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Abstract. ∂-étale topology is introduced for analytic spaces with boundary as an

analog of étale topology for schemes. A locally projective elliptic fibration is bimero-

morphically considered as a torsor in the ∂-étale topology of the associated basic elliptic

fibration. The related ∂-étale cohomology groups have much information on the struc-

ture of elliptic fibrations. In particular, an answer to Ueno’s extension problem, a

relation to Tate–Shafarevich groups and their finiteness properties , characterizations of

projective and Kähler elliptic fibrations, and a generalization of logarithmic transforma-

tion to arbitrary dimension are obtained. This article is a revised version of [N5].
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0. Introduction

An elliptic fibration is a proper surjective morphism f : X → S of normal complex

analytic varieties with general fibers being elliptic curves. In this paper, we fix the base

space S and consider the classification of elliptic fibrations up to the bimeromorphic

equivalence relation over S. We assume that there is a Zariski-open subset S� ⊂ S

such that the open immersion is a toroidal embedding [K6]. Let f� be the restriction

X� := f−1S� → S� of f . Assume that X is non-singular and that f� is bimeromorphically

equivalent to a smooth elliptic fibration over S�. Then the sheaf H(f) := R1f�
∗ZX� forms

a variation of Hodge structure of rank two and of weight one. H(f) depends only on

the bimeromorphic equivalence class of f : X → S. This is naturally Z-polarized by the

trace map R2f�
∗ZX� → ZS� and induces a period mapping from the universal covering

space of S� into the upper-half plane H := {z ∈ C | Im z > 0} and a compatible
monodromy representation π1(S

�)→ SL(2,Z). As a method of classification, we fix also

a variation of Hodge structure H of rank two and of weight one on S� and consider marked

elliptic fibrations (f : X → S, φ) associated with (S,D,H), where D := S � S�, defined

as follows: f : X → S is an elliptic fibration from a non-singular variety such that its

restriction f� = f |S� is bimeromorphically equivalent to a smooth elliptic fibration; φ is an

isomorphism H(f) ∼→ H as variations of Hodge structure. Two marked elliptic fibrations

are called mutually bimeromorphically equivalent if there is a bimeromorphic mapping

between them over S that commutes with each markings φ. We denote by E(S,D,H)

the set of bimeromorphic equivalence classes of marked elliptic fibrations (f : X → S, φ)

associated with (S,D,H) such that, locally over S, f is bimeromorphically equivalent to

a projective morphism. We also consider its subset Eproj(S,D,H) consisting of all the

marked elliptic fibrations (f : X → S, φ) such that f is bimeromorphically equivalent over

S to a projective morphism.

There is an elliptic fibration p : B(H)→ S uniquely up to the bimeromorphic equiva-

lence relation over S satisfying the following three conditions:

• p is smooth over S�;

• There is a meromorphic section S ···→ B(H) of p;

• There is an isomorphism φ : H(p) ∼→ H.

The p is called a basic elliptic fibration associated with H. The element (p : B(H) →
S, φ) ∈ E(S,D,H) is independent of the choice of φ. The restriction

p� := p|S� : B(H)� := p−1(S�)→ S�

is uniquely determined up to isomorphisms over S� is called a smooth basic elliptic fi-

bration. A construction of B(H)� from the data of period mapping and monodromy
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representation is explained in [K7]. For a given section σ� : S� → B(H)�, p� has a group

structure with σ� being zero: p� is a group object in the category An/S� of complex ana-

lytic spaces over S�. For a given meromorphic section σ : S ···→ B(H), the sheaf SH/S of

germs of meromorphic sections has an abelian group structure with σ being zero. There

is an identification E(S�, ∅, H) ←→ H1(S�,SH/S). This means that any smooth elliptic

fibration is a torsor of a smooth basic elliptic fibration. Let E0(S,D,H) ⊂ E(S,D,H)

be the subset consisting of all elliptic fibrations f : X → S such that f admits mero-

morphic sections locally on S. We infer that if dimS = 1, then E0(S,D,H) is identified

with H1(S,SH/S) by Kodaira’s theory of elliptic surfaces. It is not enough to use SH/S

for describing E(S,D,H). We introduce a new category ∂sp of ∂-spaces containing the

category An of analytic spaces and a Grothendieck topology called ∂-étale topology on

it. The ∂sp is the localization of the category AB of analytic spaces with boundary by
∂-isomorphisms. The pair (S,D) defines a ∂-space S and H defines a similar sheaf SH/S

of S in the ∂-étale topology. We shall show that E(S,D,H) is regarded as a subgroup

of H1(S,SH/S) and that Eproj(S,D,H) is identified with H1(S,SH/S)tor (cf. 5.2.5, 6.3.2,

6.3.4, 6.3.8). The following results are also obtained by the ∂-étale cohomology theory:

(1) An elliptic fibration f : X → S is bimeromorphically equivalent to a projective

morphism if and only if there is a prime divisor of X dominating S (cf. 6.3.8).

(2) The description of local structure of projective elliptic fibrations (cf. 6.2.12, 6.3.9).

(3) The answer to the following question posed by Ueno (cf. [F4, II, 1.15]) is neg-

ative: Does a smooth elliptic fibration Y → ∆2 � {(0, 0)} admitting no holo-
morphic sections extend to an elliptic fibration over ∆2? Here ∆2 stands for

the two-dimensional unit polydisc (cf. 0.3). A proof in a general form is given in

Section 7.1.

(4) Tate–Shafarevich groups in algebraic situation are described by some ∂-étale co-

homology groups (cf. 6.2.11, 7.2.1, 7.2.2). Some results of Gross [G5] related to

the boundedness of Calabi-Yau manifolds are generalized in Section 7.2.

(5) A generalization of a result of Miyaoka [M5], [M6] is given in the following form

in 7.4.4: For a compact complex manifold X having an elliptic fibration over a

d-dimensional compact Kähler manifold S, X is bimeromorphically equivalent to

a compact Kähler manifold if and only if H2d(S,C)→ H2d(X,C) is not zero.

(6) The induced homomorphism H0(S,QH/S)→ H1(S,SH/S) from the distinguished

triangle (6.8) describes logarithmic transformations (cf. Section 7.5).

(7) A logarithmic transform of a modular elliptic surface [S8] along its singular fiber

is still a projective surface. On the other hand, a logarithmic transform of the
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modular elliptic surface along some smooth fiber is not projective. These are

shown in Section 7.6.

0.1. Background

We shall recall the background of the study of elliptic fibrations.

Kodaira’s theory

First of all, we recall Kodaira’s theory of elliptic surfaces ([K7], [K8]). This treats the

case S is a non-singular curve, i.e., elliptic fibrations over a non-singular curve. We recall

this along the following four parts:

(I) Minimal Model . An elliptic surface is called minimal, if there exist no exceptional

curves of the first kind in any fibers. This is equivalent to the condition that some multiple

of the canonical bundle is the pullback of a line bundle on the base curve S. The minimal

model of an elliptic surface is obtained by a successive contraction of exceptional curves of

the first kind contained in fibers. If two elliptic surfaces are mutually bimeromorphically

equivalent over the base curve, then their minimal models are isomorphic to each other.

Thus the study of elliptic surfaces is reduced to that of minimal elliptic surfaces. A fiber

f−1(s) = X ×S {s} of an elliptic surface is called a singular fiber , if f is not a smooth
morphism along the fiber. Kodaira classified singular fibers of minimal elliptic surfaces

by numerical calculation [K7]. The list of types is as follows: Ia, I
∗
a, mIa, II, II

∗, III, III∗,

IV, IV∗, where a ≥ 0 and m ≥ 2.
(II) Basic fibration. Let H be a Z-polarized variation of Hodge structure of rank two

and of weight one on S� and let p� : B(H)� → S� be the associated smooth basic elliptic

surface with a section σ� : S� → B(H)�. Kodaira constructed an extension p : B(H)→ S

of p� as a minimal elliptic surface and an extension σ : S → B(H) of σ�. The fibration

p is uniquely determined up to isomorphisms over S, which is called the basic fibration,

basic family, or basic elliptic surface, etc. We recall briefly the construction. Assume that

the base curve S is a unit disc ∆ and S� is the punctured disc ∆� {0}. First, suppose
that the order of monodromy of H is finite. For the order m, let ∆′ � t �→ tm ∈ ∆ be

the finite cyclic covering. Then the monodromy of the pullback of H is trivial. Thus

the associated smooth basic elliptic surface defined over the punctured disc ∆′ � {0}
canonically extends to a smooth basic elliptic surface B ′ → ∆′. The Galois group Z/mZ

acts holomorphically onB ′ and the quotient space is a partial compactification ofB(H)�.

By taking a resolution of the quotient singularities and by contracting exceptional curves

of the first kind, we have the minimal elliptic surface B(H). Next, suppose that the

order of monodromy of H is infinite. Then we may assume that the monodromy matrix

is unipotent by the same argument as above to a suitable cyclic covering. In this case,
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Kodaira’s description of B(H) is interpreted by means of toroidal embedding. B(H)� is

regarded as the quotient of C� × S� by a suitable action of Z induced from H. There

is a toroidal embedding C� × S� ⊂ X over S� ⊂ S such that the fiber over {0} is an
infinite chain of smooth rational curves and that the action of Z holomorphically extends

to a properly discontinuous and fixed point free action on X . The quotient Z\X is the

minimal elliptic surface B(H). (cf. [A], [N1], [N4]).

(III) Torsor . Let B(H)	 be the maximal open subset of B(H) at which the fibration

p : B(H) → S is smooth. Then the restriction p	 : B(H)	 → S has a group structure

over S which is an extension of p�. There is a relative action of p	 on p compatible with

the open immersionB(H)	 ⊂ B(H). The p	 is the so-called Néron model [N7]. Let SH/S

be the sheaf of germs of sections of p	. The cohomology group H1(S,SH/S) is identical

to the set of isomorphism classes of torsors of p	. By the action of p	 on p, an element

η ∈ H1(S,SH/S) defines a minimal elliptic surface pη : B(H)η → S. If a minimal elliptic

surface has a section over a neighborhood of arbitrary point of S, then it is isomorphic

to Bη(H)→ S for some η ∈ H1(S,SH/S).

(IV) Multiple fiber. A multiple fiber is a fiber which has no reduced components. It

is of type mIa with m ≥ 2. A non-multiple fiber appears as a fiber of a minimal basic

fibration. A multiple fiber f−1(s) turns to be non-multiple by a suitable ramified covering

over a neighborhood of s. In other words, a multiple fiber is locally obtained as a fiber of

the quotient of basic elliptic surfaces. Kodaira fixed a finite Galois covering S ′ → S and

considered the set of isomorphism classes of minimal elliptic surfaces f : X → S over S

with an isomorphism H(f) ∼→ H such that the pullback by S ′ → S turns to be an elliptic

surface without multiple fibers. This set is described as a suitable cohomology group

determined by S ′, H, and the Galois group of S ′ → S. In [K8], Kodaira gave another

description of multiple fibers by means of logarithmic transformation. The logarithmic

transformation does not change the complement of the given fiber but a neighborhood

of the fiber. A multiple fiber is obtained by a logarithmic transformation from a non-

multiple fiber. The induced isomorphism between the complements of fibers is written

by a logarithmic function and is not algebraic: it does not extend to a bimeromorphic

mapping.

As a consequence, an elliptic surface is constructed by a variation of Hodge structure

H, the twist by an element η ∈ H1(S,SH/S), and by logarithmic transformations. This

theory is one of the origins of studies of degenerations of curves, surfaces, and abelian

varieties. In the study of purely algebraic elliptic fibrations, there are other important

objects such as Néron models, Tate–Shafarevich groups, and Mordell–Weil groups.
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Generalization to higher dimension

A degeneration should be a fibration over a curve or, more generally, a flat fibration.

Non-flat fibrations are not yet studied well. Secondly, we recall known results on elliptic

fibrations over a higher dimensional base space S along the same four parts.

(I) Minimal Model . The minimal model theory for higher dimensional projective va-

rieties was developed in 1980’s, but the main difficult conjectures, flip and abundance

conjectures, are proved only in dimension up to three (cf. [M7], [K4], [M8], [K3]). Under

the assumption of the flip conjecture, the construction of minimal model is generalized to

the case of relatively projective morphisms of complex analytic varieties [N2]. A projec-

tive elliptic fibration f : X → S is calledminimal if X has only terminal singularities and

the canonical Q-line bundle KX is relatively nef : KX · γ ≥ 0 for any curves γ contained
in fibers. However, the minimal model for a given variety is not necessarily uniquely

determined if the dimension is greater than two. These minimal models are connected

by a successive operations called flops. Projective elliptic fibrations over a surface are

studied by the method of minimal model theory in [N4, Appendix]. As a consequence,

the study is reduced to that of standard elliptic fibrations, which are equi-dimensional

and locally Q-factorial over the base surfaces.

There are interesting examples of non-projective elliptic fibrations. For example, an

elliptic fibration over a two-dimensional polydisc is smooth outside the origin but the

central fiber is isomorphic to a Hopf surface or its multiple (cf. [N4, §3]).
(II) Basic fibration. Suppose that S is non-singular and that S�S� is a normal crossing

divisor. Let H be a Z-polarized variation of Hodge structure of rank two and of weight

one defined over S�. In the case S is a surface, Kawai [K1] constructed an extension

p : B(H) → S of the smooth basic elliptic fibration p� : B(H)� → S� as a projective

elliptic fibration with holomorphic section. Ueno [U1] generalized the construction to

arbitrary dimension and obtained a desingularization of B(H). But the induced fibra-

tion is not always minimal in the sense of minimal model theory. A Weierstrass model

p : W → S is defined as a relative effective divisor of a P2-bundle over S whose local

defining equation is expressed as a Weierstrass form: Y2Z = X3+αXZ2+βZ3 for a homo-

geneous coordinate (X : Y : Z) of P2 and for suitable functions α, β locally defined over S.

For the precise definition, see [N3] or Section 5.1. The following theorem is easily shown

in algebraic situation and is proved also in analytic case [N3, 2.1]:

Theorem. Let X → S be an elliptic fibration admitting a meromorphic section S ···→ X.

Then there is a bimeromorphic mapping X ···→W into a Weierstrass model which sends

the meromorphic section to the canonical section X = Z = 0.
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The author showed in [N3, §2] that a Weierstrass modelW(H) is canonically constructed

from a given variation of Hodge structure H as an extension of B(H)� and thatW(H)

has only rational Gorenstein singularities with relatively trivial canonical sheaf. Hence

W(H) is a minimal model with only canonical singularities. If S is a curve, thenW(H)

is obtained from the minimal elliptic surface B(H) by contractions of irreducible com-

ponents of singular fibers away from the zero section. We define a basic elliptic fibration

p : B(H) → S associated with H to be an elliptic fibration admitting a meromorphic

section and an isomorphism H(p) ∼→ H.

In purely algebraic situation, for a given algebraic elliptic fibration f : X → S, the

generic fiber Xη is a smooth projective curve of genus one defined over the function field

C(η) = C(S). It is called an elliptic curve only when it contains a C(η)-valued point,

equivalently, f has a rational section. The Jacobian J(Xη) of Xη is well-defined over C(η)

and it extends to a basic elliptic fibration J → S. The Jacobian J(Xη) is considered as

an invariant instead of the variation of Hodge structure H. A basic fibration is therefore

called a Jacobian fibration in some articles.

Miranda [M4] studied minimal models for elliptic fibrations over surfaces having global

sections by using Weierstrass equations. He obtained a resolution of singularities of

the Weierstrass model by blowing up the base surface and by looking at the change of

equations. The obtained threefold gives a minimal and flat elliptic fibration over the

blown up surface.

(III) Torsor. Ueno [U1] described the set of elliptic fibrations over a surface S which

have meromorphic sections locally over S as a suitable cohomology group similar to

H1(S,SH/S). In the definition of cohomology group, there is a delicate thing over double

points of the discriminant locus. In purely algebraic situation, Tate–Shafarevich group

XS(Bη) corresponds to the cohomology group. Here, p : B → S is an algebraic basic

elliptic fibration associated with H, η is the generic point of S, and Bη is the elliptic curve

over SpecC(η). The Tate–Shafarevich group classifies birational equivalence classes of

pairs

(f : X → S, Φ : Xη ×C(η) Xη
∼→ Bη ×C(η) Xη)

consisting of a projective elliptic fibration f and an isomorphism Φ between elliptic fi-

brations over Xη via the second projections such that f admits a section étale locally

over S and that Φ sends the diagonal to the zero section. The group is expressed as

the étale cohomology group H1(Sét, ι∗Bη) for the étale sheaf Bη over SpecC(η) and for

ι : SpecC(η)→ S (cf. [D5]).

(IV) Multiple fiber. Ueno [U2] constructed some examples of multiple fibers. He per-

formed a logarithmic transformation along a smooth divisor in the case local monodromies
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are trivial. The logarithmic transformation is also studied by Fujimoto [F4]. Let p : B → S

be an algebraic basic elliptic fibration that is smooth over S� ⊂ S. Then Tate–Shafarevich

group XS�(Bη) over S� describes projective elliptic fibrations over S that are smooth over

S�. Thus a fibration having multiple fibers belongs to the complementXS�(Bη)�XS(Bη).

Dolgachev and Gross [D5], [G4] considered Tate–Shafarevich groups in order to analyze

multiple fibers.

Local structure

In local situation on the base space S, projective elliptic fibrations f : X → S that

are smooth outside a fixed normal crossing divisor D are bimeromorphically classified in

[N4]. Thirdly, we recall results obtained in [N4]. Assume that S is a unit polydisc∆d and

that D is a union of coordinate hyperplanes. In the case the variation of Hodge structure

H on S� = S � D has only unipotent monodromies, a toric model (or a smooth model)

is constructed as a non-singular minimal model of B(H) → S. The construction is a

generalization of that by Nakamura [N1] for degeneration of principal abelian varieties.

The flops between toric models are described by suitable graphs. Further the following

result is obtained:

Theorem ([N4, §4]). Let f : X → S = ∆d be a projective elliptic fibration smooth over

S � D. Then there is a finite ramified covering S ′ = ∆d → S such that

(1) S ′ → S is ramified only along D,

(2) the pullback X×SS
′ → S ′ is bimeromorphically equivalent to a toric (or a smooth)

model over S ′.

An essential idea of the proof is considering torsors over S � SingD. The corresponding

results to the four parts above are as follows:

(I) A minimal model is constructed as a toric or a smooth model in the case H has

only unipotent monodromies.

(II) The variations of Hodge structure H on S� are classified. The list of types of

monodromy of H is as follows (cf. 4.1.1): I0, I
(∗)
0 , II

(∗), III(∗), IV
(∗)
+ , IV

(∗)
− , I(+), I

(∗)
(+). The

period functions are written explicitly in each types. A basic elliptic fibration B(H)→ S

can be chosen to be a relatively minimal model over S � SingD.

(III) and (IV) Even if there are no multiple fibers over D � SingD, the fibration may

not admit a section. But, there is a finite Galois covering S ′ → S ramified only along

D such that the pullback admits a meromorphic section. The covering depends on the

monodromy of H and the multiplicities of fibers over D � SingD. Let G be the Galois

group of S ′ → S and letS′ be the sheaf of germs of meromorphic sections of the associated

basic elliptic fibration B′ → S ′. Then an elliptic fibration corresponds to a cohomology
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class of H1(G,H0(S ′,S′)) for such a covering S ′ → S. The possible Galois actions on B′,

which are sometimes only meromorphic actions, are classified. Thus we can list all the

collision of singular fibers including multiple fibers. For an ideal classification of germs of

projective elliptic fibrations, we need to obtain a suitable quotient by such meromorphic

action and to describe its minimal model.

0.2. Global structure: The results

The purpose of this paper is a globalization of the local classification in [N4]. We shall

explain our results more precisely than before. We fix a normal complex analytic variety S

and a reduced effective divisor D such that S� := S�D ⊂ S is a toroidal embedding. We

also fix a Z-polarized variation of Hodge structure H of rank two and weight one defined

on S�. Our aim is to describe the set E(S,D,H) of all the bimeromorphic equivalence

classes of pairs (f : X → S, φ) consisting of an elliptic fibration f : X → S and a marking

φ satisfying the following conditions:

• The restriction f |f−1S� : f−1S� → S� is bimeromorphically equivalent to a smooth

elliptic fibration f ′� : X ′� → S� over S�;

• Locally over S, f is bimeromorphically equivalent to a projective morphism;
• φ is an isomorphism H(f) := H(f ′�) := R1f ′�∗ZX ′� ∼→ H of variations of Hodge

structure.

Note that, in algebraic situation, the definition of E(S,D,H) looks like that of Tate–

Shafarevich group XS�(Bη), where B → S is a basic elliptic fibration inducing H as a

variation of Hodge structure. However, information only from the complex analytic space

S� = S � D and from H is not enough to determine E(S,D,H) in the complex analytic

situation (cf. 5.2).

In order to treat multiple fibers, we introduce the category ∂sp of ∂-spaces and a

Grothendieck topology named ∂-étale topology on it; Let [X,B] be a pair of complex

analytic space X and its nowhere-dense analytic subset B. An object of ∂sp is an

equivalence class (X,B) of such pairs [X,B]. A morphism f : [X,B] → [Y,D] is called
a ∂-étale morphism , if f : X → Y has only discrete fibers, B = f−1(D), and if X �B →
Y �D is a local isomorphism. The ∂-étale morphisms define the ∂-étale topology on ∂sp.

We next establish ∂-étale cohomology theory. As a result, these cohomology groups can

be calculated by Čech cocycles and there exist Leray’s spectral sequences for morphisms

in ∂sp. We define the space sp(X) of a ∂-space X := (X,B) as a reduced analytic space

and define the stalk Fx of a sheaf F at a point x ∈ sp(X). The stalk has a structure
of discrete π̂loc

1 (X; x)-module, where π̂loc
1 (X; x) is the local profinite fundamental group

at x. Let ε : X = (X,B) → X = (X, ∅) be the canonical morphism and assume that
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X is homeomorphic to sp(X). Then the stalk of Rpε∗F at a point x ∈ X is isomorphic

to the continuous group cohomology Hp
cont.(π̂

loc
1 (X ; x), Fx). In particular, H

p(X,F ) �
Hp(X, ε∗F ) for any sheaves F of Q-vector spaces. In the case X � B ⊂ X is a toroidal

embedding, Hp(X,Z) are calculated in 3.4.2.

Let (f : X → S, φ) be a marked elliptic fibration as before. Then there is a ∂-étale

covering family

{Uλ := (Uλ,∆λ)→ S := (S,D)}λ∈Λ,
such that each X ×S Uλ → Uλ has a meromorphic section. This is proved in 6.3.4 by

a different method from [N4, §4]. Thus we have bimeromorphic mappings X ×S Uλ ···→
B(H) ×S Uλ, where p : B(H) → S is a fixed basic elliptic fibration associated with H.

The induced meromorphic transition mapping

B(H) ×S (Uλ ×S Uµ) ···→ B(H)×S (Uλ ×S Uµ)

over Uλ ×S Uµ is expressed as the translation mapping of a meromorphic section of

B(H)×S (Uλ×S Uµ), since it preserves the marking phi. Let SH/S be the sheaf in ∂-étale

topology on S of germs of meromorphic sections of p : B(H) → S. Then the marked

elliptic fibration defines an element in H1(S,SH/S). Roughly speaking, such elliptic

fibrations look like torsors of the basic elliptic fibration with respect to ∂-étale topology.

We have:

Theorem (6.3.2, 6.3.4, 6.3.8). There is a natural injection E(S,D,H) ↪→ H1(S,SH/S)

under which the subset Eproj(S,D,H) is identified with the torsion part H1(S,SH/S)tor.

