — Ly/s appearing in 4.2.3. We define the sheaf
6113% by the triangle

-+—1>T§1Rj*H—>ﬁH/s—>61§§5+—l>“-

By comparing with a similar triangle

L TR H = Ly — 5.6

we can consider 6113% as a subsheaf of 7,&6y. Then we have

Gu/s C &g, Gpfg/6W,g~ R'H, and  &55¢/Gps ~ Quys.
We shall describe the stalk (6113%)1: at a point P € D. If (Qpu/s)p = 0, then (6113%)1: =
(Smys)p. Suppose that (Qps)p # 0. Then H is of type Iy or Iy around P. Let U > P
be an open neighborhood such that U4* = U N .S* C U is a toroidal embedding of type
(N,1,0): U is isomorphic to Ty(o)<! x A% and U* is isomorphic to T x A%, Let
&y : U* — U* be the universal covering mapping described by

én: Hy(Into) x A" 3 2 = (2 ) — t = (en(?), 1) € TR x AT

where  Hy(Into) =N®R++v—1Intoc C N® C.
Now H is of type I, for some a € ¢V N M. The period function w: U* — H is written as
w(z) = (a, ) + h(&n(2))

for a holomorphic function h(t) defined over . An element of H°(U*, Sy ) is represented
by a holomorphic function f(z) defined over U* modulo Zw(z) + Z which satisfies the

condition
(7.6) fZ"+7,t") = f(2) € Zw(z) +Z for any v € N.

We denote the represented element of H*(U*, Sy ) by [f(2)]. An element 8 € M®C defines
a holomorphic function on U* by 8(z) := (8, 2'). In the case a = 0, the holomorphic
functions

F(2:01,05) := 0, (2)w(z) + 05(2)
for 61, 6, € M satisfy the condition (7.6). In fact,

f((zl + 7>t/); 01702) - f(za 01702) = <0177>h(t) + <0277>‘

In particular, the images of [f(z; 01, 03)] under H*(U*, Sy) — H'(U*, H) ~ M#? form
a generator. In the case a # 0, let o be the maximal positive integer such that u :=
a~ta € M. The holomorphic functions

n ~

f(z:,0) = Smw(:)? - gd(z) +6(2)



163

for n € Z and 6 € M satisfy (:‘7:6) In fact,

<’U,, 7>(<u> 7> — 1)

f((Z'+7,t);n,0) — f(z;n,0) = n{u, v)w(z) + an 5

+(6,7)-
In particular, they form a generator of H*(U*, H) ~ Z & M/Za.
Proposition 7.5.1. Suppose that the local monodromy type of H around P is 1, for

a € 0" NM. Then subgroups (Suys)p, (6113%)1: C (7+Gu)p are described as follows:
(1) In the case a =0,

(Suys)r = (SY)s)p,  (Siis)p = (SHs)p + Y. ZIf(261,62)).

01,62€M
(2) In the case a # 0,

(Smys)p = (Ss)p+ >, Z[f(%0,0)];

0eN(atno)+
(S5Es)r = B+ > Z[f(2in,0)].
nezZ,0eM

Proof. Let F'* := F'(Q%(log D) ® HE™) be the subcomplex
[+ = 0= FHE™) T Qy(log D) © HE" = K(log D) @ HE™ — -]

of the logarithmic de Rham complex Q;(log D) @ HE™ defined by the Gauss-Manin
connection V with respect to H. Then the mapping cone of Rj,Hc — Ly is quasi-
isomorphic to F'*[1]. Therefore, the mapping cone of 7<1Rj.Hc — Lpu/s is quasi-

isomorphic to the first cohomology sheaf H!(F''*). Let F!* be the subcomplex
o 0 FH) Y 0L oH S0 @M — -]
of Q2. ® H. The mapping cone of 7<1Rj.Hc — j.Lpy is quasi-isomorphic to H'(j. F!*).
There is a natural homomorphism j,&y — H!'(j.F!*) and an exact sequence
0— H (F'*) — H'(j.F}*) — 3L /Lis — 0.

The subsheaf 6113% is characterized as the kernel of 7.6y — H'(j.F*)/H'(F**). Let
F'* be the pullback of F!* to U*. The abelian group A := HO(U*, &' H) ~ Z%? admits
a natural N-module structure and RI'(U*, Rj.H) is quasi-isomorphic to RI'(N, A) =
RHomg(Z, A) ~ Kospga(A, ag) under the identification A = Z[e] (cf. 4.3). We have

a commutative diagram of triangles

. s RT(N,A®C) ——  H'U* Ly) —— H'(U* Fl*) s ...

l l l

. - A®C —— HOU*&'Ly) —— H'(U* F'*) — ...
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in the derived category of abelian groups. Let C be the cokernel of
HOWU* 83! F () 5 HO(U*, QL @ &' H)
and let us consider the composite
O: HOU* &' Sn) — H' (U, F'*) — H' U, Q5 @ &' H) — C.
Here, H(U*, F'*) — C is injective. We have the following diagram
HOWU &' H)  —— HU"&'6n) —— HU",6n)

vl l‘l’
HU, QL @ &'H) — C,

where the top left arrow is induced from the composite H — Ly — Gy that is described

as

(ggi;) — B(2)w(z) — a(z) mod Zw(z) +Z

under the isomorphisms
& H =02 and &6y~ Op /Lw(z) + L.

Note that &' F'(H) ~ O is generated by the column vector (w(z),1).

Let f(z) be a holomorphic function representing an element [f] of H*(U*, &), i.e.,
f satisfies the condition (7.6). If [f] € HU, 6113%), then its image ®([f]) in C is
coming from HO(U, QL (log D) @ H). Let &', denote the subgroup of the right hand side
of the description of (6113%)1: in 7.5.1. We shall show that if ®([f]) € C is coming from
HO(U, Qs (log D)@ H), then [f] € &. Under the property, we have (6113%)1: C &/5. This
is enough, because the isomorphism &', /(&},q)p ~ (R'j.H)p implies (6113%)1: = G&/.

We note that there is an isomorphism M ® 05? ~ QL (log D) @ HE™ |, in which 6 ®
(u(t),v(t)) for @ € M, u(t), v(t) € H*(U, Oy) corresponds to

1 (a,z)\ [u(t) _ u(t) + a(z)v(t)
0 1 v(t) v(t)

as an element of HO(U* &' H) ~ H(U*, O)%2.

Suppose that @ = 0. Then w(z) = h(t). Since the functions f(z;61,02) form a
generator of H'(U*, H), we have f(z) = f(z;01,02) + 1(t) for some 61, 8 € M, and for
a holomorphic function 1 (¢) defined over U*. The element [f] of H*(U*,Sy) is coming
from (—f(z),0) of HO(U*, ©%2). We have

df = hd@, + 6, dh + 46, + dv,
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in which d@; for i = 1, 2 are logarithmic 1-forms on /. The differential of £(z) (w(z), 1) for
a holomorphic function £(z) is written by {w, 1) d§ + £ (dw, 0). Since ®([f]) is contained
in the image of HO(U, Q% (log D) ® H), we have

_ (d0f> —de@ @ ¢ (d:> € H'U, Q5(log D) © H™),

for some holomorphic function £(z) defined over U*. We infer that df +hd&+£ dh and d¢
are both logarithmic 1-forms on Y. In particular, £(z) = ©(z) + ¢(t) for some v € M@ C
and for a holomorphic function ¢(t) defined over ¢. Thus

df + £dh = hd@y + 0, dh + dy + dy + ddh + pdh
and hence

(6, + o) dh + dy

are logarithmic 1-forms. Since 1 is defined over U*, we infer that 8; + v = 0 and that
¥ (t) is a holomorphic function &. This implies that the element [f(z)] of (j.&u)p is
contained in &’. Therefore, (6113%)1: = G5 as mentioned before. In this case a = 0, we
also have (&)),¢)p = (&pys)p since (Tpu/s)p = 0.

Next, suppose that @ # 0. Then w(z) = a(z) + h(t) and f(z) = f(z;n,0) + ¥(t) for
n € Z, 8 € M, and for a holomorphic function 1 (t) defined on U*. The element [f] of
HO(U*, &) is coming from (—f(2),0) of HO(U*, O%2). We have

df = 2w dw — gdd+dé+d¢,
a

in which da, dé, and dw = da + dh are logarithmic 1-forms on U. If
d d .
- (0f> _d€® (T) _f(ow> EHO(Z/{>Q}S’(IOgD)® H(éan%

for some holomorphic function £(z) on U*, then df 4+ wd€ + ¢ dw and d¢ are both loga-
rithmic 1-forms on Y. In particular, £(z) = 0(z) + ¢(t) for some v € M ® C and for a
holomorphic function ¢(t) defined on U. Thus
(n/a)adw + dy + adé + v dw
= ((n/a)a + ) da+ado + ((n/a)a + ) dh+ adp + dy

is a single valued logarithmic 1-form on U/. Since it is invariant under the action of N, we

have

((n/a)(@,7) + (v,7)) da+ (a,) dé + ((n/a){a,7) + (v,7)) dh + (a,7) dp = 0
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for any v € N. Hence v = —(n/2a)a and d((n/2a)h + ¢) = 0. Thus di) is a logarithmic
I-form and 1 (t) is a holomorphic function on Y. This implies that the element [f(z)]
of (7.6x)p is contained in &’. Therefore, (6113%)1: = G, as mentioned before. The
isomorphism &% /(&}s)p =~ (R'j.H)p sends f(z;n,0) to (n,6 mod a) in Z & M/Za ~
(R'j.H)p. Hence (&p/s)p/(6)))g)p is generated by [f(2;0,0)] for @ € N(a* Nno)*-. O

Definition. A section of p*: B* — S* is called a logarithmic section if it contained in
HO(S, 6113%) C H(S*,&y). We call 6113% the sheaf of germs of logarithmic sections.

The homomorphism
H°(S, Quys) = 0@ H(S, Quys) — H'(S, Smys)
induced from the triangle (B:?‘) is a connecting homomorphism of the exact sequence
0— Bpys — 6113% — Qps — 0.