Therefore, a projective elliptic fibration is really constructed from a torsion element of

H1(S,SH/S). For the calculation of H
1(S,SH/S), the fundamental diagram Figure 3

(cf. 6.1.5) is important. In particular, the exact sequence

0→ j∗H → LH/S → SH/S → TH/S → 0

and the distinguished triangle (6.8)

· · · +1−→ τ≤1Rj∗H → LH/S ⊕QH/S[−1]→ SH/S
+1−→ · · ·

are very useful. Here, j : S� ↪→ S is the ∂-open immersion and LH/S is the invertible

sheaf determined as the Gr0F of the canonical extension of H with respect to the filtration

F induced from the Hodge filtration (cf. 4.2.1). The sheaf TH/S is a subsheaf of R
1j∗H

defined in the argument preceding 6.1.5 and QH/S = R1j∗H/TH/S. If S is a curve, TH/S

is the sheaf of the groups of irreducible components of singular fibers of Néron model. It

is not clear H1(S,SH/S) = E(S,D,H). The example 6.3.14 is a candidate of an element

of the complement of E(S,D,H).
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The construction of this paper is as follows: The category of ∂-spaces is introduced

in Section 1, and the ∂-étale cohomology theory is developed in Section 2. In Section 3,

some ∂-étale cohomology groups are calculated in the case of toroidal embeddings. Fur-

ther, a relation between reflexive sheaves in the ∂-étale topology and parabolic sheaves

is mentioned in Section 3.5. Section 4 is devoted to the study of local nature of variation

of Hodge structures of rank two and of weight one which are defined on the open part

of a toroidal embedding. The set E(S,D,H) is introduced and a fundamental diagram

Figure 1 in the usual topology is obtained in Section 5. The essential use of ∂-étale coho-

mology for determining E(S,D,H) appears in Section 6, where most essential results are

derived. Section 7 is devoted to the applications. Section 7.1 treats extension problems,

especially the problem of Ueno. In Sections 7.2, 7.3, the Tate–Shafarevich group in purely

algebraic situation is interpreted by means of the ∂-étale cohomology theory, and some

results of Dolgachev and Gross in [D5], [G4], [G5] are generalized. Kähler morphisms are

studied in Section 7.4. Besides a generalization of Miyaoka’s result, a characterization of

cohomologically Kähler elliptic fibration is given. The notion of logarithmic transforma-

tion is interpreted as a homomorphism of some ∂-étale cohomology groups in Section 7.5.

Some partial results on the problem when the logarithmic transform of a basic elliptic

surface is projective are obtained in Section 7.6.
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0.3. Notation

Analytic space: A complex analytic space is always assumed to be para-compact

and Hausdorff. A variety is an irreducible and reduced analytic space. A Zariski-

open subset is the complement of an analytic subset.

Disc: The unit disc is denoted by ∆ := {t ∈ C | |t| < 1} and the punctured disc
∆� {0} is denoted by ∆�. The upper-half plane and the universal covering map

of ∆� are written by

e : H := {z ∈ C | Im z > 0} � z �−→ e(z) := exp(2π
√
−1z) ∈∆�.

The n-fold product ∆n = ∆× · · · ×∆ is called an n-dimensional unit polydisc.

Exponential sequence: We write C� = C � {0} for the complex number field C.

For a complex analytic variety X, OX denotes the sheaf of germs of holomorphic

functions. O�
X is the sheaf of germs of unit (or invertible) holomorphic functions

whose abelian group structure is given by the multiplication. Let OX → O�
X

be the homomorphism given by f �→ e(f) = exp(2π
√
−1f). The induced exact

sequence

0→ ZX →OX →O�
X → {1} = 0

is called the exponential sequence of X.

Complex: Let K• = [· · · → Kp dp

−→ Kp+1 → · · · ] be a complex of objects of an
abelian category A. The shift K•[k] by an integer k is defined by(

K•[k]
)p
= Kp+k, dp

K•[k] = (−1)k d
p+k
K• .

K• is called bounded if Kp = 0 for p � 0 and for p � 0. A morphism of

complexes K•
1 → K•

2 is called a quasi-isomorphism if it induces isomorphisms on

cohomologies. The derived category D(A) is the localization of the category of
complexes of A by quasi-isomorphisms. We write K•

1 ∼qis K
•
2 if K

•
1 and K•

2 are

quasi-isomorphic. There is a notion of distinguished triangle

A �� B

����
��

��
�

C
+1

���������

in D(A). We call it simply by a triangle and write it in the form

· · · +1−→ A→ B → C
+1−→ · · ·
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For an integer k, the truncations τ≤k and τ≥k are defined by

τ≤kK
• := [· · · → Kp → Kp+1 → · · · → Kk−1 → Ker dk → 0→ · · · ],

τ≥kK
• := [· · · → 0→ Imdk−1 → Kk → · · · → Kp → Kp+1 → · · · ].

These are well-defined in D(A) and there is a natural triangle

· · · +1−→ τ≤kK
• → K• → τ≥k+1K

• +1−→ · · ·

Hypercohomology: Let F • be a bounded complex of sheaves of abelian groups

on an analytic space X. Let RΓ be the derived functor of the global section

functor Γ of X: Γ (F ) = H0(X,F ) for a sheaf F . The hypercohomology group

Hp(RΓ (F •)) is denoted by Hp(X,F •).

Local cohomology: Let Z ⊂ X be a closed subset and let F • be a bounded

complex of sheaves of abelian groups on X. For the complement U = X � Z

and for the embedding j : U ↪→ X, there is a natural morphism F • → Rj∗(F
•|U)

in the derived category of sheaves of abelian groups on X. An object RΓ Z(F
•)

of the derived category is defined by the triangle

· · · +1−→ RΓZ(F
•)→ F • → Rj∗(F

•|U ) +1−→ · · ·

The p-th cohomology sheaf Hp(RΓ Z(F
•)) is denoted by Hp

Z(F
•). If F is a sheaf

of abelian groups, then Hp
Z(F ) is the p-th local cohomology sheaf supported in Z.

Note that RΓ Z is right adjoint to Ri∗ for the closed immersion i : Z → X. For

the derived functor RΓ above, the derived functor RΓZ := RΓ ◦RΓ Z calculates

local cohomology groups supported in Z. Hp(RΓZ(F
•)) is denoted by Hp

Z(X,F •).

Topological dualizing complex: Let φ : X → SpecC be the natural morphism

from a complex analytic space. Let ωtop
X denote the twisted inverse φ!Z defined

by Verdier [V2]. We call ωtop
X by the topological dualizing complex of X. If X is

non-singular of dimension d, then ωtop
X ∼qis ZX [2d]. There is a natural morphism

Rf!ω
top
X → ωtop

Y called trace map for a morphism f : X → Y of complex analytic

spaces. Moreover, RΓ Z(ω
top
X ) ∼qis ωtop

Z for a closed subspace Z ⊂ X.

Residue field: For a point x of an analytic space X, the residue filed OX,x/mx is

denoted by C(x).

Torsion: Let M be an abelian group and let m be a positive integer. mM denotes

the subgroup {x ∈ M | mx = 0}. The torsion-part Mtor is the union
⋃

m>0 mM .

For the subgroup µm := m−1Z/Z ⊂ Q/Z, mM � Tor1(µm,M) and Mtor �
Tor1(Q/Z,M) hold.

Meromorphic mappings: A holomorphic mapping (map) f : X → Y of complex

analytic varieties is often called a morphism . A meromorphic mapping (map)
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f : X ···→ Y is defined as a closed analytic subvariety Γf ⊂ X × Y in which the

first projection Γf → X is proper and is an isomorphism over a dense Zariski-open

subset of X. f is called proper if Γf → Y is proper. f is called a bimeromor-

phic mapping (map) if Γf → Y is proper and is an isomorphism over a dense

Zariski-open subset of Y . In the scheme theory, ‘meromorphic map’ corresponds

to ‘strictly rational map’ and ‘bimeromorphic map’ corresponds to ‘proper bira-

tional map’ in the sense of Iitaka [I, §2.12]. A meromorphic function on X is

regarded as a meromorphic mapping X ···→ P1 into the projective line.

Section: Let f : X → Y be a holomorphic mapping of complex analytic varieties.

A (holomorphic) section of f is a holomorphic mapping σ : Y → X such that

f ◦ σ = idY ; the identity mapping. This is also called a global section over Y .

A subvariety Σ ⊂ X is also called a section if the composite Σ ⊂ X → Y is an

isomorphism. A meromorphic section of f is a meromorphic mapping σ : Y ···→ X

such that f ◦ σ = idY . A subvariety Σ ⊂ X is also called a meromorphic section

if Σ → Y is a bimeromorphic morphism. f is called to have local holomorphic

(resp. meromorphic) sections over Y if there is an open covering {Yλ} of Y such

that each f−1Yλ → Yλ have holomorphic (resp. meromorphic) sections.

Reflexive sheaf: Let X be a normal variety and let F be a coherent OX -module.

The dual HomOX
(F ,OX) is denoted by F∨. The double-dual of F is F∨∨. F is

called a reflexive sheaf if F ∼→ F∨∨. If F is reflexive, then Hp
Z(F) = 0 for p ≤ 1,

for any analytic subset Z ⊂ X of codimension greater than one. For a reflexive

sheaf L of rank one and for an integer m, the double dual of L⊗m is denoted by

L[m]. A reflexive sheaf L of rank one is called Q-invertible if, locally on X, there

is an integer m #= 0 such that L[m] is invertible.

Cartier and Weil divisors: Let X be a normal variety. A prime divisor is an

irreducible subvariety of codimension one. A Weil divisor B is an element

(bΓ) ∈
∏

Γ: prime divisors

Z

that is locally finite on X, i.e, the support

SuppB :=
⋃

bΓ =0

Γ

is an analytic subset. We usually write B as a formal combination
∑

bΓΓ. The

coefficient bΓ is written by multΓB. A reduced divisor is a Weil divisor B with

SuppB #= ∅ and multΓB = 0 or 1 for any Γ. The reduced divisor is identified

with SuppB. We write B ≥ B ′ or B ′ ≤ B for two Weil divisors B, B ′, if

multΓ B ≥ multΓ B ′ for any Γ. If B ≥ 0, then B is called an effective divisor .
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The group of Weil divisors ofX is denoted byWDiv(X). It forms a sheaf wDivX

of X with H0(X,wDivX) � WDiv(X). The sheaf of germs of meromorphic

functions of X is denoted by MX . We define M�
X to be its subsheaf (as sets)

consisting of invertible meromorphic functions. The abelian group structure of

M�
X is derived from the multiplication. The sheaf DivX of germs of Cartier

divisors is defined to be the quotient M�
X/O�

X . A Cartier divisor of X is an

element of Div(X) := H0(X,DivX). For a prime divisor Γ and for a meromorphic

function ϕ ∈ H0(X,M�
X ), let ordΓ(ϕ) be the order of zeros of ϕ along Γ (or the

minus of order of poles). The Weil divisor

div(ϕ) :=
∑
ordΓ(ϕ)Γ

is called a principal divisor. The map ϕ �→ div(ϕ) defines injective homomor-

phisms DivX ↪→ wDivX and Div(X) ↪→ WDiv(X). X is called locally factorial

or locally Q-factorial , if DivX � wDivX or DivX ⊗Q � wDivX ⊗Q, respec-

tively. X is locally factorial if and only if every local rings OX,x are UFD. Let

j◦ : X◦ ↪→ X be the open immersion from a non-singular Zariski-open subset with

codim(X � X◦) ≥ 2. Then wDivX � j◦∗ DivX◦ and WDiv(X) � WDiv(X◦) =

Div(X◦). A Weil divisor B defines a reflexive sheaf OX(B) of rank one by

H0(U,OX(B)) = {ϕ ∈ H0(U,M�
X) | div(ϕ) ≥ B|U} ∪ {0}.

The sheaf OX(B) is invertible if and only if B is Cartier. If B is Cartier, then

OX(B) is determined by the connecting homomorphism Div(X) → Pic(X) =

H1(X,O�
X) of the exact sequence

0 = {1} → O�
X →M

�
X →DivX → 0.

Normal crossing divisor: Let X be a non-singular variety of dimension d and

let D be a reduced divisor. D is called a normal crossing divisor , if D is locally

defined as div(z1z2 · · · zl) for a coordinate system (z1, z2, . . . , zd) of X and for some

1 ≤ l ≤ d. D is called a simple normal crossing divisor if D is normal crossing

and if all the irreducible components of D are non-singular.

Round-up and round-down: The round-up �r� and the round-down �r� of a real
number r are defined by

�r� := min{n ∈ Z | n ≥ r}, and �r� := max{n ∈ Z | n ≤ r}.

A Q-divisor of X is an element of WDiv(X,Q) = H0(X,wDivX ⊗Q). The round-

up and the round-down of a Q-divisor B =
∑

bΓΓ are defined by

�B� :=
∑ �bΓ�Γ, and �B� :=

∑
�bΓ�Γ.
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Desingularization: For a variety V , Sing V denotes the singular locus of V . A

bimeromorphic morphism µ : Y → V is called a desingularization or a resolution

of singularities, if Y is non-singular and µ is isomorphic over V � Sing V . The

existence of desingularization is proved by Hironaka [H1], [H2].

VHS: A Z-polarized variation of Hodge structure H of rank two and of weight one

defined over a complex variety S consists of a locally constant system H of a

free abelian group of rank two, a skew-symmetric bilinear form Q : H ×H → ZS

inducing an isomorphism
∧2H ∼→ ZS , and of a subbundle F1(H) of H := H⊗OS

such that (Hs, Qs,F1(H)⊗C(s)) forms a polarized Hodge structure of weight one

for every s ∈ S (cf. [G3], [S3]). We call a Z-polarized variation of Hodge structure

of rank two and of weight one by VHS for short.
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1. ∂-space

We introduce the category ∂sp of complex analytic ∂-spaces and the ∂-étale topology. In

the category AB of complex analytic spaces with boundary, we define special morphisms:
∂-isomorphisms, ∂-open immersions, and ∂-étale morphisms. The ∂sp is defined as the

localization of AB by ∂-isomorphisms and the ∂-étale topology is defined by ∂-étale

morphisms. A ∂-spaceX is an object of ∂sp. A reduced analytic space sp(X) is associated

and an element x of sp(X) is called a point of X . The local profinite fundamental group

π̂loc
1 (X; x) is defined by ∂-étale morphisms over x.

1.1. Category of ∂-spaces

Let X be a complex analytic space and let B be a closed analytic subset. B is called

nowhere-dense in X if X � B is dense. If B is nowhere-dense and if Γ is an irreducible

component of X, then Γ ∩B is also nowhere-dense in Γ. In particular, Γ� B #= ∅.

Definition. The category AB of complex analytic spaces with boundary is defined as

follows:

• An object is a pair [X,B] consisting of a complex analytic space X and a nowhere-

dense closed analytic subset B;

• A morphism f : [X,B]→ [Y,D] is defined to be a holomorphic mapping X → Y

satisfying f−1(D) ⊂ B.

An object [X,B] is called a complex analytic space with boundary and B is called its

boundary .

By considering objects [X,B] with B = ∅, we have a natural fully faithful functor from
the category An of complex analytic spaces into AB. Note that fiber products always
exist in AB. In fact, for two morphisms [X,B] → [Z,∆] and [Y,D] → [Z,∆] in AB,
we have the fiber product X ×Z Y in An and a closed subset p−11 (B) ∪ p−12 (D), where

p1 : X ×Z Y → X and p2 : X ×Z Y → Y are projections. Let E be the union of all the

irreducible components of X ×Z Y that are contained in p−11 (B) ∪ p−12 (D) and let E
� be

its interior: this is the maximal open subset of X ×Z Y contained in E. Then the fiber

product [X,B]×[Z,∆] [Y,D] in AB should be

[X ×Z Y � E�, p−11 (B) ∪ p−12 (D) � E�].

Definition 1.1.1. Let f : [X,B]→ [Y,D] be a morphism in AB such that
(1) f has only discrete fibers, and

(2) f−1(D) = B.



19

It is called a ∂-étale morphism, a ∂-open immersion, and a ∂-isomorphism according to

the following conditions:

∂-étale morphism: X�B → Y �D is an étale morphism, i.e., a local isomorphism.

∂-open immersion: X � B → Y � D is an open immersion.

∂-isomorphism: X�B → Y �D is an isomorphism and X → Y is a finite (proper)

morphism.

Let P be one of the three conditions above. Then the following properties hold:

• An identity mapping satisfies P ;
• The composite of morphisms satisfying P also satisfies P ;

• The condition P is stable under base change.

Two pairs [X,B] and [Y,D] are called ∂-isomorphic, if there exist ∂-isomorphisms

[Z,∆] → [X,B] and [Z,∆] → [Y,D] from another pair [Z,∆]. The relation being

∂-isomorphic is an equivalence relation on the objects of AB and an equivalence class
is called a complex analytic ∂-space (∂-space, for short). A ∂-space is written by an

underlined capital letter, e.g., X . The ∂-space corresponding to [X,B] is denoted by

(X,B). If X = (X,B) for a pair [X,B], then [X,B] is called a realization of X and we

write [X,B] ∈ X. For any realizations [X,B] of a fixed X, the open subspaces X � B

are canonically isomorphic. It is denoted by X� and is called by the interior or the open

part of X.

Definition. The category ∂sp of (complex analytic) ∂-spaces is defined as follows: An

object is a ∂-space. For two ∂-spacesX := (X,B) and Y := (Y,D), the set Hom∂sp(X, Y )

of morphisms is well-defined to be

lim−→
[X ′,B′]→[X,B]

HomAB([X
′, B ′], [Y,D]),

where the direct limit is taken over all the ∂-isomorphisms [X ′, B ′]→ [X,B].

A ∂-space (X,B) with B = ∅ is considered as an analytic space X. Then there is a

fully faithful functor An ↪→ ∂sp. Fiber products also exist in ∂sp, which are induced

from those in AB. However, these are different from usual fiber products.

Example. Let ∆ be a unit disc {t ∈ C | |t| < 1}. We shall consider two morphisms
C1 := ∆ � t �→ tm ∈ ∆ =: C3 and C2 := ∆ � t �→ tn ∈ ∆ = C3 for mutually coprime

positive integers m and n. Then the usual fiber product C1×C3 C2 is an irreducible curve

Γ in C1 × C2 � ∆2 defined by xm = yn for a coordinate system (x, y) of ∆2. But the

fiber product (C1, {0}) ×(C3,{0}) (C2, {0}) is isomorphic to (∆, {0}) and the projections
to (C1, {0}) and (C2, {0}) are given by t �→ tn and t �→ tm, respectively. Here ∆→ Γ is

the normalization.
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Definition. An analytic space with boundary [X,B] is called locally connected at a point

x ∈ X (with respect to the boundary B), if for any open neighborhood U of x, there is

an open subneighborhood U ′ ⊂ U with U ′ � B being connected. [X,B] is called locally

connected, if it is locally connected at every points of X.

Remark. In the case X is reduced and B is the singular locus of X, [X,B] is locally

connected at x if and only if X is locally irreducible at x. In particular, the locally

connectedness is not an open condition.

Lemma 1.1.2. Let [X,B] be a complex analytic space with boundary, f : [Y,D]→ [X,B]

a ∂-étale morphism, and let x ∈ f(Y ) ⊂ X be a point at which [X,B] is locally connected.

Then f(Y ) is a neighborhood of x. Suppose further that f is a ∂-open immersion. Then

(1) f−1(x) consists of one point, and

(2) for an open neighborhood V of f−1(x), there is an open neighborhood U of x such
that f−1(U) ⊂ V and that f−1(U)→ U is a finite morphism.

In particular, if [X,B] is locally connected, then f(Y ) is open. If further f is a ∂-open

immersion, then f is a homeomorphism onto f(Y ).

Proof. For a point y ∈ f−1(x), there exist open neighborhoods V and U of y and x,

respectively, such that f induces a finite morphism V → U and that U �B is connected.

This property is derived from the conditions: f−1(x) is discrete and [X,B] is locally

connected at x. Thus V � D → U � B is a finite surjective étale morphism. Hence

U ⊂ f(Y ). If f is a ∂-open immersion, then Y � D → X � B is an open immersion.

Therefore f−1(x) = {y} and f−1(U) � D = V � D. Thus f−1(U) = V , since D is

nowhere-dense. In particular, f−1(U)→ U is a finite morphism. �

Let j : X � B ↪→ X be the open immersion for an analytic space with boundary

[X,B]. The image of OX → j∗OX�B is the structure sheaf of a closed analytic subspace

X ′. Since B is nowhere-dense, X and X ′ are homeomorphic and [X ′, B] → [X,B]

is a ∂-isomorphism. The [X,B] is called refined if X � X ′, i.e., the homomorphism

OX → j∗OX�B is injective.

Lemma 1.1.3. Let [X,B] be a complex analytic space with boundary and let x ∈ X be a

point. Then there exist an open neighborhood U of x and a ∂-isomorphism f : [Y,D] →
[U,B ∩ U ] such that [Y,D] is refined and is locally connected at every point of f−1(x).

Proof. We may assume that X is refined. By considering the irreducible decomposition

of the germ (X, x), we have an open neighborhood U of x and a finitely many closed

analytic subspaces Ur ⊂ U (1 ≤ r ≤ k) such that
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(1) U =
⋃k

r=1 Ur,

(2) restriction homomorphisms induce an injection OU ↪→⊕k
r=1OUr ,

(3) Ur is locally irreducible at x for any r.

Since B is nowhere-dense, Ur �B is non-empty. We may assume that Ur �B is connected

and the immersion λr : Ur � B ↪→ Ur induces an injection OUr ↪→ λr∗OUr�B. Let us

consider the following commutative diagram:

OU −−−→ ⊕k
r=1OUr� �

j∗OU�B −−−→
⊕k

r=1 λr∗OUr�B,

and an OU -algebra A defined by

A := j∗OU�B ∩
k⊕

r=1

OUr .

Then A is a coherent OU -module. Thus we have a finite morphism f : Y → U with a

commutative diagram:

U
f←−−− Y ←−−− ⊔k

r=1 Ur� �
U � B ←−−− ⊔k

r=1 Ur � B,

such that OU ⊂ f∗OY = A ⊂
⊕k

r=1OUr . In particular, f : [Y, f
−1(B)]→ [U,B ∩ U ] is a

∂-isomorphism and [Y, f−1(B)] is refined. We shall show [Y, f−1(B)] is locally connected

at every point y ∈ f−1(x). Suppose that V � f−1(B) is not connected for a connected

open neighborhood V of y. By replacing V , we may assume that non-empty intersections

V ∩ Ur = V ∩ f−1(Ur) are connected. Now we have two open subsets W �
1 ,W

�
2 with

V � f−1(B) = W �
1 )W �

2 . Let us consider the following sets:

R := {1 ≤ r ≤ k | V ∩ Ur #= ∅}, Ri := {r ∈ R | V ∩ (Ur � B) ⊂W �
i },

for i = 1, 2. Let Wi be the subspace of V whose structure sheaf is the image of OV →⊕
r∈Ri

OV ∩Ur . Then Wi �B � W �
i . Therefore OW1 ⊕OW2 ⊂ (j∗OX�B)|V ∩ (

⊕k
r=1OUr)|V .

HenceOV = OW1⊕OW2 and V = W1)W2. This contradicts the property: V is connected.

Therefore [Y, f−1(B)] is locally connected at y. �

Definition. An analytic space with boundary [X,B] is called top, if for a ∂-isomorphism

f : [Y,D] → [X,B], there is a ∂-isomorphism g : [X,B] → [Y,D] such that f ◦ g is the
identity mapping.
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A top realization [X,B] of ∂-space X is unique up to isomorphisms in AB. If it exists,
then

Hom∂sp(X, (Y,D)) � HomAB([X,B], [Y,D])

for any [Y,D].

Lemma 1.1.4. If the interior of a ∂-space is a reduced analytic space, then there is a

top realization.

Proof. Let [X,B] be an analytic space with boundary with X � B being reduced. We

may assume that [X,B] is refined and hence X is reduced. Let q : W → X be the nor-

malization and let j : X �B ↪→ X be the open immersion. Then we have a commutative

diagram:
OX −−−→ q∗OW� �

j∗OX�B −−−→ j∗(q∗OW )
∣∣∣
X�B

.

Here, every arrows are injective. The OX-algebra

A := j∗OX�B ∩ q∗OW

is a coherent OX-module. Thus we have a finite morphism p : X ′ → X such that A �
p∗OX ′. Here [X ′, B ′]→ [X,B] is a ∂-isomorphism for B ′ = p−1(B). For a ∂-isomorphism

[Y,D] → [X ′, B ′], W is also a normalization of Y . Thus we have a unique factorization

[X ′, B ′]→ [Y,D]. Hence [X ′, B ′] is a top realization. �

Definition. A ∂-space X is said to be reduced , if X is reduced for a realization [X,B]

of X . This condition is equivalent to that X� is reduced. For a ∂-space X, the reduced

∂-space (Xred, B) is independent of the choice of realizations [X,B] ∈ X. This ∂-space

is denoted by Xred.

Example. If X is not reduced, then we have no top realization in general. For example,

let C be a non-singular curve, x a point and let F be a non-zero locally free sheaf of finite
rank on C . We can give an algebra structure on OC ⊕ F as follows: For (a, v), (b, w) ∈
OC ⊕F , the multiplication is given by (ab, bv+ aw). Then we have a non-reduced curve

C(F) such that C ⊂ C(F) and its nil-radical is just F . Let us consider the pair [C(F), x].
For arbitrary injection F ↪→ G of locally free sheaves whose cokernel is supported only
at {x}, we have a ∂-isomorphism [C(G), x]→ [C(F), x]. Thus it is impossible to obtain
the top realization of (C(F), x).

Lemma 1.1.5. (1) The top realization of a ∂-space is locally connected.
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(2) If [X,B] is locally connected at a point x and if π : [Z,∆] → [Xred, B] is the

∂-isomorphism from the top realization of (Xred, B), then π−1(x) consists of one

point. In particular, if [X,B] is locally connected, then π : Z → Xred is a homeo-

morphism.

Proof. (1) is derived from 1.1.3. In (2), [Xred, B] is also locally connected at x. Thus the

assertion follows 1.1.2. �

Lemma 1.1.6. Let f : [Y,D]→ [X,B] be a ∂-open immersion.

(1) For a point x ∈ f(Y ) ⊂ X, there is an open neighborhood U of x such that

f−1(U)→ U is a finite morphism.
(2) If f(Y ) = X, then f is a ∂-isomorphism.

(3) The second projection

p2 : [Y,D]×[X,B] [Y,D]→ [Y,D]

is a ∂-isomorphism.

Proof. (1) Let µ : [X ′, B ′] → [U , B ∩ U ] be a ∂-isomorphism such that U is an open

neighborhood of x and that [X ′, B ′] is locally connected at any point of µ−1(x) (cf.

1.1.3). Then by the proof of 1.1.2, the second projection

[Y,D] ×[X,B] [X
′, B ′]→ [X ′, B ′]

is a finite morphism, if we replace U by another open neighborhood of x. Thus f−1(U)→
U is a finite morphism.
(2) is a consequence of (1), and (3) is a special case of (2). �

Definition. (1) A morphism Y → X of ∂-spaces is called a ∂-open immersion if it is

induced from a ∂-open immersion of each realizations. The Y is called a ∂-open

subspace of X.

(2) A ∂-étale morphism Y → X is defined to be a morphism induced from a ∂-étale

morphism of each realizations. The Y is called a ∂-étale space over X .

The second projection U ×X U → U is a ∂-isomorphism for a ∂-open subspace U of X

by 1.1.6.

Let [X,B] be a complex analytic space with boundary and let ([Y,D], y, f) be a triplet

consisting of a complex analytic space with boundary [Y,D], a point y ∈ Y , and a ∂-open

immersion f : [Y,D] → [X,B] such that [Y,D] is locally connected at y. A morphism

h : ([Y1, D1], y1, f1)→ ([Y2, D2], y2, f2) of such triplets is defined to be a ∂-open immersion

h : [Y1, D1] → [Y2, D2] such that f2 ◦ h = f1 and h(y1) = y2. Two triplets are called

equivalent if there exist morphisms from another triplet to each triplets.
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Lemma 1.1.7. Let X = (X,B) be a ∂-space and let π : [Z,∆] → [Xred, B] be the top

realization of (Xred, B). Then Z is set-theoretically identified with the set of all the

equivalence classes of the triplets ([Y,D], y, f).

Proof. For a triplet ([Y,D], y, f), we have a ∂-isomorphism

q : [Z,∆]×[Xred,B] [Yred, D]→ [Yred, D]

and a ∂-open immersion

p : [Z,∆]×[Xred,B] [Yred, D]→ [Z,∆].

Then q−1(y) consists of one point, since [Y,D] is locally connected at y. Thus ([Y,D], y, f)

defines a point p(q−1(y)) of Z. This is independent of the choice of equivalent triplets.

A point z ∈ Z defines an equivalence class of triplets as follows: Let x = π(z) ∈ X

be the image. By 1.1.3, there exist an open neighborhood U of x and a ∂-isomorphism

f : [Y,D] → [U,B ∩ U ] such that [Y,D] is locally connected at every point of f−1(x).

There is a ∂-isomorphism h : [π−1(Ured),∆ ∩ π−1(Ured)] → [Yred, D]. By 1.1.2 or 1.1.5,

h−1f−1(x) → f−1(x) is bijective. Thus z ∈ Z is determined by the triplet ([Y,D], y, f)

for a point y ∈ Y . �

Definition. For a ∂-space X, let [Z,∆] be the top realization of X red. The reduced

analytic space Z is called the space of X and is denoted by sp(X). An element of sp(X)

is called a point of X. The X is called connected if sp(X) is connected, equivalently X�

is connected.

Lemma 1.1.8. Let X be a complex analytic ∂-space.

(1) If [X,B] is a locally connected realization of X and if U → X is a ∂-open immer-

sion, then there is an open subset U ⊂ X such that U → X is induced from the

∂-open immersion [U,B ∩ U ]→ [X,B].

(2) If U → X is a ∂-open immersion, then sp(U)→ sp(X) is an open immersion.

(3) If sp(U1) = sp(U2) in sp(X) for ∂-open subspaces U1 and U2 of X, then U 1 and

U 2 are ∂-isomorphic over X.

Proof. (1) There is a realization f : [U ′,∆]→ [X,B] of U → X . The image U := f(U ′)

is an open subset by 1.1.2. Thus [U ′,∆] → [U,B ∩ U ] is a ∂-isomorphism by 1.1.6. In

particular, sp(U)→ sp(X) is injective.

(2) We may assume that X and U are reduced. Hence the ∂-open immersion is induced

from that of each top realizations. Thus (2) is a consequence of (1).

(3) Let U3 be the fiber product U1 ×X U2 and let pi : U3 → U i be the i-th projection

for i = 1, 2. Then p1 and p2 are ∂-isomorphisms by 1.1.6. �
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A ∂-open subspace U of X is called a ∂-open neighborhood of x ∈ sp(X) if x ∈ sp(U).

Lemma 1.1.9. Let X be a complex analytic ∂-space and let x be a point of X. Then for

any open neighborhood U of x in sp(X), there exist a ∂-open neighborhood U of x such

that sp(U) ⊂ U .

Proof. Let [X,B] be a realization of X that is locally connected at the image x̄ = µ(x)

under the morphism µ : sp(X)→ Xred. Then there is an open neighborhood U of x̄ such

that µ−1(U) ⊂ U by 1.1.2. Thus sp(U ) ⊂ U for U = (U,B ∩ U). �

Thus the topology of sp(X) is generated by sp(U) for ∂-open subspaces U .

Problem. For any ∂-space X , does there exist a locally connected realization [X,B]

such that Xred � sp(X) as reduced analytic spaces?

1.2. Profinite fundamental group

We introduce and study profinite fundamental groups of ∂-spaces by using ∂-étale

morphisms.

Lemma 1.2.1. For a ∂-étale morphism Y → X, the induced morphism sp(Y )→ sp(X)

is an open map.

Proof. Let f : [X,B] → [Y,D] be a realization of the morphism such that f is ∂-étale.

Then [Xred, B]→ [Yred, D] is also ∂-étale. Thus we may assume that X and Y are reduced

and that [X,B] and [Y,D] are top realizations. Then the assertion follows 1.1.2. �

A morphism Y → X of ∂-spaces is called surjective and finite, respectively, if the

induced morphism sp(Y )→ sp(X) is so. If a ∂-étale morphism Y → X is finite and if X

is connected, then it is surjective by 1.2.1.

Definition. Let X be a connected ∂-space. A ∂-étale morphism Y → X is called

Galois , if there is a left action of a discrete group G on Y in the category ∂sp such that

the morphism

G× Y � (g, y) �→ (gy, y) ∈ Y ×X Y

is an isomorphism in ∂sp. In this case, Y � is étale and Galois over the image of Y � → X�.

The Galois group G is denoted by Gal(Y /X).

Lemma 1.2.2. Let f : Y → X be a ∂-étale morphism of connected ∂-spaces. Suppose

that the second projection Y ×X Y → Y is a finite morphism. Then there exists a ∂-étale

finite morphism Z → Y from a connected ∂-space Z such that the composite Z → X is

Galois.
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Proof. If f itself is Galois, we have nothing to prove. Otherwise, Y ×X Y has a connected

component which is not isomorphic to Y by the second projection. Let Y (1) be one of such

component. Then the second projection Y (1) ×X Y (1) → Y (1) is also finite. If Y (1) → X

is Galois, we take Z = Y (1). Otherwise, we can choose a connected component Y (2) of

Y (1) ×X Y (1) which is not isomorphic to Y (1). Next we shall examine Y (2) → X to be

Galois or not. By continuing the process, we have a sequence of ∂-étale finite morphisms

Y (k) → Y (k−1) → · · · → Y . But this is not an infinite sequence, since the length of the

restriction to X� is finite. Thus we can take Z = Y (k) for some k. �

The Z obtained by the method of 1.2.2 is minimal in all such Galois morphisms. This is

called the Galois closure of f .

Lemma 1.2.3. Let f : Y → X be a ∂-étale Galois morphism with a finite Galois group

Gal(Y /X) = G. If H ⊂ G is a subgroup, then there exists a ∂-étale morphism Z → X

with a ∂-étale finite Galois morphism Y → Z such that Gal(Y /Z) = H and the composite

Y → Z → X is the original f .

Proof. Since G is a finite group, we can find a realization [Y,D] ∈ Y such that G acts

holomorphically on Y . Let Z be the quotient of Y by H and let ∆ ⊂ Z be the image of

D under the quotient morphism. Then Z := (Z,∆) satisfies the condition. �

Corollary 1.2.4. Let f : Y → X be a ∂-étale morphism. Assume that the second pro-

jection Y ×X Y → Y is a finite morphism. Then f is the composite of a finite ∂-étale

morphism Y → U and a ∂-open immersion U → X .

Proof. We may assume that X and Y are connected. Let Z → Y → X be the Galois

closure with G = Gal(Z/X). Let U be the quotient of Z by G by 1.2.3. Then U → X is

a ∂-open immersion. �

Problem. Let X be a connected ∂-space and let U → X� be a finite étale morphism.

Then does there exist a ∂-space Y finite and ∂-étale over X such that Y � is isomorphic

to U over X�?

We have an affirmative answer in the case X� is a normal variety, by a theorem of

Grauert–Remmert [G2].

A pointed ∂-space is a pair (Y ; y) consisting of a ∂-space Y and a point y ∈ sp(Y ).
A morphism of pointed ∂-spaces should be a morphism of ∂-spaces preserving the given

points. Let X be a connected ∂-space and let x be a point of the interior X�. We shall

define the profinite fundamental group of (X; x) to be

π̂1(X ; x) := lim←−Gal(Y /X),
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where the limit is taken over all the pointed ∂-spaces (Y ; y) over (X; x) such that Y is

connected and Y → X is finite ∂-étale and Galois.

Let π1(X
�, x) be the usual fundamental group, X̃ → X� the universal covering mapping

and let x̃ ∈ X̃ be a point over x. For a finite ∂-étale morphism f : Y → X and for a point

y ∈ f−1(x), there exists uniquely a morphism πy : X̃ → Y � over X� that sends x̃ to y.

Thus the set HomX(X̃, Y ) of morphisms X̃ → Y overX is identified with the fiber f−1(x).

Let Lγ : X̃ → X̃ be the left action of γ ∈ π1(X
�, x). For a morphism ϕ ∈ HomX(X̃, Y ),

we define ϕγ := ϕ ◦ Lγ. Then f−1(x) admits a right action of π1(X
�, x). By 1.2.2, there

is a finite ∂-étale Galois morphism Z → X satisfying the following conditions:

(1) Z is connected;

(2) For a point z ∈ Z� and for a point y ∈ Y � both lying over x, there exists uniquely

a morphism Z → Y over X which sends z to y.

If we fix a point z ∈ Z� lying over x, then the fiber f−1(x) is also identified with the set

HomX(Z, Y ) of morphisms over X. Thus there is a group homomorphism π1(X
�, x) →

Gal(Z/X) (which depends on the choice of z) such that the action of π1(X
�, x) on f−1(x)

is derived from that of Gal(Z/X). In particular, we have a natural homomorphism

π1(X
�, x)→ π̂1(X; x).

Definition. For a topological group Π, the category Fin(Π) of finite discrete sets with

continuous right action of Π is defined as follows: an objects is a pair (S, ρ) consisting of
a finite discrete set S and an anti-group homomorphism ρ : Π→ Aut(S) such that

S × Π � (s, p)→ ρ(p)(s) ∈ S

is continuous. A morphism (S1, ρ1) → (S2, ρ2) is defined to be a map f : S1 → S2
satisfying f ◦ ρ1(p) = ρ2(p) ◦ f for any p ∈ Π. The subcategory consisting of all the

objects (S, ρ) with transitive action of ρ(Π) is denoted by Fintrans(Π).

Lemma 1.2.5. The category Fin(π̂1(X ; x)) is equivalent to the category of ∂-spaces finite

and ∂-étale over X. Here, the subcategory Fintrans(π̂1(X; x)) is equivalent to the category

of connected ∂-spaces finite and ∂-étale over X .

Proof. For a finite ∂-étale morphism f : Y → X, the fiber f−1(x) admits a continuous

right action of π̂1(X; x), by the argument above. Let S be a finite discrete set with a
continuous right action of π̂1(X; x). By considering the decomposition by orbits, we may

assume that the action is transitive. Then there exist a finite ∂-étale Galois morphism

Z → X from a connected ∂-space Z and a point z ∈ Z� lying over x such that the

action is derived from that of Gal(Z/X) on S. Let U ⊂ Gal(Z/X) be the stabilizer

of a point of S. Then S � U\Gal(Z/X) as sets with right action of Gal(Z/X). We
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associate U with the quotient ∂-space U\Z, which is finite ∂-étale over X. Thus we have
the equivalence. �

Let x be any point ofX. We fix a continuous path Φ: [0, 1]→ sp(X) such that Φ(0) = x

and Φ(t) ∈ X∗ for t #= 0. For a ∂-open neighborhood U of x, there is a number 0 < t0 < 1

such that Φ(t) ∈ sp(U) for any t ≤ t0. The profinite fundamental groups π̂1(U ; Φ(t))

for 0 < t < t0 are isomorphic to π̂1(U ; Φ(t0)) by the path Φ. We consider couples (U, t)

consisting of a ∂-open neighborhood U of x and a number t such that Φ(t′) ∈ sp(U) for
any t′ ≤ t. For two couples (U1, t1) and (U2, t2), we denote (U1, t1) ≺ (U2, t2) if U1 ⊂ U 2

and if t1 ≤ t2. By considering the projective system {π̂1(U ; Φ(t))} induced from ≺, we
define the local profinite fundamental group by

π̂loc
1 (X; x,Φ) := lim←− π̂1(U ; Φ(t)).

Lemma 1.2.6. If Φ1 and Φ2 are two continuous paths [0, 1]→ sp(X) such that Φ1(0) =

Φ2(0) = x and that Φ1(t), Φ2(t) ∈ X� for t #= 0, then there is an isomorphism between

π̂loc
1 (X; x,Φ1) and π̂loc

1 (X; x,Φ2).

Proof. We may assume that x #∈ X�. Let U be an open neighborhood of x in sp(X)

such that there is a closed embedding U ↪→ ∆n into an n-dimensional unit polydisc ∆n

sending x to the origin. By a coordinate system (z1, z2, . . . , zn) of ∆
n at x = 0, we

define ρ(z) :=
∑ |zi|2. Let Bε be the ball {z ∈ ∆n | ρ(z) < ε} and let Sε be the sphere

{z ∈ ∆n | ρ(z) = ε} for a positive number ε < 1. Then by the existence of Whitney

stratifications and by Thom’s first isotropy lemma, there exist positive numbers ε0 < ε1

and a homeomorphism

ϕ : Bε0 ∩ U ∩X� → (Sε1 ∩ U ∩X�)× (0, ε0)

such that p2 ◦ ϕ = ρ for the second projection p2. Then for some positive number δ < 1,

Φ1 and Φ2 restricted to [0, δ] are considered to be paths starting from the vertex in the

cone

C := (Sε1 ∩ U ∩X�)× [0, ε0)
/
(Sε1 ∩ U ∩X�)× {0}

of Sε1 ∩U ∩X�. Thus there is a homotopy h : [0, δ]× [0, 1]→ C such that h(t, 0) = Φ1(t),

h(t, 1) = Φ2(t) for any t ∈ [0, δ] and h(0, s) = 0 for any s ∈ [0, 1]. Hence we have an
isomorphism π̂loc

1 (X; x,Φ1) � π̂loc
1 (X ; x,Φ2) by the homotopy h. �

We denote π̂loc
1 (X; x) = π̂loc

1 (X; x,Φ) when we consider only the group structure.

Definition 1.2.7. A germ of pointed ∂-spaces is an equivalence class of pointed ∂-spaces

with respect to the following relation: Two pointed ∂-spaces (Y 1; y1) and (Y 2; y2) are

equivalent if there exist ∂-open immersions (Y 3; y3)→ (Y i; yi) for i = 1, 2, from another
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pointed ∂-space. A ∂-étale morphism (Y ; y)→ (X ; x) is called a ∂-étale neighborhood of

x. A germ of ∂-étale neighborhoods of x is a germ of pointed ∂-spaces étale over (X; x).

Lemma 1.2.8. The following two categories are equivalent :

(1) The category of germs of ∂-étale neighborhoods of x;

(2) Fintrans(π̂loc
1 (X; x)).

Proof. The functors between two categories below give the equivalence.

(1) =⇒ (2) Let (Y ; y) → (X ; x) be a ∂-étale neighborhood. Since we consider only

germs, we may assume that X and Y are connected, f−1(x) = {y} for the morphism
f : sp(Y ) → sp(X), and that f : Y → X is a finite ∂-étale morphism. There exist a

path Ψ: [0, 1] → sp(Y ) and a homeomorphism ϕ : [0, 1] → [0, ε] for 0 < ε < 1 such that

f ◦ Ψ = Φ ◦ ϕ. Thus by 1.2.5, we can attach a finite discrete set S with a transitive
continuous right action of π̂1(X; Φ(ε)) to Y /X . It also admits a transitive continuous

right action of π̂loc
1 (X; x) by definition. Since S is essentially the fiber f−1(Φ(ε)), this is

independent of the choice of Ψ and ε.

(2) =⇒ (1) Let S be a finite discrete set with a transitive continuous right action of
π̂loc
1 (X; x). Then the action is derived from π̂1(U ; Φ(t)) for a ∂-open neighborhood of x

and for some 0 < t < 1. Thus by 1.2.5, it is associated with a finite ∂-étale morphism

(Y ; y) → (U ; x), where Y is connected. The germ of this étale neighborhood does not

depend on the choice of U and t. �
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2. ∂-étale cohomology

The ∂-étale topology of the category ∂sp is defined by ∂-étale morphisms. A ∂-étale

covering family of a ∂-space X is a collection of ∂-étale morphisms {hi : U i → X}i∈I such

that ⋃
i∈I

hi(sp(U i)) = sp(X).

In Section 2, we shall study sheaves (of abelian groups) on X with respect to the ∂-

étale topology and their cohomology groups. For a presheaf F , the stalk Fx at a point

x ∈ sp(X) is defined as a discrete π̂loc
1 (X ; x)-module. The enough-injectiveness of the

category of sheaves on X is proved and the cohomology groups H i(X,F ) are defined.

The Čech cohomology group Ȟp(X,F ) is shown to be isomorphic to Hp(X,F ). Leray’s

spectral sequence exists for a morphism of ∂-spaces. In particular, for the morphism

ε : X = (X,B)→ X to a realization, H i(X,F ) are calculated byHp(X,Rqε∗F ). If [X,B]

is locally connected at x, then the stalk of Rqε∗F at x is isomorphic to the continuous

group cohomology Hq
cont.(π̂

loc
1 (X; x), Fx). Coherent OX-sheaves are also studied.

2.1. Sheaf

A presheaf F of abelian groups of X is a contra-variant functor from the category

(∂ -ét)/X of ∂-spaces ∂-étale over X to the category of abelian groups. This is called a

sheaf if for a ∂-étale morphism U → X and for a ∂-étale covering family {U i → U}i∈I ,

the sequence

0→ F (U)→
∏
i∈I

F (U i) ⇒
∏

i,j∈I

F (U i ×U U j)

is exact.

Remark. Let π : Y → X be a ∂-étale Galois morphism with the Galois group G. If F is

a presheaf of X, then F (Y ) is a right G-module, since G× Y � Y ×X Y . If F is a sheaf

and if π is surjective, then the G-invariant part of F (Y ) is F (X).

Example. Let X be a ∂-space and let M an abelian group. For a ∂-étale morphism

U → X, we attach the group

lim−→[U,∆]∈U
H0(U,M).

This forms a sheaf MX called the constant sheaf . If U is connected, then MX(U) � M .

For a ∂-étale morphism U → X, we attach the group

lim−→[U,∆]∈U
H0(U,OU).

This forms a sheaf of rings in ∂-étale topology. This is called the structure sheaf and is

denoted by OX.



31

We introduce Čech cohomology groups. Let F be a presheaf of X and let U := {Uα →
X}α∈A be a ∂-étale covering family of X . For α = (α0, α1, . . . , αq) ∈ Aq+1, we define

Uα := Uα0
×X Uα1

×X · · · ×X Uαq
.

The group of q-th Čech cochains is defined to be

Cq(U/X, F ) :=
∏

α∈Aq+1

F (Uα).

Then we have the Čech complex C•(U/X, F ) and its cohomology groups Ȟq(U/X, F ) as

usual. A refinement of U is a ∂-étale covering family V = {V β → X}β∈B of X with a map

α : B → A and with ∂-étale morphisms ϕβ : V β → Uα(β) over X. For the refinement, we

have homomorphisms Ȟq(U/X, F )→ Ȟq(V/X, F ) as usual, which do not depend on the

choices of α and ϕβ . For a given ∂-étale covering family, we have a refinement {V β → X}
such that each V β is ∂-étale Galois over X with a finite Galois group. Thus we may

assume that V β is determined by a finite quotient group of π̂
loc
1 (X ; xβ) for some point xβ

of X. Therefore we can define the inductive limit

Ȟq(X,F ) := lim−→ Ȟq(U/X, F )

and call this the q-th Čech cohomology group.

Lemma 2.1.1. Let U → X be a surjective ∂-étale Galois morphism with the Galois group

G. Then for a sheaf F of X , we have

Ȟp(U/X, F ) � Hp(G,F (U)),

where we consider {U → X} as a ∂-étale covering family and the right hand side is the

group cohomology of the right G-module F (U).

Proof. For a non-negative integer q, we have an isomorphism

Gq × U � U ×X U ×X · · · ×X U ((q + 1)-fold fiber product).

Thus Cq(U/X, F ) � Map(Gq, F (U)). The complex Map(G•, F (U)) is nothing but the

complex defining Hp(G,F (U)), which is derived from the non-homogeneous free resolu-

tion of the trivial G-module Z. �

We define presheaves Ȟq(F ) of X for non-negative integers q by

Ȟq(F )(U) := Ȟq(U, F )

for ∂-étale morphisms U → X. In the case q = 0, the following properties are well-known:
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(1) Ȟ0(F ) is a separated presheaf, i.e.,

0→ Ȟ0(F )(U)→
∏
i∈I

Ȟ0(F )(U i)

is exact for a ∂-étale covering family {U i → U}i∈I;

(2) If F itself is a separated presheaf, then Ȟ0(F ) is a sheaf;

(3) If F is a sheaf, then F � Ȟ0(F );

(4) For an exact sequence of presheaves 0 → F → G → H, the induced sequence

0→ Ȟ0(F )→ Ȟ0(G) → Ȟ0(H) is also exact.