Next, we shall generalize the definition of 6113% to the O-space S = (S,D). Let
Rj H — Lps be the morphism appearing in 4 1.9.3. Let the sheaf 6113% be defined by

the triangle
2N 7_<1]%] H— EH/S - GH/S +,

Then G2 H;s is considered as a subsheaf of j &p. We have
Gus C S1fg, G1fs/ONs~ Rj H and  Sp8g/Gpys ~ Quys.

For a point P € D, let Y > P be an open neighborhood such that U/* =U N S* CU is a
toroidal embedding of type (N, [, o). Let Nynip C N be the maximal subgroup such that
p(7) is unipotent for any v € Nypip for the monodromy representation p: N — SL(2,Z).
As before, an element @ € Ny @C = N®C induces a holomorphic function §(z) = (8, 2')
on the universal covering space U* ~ Hy(Int o) x A" In the case the local monodromy
of H around D near P is finite, let f(z; 01, 05) := 01(2)w(z) + 02(2) for 61, 8, € N® Q.
Then the holomorphic function f(z;81,802) defines an element of H°(V, 61/\05;1 H /v) for a
d-étale morphism \: [V, \™'D] — [U,U N D] associated with a finite index subgroup of
N. Therefore,

(SE)r=(6Ws)r+ S Qlf(61,62)

01,02eM2Q
as a subgroup of (1*6 m)p. In the case the local monodromy of H around D is infinite

near P, w(z) = a(z) + h(én(z)) for some 0 # a € ¢ N'M and for some holomorphic
function h defined on U. Let o be the maximal positive integer such that a~ta = u € M.
We set f(z;n,0) := (n/2a)w(z)? — (n/2)a(z) + 0(z) for n € Q, # € N® Q. Then the
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holomorphic function f(z;n,0) on U* defines an element of (6113%) p and moreover, we
have

(B =(SYr+ Y. Qlf(zn,0)],

neQ,0eMeQ

(Smys)p = (S))s)p + > Q[f(z;0,0)].

6eN(alno)LeQ

The homomorphism

H°(S, Qpys) =06 H(S, Quys) — H' (S, Spys)

induced from the triangle (6.8) is a connecting homomorphism of the exact sequence
0— Bpys — 6113% — Qp/s — 0.
Two sheaves 6113% and 6113% are related by
s ~ eBpis

for the natural morphism e: § — S = (5, 0).

Suppose that S is a curve. Then the connecting homomorphism 7: H°(S, Qy/s®@Q) —
H'(S,Gpys) is considered to express logarithmic transformations [K§| as follows: Let
g € H°(S,Quys) ~ H°(S,Qpu/s ® Q) be an element supported only at a point P € D.
Let U > P be an open neighborhood U4 ~ A such that U* = U N S* = A*. Thisis a
toroidal embedding of type (N, [, o) where N = Z and 0 = R>(. The monodromy type of
H around P is I, for some integer a > 0.

In the case a = 0, ¢ is represented by a holomorphic function f(z) = f(z;01,80) for
some rational numbers 81, 8, € M ® Q ~ Q. Let m be a positive integer such that mé,
m@y € M. Let V>~ A > u— u" € A ~U be the cyclic covering of degree m and let
V* =V~ {0}. We have a morphism U* ~ H 3 z — e(z/m) € V* as a universal covering
map. Denoting U := (U, {0}), ¥V := (V,{0}), we consider the single 0-étale covering
family {V — U}. Then the image of 7(q) in H' (U, Spyg) is derived from a section of
HY(V xgV,Gpys) corresponding to

Sp(z XEZ) ~ Z/mZ xV > (Z,U) — f(Z + i; 01, 02) — f(Z, 01, 02) = 201W(Um) + 202
This defines an action of Z/mZ on B xgV by
B x5V 3 (bu) — (tr(01w(u™) + 02)b, e(1/m)u),

where tr denotes the translation B — B by a section of p: B — S. Let Xyy — U be
the quotient of B xg )V — V by the action of Z/mZ. Then there is an isomorphism
Xyly= =~ B XgU* given by

(be(z/m)) — (tr(—f(2;01,02))b,e(z)).
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Here, note that f(z;601,02) defines a section of B xg V* — V*. The elliptic fibration
B"@ — S corresponding to n(q) € H*(S,8p/s) is obtained by the gluing of X and
B x5 (S~ {P}) under the isomorphism above over *. Hence B"? — § is obtained by
the logarithmic transformation associated with f(z;61,05).

In the case a > 0, ¢ is represented by f(z;n,0) for some n € Q. Let m be the
denominator of n. Let V >~ A 3 u+— u™ € A ~ U be the cyclic covering of degree m
and let V* =V~ {0}. The q is also represented by f(z;n,6,) for 0,, := —(1/2)na(m —1).
For the single 0-étale covering family {¥ = (V, {0}) — U = (U, {0})}, the image of n(q)
in H'(U, Spys) is derived from a section of H°(V xgV, &pyg) corresponding to

1
sp(¥xgV) =~ Z/mZxV > (i,u) — f(z+i;n,0,)— f(z;n,0,) = inw(z)—i—na% +6,,.

Let B — A be the toric model [N4] associated with the period function w(z) = az + h(t)
and let X — B be the universal covering. Then X'|a~ ~ C* x A* and the central fiber of
X — A is a chain of infinitely many smooth rational curves. Let s denote a coordinate
of C*. Then the quotient space of X’ by the action s +— se(w(z)) = st®e(h(t)) is the toric
model B. The section of H°(V xXsV,Sp/s) above defines an action of Z/mZ on B xgV
by
B x5V 3 ([s],u) — ([se(nw(z) + 0,)], e(1/m)u),

where [s] denotes the image of s € X in B. Let X;; — U be the quotient of B xg)V — V
by the action of Z/mZ. Then there is an isomorphism X[+ >~ B xgU* given by

(5. e(z/m)) = ([se(=f(z:n,60))]. e(2))-
The elliptic fibration B"? — S corresponding to n(q) € H'(S, S pys) is obtained by the
gluing of Xy and B xg (S ~ {P}) under the isomorphism over 2/*. Hence B"? — S is

obtained by the logarithmic transformation associated with f(z;n,6,).

Definition. For ¢ € H°(S,Qp s ® Q), we define Ly: H (S, Sp/s) — H'(S,Spys) by
Ly(y) =y +nlq) for n: H°(S,Qpu/s ® Q) — H'(S,Spys). We call L, the logarithmic

transformation associated with gq.
We still have the following problem related to 6.3.5.

Problem 7.5.2. For a marked elliptic fibration (X — S, ¢) € £(S, D, H) with the coho-
mology class y € H*(S, Sy s), is the logarithmic transform L,(y) = y + n(q) expressed
by a marked elliptic fibration?

Let £ C D be an analytic subset. We set SV := S~ E, S = (SY, DN SY). Suppose
that E contains the support of an element ¢ € H°(S,Qp/s ® Q). Then for any y €
H(S,8ps), the difference L,(y) — y goes to zero by the restriction H*(S, Sp/s) —
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H'Y(SY,&pyg). Therefore if both y and L,(y) are contained in £(S, D, H), then for
the representing elliptic fibrations y = (X — S,¢) and L,(y) = (X' — S,¢'), their
restrictions are bimeromorphically equivalent over SV.

Let us consider the exact sequence
HY(S* H) — H'(S, Luys) ® H°(S, Qs © Q) — H'(S, &pys) — H*(S*, H)

of 6.2.5. For & = Z, Q, R, or C, let gg denote the homomorphism H'(S*, H ® &) —
H'(S, Ly/s). Similarly, let rg denote the homomorphism H'(S*, H®R) — H°(S,Qu/s®
R). Recall that C(H/S) is the image of (gz,7z): H'(S*, H) — H'(S, Lus)®H (S, Quys)
and that C(H/S) is the image of rz.

Proposition 7.5.3. Let (f: X — S,¢) be a marked elliptic fibration with respect to
(S, D, H) with the cohomology class y € H'(S,Spys). Let g be an element of H°(S,
Qu/s @ Q).

(1) Suppose that X and S are compact Kihler manifolds. Then L,(y) is represented
by a marked elliptic fibration from a compact Kahler manifold if and only if q is
contained in C(H/S) ® Q.

(2) Suppose that X and S are non-singular projective varieties. Then Lg(y) is repre-

sented by a marked elliptic fibration from a non-singular projective variety if and

only if ¢ € ro(Ker gg).

Proof. (1) Lg(y) i

represented by a BCK morphism if and only if its image in H?(S, Lys)

is
4.2, Since

is torsion by 7
HY(S*, H) — H"(S,Qn/s © Q) ~ H*(S, Qpuyss) — H*(S, Ly )

is exact, this is equivalent to ¢ is contained in C(H/S) ® Q.

(2) Ly(y) is represented by a BP morphism if and only if 1(¢) is a torsion element. The
condition is equivalent to that (0,q) € H'(S, Lys) ® H(S,Qpu/s ® Q) is contained in
C(H/S) ® Q. In other words, ¢ is contained in the image of Ker gg. O

Let p: B — S be a basic elliptic fibration associated with (S, D, H) such that that B
is non-singular and that p~'D is a normal crossing divisor. Let i: B* = B~ p'D —

B be the open immersion and let us consider the mapping cone (933 of the morphism

T§2Rj*ZS* — Os.

Lemma 7.5.4. There is a natural quasi-isomorphism

<1 Rp, O ~qis 05@6113%[ 1] & Zs[-1].
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In particular,
H'(B,0%) ~ H'(S,0%) @ H'(S, 8}5) @ Z.

Proof. We have a triangle

- L 75(Rp,Ri.Zg) — Rp,Op — 1< Rp, O

The quasi-isomorphism is obtained by 6.2.6. O

Remark. The cohomology group H°(B, (933) is isomorphic to the group of meromorphic
functions defined over B that are invertible on p~*D (6.2.7). When B is a projec-
tive variety, the cohomology group H'(B, (933) is a Deligne—Beilinson cohomology group

Hp(B*, (1)) (B, [H]).