Thus F a := Ȟ0(Ȟ0(F )) is the sheafification of F .

The stalk Fx/X in the weak sense of a presheaf F at a point x ∈ sp(X) is defined to
be the inductive limit

Fx/X := lim−→F (U)

for ∂-open neighborhoods U of x. We attach the stalk Fv/V in the weak sense to a germ

(V ; v) of a ∂-étale neighborhood of x. Then by considering 1.2.8, we can define an abelian

group Fx[S] for a finite discrete set S with a transitive continuous action of π̂loc
1 (X; x).

In particular, Fx[Γ ] is a right Γ -module for a finite quotient group Γ of π̂loc
1 (X; x). If F

is a sheaf and if Γ ′ is a subgroup of Γ , then the Γ ′-invariant part of Fx[Γ ] is Fx[Γ
′\Γ ].

The stalk Fx is defined to be the inductive limit

Fx := lim−→Fx[Γ ]

for finite quotient groups π̂loc
1 (X; x) � Γ . This is a discrete π̂loc

1 (X; x)-module. If F is a

sheaf, then the Fx[Γ ] is identified with the invariant part of Fx by the action of the kernel

of π̂loc
1 (X ; x) → Γ . If (V ; v) → (U ; u) is ∂-étale, then we have an isomorphism Fu � Fv

as abelian groups. The support of F , SuppF , is defined to be {x ∈ sp(X) | Fx #= 0}.
For a section s ∈ F (U), the germ su at u ∈ sp(U ) is defined to be the image of s by
F (U)→ Fu. The following lemma is proved by a standard argument.

Lemma. (1) Let F → G be a homomorphism of presheaves of X where G is a sheaf.

Then this is the sheafification of F if and only if this induces isomorphisms Fx �
Gx for any point x of X.

(2) Let 0→ F → G→ H → 0 be a sequence of sheaves on X . Then it is exact if and

only if 0→ Fx → Gx → Hx → 0 is exact for any x ∈ sp(X).
(3) Let F be a presheaf of a ∂-space X, F a the sheafification of F and let x be a

point of X. Then the stalk F a
x/X in the weak sense is isomorphic to the π̂

loc
1 (X; x)-

invariant part of Fx. For a ∂-étale morphism U → X, we have the following
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identification:

F a(U) =
{
(su) ∈

∏
u∈sp(U)

F a
u/U

∣∣∣∣ for any u, there exist a ∂-étale neighborhood τ : V → U

of u and an element t ∈ F (V ) such that tv = sτ (v) for any v ∈ sp(V )
}
.

The stalk Fx is a discrete right π̂
loc
1 (X ; x)-module for a sheaf F of X. Conversely, we

can construct a sheaf ixm of X from a discrete right π̂loc
1 (X; x)-module m as follows:

For a ∂-étale morphism U → X, we set:

ixm(U) :=
∏

sp(U )�u�→x

m π̂loc
1 (U ;u),

wheremΠ is the Π-invariant part ofm for a subgroup Π ⊂ π̂loc
1 (X; x). Then ixm is a

sheaf and Supp ixm = {x}. Therefore we have:

Lemma. The category of discrete right π̂loc
1 (X; x)-modules and the category of sheaves of

X supported in {x}, are equivalent.

For a sheaf F , we have the sheaf
∏

x∈sp(X) ixFx and an injection F ↪→ ∏
x∈sp(X) Fx. Thus

the category of sheaves on X has enough injectives. In fact, ifm is an injective discrete

π̂loc
1 (X; x)-module, then ixm is an injective sheaf on X. Therefore we can consider right

derived functors, especially cohomology groups of sheaves.

Definition. The right derived functors for the global section functor given by F �→ F (X)

are denoted by H i(X,F ). These are called ∂-étale cohomology groups of F over X .

Let f : Y → X be a morphism of ∂-spaces. Then for a sheaf F of Y , the direct image

sheaf f∗F is defined by:

f∗F (U) = F (Y ×X U)

for any ∂-étale morphism U → X. We also define the direct image sheaf with proper

support f!F as follows:

f!F (U) =
{
s ∈ F (Y ×X U )

∣∣∣ Supp(s)→ sp(U ) is proper
}
.

Conversely, for a sheaf G of X, we have the pullback sheaf f−1G. This is defined to be

the sheafification of the presheaf

V �→ lim−→
V→U→X

G(U),

where the limit is taken over ∂-étale morphisms U → X with factorizations V → U of

the composite V → Y → X. Then there exist canonical homomorphisms f−1f∗F → F

and G→ f∗f
−1G, by which f∗ and f−1 are adjoint to each other:

HomX(F, f∗G) � HomY (f
−1F,G).
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If f is a ∂-étale morphism, we sometimes write f−1F by F |Y , since this is the restriction
to (∂-ét)/Y .

Lemma 2.1.2. Let f : Y → X be a ∂-étale morphism and let F and G be sheaves of

Y and X , respectively. Then there exist canonical homomorphisms F → f−1(f!F ) and

f!(f
−1G) → G by which f! and f−1 are adjoint, i.e.,

HomX(f!F,G) � HomY (F, f
−1G).

Proof. The left adjoint fa
	 of f

−1 is constructed by the following Kan’s process (cf. [S5]):

For a ∂-étale morphism U → X , let If
U/X be the category of pairs 〈V /Y , φ〉 such that

V → Y is a ∂-étale morphism and φ : U → V is a ∂-étale morphism over X. A morphism

〈V 1/Y , φ1〉 → 〈V 2/Y , φ2〉 is defined to be a ∂-étale morphism h : V 1 → V 2 such that

φ2 = h ◦ φ1. For a sheaf F of Y , we can define a presheaf of X by

f	F (U) := lim−→
〈V /Y ,φ〉∈I

f
U/X

F (V ) �
⊕

φ∈HomX(U,Y )

F (Uφ),

where Uφ denotes the ∂-étale morphism φ : U → Y . Then the sheafification (f	F )
a

induces the left adjoint functor fa
	 . We have a natural homomorphism fa

	 F → f!F for a

sheaf F of Y . By comparing their stalks, we have an isomorphism fa
	 F � f!F . �

Remark. The enough-injectiveness of the category of sheaves of X is also derived from

2.1.2, since f!ZU for all ∂-étale morphisms f : U → X form a generator of the category.

Corollary 2.1.3. Let U → X be a ∂-étale morphism and let F be a sheaf of X .

(1) If F is an injective sheaf, then so is F |U .
(2) The functors F �→ Hi(U, F |U) (i ≥ 0) are the right derived functors of F �→ F (U).

For a morphism f : X → Y of ∂-spaces, the right derived functors for f∗ are called the

higher direct images and denoted by Rif∗F . There is a natural morphism ε = εX : X =

(X,B) → (X, ∅) for a realization [X,B] of X. The category of ∂-étale morphisms over

(X, ∅) is equivalent to that of étale morphisms over X. Thus the category of sheaves of
(X, ∅) is equivalent to that of X, since an étale morphism is a local isomorphism. There-

fore the direct image ε∗F is the functor F restricted to the category of open subspaces

of X.

2.2. Čech cohomology and Right derived functor cohomology

For a presheaf F of X , we define the presheaves Hq(F ) of X for q ≥ 0 by:

Hq(F )(U) = Hq(U, F ),
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for a ∂-étale morphism U → X . If F is a sheaf, then F � H0(F ). Let V := {V β → X}
be a ∂-étale covering family of X. Let Cq(V/X, F ) be the presheaf of X defined by

Cq(V/X, F )(U) := Cq(V ×X U/U, F )

for ∂-étale morphisms U → X, where V ×X U is the ∂-étale covering family {V β×X U →
U} of U . Then C•(V/X, F ) is a complex of presheaves. The q-th cohomology presheaf

is denoted by Ȟq(V/X, F ). In particular, Ȟq(V/X, F )(X) = Ȟq(V/X, F ).

Lemma 2.2.1. Let I be an injective sheaf on X and let U := {Uα → X}α∈A be a ∂-étale

covering family of X. Then Ȟi(U/X, I) = 0 for i > 0.

Proof. For a non-negative integer q, let Cq be the sheaf

Cq :=
⊕

α∈Aq+1

fα!ZUα
,

where fα : Uα → X is the induced morphism. Then we have an exact sequence

· · · → Cq → Cq−1 → · · · → C0 → ZX → 0

such that, for a sheaf F , the Čech cohomology group Ȟq(U/X, F ) is the q-th cohomology

group of the induced complex

0→ Hom(C0, F )→ Hom(C1, F )→ · · · → Hom(Cq, F )→ · · ·

If I is an injective sheaf, then Hom(•, I) is an exact functor. Hence Ȟi(U/X, I) = 0 for

i > 0. �

Lemma 2.2.2. Let [X,B] be a realization of X, ε : X → X the natural morphism, and

let U := {Uα → X}α∈A be a ∂-étale covering family of X. Then we have the following

spectral sequences for a sheaf F of X:

Ep,q
2 (U/X) = Ȟp(U/X,Hq(F )) =⇒ Hp+q(X,F );

Ep,q
2 (X) = Ȟp(X,Hq(F )) =⇒ Hp+q(X,F );

Ep,q
2 (X) = Ȟp(X, ε∗Hq(F )) =⇒ Hp+q(X,F ).

Proof. Let

0→ F → I0 → I1 → · · · → Ip → · · ·
be an injective resolution of F . The presheafHq(F ) is the q-th cohomology of the complex

I• of presheaves. We consider the double complex

Kp,q := Ȟp(U/X, Iq).

Then Hp(K•,q) = 0 for p > 0 by 2.2.1. Since H0(K•,q) = H0(X, Iq), the p-th cohomology

of the total complex of K•,• is isomorphic to Hp(X,F ). On the other hand, Hq(Kp,•)
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is isomorphic to Cp(U/X,Hq(F )). Thus we have the first spectral sequence Ep,q
2 (U/X).

By taking the inductive limit for refinements of V, we have the second sequence Ep,q
2 (X).

Let {Uα} be an open covering of X. Then ε−1(Uα) form a ∂-étale covering family U of
X. Then

Ȟp(U/X,Hq(F )) � Ȟp({Uα}, ε∗Hq(F )),

for any p, q. Thus we have the third sequence Ep,q
2 (X). �

Corollary 2.2.3. Let f : Y → X be a morphism of ∂-étale spaces and let F be a sheaf

on Y . Then there exists Leray’s spectral sequence:

Ep,q
2 = Hp(X,Rqf∗F ) =⇒ Hp+q(Y , F ).

Proof. It is enough to show that Hr(X, f∗I) = 0 for r > 0 and for any injective sheaf I

of Y . We know Ȟp(X, f∗I) = 0 for p > 0 by 2.2.1. Let us consider the spectral sequence

Ep,q
2 (X) = Ȟp(X,Hq(f∗I)) =⇒ Ep+q = Hp+q(X, f∗I).

Then Ep,0
2 (X) = 0 for p > 0. Moreover, E0,q

2 (X) = Ȟ0(X,Hq(f∗I)) = 0 for q > 0, since

the sheafification of Hq(f∗I) is zero. In particular, E
1,0
2 (X) = E0,1

2 (X) = 0. Suppose that

for a positive integer r, Ep,q
2 (X) = 0 for 0 < p + q < r. Then Ei = 0 for any 0 < i < r.

Thus Hi(f∗I) = 0 by 2.1.3. Therefore Ep,q
2 (X) = 0 also for p + q = r. Hence we have

Er = 0 for any r > 0. �

Lemma 2.2.4. Let U be a ∂-étale neighborhood of a point x of X and let

W → U q+1 := U ×X U ×X · · · ×X U ((q + 1)-fold fiber product)

be a ∂-étale morphism for a non-negative integer q ≥ 0 such that sp(W ) → sp(U q+1) is

surjective over x. Then there exist a ∂-étale neighborhood V of x and a ∂-étale morphism

V → U over X such that

(1) the induced morphism sp(V )→ sp(U ) is surjective over x,

(2) there is a factorization V q+1 → W → U q+1.

Proof. By taking base changes, we may assume that U is a ∂-étale Galois neighborhood

determined by a finite quotient group Γ of π̂loc
1 (X ; x) and that W → X is a finite ∂-étale

morphism. Since U q+1 � Γ q × U is a disjoint union of copies of U ,

W =
⊔

γ∈Γ q

W γ,

for ∂-étale finite morphisms W γ → U . We may assume that each W γ is also determined

by a finite quotient group Γγ of π̂
loc
1 (X; x). There are surjections π̂

loc
1 (X ; x) � Γγ � Γ .

Hence we have a finite quotient group Γ ′ of π̂loc
1 (X; x) with π̂loc

1 (X ; x) � Γ ′ � Γγ for
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any γ ∈ Γ q. Let V → X be a ∂-étale Galois neighborhood corresponding to Γ ′. Then it

factors through each W γ → X. Let V → U be a ∂-étale Galois morphism corresponding

to the Γ ′ � Γ . Then V q+1 � Γ ′q × V and we can take a factor Γ ′q × V → W of

V q+1 → U q+1. �

Corollary 2.2.5. Let F be a presheaf of X and let ε : X → X be the natural morphism

to a realization [X,B] of X.

(1) If Fx = 0 for a point x ∈ sp(X), then for any q, we have

Ȟq(F )x/X = 0 and lim−→V/X
Ȟq(V/X, F )x/X = 0.

(2) Let F a be the sheafification of F . Then for any point x ∈ sp(X) and for any

q ≥ 0, we have isomorphisms

lim−→V/X
Ȟq(V/X, F )x/X � Ȟq(F )x/X � Hq(F a)x/X.

(3) The group of (2) is also isomorphic to the continuous group cohomology

Hq
cont.(π̂

loc
1 (X; x), Fx) � lim−→

π̂loc
1 (X;x)�Γ

Hq(Γ, Fx[Γ ]),

where the limit is taken over all the finite quotient groups of π̂loc
1 (X; x).

(4) If F is a sheaf, then Rpε∗F is the sheafification of ε∗Ȟp(F ).

(5) If F is a sheaf and if [X,B] is locally connected at a point x̄ ∈ X, then

(Rpε∗F )x̄ � Hp
cont.(π̂

loc
1 (X; x), Fx),

where x ∈ sp(X) is the unique point lying over x̄.

Proof. (1) Let U → X be a ∂-étale neighborhood of x and let s ∈ Cq(U/X, F ) =

F (U q+1). Then there is a ∂-étale neighborhood V over U of x such that the restriction

sV ∈ Cq(V /X, F ) is zero, by 2.2.4.

(2) By (1), we have

lim−→V/X
Ȟq(V/X, F )x/X � lim−→V/X

Ȟq(V/X, F a)x/X,

Ȟq(F )x/X � Ȟq(F a)x/X.

Thus we may assume that F is a sheaf. By localizing spectral sequences in 2.2.2, we have

the following two spectral sequences of presheaves of X:

lim−→V/X
Ȟp(V/X,Hq(F )) =⇒ Hp+q(F ), and Ȟp(Hq(F )) =⇒ Hp+q(F ).

Since Hq(F )x = 0 for q > 0, we have the isomorphisms

lim−→V/X
Ȟq(V/X, F )x/X � Ȟq(F )x/X � Hq(F a)x/X.
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(3) We may assume that F is a sheaf. By definition,

Ȟq(F )x/X = lim−→U/X
Ȟq(U/X, F ),

where the limit is taken over all the ∂-étale neighborhoods of x. If U → X is a ∂-étale

Galois neighborhood with the Galois group Γ , then Ȟq(U/X, F ) � Hq(Γ, F (U)) by 2.1.1.

Thus we have Ȟq(F )x/X � Hq
cont.(π̂

loc
1 (X; x), Fx).

(4) For a point y ∈ X, let us choose an open neighborhood U and a ∂-isomorphism

f : [Y,D] → [U , B ∩ U ] such that [Y,D] is locally connected at any point of f−1(y) =
{y1, y2, . . . , yl}. Then by (2), we have(

ε∗Ȟq(F )
)
y
�

r⊕
i=1

Ȟq(F )yi �
r⊕

i=1

Hq(F )yi �
(
ε∗Hq(F )

)
y
.

Therefore the stalk of the natural homomorphism ε∗Ȟq(F ) → ε∗Hq(F ) is an isomor-

phism for any point y ∈ X. Since Rpε∗F is the sheafification of ε∗Hp(F ), it is also the

sheafification of ε∗Ȟq(F ).

(5) is derived from (3) and (4). �

Corollary 2.2.6. Let F be a sheaf of abelian groups on a ∂-space X and let [X,B] be a

realization of X . Then for the natural morphism ε : X → X, we have

(Rε∗F )
L
⊗Q ∼qis ε∗(F ⊗Q).

In particular, if F is a sheaf of Q-vector spaces, then Hp(X,F ) � Hp(X, ε∗F ).

Proof. Let G be a finite group and let M be a G-module. Then H0(G,M) ⊗ Q �
H0(G,M ⊗ Q) and Hp(G,M) ⊗ Q = Hp(G,M ⊗ Q) = 0 for p > 0. Since an inductive

limit and a tensor product are commutative, we have (Rpε∗F )x ⊗Q = Rpε∗(F ⊗Q)x for

p ≥ 0 and (Rpε∗F )x ⊗Q = 0 for p > 0, for any point x ∈ sp(X). �

Example. Let X be a ∂-space with a realization [X,B] and let ε : X → X = [X, ∅] be
the natural morphism. If M is a Q-vector space, then Hp(X,MX) � Hp(X,M) for any

p ≥ 0, by 2.2.6. Similarly for an OX-module F , we have H
p(X,F ) � Hp(X, ε∗F ).

Lemma 2.2.7. Let U = {Uα → X}α∈A and V = {V β → X}β∈B be two ∂-étale covering

families of X such that V is a refinement of U . Then there is a spectral sequence

Ep,q
2 = Ȟp(U/X, Ȟq(V/X, F )) =⇒ Ȟp+q(V/X, F )

for a presheaf F of X.
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Proof. Let us consider

Kp,q := Cp(U/X,Cq(V/X, F )) =
∏

α∈Ap+1

∏
β∈Bq+1

F (Uα ×X V β),

for p, q ≥ 0. Then Kp,q form a double complex. Let U ∪ V be the union of the two

∂-étale covering families. Since U and V are refinements, we have a natural surjective
homomorphism

Cr(U ∪ V/X, F )→ Cr(U/X, F )⊕Cr(V/X, F )

for r ≥ 0. Let L• = L•(U ,V, F ) be the kernel complex of

C•(U ∪ V/X, F )→ C•(U/X, F )⊕ C•(V/X, F ).

Then the shift L•[1] is isomorphic to the total complex of K•,•. Since V is a refinement
of U , the union U ∪ V is also a refinement of U . Hence the homomorphisms Ȟr(U ∪
V/X, F )→ Ȟr(U/X, F ) are isomorphic. Thus

Ȟr(V/X, F ) � Hr+1(L•(U ,V , F )).

We have the expected spectral sequence since Hq(Kp,•) � Cp(U/X, Ȟq(V/X, F )). �

We recall the following well-known:

Lemma 2.2.8. Let X be a para-compact and Hausdorff topological space. Assume that

the sheafification of a presheaf G of X is zero. Then all the Čech cohomology groups

Ȟi(X,G) are zero.

Now we are ready to prove the following:

Theorem 2.2.9. The Čech cohomology groups are isomorphic to the cohomology groups

induced as right derived functors. More precisely, for any presheaf F ′ and its sheafification

F = F ′a, we have canonical isomorphisms

Ȟp(X,F ′) � Ȟp(X,F ) � Hp(X,F )

for p ≥ 0.

Proof. Let F ′ be a presheaf of X such that F ′
x = 0 for any x ∈ sp(X). Let ε : X → X be

the natural morphism for a realization [X,B] of X . Then by 2.2.5,(
ε∗ lim−→V/X

Ȟq(V/X, F ′)
)

x
= 0

for any point x ∈ X. Let U = {Ui}i∈I be an open covering of X and let ε−1U be the

induced ∂-étale covering family {(Ui, B ∩ Ui)→ X}. Then we have a spectral sequence

Ep,q
2 (U) = Hp

(
ε−1U , lim−→V/X

Ȟq(V/X, F ′)
)
=⇒ Ȟp+q(X,F ′)
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by 2.2.7. Since the inductive limit lim−→Ep,q
2 (U) for open coverings U is isomorphic to the

usual Čech cohomology group

Hp
(
X, ε∗ lim−→V/X

Ȟq(V/X, F ′)
)
,

we have lim−→Ep,q
2 (U) = 0 for any p, q by 2.2.8. Thus Ȟp(X,F ′) = 0.

Therefore, for any presheaf F ′ and its sheafification F = F ′a, we have Ȟp(X,F ′) �
Ȟp(X,F ). Let us consider any short exact sequence

0→ F → G→ H → 0

of sheaves of X . Then, for the cokernel F ′′ of G → H as the presheaf, we have F ′′
x = 0

for any x ∈ sp(X). Therefore we have a long exact sequence:

· · · → Ȟq(X,F )→ Ȟq(X,G)→ Ȟq(X,H)→ Ȟq+1(X,F )→ · · ·

Since Ȟ0(X,F ) = F (X) for any sheaf F and since Ȟq(X,G) = 0 for any injective sheaf

G by 2.2.1, we see that Ȟq(X,F ) � Hq(X,F ) for any q and for any sheaf F on X. �

2.3. Coherent sheaf

Proposition 2.3.1. Let X be a complex analytic ∂-space. Let εX denote the natural

morphism X = (X,B) → X = (X, ∅) for a realization [X,B]. Then the following

conditions are equivalent :

(1) There is a top realization [Z,∆] of X such that [U,∆∩U ] is also a top realization
for any open subset U ⊂ Z;

(2) For any realization [X,B], εX∗OX is a coherent OX-module;

(3) There is a realization [X,B] of X such that εX∗OX is coherent.

Proof. (1) =⇒ (2) Let [Z,∆] be the top realization. Then the natural homomorphism

OZ → εZ∗OX is an isomorphism. Let [X,B] be a realization of X. Then there is a

unique ∂-isomorphism µ : [Z,∆] → [X,B]. Hence εX∗OX � µ∗εZ∗OX � µ∗OZ . This is

coherent.

(2) =⇒ (3) is clear.

(3) =⇒ (1) There is a ∂-isomorphism µ : [Z,∆] → [X,B] such that µ∗OZ � εX∗OX

as OX-algebras. The direct image of the natural homomorphism OZ → εZ∗OX under µ∗

is an isomorphism. Since µ is a finite morphism, we have OZ � εZ∗OX. If f : [Y,D] →
[U,∆ ∩ U ] is a ∂-isomorphism for an open subset U ⊂ Z, then there is a sequence of

homomorphisms OU → f∗OY → εZ∗OX

∣∣∣
U
. Hence f admits a splitting [U,∆ ∩ U ] →

[Y,D]. Thus [U,∆ ∩ U ] is a top realization. �

A reduced ∂-space satisfies the condition above.
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Definition. An OX -module F is called coherent if the following two conditions are

satisfied:

(1) F is ∂-étale locally finitely generated;

(2) Let U → X be a ∂-étale morphism and let O⊕r
U → F|U be an OU -linear homo-

morphism. Then the kernel is also ∂-étale locally finitely generated.

Let X be a ∂-space such that for any ∂-étale morphism U → X, U satisfies the

condition of 2.3.1. Let [X,B] be the top realization of X. Then OX � ε∗OX for the

natural morphism ε = εX : X → X (cf. 2.3.1). Let ε∗ denote the right exact functor

F �→ ε−1F ⊗ε−1OX
OX from the category of OX -modules to that of OX-modules.

Lemma 2.3.2. Let X = (X,B) and ε : X → X be as above and let F be an OX-module.

Then F is coherent if and only if there exist a ∂-étale covering family {Uλ → X} and
coherent sheaves Fλ of Uλ = sp(Uλ) such that

F|Uλ
� ε∗Uλ

Fλ

for the natural morphism εUλ
: Uλ → Uλ.

Proof. If F is coherent, then for any point x ∈ X, there exist an open neighborhood V ,

a finite Galois covering τ : U → V étale outside B, and an exact sequence

O⊕s
U → O⊕r

U → F|U → 0

for U = (U, τ−1B). By taking the exact functor εU∗ (cf. 2.2.6), we have

O⊕s
U →O⊕r

U → εU∗(F|U)→ 0.

Hence FU := εU∗(F|U) is a coherent OU -module. Next we apply ε∗U . Then we have an

isomorphism F|U � ε∗UFU .

Conversely, suppose that F|U � ε∗UF for the finite Galois covering τ : U → V étale

outside B and for a coherent sheaf F of U with an exact sequence

O⊕s
U → O⊕r

U → F → 0.

Then F|U is finitely generated, FU := εU∗(F|U) is also a coherent sheaf of U , and F|U =
ε∗UFU . If O⊕t

U → F|U is an OU -linear homomorphism, then it is determined by an OU -

linear homomorphism O⊕t
U → FU . Therefore the kernel is also finitely generated. �

In particular, OX is coherent. A lemma of Serre on the heredity of coherency on short

exact sequence also holds.

Corollary. Under the situation above, ε∗F is coherent for a coherent OX-module F .
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3. Cohomology groups of toroidal embeddings

We shall calculate some ∂-étale cohomology groups on the ∂-space X = (X,B) associ-

ated with a toroidal embedding X� = X �B ⊂ X. The local cohomology sheaf H2
B(ZX)

is canonically isomorphic to the sheaf H0
B(DivX) of germs of Cartier divisors supported

in B. In the ∂-étale version, H2
B(ZX) � H0

B(DivX) turns to be a sheaf of Q-vector

spaces. In particular, a Q-Cartier divisor on X whose fractional part is supported in B

is regarded as a Cartier divisor of X . This correspondence of divisors is generalized in

Section 3.5: we show that a reflexive sheaf of X corresponds to a parabolic sheaf of X.

3.1. Torus embedding

Let N be a free abelian group of rank l and let M be the dual HomZ(N,Z). A convex

rational polyhedral cone σ ⊂ N⊗ R is written by

σ =
k∑

i=1

R≥0νi =

{
k∑

i=1

riνi

∣∣∣∣∣ ri ∈ R≥0

}

for some νi ∈ N. We assume that {R≥0ν1, . . . ,R≥0νk} is the set of one-dimensional faces
in σ, νi are primitive elements of N, and that σ is strictly convex , i.e., σ ∩ (−σ) = {0}.
The νi are called vertices of σ. The dual cone σ

∨ ⊂ M⊗R consists of linear functions on

N⊗R that are non-negative over σ. Then σ∨ is also a convex rational polyhedral cone in

M ⊗ R and the semi-group σ∨ ∩M is finitely generated. The semi-group ring C[σ∨ ∩M]

and the group ring C[M] define an open immersion SpecC[M] ↪→ SpecC[σ∨∩M] of affine

schemes. We write the associated analytic spaces by

TN := SpecC[M]an and TN(σ) := SpecC[σ∨ ∩M]an.

The algebraic torus TN � N⊗C� acts on TN(σ) and the open immersion TN ↪→ TN(σ) is

TN-equivariant. The open immersion is called an affine torus embedding. Let N(σ) be the

subgroup N ∩ (σ + (−σ)). Then TN(σ) � TN(σ)(σ)× TN/N(σ). A face τ ≺ σ defines a TN-

equivariant open immersion TN(τ ) ⊂ TN(σ). The complement Oσ of the union of all the

TN(τ ) with τ ≺ σ, τ #= σ, is the unique closed orbit of TN in TN(σ). Any orbit in TN(σ)

is of the form Oτ for some τ ≺ σ. More explicitly, Oτ = SpecC[τ⊥ ∩ M]an � TN/N(τ ),

where τ⊥ denotes the vector subspace of M⊗R consisting of functionals vanishing along

τ . Note that Hom(τ⊥ ∩ M,Z) � N/N(τ ). The immersion Oτ ⊂ TN(σ) is induced from

the ring homomorphism f : C[σ∨ ∩M]→ C[τ⊥ ∩M] defined by

C[τ⊥ ∩M] � f(m) =

0, if m #∈ τ⊥ ∩M;

m, if m ∈ τ⊥ ∩M,
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for m ∈ σ∨∩M. The closure Oτ is of dimension l−dim τ and is isomorphic to TN/N(τ )(σ)

for the image σ ⊂ N/N(τ ) ⊗ R of σ. For a vertex νi, Oνi and TN(νi) stand for Oτ and

TN(τ ), respectively, for τ = R≥0νi. Let Bi be the prime divisor Oνi
. We define a filtration

TN(σ)• : TN(σ) = TN(σ)l ⊃ TN(σ)l−1 ⊃ · · · ⊃ TN(σ)i ⊃ · · ·

by setting

TN(σ)l−i :=
⋂

1≤λ1<λ2<···<λi≤k

Bλ1 ∩ Bλ2 ∩ · · · ∩Bλi.

TN(σ)i is the union of all the orbits of dimension ≤ i. The stratum TN(σ)i � TN(σ)i−1 is

the union of i-dimensional orbits. Thus TN(σ)• gives a Whitney stratification.

Remark. The variety X = TN(σ) has only rational singularities, i.e., OX ∼qis Rµ∗OY for

a desingularization µ : Y → X (cf. [K6]).

In Section 3.1, except for 3.1.5, we assume that N(σ) = N, i.e., σ generates N⊗R. Then

the closed orbit Oσ consists of one point which we denote by 0. Let {m1, m2, . . . , mr} be a
generator of the semi-group σ∨∩M. We denote by xm ∈ C[M] the monomial corresponding

to m. Then we have a closed embedding TN(σ) ↪→ Cr by xmj which sends 0 to 0. Let

Intσ denote the interior of σ. We fix an element v ∈ Intσ and set vj := 〈mj , v〉 > 0,

where 〈 , 〉 stands for the natural pairing M×N→ Z. Let∆α for α > 0 be the following

polydisc in Cr:

∆α := {(y1, y2, · · · , yr) ∈ Cr | |yj| < αvj for any j}.

We denote the intersections with ∆α as follows:

TN(σ)
<α := ∆α ∩ TN(σ), T<α

N :=∆α ∩ TN, TN(σ)
<α
i := ∆α ∩ TN(σ)i.

There is an isomorphism T<1
N � T<α

N given by

(y1, y2, . . . , yr) �→ (αv1y1, α
v2y2, . . . , α

vryr).

Example. Let N be a free abelian group generated by ν1, ν2, . . . , νl and let σ be the first

quadrant
∑l

i=1 R≥0νi. For the point v = ν1+ν2+· · ·+νl ∈ Intσ, the open subset TN(σ)
<α

is just the open polydisc

{(s1, s2, · · · , sl) ∈ Cl | |si| < α for any i}.

Definition. Let the abelian group N of rank l, the strictly convex rational polyhedral cone

σ with N(σ) = N, the vector v ∈ Intσ, and the generatorm• = {m1, m2, . . . , mr} of σ∨∩M

be as above. An open immersion X� ⊂ X into a normal analytic space together with a

point x ∈ B = X�X� is called an n-dimensional toroidal embedding of type (N, l, σ, v,m•)

or of type (N, l, σ) for short, if there is an isomorphism X � TN(σ)
<1 ×∆n−l such that
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X� corresponds to TN ×∆n−l and that x corresponds to (0, 0) for the zero-dimensional

orbit 0 ∈ TN(σ) and for the origin 0 ∈∆n−l.

The TN(σ) is identified with the set Hom(σ
∨∩M,C) of semi-group homomorphisms into

the multiplicative semi-group C = (C,×). By considering the multiplicative semi-group
R≥0 = (R≥0,×), we define

McN(σ) := Hom(σ
∨ ∩M,R≥0)

(cf. [O1], [O2]). This is realized as a subset of TN(σ) and as the quotient space of TN(σ)

by the the action of compact torus

N⊗ S1 � Hom(M, S1) ⊂ N ⊗C� � TN,

where S1 stands for the circle as well as the unitary group U(1). The quotient map

ν : TN(σ)→McN(σ)

is induced from the norm map C � z �→ |z| ∈ R≥0 and is proper and open. An orbit Oτ is

identified with Hom(τ⊥∩M,C�) � N/N(τ )⊗C�. The immersionOτ = Hom(τ
⊥∩M,C�) ⊂

TN(σ) = Hom(σ
∨ ∩M,C) is described as the zero extension: For w ∈ τ⊥ ∩M → C�, the

semi-group homomorphism w̃ : σ∨ ∩M→ C is defined by

w̃(m) =

0, if m #∈ τ⊥ ∩M;

w(m), if m ∈ τ⊥ ∩M.

The image ν(Oτ ) is written by

ν(Oτ ) = Hom(τ
⊥ ∩M,R>0) � N/N(τ ) ⊗R>0,

where we consider R>0 as a multiplicative group. We have Oτ = ν−1(ν(Oτ )) and Oτ �
ν(Oτ)× (N/N(τ )⊗ S1). The images McN(σ)i := ν(TN(σ)i) define a filtration of McN(σ).

The stratum McN(σ)i �McN(σ)i−1 is a disjoint union of ν(Oτ ) with dim τ = l− i. Thus

TN(σ)i � TN(σ)i−1 is topologically a trivial fiber bundle over McN(σ)i �McN(σ)i−1 with

fiber (S1)i = S1× · · · × S1 (i-fold product). The image McN(σ)<α of TN(σ)
<α is identified

with

McN(σ)
<α =

{
w ∈ Hom(σ∨ ∩M,R≥0)

∣∣∣ w(mj) < αvj for any j
}

and TN(σ)
<α = ν−1(McN(σ)

<α).

Claim 3.1.1. Let v̄ and σ be the images of v and σ, respectively, under the projection

N⊗ R→ N/N(τ )⊗ R. Then McN(σ)
<α ∩ ν(Oτ) is identified with

−(logα)v̄ + Intσ ⊂ N/N(τ )⊗ R.
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Proof. For a point w ∈ ν(Oτ) = Hom(τ⊥ ∩ M,R>0), w is contained in McN(σ)
<α if and

only if w(mj) < αvj for any mj ∈ τ⊥. This condition is also written as logw(mj) <

〈mj, v〉 logα. Let ν(Oτ)→ N/N(τ ) ⊗ R be the homeomorphism

Hom(τ⊥ ∩M,R>0) � w �−→ − logw ∈ Hom(τ⊥ ∩M,R).

Then the condition is equivalent to that (logα)v̄ − logw ∈ N/N(τ ) ⊗ R is contained in

Intσ. �

In particular, any connected component of McN(σ)i �McN(σ)i−1 and its intersection with

McN(σ)
<α are contractible.

Corollary 3.1.2. The open subsets TN(σ)
<α form a base of open neighborhoods of 0. For

a connected component U of TN(σ)i�TN(σ)i−1, U and U∩TN(σ)
<α
i are both homotopically

equivalent to an i-dimensional compact torus S1 × · · · × S1.

Lemma 3.1.3. For a face τ ≺ σ, the universal covering space of Oτ ∩ TN(σ)
<α is

isomorphic to the domain

HN/N(τ )(Intσ) := N/N(τ )⊗ R+
√
−1 Intσ ⊂ N/N(τ ) ⊗ C.

Proof. The space O<α
τ := Oτ∩TN(σ)

<α is homotopically equivalent to Oτ � N/N(τ )⊗C�.

Let eN/N(τ ) : N/N(τ ) ⊗ C → N/N(τ ) ⊗ C� be the morphism id ⊗ e for the exponential

mapping e : C � z �→ exp(2π
√
−1z) ∈ C�. We have

xmi(eN/N(τ )(u)) =

0, if mi #∈ τ⊥ ∩M;

e(〈mi, u〉), if mi ∈ τ⊥ ∩M,

for u ∈ N/N(τ ) ⊗C. Therefore,

e−1N/N(τ )(O
<α
τ ) = {u ∈ N/N(τ )⊗ C | −2π〈mi, Im u〉 < 〈mi, v〉 logα for mi ∈ τ⊥}

= {u ∈ N/N(τ )⊗ C | (logα)v̄ + 2π Imu ∈ Intσ}

= HN/N(τ )(Intσ)−
√
−1
2π

(logα)v̄.

This is the universal covering space of O<α
τ . �

A bounded complex F • of sheaves of abelian groups on TN(σ) is called constructible

with respect to the filtration TN(σ)• if the cohomology sheaves of the complex restricted

to any strata TN(σ)i �TN(σ)i−1 are locally constant systems of finitely generated abelian

groups (cf. [G1]).
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Lemma 3.1.4. Let F • be a constructible bounded complex of sheaves on TN(σ). Then

we have isomorphisms

Hp(TN(σ), F
•) � Hp(TN(σ)

<α, F •) � Hp(F •)0,

for α > 0 and for any p. In particular,

Hp(TN(σ)
<α, F •)⊗Q � Hp(TN(σ)

<α, F • L
⊗Q).

Proof. Suppose first that F • ∼qis Rji∗F
•
0 for a bounded complex F

•
0 on TN(σ)i �TN(σ)i−1

with locally constant cohomology sheaves, where ji denotes the immersion TN(σ)i �

TN(σ)i−1 ↪→ TN(σ). Then we have

Hp(TN(σ), F
•) � Hp(TN(σ)i � TN(σ)i−1, F

•
0 )

� H0(McN(σ)i �McN(σ)i−1, R
pν∗F

•
0 ),

Hp(TN(σ)
<α, F •) � Hp(TN(σ)

<α
i � TN(σ)i−1, F

•
0 )

� H0(McN(σ)
<α
i �McN(σ)i−1, R

pν∗F
•
0 ).

Since Rpν∗F
•
0 are constant sheaves, we have the isomorphism for F •.

Next we consider general F •. We have a triangle

· · · +1−→ RΓ TN(σ)l−1
(F •)→ F • → Rjl−1

(
F •|TN(σ)�TN(σ)l−1

)
+1−→ · · ·

Then every complex is constructible and the statement holds on the third complex. By the

induction on the dimension of the support of cohomology sheaves, we have the required

isomorphisms. �

Corollary 3.1.5. Let σ ⊂ N⊗R be a strictly convex rational polyhedral cone. Then the

homomorphism

Hp(TN(σ),Z)→ Hp(TN,Z)

is isomorphic to the natural injection
∧p(σ⊥ ∩M)→ ∧p M.

Proof. There is an isomorphism TN(σ) � TN(σ)(σ) × TN/N(σ), where Hom(N/N(σ),Z) �
σ⊥ ∩M. We have Hp(TN(σ)(σ),Z) = 0 for p > 0 by 3.1.4. Thus the homomorphism in

question is derived from the projection TN → TN/N(σ). �

3.2. Normal varieties with boundary

Let us consider a complex analytic space with boundary [V,D] such that V is normal

and that the open part V � := V � D is non-singular. This is a top realization of the

∂-space V = (V,D). Let j : V � ↪→ V denote the open immersion. The analytic subset

Z := Sing V ∪ SingD satisfies codimZ ≥ 2. Let V ◦ := V � Z, D� := D ∩ V ◦ and let

j◦ : V ◦ ↪→ V , j� : V � ↪→ V ◦ be the associated open immersions.
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Let Ωp
V ◦(logD�) be the sheaf of germs of logarithmic p-forms along D�. We define

Ω̂p
V (logD) to be the direct image j◦∗Ω

p
V ◦(logD�). Then Ω̂p

V (logD) are reflexive sheaves,

since Ωp
V ◦(logD�) extends to the coherent sheaf µ∗Ω

p
Y (log µ

−1D) for a desingularization

µ : Y → V with µ−1D being normal crossing. Let X be an affine torus embedding TN(σ)

and let B be the complement of TN. Then we have a natural isomorphism

Ω̂p
X(logB) � OX ⊗Z

p∧
M.

Moreover, we have the so-called logarithmic de Rham complex

Ω̂•X(logB) = [· · · → Ω̂p
X(logB)

d→ Ω̂p+1
X (logB)→ · · · ].

There is a natural quasi-isomorphism

Rj∗CX� ∼qis Ω̂
•
X(logB)

by [D2], [D3], [D1, §15]. In particular, the natural morphism Rj∗CX� → Rj∗OX� is

decomposed as Rj∗CX� → OX → j∗OX� ∼→qis Rj∗OX�. This is generalized to 3.2.2

below.

Definition 3.2.1. Let k be a positive integer. A normal variety V is said to have only

k-rational singularities if for a desingularization µ : Y → V , Riµ∗OY = 0 for 0 < i ≤ k.

Lemma 3.2.2. If V has only k-rational singularities, then the morphism τ≤kRj∗CV � →
Rj∗OV � factors through OV → Rj∗OV �. In particular, τ≤k+1RΓD(CV ) → RΓD(OV ) is

zero in the derived category.

Proof. Let µ : M → V be a bimeromorphic morphism from a non-singular variety such

that µ−1D is a normal crossing divisor and that µ is isomorphic over V �. Then for the

open immersion jM : V
� � M � µ−1D ↪→ M , we have the factorization RjM ∗CV � →

OM → RjM ∗OM� as above. By taking Rµ∗, we also have Rj∗CV � → Rµ∗OM → Rj∗OV � .

The result follows the assumption OV ∼qis τ≤kRµ∗OM . Since RΓD(Rj∗CV �) ∼qis 0, we

have

τ≤k+1RΓD(τ≤kRj∗CV �) ∼qis τ≤k+1(RΓD(τ≥k+1Rj∗CV �)[−1]) ∼qis 0.

Thus τ≤k+1RΓD of the composite CV → τ≤kRj∗CV � →OV is zero. �

Definition. For the sheaf M�
V of germs of invertible meromorphic functions of V , we

define

OV (∗D)� := M
�
V ∩ j∗O�

V � ⊂ j∗M
�
V � .
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The sheaf DivV of germs of Cartier divisors is defined to be M�
V /O�

V . Thus the sheaf

OV (∗D)� is the kernel of the composite

M
�
V → DivV →Div V /H0

D(Div V ).

Lemma 3.2.3. (1) Let µ : Y → V be a bimeromorphic morphism from a normal

variety that is isomorphic over V �. Then OV (∗D)� � µ∗OY (∗µ−1D)�.
(2) Assume that V has only 1-rational singularities. Then OV (∗D)� is isomorphic to

the mapping cone of τ≤1Rj∗ZV � → OV , which is induced from τ≤1Rj∗CV � → OV

in 3.2.2.

(3) Assume that V has only 1-rational singularities. Let H0
D(DivV ) → H1

D(O�
V ) and

H1
D(O�

V )→ H2
D(ZV ), respectively, be the connecting homomorphisms for the exact

sequences

0→ O�
V →M�

V → DivV → 0, and 0→ ZV →OV → O�
V → 0.

Then the composite H0
D(Div V )→ H2

D(ZV ) is an isomorphism.

Proof. (1) For the open immersion jY : V
� ∼→ µ−1V � ↪→ Y , we have OY (∗µ−1D)� =

M�
Y ∩ jY ∗O�

V � . Thus µ∗OY (∗µ−1D)� = M�
V ∩ j∗O�

V � = OV (∗D)�, since µ∗M�
Y �M�

V .

(2) Assume that the assertion holds when V is non-singular and D is normal crossing.

Let µ : Y → V be a bimeromorphic morphism from a non-singular variety such that µ−1D

is normal crossing and that Y � µ−1D � V � D. For the open immersion jY : V
� ↪→ Y ,

we have the triangle

· · · +1−→ τ≤1RjY ∗ZV � → OY → OY (∗µ−1D)� +1−→ · · ·

by the assumption. Applying Rµ∗, we have a triangle

· · · +1−→ Rµ∗(τ≤1RjY ∗ZV �)→ Rµ∗OY → Rµ∗OY (∗µ−1D)� +1−→ · · ·

From quasi-isomorphisms OV ∼qis τ≤1Rµ∗OY and

τ≤1(Rµ∗(τ≤1RjY ∗ZV �)) ∼qis τ≤1Rj∗ZV � ,

we infer that µ∗OY (∗µ−1D)� is quasi-isomorphic to the mapping cone of τ≤1Rj∗ZV � →
OV . Therefore, we are reduced to the case V is non-singular andD is normal crossing. Let

Z1(log) denote the kernel of d: Ω1
V (logD) → Ω2

V (logD). Then the truncation τ≤1Rj∗CV �

is represented by the complex [0 → OV → Z1(log) → 0]. Thus the mapping cone of

τ≤1Rj∗CV � → OV is Z1(log). Similarly, let Z1 denote the kernel of d: Ω1
V � → Ω2

V � .
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Then the mapping cone of τ≤1Rj∗CV � → Rj∗OV � ∼qis j∗OV � is quasi-isomorphic to j∗Z1.

There is a homomorphism dlog : j∗O�
V � → j∗Z1. It appears in the commutative diagram

· · · +1−−−→ τ≤1Rj∗ZV � −−−→ j∗OV � −−−→ j∗O�
V �

+1−−−→ · · ·� ∥∥∥∥ �dlog
· · · +1−−−→ τ≤1Rj∗CV � −−−→ j∗OV � −−−→ j∗Z1 +1−−−→ · · ·

For a unit holomorphic function u on V �, if dlog u = du/u is a logarithmic 1-form along

D, then u is meromorphic along D. Therefore, the kernel of j∗O�
V � → j∗Z1/Z1(log) is

OV (∗D)�. Therefore, we have a commutative diagram

· · · +1−−−→ τ≤1Rj∗ZV � −−−→ OV −−−→ OV (∗D)� +1−−−→ · · ·∥∥∥∥ � �
· · · +1−−−→ τ≤1Rj∗ZV � −−−→ j∗OV � −−−→ j∗O�

V �
+1−−−→ · · ·

(3) The commutative diagram

· · · 1+−−−→ ZV −−−→ OV −−−→ O�
V

+1−−−→ · · ·� ∥∥∥∥ �
· · · +1−−−→ τ≤1Rj∗ZV � −−−→ OV −−−→ OV (∗D)� +1−−−→ · · ·

induces the isomorphism. �

Remark. (2) is well-known in the study of Deligne–Beilinson cohomology groups ([B1],

[E]). In fact, when V is a projective variety, then H0(V,OV (∗D)�) = H1
D(V

�,Z(1)).

Remark. There is another proof of (3) for a toroidal embedding. Let X� ⊂ X to-

gether with a point x ∈ B be a toroidal embedding of type (N, l, σ). For the sheaf

OX(∗B)�/O�
X � H0

B(DivX), the stalk H0
B(DivX)x is identified with M = Hom(N,Z).

The connecting homomorphism H0
B(DivX) → H1

B(O�
X) is derived from an injection

OX(∗B)� ⊂ j∗O�
X. Thus the image of m ∈ M in H2

B(ZX) � R1j∗ZX� corresponds to

the functional

N � π1(X
�) � γ �−→ 1

2π
√
−1

∫
γ

dxm

xm
,

where xm stands for the meromorphic function corresponding to m. The functional is

derived from the natural isomorphism M � Hom(N,Z). Therefore H0
B(DivX)→ H2

B(ZX)

is an isomorphism.

The sheaf wDiv V of germs of Weil divisors is isomorphic to j◦∗ DivV ◦ . Hence, we have

an isomorphism H0
D(wDiv V ) � j◦∗H0

D�(DivV ◦).

Lemma 3.2.4. (1) τ≥1Rj�
∗ZV � ∼qis RΓD�(ZV ◦)[1] ∼qis ZD� [−1]. In particular,

R1j�
∗ZV � � ZD� .
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(2) H0
D(wDiv V ) � ν∗ZD̃ � j◦∗H2

D�(ZV ◦), for the normalization ν : D̃ → D.

(3) Assume that V has only k-rational singularities. Then

τ≤kRΓD(O�
V ) ∼qis τ≤kRΓD(OV )⊕ (τ≤k+1RΓD(ZV ))[1].