Lemma 7.5.5. (1) The triangle

1 . +1
RN T<oRi,Zp- — Op — (933 -

mduces a triangle
(7.7) R T<oRp,Ri.Zp» — Rp,Op — T<1Rp*OB
(2) The triangle
- 15 1o RiZp — Op & (T<sRL,-1p(Zp))[1] — Op =

mduces a triangle
(7.8)
- 1% r»Rp, Ri.Zp- — Rp,Op & (7<s R p(t<2Rp.Zp))[1] — 7<1 Rp, O

Proof. We have a triangle
(7.9) e L (g RE )1 p(Zg))[1] — O — Of |

since T>1T<oRiZp+ ~qis (T<sRL,-1p(Zp))[1]. By applying Rp, to (7.9), we also have a
triangle
-5 Rp.(t<sRL,1p(Zp))[1] — Rp,O% — Rp,0f 5 -+
Here the image of the homomorphism
R'p,05 — R'p,0% ~ H}\(Ls) & Syfs & Ls

is Sp/s @ Zs by 6.2.8. Thus its cokernel is isomorphic to
Hp(Zs) © Quys C H(RLp(Rp,Zs)),
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where H},(Zs) = ub3?, Qus = nE% for the spectral sequence E5? in Section 5.4
Since ; Fy” = 0, the cokernel is the kernel of H*(RL p(Rp,Zp)) — R*p,Zp. Hence, we

have another triangle
(7.10) -+ 55 (resRLp(r<e Rp, Zp))[1] — 71 Rp, O — 11 Rp. O = -+
The triangle

- 24 RI',(Rp.Zs) — Rp,Zp — Rj.RpZp =5 ...
induces another triangle
(7.11) +o 25 7 RE ) (r<aRp, L) — <o Rp,Zp — <2 Rj.RpiZp- = -+
since the image of

H*(Rj.Rp*Zp+) ~ R*j.Zs ® R j.H © Zs — H> (Rp,Zg)
is M3 (Zs) ® Quys. We have then triangles (7.7) and (7.8) by (7.10) and (7.11). O

The cohomology group H3 (S, 7<e Rp,Zg) is isomorphic to the kernel of H;’_lD(B, 7) —
H*(B,Z). Here, we have an injection H' (S, p,H> ., (Zg)) — H}(S, 7<2Rp.Zp) from
EQI’2 — E3 for the spectral sequence

B = HY(S, H'(Rp.RL, 1 p(Zp))) = E"** = HY'(B, Z).
If [S, D] satisfies the condition 8.2.6, by 5.4.7, we have another injection H3,(S,Z) —
H3(S,m<sRp,Zp) C H:, (B, Z).

Definition. Suppose that S is non-singular. We define an abelian group by

~ H3 (S 7'<2Rp ZB)
B = DA = * )
CUBIS) = (8 p. e (Zs) + HB(S, D)

The triangles (7.10) and (7.11) induce homomorphisms H'(B, (933) — H?*(B*,Z) and
H?(B*,7) — C(B/S), respectively.

Proposition 7.5.6. Suppose that S is non-singular. Then there exists a natural injection
C(B/S) — H(S,9Qu/s). The image of H*(B*,Z) — C(B/S) C H(S,Qu/s) coincides
with C(H/S). The image of H'(B,0%) — C(B/S) C H(S,Qu/s) coincides with
rz(Ker gz). In particular, the following conditions are equivalent:

(1) The image of H'(B,0%) — C(B/S) C H°(S,Qu/s) is a finite index subgroup of

C(H/S);
(2) The image of H°(S,Qn/s @ Q) — H*(S,Spys) is a torsion group;
(3) Any logarithmic transformation along D produces only a projective elliptic fibra-

tion.
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Proof. We have triangle

- Py p(Z8)[=2) — TesRL (72 Rp.Ls) — (Hp(Zs) © Quys)[=3] 75 -,

from the quasi-isomorphism 7<o R p(7<2Rp,Zp) ~qis T<2Rp,RL,-1p(Zp) and an iso-
morphism H} (7<oRp,Zg) ~ Hy(Zs) ® Quys. Since Zs — Rp,Zp has a splitting, ho-
momorphisms Hp(S,Z) — Hy . ,(B,Z) and H*(S, H}(Zs)) — H*(S,p.H; 1 p(ZB))
are both injective. Thus we have an injection C(B/S) — H%(S,Qps). We have
the decomposition H?(B*,Z) ~ H?*(S*,Z) & H'(S*,H) & H°(S*,Z). The composite
H?(S*,7) — C(B/S) is zero since it factors H3,(S,Z). A generator of H°(S* Z) comes
from ¢;(X) € H?(B,Z). Thus the image of H?>(B*,Z) — C(B/S) coincides with the
image from H'(S* H). This is C(H/S). The homomorphism H'(B,0%) — H?(B*,7Z)
is written as the direct sum of H'(S,0%) — H?(S*,Z), H(S, 6113%) — H'(S*, H), and
the identity H°(S,Z) — H°(S*,Z). Since
HO(S, Slfig) — HI(S*, H) — H'(S, Lass)

is exact, the image of H2(B, 0%) — HO(S, Quys) is rz(Ker gz). O

Suppose that S is a compact Kéhler manifold. Then H?(B*,Z) has a mixed Hodge
structure and H?(B,Op) is isomorphic to Gr% H?(B*,C) for the Hodge filtration F'.
Hence the image of H'(B, 0%) — H*(B*,Z) is H*(B*,Z)N F'H?(B*,C) and the kernel
of H(B,0%) — H?*(B*,Z) is generated by Pic’(B).