(4) Assume that V has only k-rational singularities for k ≥ 2. Then Rpj◦∗O�
V ◦ �

Rpj◦∗OV ◦ ⊕Rp+1j◦∗ZV ◦ for p ≤ k − 1.
(5) Assume that V has only 1-rational singularities. Then R1j◦∗ZV ◦ � H2

Z(ZV ) = 0

and R1µ∗ZY = 0 for a desingularization µ : Y → V .

Proof. (1) The first quasi-isomorphism is derived from the triangle

(3.1) · · · +1−→ RΓD�(ZV ◦)→ ZV ◦ → Rj�
∗ZV �

+1−→ · · ·

The second is induced from the natural quasi-isomorphism RΓD�(ω
top
V ◦ ) ∼qis ωtop

D� (cf. Sec-

tion 0.3).

(2) B� itself is an element of H0(X◦,H0
B(DivX)). Thus we have a homomorphism

ZB� → H0
B�(DivX◦). This is an isomorphism by (1) and 3.2.3-(3). The application of j◦∗

to the isomorphism induces the expected isomorphisms.

(3) We have a triangle

· · · +1−→ RΓD(ZV )→ RΓD(OV )→ RΓD(O�
V )

+1−→ · · ·

from the exponential sequence of V . By 3.2.2, the morphism τ≤k+1RΓD(ZV )→ RΓD(OV )

is zero in the derived category.

(4) follows from the decomposition

τ≤kRΓZ(O�
V ) ∼qis τ≤kRΓZ(OV )⊕ (τ≤k+1RΓ Z(ZV ))[1]

that is induced from (3) and from RΓ Z ∼qis RΓZ ◦RΓD.

(5) We may assume that µ−1Z is a divisor by replacing Y . The exponential sequence

of Y induces an injection R1µ∗ZY ↪→ R1µ∗OY = 0. We have a triangle

· · · +1−→ Rµ∗RΓ µ−1Z(ZY )→ Rµ∗ZY → Rj◦∗ZV ◦
+1−→ · · ·

and it induces an exact sequence

0→ R1µ∗ZY → R1j◦∗ZV ◦ → µ∗H2
µ−1Z(ZY )→ R2µ∗ZY .

Here, the last homomorphism is decomposed as

µ∗H0
µ−1Z(DivY )→ R1µ∗O�

Y ↪→ R2µ∗ZY .

For a µ-exceptional divisor E =
∑

aiEi of Y , if OY (E) � OY , then E = 0. Thus

0 = R1µ∗ZY � R1j◦∗ZV ◦ . �
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Remark. Let M be a non-singular complex analytic variety, D a reduced divisor, and let

ν : D̃ → D be the normalization. Let us consider the following commutative diagram:

0 −−−→ O�
M −−−→ M�

M −−−→ DivM −−−→ 0∥∥∥∥ � �
0 −−−→ O�

M −−−→ OM (∗D)� −−−→ H0
D(DivM) −−−→ 0.

Then we have connecting homomorphisms Hp(D̃,Z) → Hp+1(M,O�
M ). By combining

with connecting homomorphisms Hp+1(M,O�
M ) → Hp+2(M,Z) of the exponential se-

quence of M , we have the so-called Gysin homomorphisms Hp(D̃,Z)→ Hp+2(M,Z).

We define DivD(V ) := H0
D(V,DivV ) and WDivD(V ) := H0

D(V,wDiv V ). These are the

groups of Cartier and Weil divisors supported in D, respectively. In fact, WDivD(V ) �
H0(D̃,Z) by 3.2.4-(2). This is a free abelian group generated by irreducible compo-

nents of D provided that D has only finitely many irreducible components. The sheaf

wDiv V /Div V = H1
Z(Div V ) of local divisor class groups canonically contains the sheaf

H0
D(wDiv V )/H0

D(Div V ) = H1
Z(H0

D(Div V )). We have an exact sequence

0→ H1
Z(H2

D(ZV ))→ H3
Z(ZV )→ H0

Z(H3
D(ZV ))

from the quasi-isomorphism RΓ Z(ZV ) ∼qis RΓZ(RΓD(ZV )).

We introduce the following conditions for [V,D]:

Condition 3.2.5. H1
Z(H0

D(Div V ))→ H3
Z(ZV ) is an isomorphism.

Condition 3.2.6. The composite

WDivD(V )→ H0(V,H1
Z(H0

D(Div V )))→ H0(V,H3
Z(ZV ))

is surjective.

Remark. If V has only 2-rational singularities, then H1
Z(Div V ) � H3

Z(ZV ) by [F1, 6.1].

We will show in 3.3.1-(3) that if V �D ⊂ V is a toroidal embedding, then [V,D] satisfies

3.2.5. If V is non-singular (cf. 3.2.7-(1)) or if V �D ⊂ V is a toroidal embedding without

self-intersection in the sense of [K6, Chapter II], then [V,D] satisfies both conditions

3.2.5 and 3.2.6.

Example. Let V be a normal surface with one A1-singular point P as the singular locus

and let D be an irreducible curve through P . Assume that, for the minimal desingular-

ization µ : Y → V , the (−2)-curve µ−1P intersects with the proper transform D′ of D at

two points and the intersections are transversal. Then D is a Cartier divisor and hence

WDivD(V ) = DivD(V ), while the stalk of H3
Z(ZV ) at P is isomorphic to Z/2Z. Thus

[V,D] does not satisfy 3.2.6.
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Lemma 3.2.7. Let µ : Y → V be a bimeromorphic morphism from a non-singular variety

such that Y � µ−1D → V � is an isomorphism. Let us consider the following pullback

homomorphisms

µ∗D : H
p
D(V,Z)→ Hp

µ−1D(Y,Z); µ∗ : Hp(V,Z)→ Hp(Y,Z);

µ∗D,� : H
p
D(V,O�

V )→ Hp
µ−1D(Y,O

�
Y ); µ∗� : H

p(V,O�
V )→ Hp(Y,O�

Y ).

(1) If V is non-singular, then they are all injective.

(2) µ∗D and µ∗ are injective for p ≤ 1. µ∗D,� and µ∗� are isomorphic for p = 0.

(3) If V has only 1-rational singularities, then µ∗D and µ∗ are injective for p = 2, and

µ∗D,� and µ∗� are injective for p = 1.

(4) If V has only 1-rational singularities and if [V,D] satisfies both conditions 3.2.5

and 3.2.6, then µ∗D and µ∗ are injective for p = 3, and µ∗D,� and µ∗� are injective

for p = 2.

Proof. There is a commutative digram

Hp−1(V �,ZV ) −−−→ Hp
D(V,ZV ) −−−→ Hp(V,ZV ) −−−→ Hp(V �,ZV )∥∥∥∥ �µ∗

D

�µ∗

∥∥∥∥
Hp−1(V �,ZV ) −−−→ Hp

µ−1D(Y,ZY ) −−−→ Hp(Y,ZY ) −−−→ Hp(V �,ZV ).

We infer that, if µ∗D is injective for p ≤ k for some integer k, then µ∗ is also injective for

p ≤ k. By considering a similar commutative diagram instead of Z by O�, we see that if

µ∗D,� is injective for p ≤ k, then µ∗� is also injective for p ≤ k.

(1) The trace map Rµ∗ZY [2n] ∼qis Rµ∗ω
top
Y → ωtop

V ∼qis ZV [2n] gives a splitting of

ZV → Rµ∗ZY . Thus H
p
D(V,Z) and Hp(V,Z) are direct summands of Hp

µ−1D(Y,Z) and

Hp(Y,Z), respectively. There is a splitting RΓD(O�
V ) ∼qis RΓD(OV ) ⊕ RΓD(ZV )[1] by

3.2.4-(3). Thus µ∗D,� is also injective for any p.

(2) The assertion follows H0
D(V,Z) = H1

D(V,Z) = H0
D(V,O�

V ) = 0 and µ∗O�
Y � O�

V .

(3) µ∗D : H
2
D(V,Z) � H2

µ−1D(Y,Z) is isomorphic to the injective pullback homomor-

phism DivD(V )→ Divµ−1D(Y ). The injectiveness of µ
∗
D,� follows from the decomposition

τ≤1RΓD(O�
V ) ∼qis τ≤1RΓD(OV )⊕ (τ≤2RΓD(ZV ))[1].

(4) By the argument above and by the decomposition τ≤2RΓD(O�
V ) ∼qis τ≤2RΓD(OV )⊕

(τ≤3RΓD(ZV ))[1], we have only to show µ∗D is injective for p = 3. Now there is an exact

sequence

0→ H2
D(ZV )→ j◦∗H2

D�(ZV ◦)→ H3
Z(ZV )→ 0

by 3.2.5. Thus H3
D(ZV )→ H3

D(Rj◦∗ZV ◦) is injective. By 3.2.6,

H1(V,H2
D(ZV ))→ H1(V, j◦∗H2

D�(ZV ◦))
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is also injective. There is a commutative diagram of exact sequences

0 −−−→ H1(V,H2
D(ZV )) −−−→ H3

D(V,Z) −−−→ H0(V,H3
D(ZV ))� �µ∗

D

�
0 −−−→ H1(V,H2

D(Rµ∗ZY )) −−−→ H3
µ−1D(Y,Z) −−−→ H0(V,H3

D(Rµ∗ZY )).

Since left and right vertical arrows are injective, the middle is also injective. �

3.3. Toroidal embedding

Let X be an n-dimensional complex analytic normal variety and let B a reduced

divisor. We denote the complement X � B by X� and denote the open immersion by

j : X� ↪→ X. We assume that the complement X� defines a toroidal embedding X� ⊂ X

in the sense of [K6]. This is equivalent to that, for any point x ∈ B, there exists an open

neighborhood U in X such that U ∩X� ⊂ U is an n-dimensional toroidal embedding of

type (N, l, σ, v,m•) for a free abelian group N of rank l ≤ n, a strictly convex rational

polyhedral cone σ ⊂ N⊗R with N = N(σ), a vector v ∈ Intσ, and for a generator m• of

the semi-group σ∨ ∩N. By 3.1.2, there is a base of open neighborhoods U1 ⊃ U2 ⊃ · · · in
X such that U1 ∩X� ⊃ U2 ∩ X� ⊃ · · · are all homotopically equivalent to N ⊗ S1. The
rank l = l(x) depends on x. Let l(x) := 0 for x ∈ X�. For a non-negative integer i ≤ n,

let X(B)i be the subset of X consisting of points x with l(x) ≥ n− i. Then the filtration

X(B)• : X = X(B)n ⊃ X(B)n−1 ⊃ · · · ⊃ X(B)0

is a generalization of TN(σ)• of TN(σ). We infer that B = X(B)n−1 and that X(B)n−i is

locally the intersection of mutually distinct i-irreducible components of B for i > 0.

Notation. For the n-dimensional toroidal embedding X� = X � B ⊂ X, we define

Z = Z(X,B) to be the analytic subset X(B)n−2 = SingX ∪ SingB = SingB. We

set X◦ := X � Z and B� := B � Z. The related open immersions are denoted by

j� : X� ↪→ X◦, j◦ : X◦ ↪→ X.

Lemma 3.3.1. Let j : X� = X�B ↪→ X be a toroidal embedding as above and let µ : Y →
X be a bimeromorphic morphism from a non-singular variety that is an isomorphism over

X�.

(1) The homomorphism
∧p R1j∗ZX� → Rpj∗ZX� induced from cup product is an iso-

morphism.

(2) The homomorphism

(3.2) Hp
B(ZX)→Hp

B(Rj◦∗ZX◦) � Rp−2j◦∗ZB�
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is injective for any p ≥ 2. In other words,

(3.3) Hp
Z(ZX)→ Hp

B(ZX)

is zero for any p.

(3) Let ωtop
X be the topological dualizing complex of X. Then

H2−2n(ωtop
X ) � H3

Z(ZX) � H1
Z(H2

B(ZX)).

In particular, [X,B] satisfies the condition 3.2.5.

(4) µ∗ : Hp
B(ZX)→ Hp

B(Rµ∗ZY ) is injective for any p. If [X,B] satisfies the condition

3.2.6, then Hp
B(X,Z) → Hp

µ−1B(Y,Z), Hp(X,Z) → Hp(Y,Z) are injective for

p ≤ 3, and Hp
D(X,O�

X)→ Hp
D(Y,O�

Y ), H
p(X,O�

X)→ Hp(Y,O�
Y ) are injective for

p ≤ 2.
(5) There is a canonical exact sequence:

0→H0
B(DivX)→ µ∗H0

µ−1B(Div Y )→ R2µ∗ZY → 0.

(6) Hp
B(X,Z) → Hp

B(X,Q) is injective for p ≤ 2. If [X,B] satisfies the condition

3.2.6, then this is injective also for p = 3.

Proof. (1) The stalk at a point is isomorphic to
∧p H1(TN,Z)→ Hp(TN,Z).

(2) The homomorphism (3.2) is isomorphic to Rp−1j∗ZX� → Rpj◦∗(RΓB�(ZX◦)) derived

from Rj◦∗ of the triangle (3.1). We have only to consider the homomorphism of stalks

at a point x ∈ B. Thus we may assume that the toroidal embedding is of type (N, l, σ).

The homomorphism of stalks is isomorphic to

Hp−1(X�,Z)→ Hp
B�(X◦,Z) �

k⊕
i=1

Hp
B�

i
(X◦,Z),

and hence to

Hp−1(TN,Z)→
k⊕

i=1

Hp
Oνi
(TN(νi),Z).

By 3.1.5, the kernel is
k⋂

i=1

p−1∧
(ν⊥i ∩M) = 0.

We have an exact sequence

· · · → Hp
Z(ZX)→Hp

B(ZX)→ Rpj◦∗(RΓB�(ZX◦)) � Hp
B(Rj◦∗ZX◦)→ · · ·

by the quasi-isomorphism RΓ Z ∼qis RΓZ ◦RΓB . Thus (3.3) is zero.

(3) There is a triangle

· · · +1−→ ωtop
Z → ωtop

X → Rj◦∗ZX◦ [2n]
+1−→ · · ·
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It induces isomorphisms H−2n(ωtop
X ) � ZX , H1−2n(ωtop

X ) � R1j◦∗ZX◦ , H2−2n(ωtop
X ) �

R2j◦∗ZX◦ , since Hp(ωtop
Z ) = 0 for p < −2dimZ = 4− 2n. There is a triangle

· · · +1−→ RΓ Z(ZX)→ RΓB(ZX)→ RΓB(Rj◦∗ZX◦)
+1−→ · · ·

It induces an exact sequence

0→ H2
B(ZX)→ j◦∗(H2

B(ZX)|X◦)→H3
Z(ZX)→ 0

by (2).

(4) In the case X is non-singular, this is proved in 3.2.7-(1). Thus we may assume

that µ is a desingularization. In particular, µ is isomorphic over X◦. Let us consider the

composite ZX → Rµ∗ZY → Rj◦∗ZX◦. Thus the result follows from (2) and 3.2.7-(3).

(5) This is derived from the triangle

· · · +1−→ RΓB(ZX)→ RΓB(Rµ∗ZY )→ RΓB(τ≥2Rµ∗ZY )
+1−→ · · ·

and from (4).

(6) Both cohomology groups are zero for p ≤ 1. In the case p = 2, H2
B(ZX) �

R1j∗ZX� is a sheaf of torsion-free abelian groups. Thus it is reduced to the injectiveness

of H2
B(ZX) ↪→H2

B(QX) � H2
B(ZX)⊗Q. Finally, we consider the case p = 3. We consider

the commutative diagram

0 −−−→ H1(X,H2
B(ZX)) −−−→ H3

B(X,Z) −−−→ H0(X,H3
B(ZX))�i1

� �i2

0 −−−→ H1(X,H2
B(QX)) −−−→ H3

B(X,Q) −−−→ H0(X,H3
B(QX)).

It is enough to show i1 and i2 are both injective. There is an injection

H1(X,H2
B(ZX))→ H1(X, j◦∗H2

B�(ZX�)) � H1(B̃,Z)

for the normalization B̃ → B by 3.2.6. Further H1(B̃,Z) → H1(B̃,Q) is injective

(cf. 3.3.2 below). Thus i1 is injective. Since H3
B(ZX) is a sheaf of torsion-free abelian

group, i2 is also injective. �

Remark 3.3.2. Let V be a complex analytic space and let L1 ↪→ L2 be an injection of

abelian groups. Then the induced homomorphism H1(V, L1) → H1(V, L2) is also injec-

tive. Because, H0(V, L2) � L2 → H0(V, L2/L1) � L2/L1 is surjective if V is connected.

In particular, H1(V,Z) is a torsion-free abelian group.

Corollary 3.3.3. Let x be a point of X for a toroidal embedding X� ⊂ X.

(1) H3
Z(ZX)x = 0 if and only if the germ (X, x) is non-singular.

(2) H3
Z(QX)x = 0 if and only if (X, x) is a quotient singularity.
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Lemma 3.3.4. The vanishing Rpj◦∗OX◦ = 0 holds for p ≥ 2. Assume that X� ⊂ X is

one of the following toroidal embeddings:

(1) X = TN(σ), B = TN(σ)l−1 for a free abelian group N of rank l and for a strictly

convex rational polyhedral cone σ ⊂ N ⊗R;

(2) X� ⊂ X is a toroidal embedding of type (N, l, σ).

Then Hp(X◦,OX◦) = 0 and Hq(X,Rij◦∗OX◦) = 0 hold for p ≥ 2, q ≥ 1, and for i ≥ 0.

Proof. Suppose that X = TN(σ). We have

X◦ =
k⋃

i=1

TN(νi), X� = TN, and B� =
k⊔

i=1

Oνi.

Hence

Hp
B�(X◦,OX◦) �

k⊕
i=1

Hp
Oνi
(TN(νi),OX).

Since TN(νi) and X� are Stein, the cohomology group vanishes for p ≥ 2 by the long

exact sequence:

· · · → Hp−1(X�,OX)→ Hp
Oνi
(TN(νi),OX)→ Hp(TN(νi),OX)→ · · ·

The same argument works for the case (2). Thus we have Rpj◦∗OX◦ = 0 for p ≥ 2 for

general X. Again suppose that X = TN(σ). By considering Leray’s spectral sequence

Ep,q
2 = Hp(X,Rqj◦∗OX◦) =⇒ Ep+q = Hp+q(X◦,OX◦),

we haveEp,0
2 = 0 for p > 0, Ep,q

2 = 0 for q ≥ 2, and Er = 0 for r ≥ 2. ThusEp,1
2 � Ep,1

∞ = 0

for p > 0. This argument also works for the case (2). �

The Picard group Pic(X) is defined to be H1(X,O�
X). A reflexive sheaf G of X is a

coherent OX-module which is isomorphic to its double-dual. If G is of rank one, then G|X◦

is an invertible sheaf and G � j◦∗(G|X◦). Let WPic(X) denote the set of isomorphism

classes of reflexive sheaves of rank one of X. It has a group structure such that the

product is given by the double-dual of tensor product. Then Pic(X) is a subgroup. A

Weil divisor ∆ of X naturally defines a reflexive sheaf OX(∆) of rank one. Conversely,

a section of a reflexive sheaf of rank one defines an effective Weil divisor. A natural

injection ZX → OX is factored by Rj∗ZX� → OX by 3.2.2. Let Z•
X = τ≤2Rj◦∗ZX◦ and let

O•
X be the mapping cone of Z•

X → OX. Then we have

Hp(Z•
X) �


ZX , for p = 0,

0, for p = 1,

H3
Z(ZX), for p = 2,

and Hp(O•
X) �

O
�
X, for p = 0,

H3
Z(ZX), for p = 1.
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Lemma 3.3.5. The natural morphism RΓB(Z
•
X) → RΓB(OX) is zero in the derived

category. In particular,

RΓB(O•
X) ∼qis RΓB(OX)⊕ RΓB(Z

•
X)[1].

Proof. The morphism Z•
X → OX is factored by Rj∗(Z

•
X |X�) � Rj∗ZX� → OX. Hence

RΓB(Z
•
X)→OX is zero. Thus we have the property by taking RΓB to the zero map. �

Lemma 3.3.6. (1) We have an isomorphism H2(RΓB(Z
•
X)) � j◦∗H2

B�(ZX◦). In par-

ticular, H2
B(X,Z•

X ) � WDivB(X) � H0(B̃,Z) and H1(RΓB(O•
X)) � H1

B(OX) ⊕
H0

B(wDivX).

(2) There exists a commutative diagram of triangles:

· · · +1−−−→ H0
B(DivX)[−1] −−−→ H0

B(wDivX)[−1]⊕O�
X −−−→ O•

X
+1−−−→ · · ·� � ∥∥∥∥

· · · +1−−−→ DivX [−1] −−−→ wDivX [−1]⊕O�
X −−−→ O•

X
+1−−−→ · · ·

(3) WPic(X) � H1(X,O•
X).

(4) There is an injection Pic(X◦)/WPic(X) ↪→ H0(X,R1j◦∗OX◦).

Proof. (1) We have τ≤2RΓB(Z
•
X) ∼qis τ≤2RΓB(Rj◦∗ZX◦). Thus

H2(RΓB(Z
•
X)) � H2(Rj◦∗RΓB�(ZX◦)) � j◦∗H2

B�(ZX◦).

(2) We have a morphism H0
B(wDivX)[−1]→ RΓB(O•

X) by (1), which induces the first

triangle. We know wDivX /DivX � H0
B(wDivX)/H0

B(DivX) by 3.3.1-(3). This induces

the second triangle.

(3) We have an injection WPic(X) ↪→ Pic(X◦). An invertible sheaf of X◦ comes

from WPic(X) if and only if its image in H0(X,R1j◦∗O�
X◦) is contained in the subgroup

H0(X,wDivX /DivX). By the definition of O•
X, we have a commutative diagram of

triangles

· · · +1−−−→ O�
X −−−→ τ≤1Rj◦∗O�

X◦ −−−→ R1j◦∗O�
X◦ [−1] +1−−−→ · · ·∥∥∥∥ � �

· · · +1−−−→ O�
X −−−→ O•

X −−−→ wDivX /DivX [−1] +1−−−→ · · ·
Thus H1(X,O•

X) �WPic(X).
(4) The cokernel of wDivX /DivX → R1j◦∗O�

X◦ is isomorphic to R1j◦∗OX◦ by 3.2.4-

(4). �
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3.4. ∂-spaces associated with toroidal embeddings

Let X be the associated ∂-space (X,B) and let j : X� = (X�, ∅) ↪→ X denote the

∂-open immersion. For the open subset X◦, let j◦ : X◦ := (X◦, B�) ↪→ X be the induced

∂-open immersion. We always denote by ε the morphism X = (X,B)→ X = (X, ∅).
Suppose that X� ⊂ X together with x ∈ X is an n-dimensional toroidal embedding of

type (N, l, σ) as before. Then a ∂-étale finite morphism Y → X from a connected ∂-space

is induced from its open part Y � → X�, which is determined by a finite index subgroup

N0 of N � π1(X
�). Thus sp(Y ) = Y for the toroidal embedding Y � ⊂ Y associated with

σ ⊂ N0 ⊗ R and Y → X is always Galois. The open immersion Y � ⊂ Y together with

the unique point y lying over x is a toroidal embedding of type (N0, l, σ). The stalk OX,x

is written as the inductive limit of OY,y for such ∂-étale neighborhood (Y ; y) → (X; x).

This is considered as the ring of Puiseux series with respect to monomials in σ∨ ∩MQ.

The sheaf Ω̂p
X(logB) of germs of logarithmic p-forms along B is naturally defined as

the sheafification of

U �−→ lim−→
[U,∆]∈U

H0(U, Ω̂p
U (log∆)).

For a ∂-étale morphism f : [U1,∆1]→ [U2,∆2] in which U1 �∆1 ⊂ U1 and U2 �∆2 ⊂ U2

are toroidal embeddings, we have an isomorphism f∗Ω̂p
U2
(log∆2) � Ω̂p

U1
(log∆1). Thus

Ω̂p
X(logB) � ε∗Ω̂p

X(logB) for the natural morphism ε : X → X. In particular, this is a

locally free OX-module. We have a logarithmic de Rham complex

Ω̂•X(logB) = [· · · → Ω̂p
X(logB)

dp

−→ Ω̂p+1
X (logB)→ · · · ].