Lemma 7.5.7. If S is a compact Kihler manifold, then rc(Ker gc) = Imre.

Proof. There is a splitting H*(B*,C) = @ I[P for vector spaces I™ indexed by integers
p, ¢ > 0 with p+ ¢ > 2 such that
F*H*(B*,C) =@ 1", W,H*(B*,C)= P I,
p=k p+q<r

=T mod P I

p'<p,a'<q
where W stands for the weight filtration and I stands for the complex conjugate of I.
We have F3H?*(B*,C) = H*(B, F*Q%(logp~' D)) = 0. The Leray spectral sequence

EPY = H?(B, R%,Cp+) = H"*(B*,C)

degenerates at E3 and Gr?/ HP+9(B*,C) ~ E3*™7" is a pure Hodge structure of weight
q. Hence, 1?7 # 0 except for (p,q) = (2,0), (1,1), (0,2), (2,1), (1,2), (2,2). Thus
Grl% H*(B*,C) ~ I°? and Ker gc = F*H*(B*,C). Further

Ker gc — H?*(B*,C)/WoH?*(B*C) ~ I*' @ I'? @ [*?

is surjective. 0
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7.6. Logarithmic transformation on elliptic surfaces

Proposition 7.6.1 (cf. [KE’)‘, 3.1, 3.2]). Assume that S is a non-singular projective curve.
Let E be an elliptic curve and let H be the trivial VHS H = H*(E,Z)®Zg-. For a suitable
isomorphism, H'(E,Op) ~ C, let A be the image of H'(E,Z) — H'(E,Op) ~ C. Let

us consider an element
g€ H(S,Qp/s ® Q) ~ H}(S,Q) ® A ~ Divp(S,Q) ® A.

(1) The following conditions are equivalent:
(1a) n(q) € H'(S, Sy s) = E(S, D, H) represents a Kahler elliptic surface;
(1b) For the expression ¢ = > pep qpP forqp € A® Q, > pgp = 0.
(2) The following conditions are equivalent:
(2a) n(q) € H'(S,Gnys) = E(S, D, H) represents a projective elliptic surface;
(2b) There is a logarithmic 1-form & € H°(S,Q%(log D)) such that it is con-
tained in H'(S*, A ® Q) and that q 1is its image under H'(S*, A ® Q) —
H°(S, R'j.Qs- @ A).

Proof. (1) (1a) is equivalent to that ¢ € C(H/S) ® Q. The assertion follows from the
exact sequence
H'(S*,Z) — H°(S,R'j.Zs:) — H*(S,Z) ~ Z.

() (2a) is equivalent to that ¢ € ro(Kergg). Now ¢ is induced from H'(S* Z) —
H'(S,03) and A C C by the tensor product H'(S*,Z) @ A — H'(S,Og) @c C. An
element of Ker gg is represented by a logarithmic 1-form & € H°(S, Q4 (log D)) such that
¢ € H'(S*,C) is contained in H'(S*, A). Thus we are done. O

Corollary 7.6.2 (cf. [K5, 4.2]). Under the same situation as T7.6.1, suppose that S is
isomorphic to the elliptic curve E and D = Py + P5 for distinct two points. Suppose
further E has a complex multiplication. Then some 0 # q € H(S,Qp s ® Q) defines a

projective elliptic surface if and only if Py ~q Ps.

Proof. It Py #g Py, then we have H°(S, Og(xD)*) = C*. Hence H'(S*,Z) — H'(S, Og)
is injective. Now the image of H'(S*,Z) — H%(S,Z) is of rank one. Let § € H'(S*,Z)
be an element generating the image in H%(S,Z). Then the image of H'(S*,Z) —
H'(S,Og) ~ C is an abelian group of rank three generated by A and 6. Now Ag = A®Q
is a quadratic field. Hence ) = #Ag N Ag C C. Thus the kernel of H*(S*, Q) ® A —
H'(S,05) ~ C is contained in H'(S,Q) ® A. Thus rg(Ker gg) = 0.

If P, ~q Py, then H°(S, Og(xD)*) contains a non-constant meromorphic function. Its

image to H3(S,Z) is not zero. Thus we can find a non-zero element of rz(Kergz). [
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Proposition 7.6.3. Let p: B — S be a modular elliptic surface (cf. [S8]) associated
with a subgroup I’ C SL(2,7Z) of finite index such that —id & I', I' acts on H without
fixed point, and the stabilizer of any cusp consists of unipotent matrices. Let D C S be
the set of cusps and let H be the induced VHS on S* = S~ D. Let &(I") and &i(I"),
respectively, denote the spaces of (holomorphic) modular forms and cusp forms of weight
k with respect to I'.
(1) B(I) = HY(S, L£55") and &,(I') = HO(S, L35 ® Os(~D));
(2) Q5(log D) ~ ws® Og(D) ~ Eg(/;?). In particular, &o(I") ~ H(S,QL(log D)) and
So(I') ~ HO(S,ws);
(3) For the mized Hodge structure H'(S*, H), we have FY(H'(S*, H)c) ~ &3(I');
(4) For the pure Hodge structure H'(S,j.H) of weight two, its (1,1)-component is
zero, (2,0)-component is isomorphic to H°(S,ws ® EI_JI/S) ~ &3(I), and (0,2)-

component is isomorphic to H'(S, Ly/s).