If X� ⊂ X together with x ∈ B be an n-dimensional toroidal embedding of type (N, l, σ),

then Ω̂p
X(logB)x �

∧p M ⊗ OX,x. We infer that the natural morphism Ω̂•X(logB) →
Rj∗Ω

•
X� ∼qis Rj∗CX� is quasi-isomorphic by considering similar quasi-isomorphisms over

Y = sp(Y ) for all ∂-étale neighborhoods (Y ; y) → (X; x). In particular, Rj∗CX →
Rj∗OX� factors through OX.

We define the sheaf MX of germs of meromorphic functions of X by

MX(U ) = lim−→
[U,∆]∈U

H0(U,MU),

for ∂-étale morphisms U → X . Let M�
X be its subsheaf (as sets) consisting of invertible

meromorphic functions, whose abelian group structure is derived from the multiplication.

It contains the sheaf O�
X of germs of invertible holomorphic functions as a subsheaf. We

define the sheaf DivX of germs of Cartier divisors of X to be M�
X/O�

X and define the

sheaf wDivX of germs of Weil divisors of X to be j◦∗DivX◦ . Let

OX(∗B)� := M
�
X ∩ j∗O

�
X� ⊂ j∗MX�
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be the sheaf of germs of meromorphic functions that are unit functions on X�. Then, by

3.2.3-(2), we have the triangle

· · · +1−→ τ≤1Rj∗ZX� →OX →OX(∗B)� +1−→ · · ·

Lemma 3.4.1. Let X = (X,B) for a toroidal embedding j : X� = X � B ↪→ X.

(1) Let x ∈ B be a point such that U ∩X� ⊂ U is a toroidal embedding of type (N, l, σ)
for an open neighborhood U of x. Then (Rpj∗ZX�)x � (ε∗Rpj∗ZX�)x �

∧p M⊗Q.

In particular, RΓB(ZX) ∼qis RΓB(ZX)
L
⊗Q ∼qis RΓB(QX).

(2) Rpε∗ZX � Hp
B(ZX)⊗Q/Z for p > 0. In particular, R1ε∗ZX = 0.

(3) RΓB(O�
X) ∼qis RΓB(OX)⊕ RΓB(ZX)[1].

(4) The composite H0
B(DivX)→ H1

B(O�
X)→ H2

B(ZX) is an isomorphism.

(5) H0
B(DivX) and H0

B(wDivX) are sheaves of Q-vector spaces and there exist iso-

morphismsH0
B(DivX)⊗Q � ε∗H0

B(DivX) and H0
B(wDivX)⊗Q � ε∗H0

B(wDivX).

(6) There exist injections ε∗DivX ↪→ DivX ⊗Q and ε∗ wDivX ↪→ wDivX ⊗Q, and

exact sequences

0→ H0
B(DivX)→

(
H0

B(DivX)⊗Q
)
⊕DivX → ε∗DivX → 0;(3.4)

0→H0
B(wDivX)→

(
H0

B(wDivX)⊗Q
)
⊕ wDivX → ε∗ wDivX → 0.(3.5)

(7) H2
Z(ZX) = 0, the natural homomorphism Hp

Z(ZX) → Hp
B(ZX) is zero for any p,

and there are isomorphisms

H0
B(wDivX)/H0

B(DivX) � wDivX /DivX � H3
Z(ZX).

In particular, ε∗(wDivX /DivX) � (wDivX /DivX)⊗Q.

(8) Let µ : Y → X be a bimeromorphic morphism from a non-singular variety such

that µ−1B is a normal crossing divisor and that µ induces an isomorphism Y �

µ−1B → X � B. Then, for µ : Y = (Y, µ−1B) → X = (X,B), there is an exact

sequence:

0→H0
B(DivX)→ µ∗H

0
µ−1B(Div Y )→ R2µ∗ZY → 0.

Proof. (1) By definition, the stalk (Rpj∗ZX�)x is the inductive limit of (R
pjY
∗ ZY �)y for

∂-étale neighborhoods (Y ; y) → (X ; x), where jY stands for the open immersion Y � ↪→
Y = sp(Y ). We may assume that Y → X is a finite ∂-étale covering corresponding to a

subgroup N0 ⊂ N of finite index. Thus the stalk is isomorphic to

lim−→
N0⊂N

p∧
Hom(N0,Z) �

p∧
M⊗Q.
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We see that π̂loc
1 (X; x) � N ⊗ Ẑ for the profinite completion Ẑ of Z. Since this is an

abelian group, the action on the stalk is trivial. Therefore, (Rpj∗ZX�)x � (ε∗Rpj∗ZX�)x

by 2.2.5.

(2) We have quasi-isomorphisms

Rε∗RΓB(ZX) ∼qis Rε∗RΓB(QX) ∼qis RΓB(QX)

by (1) and by 2.2.6. The triangle

· · · +1−→ RΓB(ZX)→ ZX → Rj∗ZX�
+1−→ · · ·

induces an exact sequence

· · · → Rp−1j∗ZX� →Hp
B(QX)→ Rpε∗ZX → Rpj∗ZX� → · · ·

By 3.3.1-(1), the stalk of Rqj∗ZX� � Hq+1
B (ZX) for q > 0 is of the form

∧q M. Hence

Rqj∗ZX� → Hq+1
B (QX) are injective and we have R

pε∗ZX � Hp
B(ZX)⊗Q/Z for p > 0.

(3) is derived from the factorization Rj∗CX� → OX → Rj∗OX� (cf. 3.2.2).

(4) follows the same argument as 3.2.3-(3).

(5) is a consequence of (1) and (4).

(6) By applying ε∗ to the commutative diagram of exact sequence:

0 −−−→ O�
X −−−→ M�

X −−−→ DivX −−−→ 0∥∥∥∥ � �
0 −−−→ O�

X −−−→ OX(∗B)� −−−→ H0
B(DivX) −−−→ 0,

we have another commutative diagram of exact sequence:

(3.6)

0 −−−→ DivX −−−→ ε∗DivX −−−→ R1ε∗O�
X� � ∥∥∥∥

0 −−−→ H0
B(DivX) −−−→ ε∗H0

B(DivX) −−−→ R1ε∗O�
X .

We have an isomorphism R1ε∗O�
X � R2ε∗ZX � H2

B(ZX) ⊗ Q/Z by (2). Thus the right

arrows of top and bottom sequences in (3.6) are both surjective. Hence we have the

expected exact sequence for DivX by (1) and (2). In order to show the sequence for

wDivX is derived from that on X◦, it is enough to prove that

R1j◦∗H2
B�(ZX◦)→ R1j◦∗H2

B�(QX◦)

is injective. Since H2
B�(ZX◦) is isomorphic to the constant sheaf ZB� , the homomorphism

isomorphic to the injection R1j◦∗ZB� → R1j◦∗QB� (cf. 3.3.2).

(7) Hp
B(ZX) → Hp

B(Rj◦∗ZX◦) is injective for any p by 3.3.1-(2). Thus Hp
Z(ZX) →

Hp
B(ZX) is zero. The triangle

· · · +1−→ RΓ Z(ZX)→ RΓB(ZX)→ Rj◦∗RΓB�(ZX◦)
+1−→ · · ·
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induces an exact sequence

0→ Hp
B(ZX)→ Rp−2j◦∗H

2
B�(ZX◦)→ Hp+1

Z (ZX)→ 0.

Hence H2
Z(ZX) = 0 and H1

Z(H2
B(ZX)) � H3

Z(ZX).

(8) is derived by the same argument as 3.3.1-(5). �

The group Div(X,Q) of Q-Cartier divisors and the group WDiv(X,Q) of Q-Weil

divisors is defined to beH0(X,DivX ⊗Q) andH0(X,wDivX ⊗Q), respectively. Note that

Div(X) ⊗ Q #� Div(X,Q) for some non-compact analytic space X. We define similarly

DivB(X,Q) := H0
B(X,DivX ⊗Q) and WDivB(X,Q) := H0

B(X,wDivX ⊗Q). For the ∂-

space, we also define the group Div(X) of Cartier divisors of X and the group WDiv(X)

of Weil divisors of X by Div(X) := H0(X,DivX) and WDiv(X) := H0(X,wDivX).

Similarly, we define DivB(X) := H0
B(X,DivX) and wDivB(X) := H0

B(X,wDivX). Then

by 3.4.1, H2
B(X,Z) � H0(X,H2

B(ZX)) � DivB(X) � DivB(X,Q) and WDivB(X) �
WDivB(X,Q). Moreover, 3.4.1-(6) implies that WDiv(X) can be identified with the

group consisting of locally finite sums
∑

qiΓi for prime divisors Γi and for rational numbers

qi such that qi ∈ Z if Γi #⊂ B. The sum
∑

qiΓi in WDiv(X) is contained in Div(X) if

and only if it is (locally) a Q-Cartier divisor, i.e., Div(X) = Div(X,Q) ∩WDiv(X) ⊂
WDiv(X,Q).

Theorem 3.4.2. Let X� = X �B ⊂ X be a toroidal embedding. Then the following two

sequences are exact :

· · · → Hp−1(X,Z)→ Hp
B(X,Z)→ Hp

B(X,Q)⊕Hp(X,Z)→ Hp(X,Z)→ · · ·(3.7)

· · · → Hp−1(X�,Q)→ Hp(X,Z)→ Hp(X,Q) ⊕Hp(X�,Z)→ Hp(X�,Q)→ · · ·(3.8)

Moreover, we have an isomorphism H1(X,Z) � H1(X,Z) and an exact sequence:

0→ H2
B(X,Z) → H2(X,Z) ⊕H2

B(X,Q)→ H2(X,Z)→ H3
B(X,Z) → H3

B(X,Q).

If [X,B] satisfies the condition 3.2.6, then

H2(X,Z) � (H2(X,Z) ⊕H2
B(X,Q))/H2

B(X,Z).

Proof. We have the quasi-isomorphism Rε∗RΓB(ZX) ∼qis RΓB(QX) by 3.4.1-(1). From

the commutative diagram

· · · +1−−−→ RΓB(QX) −−−→ Rε∗ZX −−−→ Rj∗ZX�
+1−−−→ · · ·� � ∥∥∥∥

· · · +1−−−→ RΓB(ZX) −−−→ ZX −−−→ Rj∗ZX�
+1−−−→ · · · ,

we have another triangle

· · · +1−→ RΓB(ZX)→ RΓB(QX)⊕ ZX → Rε∗ZX
+1−→ · · ·
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This induces the long exact sequence (3.7). Similarly, from the commutative diagram

· · · +1−−−→ RΓB(QX) −−−→ Rε∗ZX −−−→ Rj∗ZX�
+1−−−→ · · ·∥∥∥∥ � �

· · · +1−−−→ RΓB(QX) −−−→ QX −−−→ Rj∗QX�
+1−−−→ · · · ,

we have another triangle

· · · +1−→ Rε∗ZX → Rj∗ZX� → Rj∗QX�
+1−→ · · ·

and the long exact sequence (3.8).

The isomorphism for H1 is derived from the vanishing R1ε∗ZX = 0 by 3.4.1-(2) and

from Leray’s spectral sequence for ε∗.

For H2, we look at the following exact sequence appearing in (3.7):

H2
B(X,Z)→ H2

B(X,Q) ⊕H2(X,Z)→ H2(X,Z)→ H3
B(X,Z).

The left homomorphism is injective by 3.3.1-(6). If [X,B] satisfies the condition 3.2.6,

then the right homomorphism is surjective also by 3.3.1-(6). �

Next, we shall study the Picard group Pic(X) := H1(X,O�
X).

Proposition 3.4.3. Suppose that [X,B] satisfies the condition 3.2.6. Then we have the

following two isomorphisms :

Pic(X) � (DivB(X,Q) ⊕ Pic(X)) /DivB(X);(3.9)

Div(X) � (DivB(X,Q) ⊕Div(X)) /DivB(X).(3.10)

Proof. From the quasi-isomorphisms

Rε∗RΓB(O�
X) ∼qis RΓB(O�

X)
L
⊗Q ∼qis RΓB(O�

X ⊗Q)

by 3.4.1, we have the following commutative diagram of triangles:

· · · +1−−−→ RΓB(O�
X ⊗Q) −−−→ Rε∗O�

X −−−→ Rj∗O�
X�

+1−−−→ · · ·� � ∥∥∥∥
· · · +1−−−→ RΓB(O�

X) −−−→ O�
X −−−→ Rj∗O�

X�
+1−−−→ · · ·

This induces another triangle

· · · +1−→ RΓB(O�
X)→ RΓB(O�

X ⊗Q)⊕O�
X → Rε∗O�

X
+1−→ · · · ,

and the associated long exact sequence

· · · → H1
B(X,O�

X)→ H1
B(X,O�

X ⊗Q)⊕ Pic(X)→ Pic(X)→ H2
B(X,O�

X)→ · · ·
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By 3.2.4, we have

Hp
B(X,O�

X) � Hp
B(X,OX)⊕Hp+1

B (X,Z),

Hp
B(X,O�

X ⊗Q) � Hp
B(X,OX)⊕Hp+1

B (X,Q),

for any p. The homomorphism Hp
B(X,Z)→ Hp

B(X,Q) is injective for p ≤ 3 by 3.3.1-(6).
Hence Hp

B(X,O�
X)→ Hp

B(X,O�
X ⊗Q) is injective for p ≤ 2. Thus (3.9) follows.

The isomorphism (3.10) for Div(X) is derived from the exact sequence (3.4) in 3.4.1 and

the injectiveness of H1(X,H0
B(DivX))→ H1(X,H0

B(DivX)⊗Q) proved in 3.3.1-(6). �

Let Z•
X = τ≤2Rj◦∗ZX◦ and let O•

X be the mapping cone of the composite Z•
X →

Rj∗CX� → OX. Let WPic(X) be the group of isomorphism classes of reflexive sheaves

of rank one on X . Then we have a triangle

· · · +1−→ H0
B(DivX)[−1]→ H0

B(wDivX)[−1]⊕O�
X → O•

X
+1−→ · · ·

and an isomorphism WPic(X) � H1(X,O•
X) as in 3.3.6. We can generalize 3.4.3 as

follows:

Theorem 3.4.4.

WDiv(X) � (WDivB(X,Q) ⊕WDiv(X)) /WDivB(X);(3.11)

WPic(X) � (WDivB(X,Q) ⊕WPic(X)) /WDivB(X).(3.12)

Proof. (3.11) follows 3.4.3 for X◦. By comparing O•
X and O•

X , we see that the mapping

cone of O•
X → τ≤1Rε∗O•

X is quasi-isomorphic to H0
B(wDivX) ⊗Q/Z[−1]. Thus we have

a triangle

· · · +1−→ H0
B(wDivX)[−1]→H0

B(wDivX)⊗Q[−1]⊕O•
X → τ≤1Rε∗O•

X
+1−→ · · ·

This induces a commutative diagram of exact sequences:

0 −−−→ WDivB(X) −−−→ WDivB(X,Q) ⊕WPic(X) −−−→ WPic(X)∥∥∥∥ � �
0 −−−→ DivB�(X◦) −−−→ DivB�(X◦,Q)⊕ Pic(X◦) −−−→ Pic(X◦).

The bottom right arrow is surjective by 3.4.3. The cokernels of the middle and right

vertical arrows are both contained in H0(X,R1j◦∗OX◦), since the mapping cone of O•
X →

τ≤1Rj◦∗O
�
X is quasi-isomorphic to R1j◦∗OX◦ [−1]. Hence WDivB(X,Q) ⊕ WPic(X) →

WPic(X) is surjective. �

Let VB(X) and VB(X), respectively, be the images of the natural homomorphisms

WDivB(X)→WPic(X) and WDivB(X)→WPic(X).
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Corollary 3.4.5. Let µ : Y → X be a bimeromorphic morphism from a non-singular

variety such that µ is isomorphic outside B and that µ−1B is a normal crossing divisor.

We denote Y = (Y, µ−1B). Then there exist canonical isomorphisms

WPic(X)/VB(X) �WPic(X)/VB(X) � Pic(Y )/Vµ−1B(Y ).

In particular, if X has only quotient singularities, then

Pic(X)/VB(X) � Pic(Y )/Vµ−1B(Y ).

Proof. By 3.4.4, we have isomorphisms WPic(X)/VB(X) � WPic(X)/VB(X) and

Pic(Y )/Vµ−1B(Y ) � Pic(Y )/Vµ−1B(Y ). The surjective homomorphism µ∗ : Pic(Y ) →
WPic(X) induces an isomorphism Pic(Y )/Vµ−1B(Y ) → WPic(X)/VB(X). If X has

only quotient singularities, then Pic(X) �WPic(X). �

3.5. Reflexive sheaf and parabolic structure

The notion of parabolic sheaf is introduced by Mehta and Seshadri [M2] on Riemann

surfaces and is generalized to higher dimensions by Maruyama and Yokogawa [M1]. In

[B2], Biswas shows that a lot of parabolic sheaves are considered as orbifold sheaves.

Here, we consider this from the view point of ∂-étale topology.

Let X be a normal variety and let B be a reduced Weil divisor of X. We assume that,

locally on X, B is the support of an effective Cartier divisor. This condition is satisfied

if X � B ↪→ X is a toroidal embedding, for example. Let X denote the ∂-space (X,B)

and let ε = εX be the natural morphism X → X.

Lemma. There is an inclusion WDivB(X,Q) ⊂WDiv(X).

Proof. We can replaceX by an open neighborhood of any point. Then by the assumption,

there is an effective divisor D such that SuppD = B and that OX � OX(D). In this

situation, for any positive integer m, we can construct a cyclic covering τ : Y → X of

degree m branched only over B such that τ ∗D is divisible by m. This implies that

OX(qD) is an invertible OX -module for any q ∈ Q. If ∆ is a Q-Weil divisor supported

in B, then τ ∗∆ is a Z-Weil divisor for a finite covering τ : Y → X branched only over B.

Thus ∆ is a Z-Weil divisor of X. �

A reflexive sheaf of X is a coherent reflexive OX-module by definition.

Lemma 3.5.1. Let F be a coherent OX-module. Then F is reflexive if and only if,

∂-étale locally, F � ε∗F for a reflexive OX-module F .

Proof. By 2.3.2, we may assume F � ε∗F0 and F∨ := HomOX
(F ,OX) � ε∗F1 for

coherent sheaves F0 and F1 of X. Moreover, we can assume that there is an exact
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sequence O⊕s
X → O⊕r

X → F0 → 0. Thus the sequence O⊕s
X ← O⊕r

X ← F∨ ← 0 is also

exact. Hence ε∗F∨ � F ∨
0 . Therefore, from the first, we may assume that F1 = F ∨

0 . By

considering the same thing to F1, we see that F is reflexive if and only if F0 is so. �

Corollary. The following properties hold for a reflexive sheaf F on X :

(1) εU∗F is reflexive for a ∂-étale morphism U → X with U = sp(U).

(2) F � j◦∗F|X◦.

The dual G∨ = HomOX
(G,OX) of any coherent sheaf G is reflexive.

Let ∆ be a Q-Weil divisor contained in WDiv(X) = WDiv(X) +WDivB(X,Q). Then

the sheaf OX(∆) is a reflexive sheaf of rank one. For a reflexive sheaf F of X, we define

F(∆) to be the double-dual of F ⊗ OX(∆). Similarly, for a reflexive sheaf F and an

effective divisor D of X, we define F (D) to be the double-dual of F ⊗OX(D).

We consider parabolic sheaves in the following sense:

Definition 3.5.2. Let F be a reflexive sheaf of X and let D be an effective Weil divisor

supported inB. A parabolic structure of F with respect toD is a family {Ft} of subsheaves
of j∗(F |X�) indexed by t ∈ Q satisfying the following conditions:

(1) Ft are reflexive sheaves of X;

(2) Ft1 ⊂ Ft2 for t1 > t2;

(3) F = F0;

(4) Ft+m = Ft(−mD) for m ∈ Z;

(5) Any point of X has an open neighborhood V such that, for any t ∈ Q, there is a

rational number δ > 0 satisfying Ft−δ|V = Ft|V .
A reflexive sheaf endowed with a parabolic structure with respect to B is simply called a

parabolic sheaf .

Remark. Let F ′ ⊂ F be an injection between reflexive sheaves on X such that the support

of Q := F/F ′ is contained in B. Then, for a point x ∈ SuppQ, an associated prime of
the OX,x-module Qx corresponds to an irreducible component of the germ of B at x. In

particular, if SuppQ contains no irreducible components of B, then F = F ′.

Suppose that B has only finitely many irreducible components and let {Ft} be a par-
abolic structure with respect to an effective divisor D supported in B. Then there exist

a filtration of coherent subsheaves

F0/F1 = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gl ⊃ Gl+1 = 0,

and a set of rational numbers

0 ≤ α0 < α1 < α2 < · · · < αl < αl+1 = 1
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such that Ft/F1 = Gj for αj−1 < t ≤ αj and for j ≥ 1 and that Ft/F1 = G0 for 0 ≤ t ≤ α0.

We call {Ft} is m-periodic if αi ∈ (1/m)Z. The condition is equivalent to: Ft = F �mt�/m.

Lemma 3.5.3. Let F be a reflexive sheaf of X and let D be an effective Weil divisor of

X supported in B. We set

Ft := ε∗(F(−tD))
for t ∈ Q. Then {Ft} is a parabolic structure with respect to D.

Proof. It suffices to show that, for any t, locally on X, there is rational number δ with

Ft−δ = Ft. For a point x of X, there are an open neighborhood V , a finite Galois

morphism f : U → V étale outside B, and a reflexive sheaf FU of U such that F|U � ε∗UFU

for U = (U,BU ), BU = f−1B, by 3.5.1. Let FU,t be the sheaf εU∗F(tB), which admits a
natural G-linearization for the Galois group G of f . Then FU,t = FU( �−tf∗D� ), and Ft

is the G-invariant part of f∗FU,t. Thus Ft � Ft−δ for small δ > 0. �

Lemma 3.5.4. Let {Ft} be a parabolic structure of a reflexive sheaf F0 of rank one with

respect to B. Then there exists a reflexive sheaf F ∈ WPic(X) of rank one uniquely up
to isomorphisms such that Ft � ε∗(F(−tB)).

Proof. For an irreducible component Bi of B, there is uniquely a rational number 0 ≤
βi < 1 such that Fβi = F0 and that the support of F0/Ft contains Bi for t > βi. Let

∆ :=
∑

i βiBi and set F
′
t := Ft(− �∆− tB� ). Then we have F ′

t = F ′
0 for any t. Hence

Ft = F ′
0( �∆− tB� ). The double-dual F of ε∗F ′

0 ⊗OX(∆) satisfies the condition. �

Theorem 3.5.5. Let {Ft} be a parabolic structure with respect to B. Then there exists

a reflexive sheaf F of X uniquely up to isomorphisms such that Ft � ε∗(F(−tB)).

Proof. We consider the double-dual F ′
t of ε

∗Ft and

F ′′
t :=

∑
0≤λ≤1

F ′
t−λ(−λB) ⊂ F ′

t(B).

Then we have F ′′
t+1 = F ′′

t (−B). For 0 ≤ t ≤ 1,

F ′′
t =

∑
−t≤µ≤0

F ′
−µ(−(t+ µ)B) +

∑
0≤µ≤1−t

F ′
−µ(−(t+ µ)B)

=
∑

0≤µ≤1
F ′
−µ(−(t+ µ)B) = F ′′

0 (−tB).

If {Ft} is m-periodic, then F ′
t = F ′

�mt�/m. Thus

F ′′
0 =

m−1∑
s=0

∑
s/m≤λ<(s+1)/m

F ′
�−mλ�/m(−λB) =

m−1∑
s=0

F ′
−s/m(−(s/m)B).
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Hence F ′′
0 is coherent. Let F be the double-dual of F ′′

0 . Then F(−tB) is the double-dual
of F ′′

t . The direct image ε∗F(−tB) is isomorphic to the double-dual of∑
0≤λ≤1

Ft−λ( �−λ�B).