Proof. (1) p is a natural compactification of I'\(C x H) — I'\H = S*. For the universal

covering mapping 7: H — S*, Oy ~ 77 'Ly is a I'-linearized sheaf as follows:

cy dy

f1(z) = (cyz +dy) f(yz), fory= (a«, bﬂ{) )

where f(z) € H°(H, Oy) is a holomorphic function on z € H. Hence HO(S*, £S5 is
the space of holomorphic functions f(z) on H satisfying

fyz) = (ey2 + dy)" f(2).
By the definition of Lg/s and by the unipotent property of I', we have the expected
isomorphism.

() This is derived from the isomorphism QY ~ 771£5® as Ilinearized sheaves.
(8) The logarithmic de Rham complex Q%(log D) @ HE" has a filtration

[ FY(HE™) 7 Q4(log D) © MG — -],
[+ —0— Ql(log D) @ F'(HE™) — ---].

FH(Q(log D) ® HE™)
F*(Q3(log D) ® HE™)

Here F'(HG™) =~ Ly)s. Now the composite F'(HE") — Qg(log D) ® Lyys is injec-
tive since its restriction to S* is a kind of Kodaira-Spencer mapping. By (%), it is an
isomorphism. Thus Gry(2%(log D) ® HZ") ~qis 0. Hence

FYHY(S*, He) ~ H'(S, F'(Q%(log D) @ HE™)) ~ H°(S,Qs(log D) © Li;s) ~ G3(I").
(4) The Leray spectral sequence
EP? = H"(S, R'j.Hq) == H""(S", Hg)
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degenerates at F3 and E*T47P ~ Gr‘fiq HPT(S* Hg) for the weight filtration W of the
mixed Hodge structure. Since the period of H is non-constant, H?(S, j.H) ~ H?(S, Lys)
is a finite group by #4.2.5. Thus Gry H'(S*, Hg) ~ H'(S, j.Hg) and Gry H'(S*, Hg) =~
H°(S, R'j,Hg) and

0— HY(S, j.Hgy) — H'(S*, Hy) — H°(S, R'j,Hg) — 0
Q Q Q

is an extension of mixed Hodge structures. Note that Qg g ® Q ~ R'j,Hg in this case.
We have FYH'(S, j.Hc) ~ FYH'(S*, Hc) N H'(S, j.Hc). From the residue isomorphism
QL (log D)/ ~ Op, we have a commutative diagram

H'(S*, He) ——  H°S, R'j.Hc)

T T

H°(S,Q(log D) ® Ly)g) —— H(D,0p ® L)),
where the right vertical arrow is an isomorphism. Therefore,
F'H'(S,j.Hc) ~ H°(S, Q% @ El_il/s) ~ G3(1I")

and Grl H(S, j.Hc) ~ Gry HY(S*, He) ~ H'(S, Ly/s). By the proof of (8), we have
FYH\(S*, He) = F?H'(S*, He). Hence FYH'(S, j. He) = F*H'(S, j, He). O

We recall some properties of the space of Eisenstein series. Let N, k be integers greater
than 2 and let I'(N) stand for the principal congruence modular group of level N. For
¢, d € Z, we consider the Eisenstein series

Gr(z;c,d; N) := > (mz+n)~",

(m,n)=(c,d) mod N
(m,n)#(0,0)

where z € H. Then G (z;c¢,d; N) belongs to &,(I'(N)). Let E(N) C &,(L'(N)) be the
C-subspace generated by the Eisenstein series. Then &, (I'(N)) = &, (I'(N)) & E(N)
and & (V) is the orthogonal complement of S;(I'(N)) with respect to the Petersson
product. Hecke operators T'(n) with (n, N) = 1 stabilize &;(I'(V)) and &(N) and are

diagonalized in each spaces.

Lemma 7.6.4. A Q-vector subspace E(N)g C Ex(N) generates E,(N) and the action of
T(n) with (n,N) =1 descends to E(N)g.

Proof. The space of Dirichlet series associated with & (V) is generated by the series of
the form (t1t2) *L(x1,s)L(x2,s), where t1, t2| N, x; is the Dirichlet character modulo
N/t; for i = 1, 2, xix2(—=1) = (=1)*, L(x,s) = 322, x(n)n=* (cf. [O4, Theorem 15]).
Here, we have

(t1t2) " L(x1, s)L(x2,8) = ¢ i cmn™, cn)= 3 xi(b)xa(by)abrirbet:

bi mod N/tz
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for c€ Q, a%? € Z. Let

n

fXexz(z) = Z c(n)e(nz/N)

n>0
be the associated Eisenstein series. Then it is a common eigenfunction for 7'(n) with
(n, N) = 1 and its eigenvalue A\(n) = A\X1X2(n) satisfies ¢(n) = ¢(1)A\(n). Let Uy C Ek(N)
be the R-vector subspace of E(N) generated by {fX'X2} for K := Q(e(1/N)). Then
E(N) ~ Uy ®g C and the action of T'(n) with (n, N) = 1 descends to Uy. An element
o € Gal(R/Q) acts on Uy by
(f22)7(2) = 3_ e(n)7e(nz/N).
n>0

Then (fX1x2)7 = XI5 for x7(b) = (xi(b))°. Hence (AX1X2(n))? = MIX2(n). Thus
T'(n) is commutative with the action of Gal(®/Q). Hence it descends to a rational

structure. O

Corollary 7.6.5. Let p: B — S be the modular elliptic surface associated with I'(N)
for N > 3. Let D C S be the set of cusps and let H be the induced VHS on S* = S~ D.
Then E3(N) C &3(I'(N)) € H'(S*, He) is generated by a Q-subspace of H*(S*, Hgy). In

particular, the exact sequence
0 — H'(S,j.Hg) — H'(S*, Hg) — H°(S, R'j.Hg) — 0
of mized Hodge structures is split.

Proof. Hecke operators T'(n) acts on H'(S*, H) ~ H'(I'(N),Z%*) compatibly with the
inclusion &3(1'(N)) € H'(S*, H)c (cf. [87]). Thus E(N)q satisfies the condition. O

Theorem 7.6.6. Let B — S be a modular elliptic surface associated with a subgroup
I' € SL(2,Z) of finite index such that —id ¢ I'. Then any logarithmic transform only

along singular fibers is a projective surface.

Proof. Let D C S be the set of points the fibers over which are singular, j: S* =S~ D C
S denote the immersion, and let H be the induced VHS on S*. Then Qg is supported
in points the singular fiber over which is of type I(4).

There is an integer N > 3 with I'(N) C I'. Let B(N) — S(IV) be the elliptic modular
surface associated with I'(NV). Then B(N) — S(N) is birational to the pullback of
B — S by the natural finite morphism S(N) — S. Anelement ¢ € H°(S, Qp/s) produces
logarithmic transform B"? — S and B(N)"9 — S(N). If B(N)"9 is projective, then
so is B"?. Hence, we are reduced to the case I' = I’ (N). Then the assertion follows

7.5.3, 7.6.3, and 7.6.5. 0
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Proposition 7.6.7. Let p: B — S be a minimal basic elliptic surface over a non-singular
projective curve S, D the set of points the fibers over which are singular, and let H be
the induced VHS on S* = S~ D. Suppose that H is not trivial. For a point P € S*,
we set D(P) := D+ P, S*(P) := S~ D(P), and H(P) := H|s«py. Then there exist a
point P € S* and an element g € HY(S, Qu(pys @ Q) such that n(q) € E(S, D(P), H(P))

represents an elliptic fibration not bimeromorphic to any projective surfaces.

Proof. There is a commutative diagram
0 —— H'Y(S,j.Hy) —— HY S\ P,j.Hg) —— H3(S,j.Hg) —— 0

| l |

0 —— HY(S,j:Ho) —— H'(S*(P),Hy) —— Hpp)(S,j-Hg) —— 0
of mixed Hodge structures, where horizontal sequences are exact by H?(S,j,Hg) = 0
(cf. 4.2.5). We have HY(S, S (p)s®@Q) ~ H3(S, j.Hg). The n(q) represents a projective
surface if and only if the top horizontal sequence is split as mixed Hodge structures. Note
that H'(S, j.Hg) and H%(S,j.Hg) are pure Hodge structures of weight two and three,

respectively. Varying points P in S*, we have an exact sequence
(7.12) 0— HYS,j.H)® Qg — Hy — Hg — 0

of admissible variation of mixed Hodge structures, where H is defined as follows: Let
w9 X S*— S5, m: S x §* — S5* be projections and let A C S x S* be the diagonal
locus. We define
H:= R'(my 0 i)*(ﬂfl(j*H)|5X5*\A),
where i: .S X S* A — S x 5" is the open immersion. The dual of the sequence (:'7:1:2) is
an extension of the trivial variation H'(S, j. H)" ® Qg~ of pure weight —2 by the variation
Hg of pure weight —3. The extension is trivial if the stalks at each points P € S* are
trivial by [S2, 4.5]. Hence, it suffices to show that (7.12) is not split on S*. We have a
morphism
Ho — H'(S,j.Hg) ® Qs+[1] — H'(S*, H) ® Qg-[1]

in derived category from (7.12). It is enough to show this morphism is not zero. The mor-
phism is also obtained al follows: Let RI.(S*, HY) — RI'(S*, H") be a natural morphism,
where I'(S*, —) denotes the functor taking global sections and I.(S*, —) denotes the func-
tor taking global sections with compact support. It induces RI.(S*, Hg) G% Qg — H(LV@ as

an evaluation map. We consider its dual R Homg(—, Qg+). By Verdier duality, we have
L L
RHomg«(RI.(S*, Hé) ® Qg+, Qg+ ) ~qis RHom(RI (S, H<LVD)> Q) ® Qg+

L L L
~ais RC(S*, RHom(HY, we? © Q) ® Qg+ ~qis RI'(S*, Hy) ® Qs [2)].
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By 4.2.5, we have RI'(S*, Hg) ~qs H'(S*, Hg)[—1]. Hence the dual is a morphism
Hg — H'(S*, Hp) ® Qg-[1]. Since the evaluation map is not zero, the dual is also not

zero. Thus we are done. [
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