If 0 < λ ≤ 1, then Ft−λ( �−λ�B) ⊂ Ft−1(−B) = Ft. Therefore, ε∗F(−tB) = Ft.

Suppose that G is another reflexive sheaf of X such that Ft � ε∗G(−tB) as parabolic
structures. Then we have injections F ′

t ⊂ G(−tB) for any t. Since∑
0≤λ≤1

G(−(t− λ)B)(−λB) = G(−tB),

we also have injections F(−tB) ⊂ G(−tB). In order to show this is isomorphic, we may
assume that X is isomorphic to a polydisc and B is a coordinate hyperplane. There is

a finite cyclic covering τ : Y → X étale outside B satisfying the following condition: For

the Galois group Γ � Z/NZ of τ , there exist Γ -linearized reflexive sheaves FY and GY

of Y such that

F|Y � ε∗Y FY and G|Y � ε∗Y GY .

Let BY denote the pullback τ−1B = (τ ∗B)red. Then ε∗F(−(i/N)B) is isomorphic to
the Γ -invariant part of τ∗FY (−iBY ). This is the eigenspace of τ∗FY with respect to the

eigenvalue exp(2π
√
−1(i/N)). Since ε∗F(−tB) � ε∗G(−tB), we have τ∗FY � τ∗GY .

Therefore, FY � GY and F � G. �

Example 3.5.6. Let X� ⊂ X be a toroidal embedding and let X = (X,B) for B =

X�X�. LetH be a locally constant system of a finite-dimensional C-vector space defined

on X�. If the local monodromies are unipotent, then we have the canonical extension

Hcan
X of H = H ⊗ OX� to X in the sense of Deligne [D2] as a locally free OX -module.

Even if the local monodromies of H are only quasi-unipotent, we have the canonical

extension Hcan
X as a ∂-étale locally free sheaf of X . When X is non-singular, the sheaf

:Hcan
X = ε∗Hcan

X is locally free and is usually called the canonical extension in the sense

of Deligne. We call this by the lower canonical extension (cf. [K9], [M9]).

Example 3.5.7. The sheaf Ω1
X of Kähler differentials is defined by the universal property

for derivations to OX -modules as usual. It is not necessarily coherent even if X is non-

singular. To see this, we consider the one-dimensional case: X = ∆, B = {0}. We can
write Ω1

X = OX dt for a coordinate function t of X. Let X ′ = ∆ → X be the cyclic

covering u �→ um = t. Then

Ω1
X ′ = OX ′ du = OX ′

dt

t(1−1/m)
.
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Hence the stalk Ω1
X,0 is isomorphic to

lim−→
m→∞

OX,0
1

t(1−1/m)
.

Thus Ω1
X is not coherent. The double-dual of Ω1

X is isomorphic to Ω̂1
X(logB).
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4. Local nature of variation of Hodge structure

Let S� ⊂ S be a toroidal embedding. We consider a Z-polarized variation of Hodge

structure H of rank two and of weight one defined over S� (cf. [G3], [S3]): it consists of a

locally constant system H of a free abelian group of rank two, a skew-symmetric bilinear

form Q : H×H → ZS� inducing an isomorphism
∧2H ∼→ ZS� , and of a subbundle F1(H)

of H := H ⊗OS� such that (Hs, Qs,F1(H)⊗C(s)) forms a polarized Hodge structure of

weight one for every s ∈ S�. We call by VHS a Z-polarized variation of Hodge structure

of rank two and of weight one, for short. In Section 4, except 4.2, we shall study the local

nature of H. Thus we mainly suppose that S� ⊂ S together with a point 0 ∈ S is a d-

dimensional toroidal embedding of type (N, l, σ). Thus we can write S = TN(σ)
<1×∆d−l.

Note that the fundamental group π1(S
�) of S� is identified with N. Let {ν1, ν2, . . . , νk}

be the set of vertices of σ and let

Di = Dνi := (Oνi
∩ TN(σ)

<1)×∆d−l

denote the corresponding prime divisor to νi. The complement D := S � S� is written

by
∑k

i=1Di. We set S
◦ := S � SingD. The open subset S◦νi

:= (TN(νi)∩TN(σ)
<1)×∆d−l

is non-singular and its fundamental group is isomorphic to N(νi) = N ∩Rνi = Zνi. Note

that S◦νi
= S◦ � (∪j =iDj). According to 3.1.3, the universal covering mapping of S

� is

given by

ẽN : HN(Intσ)×∆d−l � z = (z′, t′) �−→ (eN(z
′), t′) ∈ T<1

N ×∆d−l � S�

for z′ ∈ HN(Intσ), t
′ ∈∆d−l.

4.1. Monodromy and periods

From the VHS H, we have a period mapping ω : HN(σ)×∆d−l → H and a monodromy

representation ρ : π1(S
�) = N→ SL(2,Z) such that

ω(γz) =
aγω(z) + bγ
cγω(z) + dγ

, for ρ(γ) =

aγ bγ

cγ dγ

 .

Borel’s lemma [S3, 4.5] asserts that ρ(νi) are all quasi-unipotent, since ρ(νi) is the local

monodromy along Di. Hence ρ(γ) is quasi-unipotent for any γ ∈ N, since N is commu-

tative. Any quasi-unipotent matrix in SL(2,Z) is conjugate to one of the matrices in

Table 1 uniquely. Suppose that the image ρ(N) of ρ : N → SL(2,Z) is a finite group.

Then it is the cyclic group of order 1, 2, 3, 4, 6, according as the image ρ(N) is generated

by the matrix I0, I
∗
0, IV

∗, III∗, II∗ in Table 1 up to conjugates in SL(2,Z). If the order

is m, then ρ is essentially determined by a surjective group homomorphism N � Z/mZ.
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Table 1. Monodromy matrices

Ia (a ≥ 0) II III IV1 a

0 1

  1 1

−1 0

  0 1

−1 0

  0 1

−1 −1


I∗b (b ≥ 0) II∗ III∗ IV∗−1 −b
0 −1

 0 −1
1 1

 0 −1
1 0

 −1 −1
1 0


Suppose next that ρ(N) is infinite. Then there exist unique homomorphisms a : N → Z,

c : N→ Z/2Z, and a matrix P ∈ SL(2,Z) such that

P−1ρ(γ)P = (−1)c(γ)Ia(γ)

for γ ∈ N. By a property of period mapping, we have a(νi) ≥ 0, since ρ(νi) is the local

monodromy in the right direction along Di. Thus a is considered to be an element of

σ∨ ∩M such that a(γ) = 〈a, γ〉.

Definition 4.1.1. [Type of monodromy representations]

(1) Suppose that ρ(N) is finite. The monodromy representation ρ : N → SL(2,Z)

is called of type I0, I
(∗)
0 , II

(∗), III(∗), IV(∗) according as: ρ(N) is generated by a

conjugate of the matrix I0, I
∗
0, II

∗, III∗, IV∗.

(2) Suppose that ρ(N) is infinite and that c : N → Z/2Z is zero, i.e., any matrices in

ρ(N) is unipotent. Then ρ is called of type I(+). More precisely, it is called of type

Ia for the homomorphism a : N→ Z. We define α to be the positive integer such

that α−1a is primitive. In other words, α is the index of the image of a : N → Z

in Z.

(3) Suppose that ρ(N) is infinite and that c : N→ Z/2Z is not zero. Then ρ is called

of type I
(∗)
(+). For a and c, we define a∗ : N → Z by a∗(γ) = (−1)c(γ)a(γ). Then

ρ is called of type I
(∗)
(+)(0), I

(∗)
(+)(1), I

(∗)
(+)(2) according as: a∗ ≡ 0 mod 2, a∗ ≡ c

mod 2, a∗ ∧ c #≡ 0 mod 2. The case I
(∗)
(+)(2) does not occur if l = 1.

Remark. The definition of types is slightly different from that in [N4]. The type IV−

there is included in II above and the type IV+ is now IV.

On the period mapping ω : HN(Intσ)×∆d−l → H, we have the following result by an

argument of [N4]:

Proposition 4.1.2. (1) If H is of type I0 or of type I
(∗)
0 , then ω descends to a holo-

morphic function on S.
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(2) Suppose that H is of type I(+) or of type I
(∗)
(+). Let a ∈ σ∨ ∩ M be the functional

determined by the monodromy as before. Then there is a holomorphic function h

on S such that Imh(t) ≥ 0 for t ∈ S and that

ω(z) = 〈a, z′〉+ h(ẽN(z)).

(3) The J-function is defined on S� by J(ẽN(z)) = j(ω(z)) for the elliptic modular

function j. It extends to a holomorphic mapping J : S → P1.

4.2. Canonical extension

The Hodge filtration Fp(H) of H is defined on S�. If S is non-singular, we have

canonical extensions of H and Fp(H) in the sense of Deligne [D2] by the nilpotent orbit
theorem by Schmid [S3]. Even if S has singularities, we have also locally free canonical

extensions in the case H has only unipotent monodromies. This is shown as follows:

Suppose that S is in the local situation: S� ⊂ S is a toroidal embedding of type (N, l, σ).

If H is of type I0, then H is originally defined on S and thus the Hodge filter F1(H) is
defined naturally by the period function ω. Suppose that H is of type I(+), more precisely

of type Ia for 0 #= a ∈ σ∨ ∩M. We see that

log ρ(γ) = a(γ)N for the matrix N :=

0 1

0 0

 .

By 4.1.2, we have

exp(−〈a, z′〉N) ·
ω(z)

1

 =
h(t)
1

 ,

for t = ẽN(z). This means that H = H ⊗ OS� is a trivial module O⊕2
S� in which F1(H)

is generated by the column vector t(h(t), 1). Hence we have naturally the canonical

extension Hcan
S = O⊕2

S and the extension F1(Hcan
S ) of F1(H) as a subbundle of Hcan

S .

This construction is compatible with the canonical extension over S � SingS.

Even in the case the monodromy of H is not unipotent, we can extend to S the

lower-canonical extensions defined over S � SingS by taking direct images for the open

immersion. But they are not necessarily locally free. To see this, assume that S� ⊂ S

is a toroidal of type (N, l, σ). Let Nunip ⊂ N be the submodule consisting of all γ ∈ N

with ρ(γ) being unipotent. The toric variety TNunip(σ) induces a finite abelian covering

τ : S ′ = TNunip(σ)
<1 × ∆d−l → S with the Galois group N/Nunip. The lower-canonical

extensions :Hcan
S and Fp( :Hcan

S ) are obtained as the N/Nunip-invariant part of the direct

images of canonical extensions defined on S ′. Hence these extensions are reflexive sheaves

of S.
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Next, we consider the ∂-space S := (S,D) for a general toroidal embedding S� =

S � D ⊂ S, which is not necessarily of type (N, l, σ). Then we have the canonical

extension Hcan
S as a locally free OS-module (cf. 3.5.6). There is also the extended filter

F1(Hcan
S ) as a subbundle. For the natural morphism ε : S → S, we have ε∗Hcan

S � :Hcan
S

and ε∗F1(Hcan
S ) � F1( :Hcan

S ).

Definition 4.2.1. We introduce the following sheaves:

LH := H /F1(H), LH/S :=
:Hcan

S /F1( :Hcan
S ), and LH/S := Hcan

S /F1(Hcan
S ).

Note that ε∗LH/S � LH/S. The canonical extensions
:Hcan

S and Hcan
S have logarithmic

connections

∇S :
:Hcan

S → Ω̂1
S(logD) ⊗ :Hcan

S , and ∇S : Hcan
S → Ω̂1

S(logD) ⊗ Hcan
S

such that ∇S = ε∗(∇S). Then we have logarithmic de Rham complexes

Ω̂•S(logD) ⊗ :Hcan
S and Ω̂•S(logD) ⊗ Hcan

S .

These are considered to be subcomplexes of j∗(Ω
•
S� ⊗H) and j∗(Ω

•
S� ⊗H), respectively.

We have natural quasi-isomorphisms

j∗(Ω
•
S� ⊗H) ∼qis Rj∗H

L
⊗C, and j∗(Ω

•
S� ⊗H) ∼qis Rj∗H

L
⊗C.

As in the case of non-singular varieties with normal crossing divisors, we have:

Proposition 4.2.2. There exist quasi-isomorphisms

Rj∗H
L
⊗C ∼qis Ω̂

•
S(logD) ⊗ :Hcan

S , and Rj∗H
L
⊗C ∼qis Ω̂

•
S(logD) ⊗ Hcan

S .

Proof. It is enough to show the morphism

Ω̂•S(logD) ⊗ Hcan
S → j∗(Ω

•
S� ⊗H)

is quasi-isomorphic. Thus we may assume that S� ⊂ S be a toroidal embedding of type

(N, l, σ) and thatH is of type Ia for some a ∈ σ∨∩M. Let µ : Y → S be a desingularization

of S corresponding to a subdivision of σ ⊂ N⊗R into a non-singular fan. Then µ−1D is

a normal crossing divisor, Hcan
Y � µ∗Hcan

S , and Ωp
Y (logµ

−1D) � µ∗Ω̂p
S(logD) for any p.

We have a quasi-isomorphism

Ω•Y (logµ
−1D) ⊗ Hcan

Y
∼→qis j

′
∗(Ω

•
S� ⊗H)

for the open immersion j′ : S� ∼→ Y � µ−1D ↪→ Y . Therefore,

Ω̂•S(logD) ⊗ Hcan
S → j∗(Ω

•
S� ⊗H)

is quasi-isomorphic, since S has only rational singularities. By considering ∂-étale cover-

ings over [S,D], we have the similar quasi-isomorphism over S. �
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Corollary 4.2.3. The natural morphism Rj∗H → Rj∗LH ∼qis j∗LH is decomposed into

Rj∗H → LH/S → j∗LH . In particular, the morphisms RΓD(j∗H) → RΓD(LH/S) and

RΓD(j∗H)→ RΓD(LH/S) are zero in the derived categories.

Lemma 4.2.4. Let µ : Y → S be a bimeromorphic morphism from a non-singular variety

such that µ−1D is a normal crossing divisor. Let HY denote the VHS µ−1H defined on

Y � µ−1D. Then LH/S ∼qis Rµ∗LHY /Y .

Proof. This means that Rpµ∗LHY /Y = 0 for p > 0 and µ∗LHY /Y � LH/S. The latter

isomorphism holds if µ∗LH ′/Y is reflexive. Thus we may consider them locally on S.

Then, there is a finite Galois covering τ : S ′ → S étale outside D such that H ′ :=

τ−1H on S ′ � τ−1D has only unipotent monodromies. Then LH ′/S′ is an invertible sheaf

and the invariant part of τ∗LH ′/S′ by the action of the Galois group G is isomorphic

to LH/S. Let Y
′ be the normalization of Y ×S S ′ and let µ′ : Y ′ → S ′ be the induces

morphism. Then µ′∗LH ′/S′ � LH ′
Y ′/Y ′ for the VHS H ′

Y ′ = (µ′)−1H defined on Y ′ ×S S�.

Therefore Rpµ′∗LH ′
Y ′/Y ′ = 0 for p > 0 and µ′∗LH ′

Y ′/Y ′ � LH ′/S′, since S ′ has only rational

singularities. By taking G-invariant parts, we have the vanishing Rpµ∗LHY /Y = 0 for

p > 0 and the local isomorphism LH/S � µ∗LH/Y . �

Corollary 4.2.5. Suppose that S is compact and connected.

(1) If the J -function is non-trivial, then H0(S�, H) = 0.

(2) If H is not trivial, then H0(S�, H) = 0.

(3) If dimS = 1 and if H is not trivial, then H2(S, j∗H) is a finite group (cf. [K7,

11.7]).

Proof. (1) This is reduced to the vanishingH0(S,LH/S) = 0 by the injection j∗H → LH/S.

We may assume that S is non-singular. Then

L⊗(−12)H/S � J ∗OP1(1)⊗OS(
∑

aiDi)

for integers 0 ≤ ai ≤ 10 for irreducible components of Di (cf. [U1], [K2], [N4, §3]). If
H0(S,LH/S) #= 0, then H0(P1,O(1)) defines a non-constant holomorphic function on S.

This is a contradiction.

(2) H is trivial if and only ifH0(S�, H) is of rank two. If H0(S�, H) contains a non-zero

element, then it defines an extension

0→ ZS� → H → ZS� → 0
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of local systems. Hence the monodromy representation π1(S
�) → SL(2,Z) is equivalent

to the the induced representation

ρ(γ) =

1 φ(γ)

0 1


for the group homomorphism φ : π1(S

�)→ H1(S
�,Z)→ Z corresponding to the extension

above. Since J-function is constant by (1), the period function ω(z) on the universal

covering space of S� is also constant. Hence φ = 0 and H is trivial.

(3) We have H2(S, j∗H) � H2(S, j!H) � H2
c (S

�, H). By the Verdier duality

RΓc(S
�, H) ∼qis RHomZ(RΓ (S�, H∨),Z)[−2],

or as a universal coefficient theorem, we have an exact sequence

0→ Ext1Z(H
1(S�, H∨),Z)→ H2

c (S
�, H)→ HomZ(H

0(S�, H∨),Z)→ 0.

Since H1(S�, H∨) is a finitely generated abelian group, H2
c (S

�, H) is finite by (2). �

4.3. Group cohomology

According to [N4], we regard Z⊕2 as a right SL(2,Z)-module. It turns to be an N-

module by the monodromy representation ρ. We infer that p-th cohomology group Hp =

Hp(S�, H) is isomorphic to Hp(π1(S
�),Z⊕2) by a Hochschild–Serre spectral sequence.

Theorem 4.3.1. The group cohomologies Hp = Hp(π1(S
�),Z⊕2) = Hp(N,Z⊕2) are cal-

culated as in Table 2.

In order to show 4.3.1, we consider Koszul complexes. Let A be a commutative algebra

with a unit and let m be an A-module. We assume that m is originally a right A-

module. For a free A-module E of finite rank and for an element b ∈ E, the Koszul
complex Kos•E(m , b) = Kos•A,E(m , b) is defined as follows: the p-th module is

KospE(m , b) := KospA,E(m , b) :=m ⊗A

p∧
E.

The differential dp is defined by x �→ x ∧ b for x ∈ KospE(m , b). If we choose a base of

E, then b corresponds to a row vector (b1, b2, . . . , bl). If we denote by xi1,i2,...,ip ∈m the

(i1, i2, . . . , ip)-th coefficient of x for 1 ≤ i1 < i2 < · · · < ip ≤ l, then the differential dp is

written by:

(dp(x))i0,i1,...,ip =
p∑

j=0

(−1)p−jx
i0,i1,...,

∨
ij ,...,ip

bij .

We write the p-th cohomology group by Hp(m , b).

Lemma 4.3.2. (1) If A1 is an A-algebra such that m is originally an A1-module,

then Kos•E(m, b) = Kos•A1⊗E(m, b1) for the image b1 of b under E → A1 ⊗ E.
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Table 2. List of cohomology groups

Type of monodromy H0 H1 Hp (p ≥ 2)

I0 Z⊕2 Z
⊕2(l

2) Z
⊕2( l

p)

I
(∗)
0 0 (Z/2Z)⊕2 (Z/2Z)⊕2(

l−1
p−1)

II(∗) 0 0 0

III(∗) 0 Z/2Z (Z/2Z)⊕(
l−1
p−1)

IV(∗) 0 Z/3Z (Z/3Z)⊕(
l−1
p−1)

I(+) Z Z⊕l ⊕ Z/αZ Z
⊕( l

p) ⊕ (Z/αZ)⊕(
l−1
p−1)

I
(∗)
(+)(0) 0 (Z/2Z)⊕2 (Z/2Z)⊕2(

l−1
p−1)

I
(∗)
(+)(1) 0 Z/4Z (Z/4Z)⊕(

l−1
p−1)

I
(∗)
(+)(2) 0 Z/2Z (Z/2Z)⊕(

l−1
p−1)

(2) Suppose that E = E1 ⊕ E2 for free A-modules E1 and E2 and that

b = (b1, b2) ∈ E1 ⊕ E2

for b1 ∈ E1, b2 ∈ E2. Then Kos•E(m, b) is quasi-isomorphic to

m⊗Kos•E1
(A, b1)⊗Kos•E2

(A, b2).

In particular, if b2 = 0, then Hp(m, b) is isomorphic to

⊕
j≥0

Hp−j(m, b1)⊗
j∧
E2.

(3) If b′ = b · P for some right A-linear automorphism P ∈ AutA(E), then we have
an isomorphism Kos•E(m, b′) � Kos•E(m, b).

We will find a resolution of the trivial N-module Z by free Z[N]-modules. Let us choose

a generator (γ1, γ2, . . . , γl) of N as an abelian group of rank l. We set ε : N→ Z[N] to be

the homomorphism defined by ε(γi) = γi − 1 for 1 ≤ i ≤ l. The ε does depend on the

choice of generator. We define a (right) Z[N]-linear mapping

∂p+1 :
p+1∧

N⊗ Z[N]→
p∧

N⊗ Z[N]
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from the composite of natural homomorphism
∧p+1 N→ ∧p N⊗N and id⊗ε :

∧p N⊗N →∧p N⊗ Z[N]. More explicitly, ∂p+1 sends e0 ∧ e1 ∧ · · · ∧ ep for ei ∈ N to

p∑
j=0

(−1)p−je0 ∧ e1 ∧ · · · ∧
∨
ej ∧ · · · ∧ ep ⊗ ε(ej).

Then we have a resolution of Z:

· · · →
p+1∧

N⊗ Z[N]
∂p+1−−→

p∧
N⊗ Z[N]→ · · · → Z[N]→ Z→ 0.

Therefore for the right Z[N]-modulem := Z⊕2, Hp(N,m) is the p-th cohomology group

of the complex

[· · · → HomZ[N](
p∧

N ⊗ Z[N],m)
dp

−→ HomZ[N](
p+1∧

N⊗ Z[N],m)→ · · · ].

Here dp is described as follows: For x ∈ HomZ[N](
∧p N⊗ Z[N],m),

dp(x)(e0 ∧ e1 ∧ · · · ∧ ep) =
l∑

j=0

(−1)p−jx(e0 ∧ e1 ∧ · · · ∧
∨
ej ∧ · · · ∧ ep)ε(ej).

Therefore, the complex is isomorphic to the Koszul complex

Kos•M⊗Z[N](m , ε).

We denote i :=
√
−1 ∈ C and ω := exp(2π

√
−1/3) ∈ C. We introduce a commutative

algebra A depending on the type of monodromies as follows:

A :=



Z, in the cases I0, I
(∗)
0 ,

Z[ω], in the cases II(∗), IV(∗)

Z[i], in the case III(∗),

Z[ε]/(ε2), in the cases I(+), I
(∗)
(+).

Then we can considerm = Z⊕2 as an A-module by regarding i, ω and ε as:

i↔
0 −1
1 0

 ,ω ↔
−1 −1
1 0

 , ε↔
0 1

0 0

 .

Thus there is an algebra homomorphism ρ̃ : Z[N] → A, from which the Z[N]-module

structure of m is derived. More precisely, the ρ̃(γ) is determined by the type of the

matrix ρ(γ) as in Table 3. If the type of the monodromy is neither I0 nor I
(∗)
0 , thenm

Table 3. Image of γ

Type of γ I0 I∗0 II II∗ III III∗ IV IV∗ Ia I∗a

ρ̃(γ) 1 −1 −ω −ω2 −i i ω2 ω 1 + aε −(1 + aε)

is isomorphic to A as an A module. We set b ∈ M ⊗ A to be the image of ε ∈ M ⊗ Z[N]
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under id⊗ ρ̃ : M⊗Z[N]→ M⊗A. Then Kos•M⊗Z[M](m , ε) is isomorphic to Kos•M⊗A(m , b)

and hence Hp = Hp(π1(S
�),Z⊕2) � Hp(m , b).

Proof of 4.3.1. The case I0. We have b = 0 and hence

Kos•M⊗A(m , b) �
l⊕

j=0

m ⊗Z

j∧
M[−j].

Thus Hp �m ⊗ ∧p M � Z
⊕2( l

p) for any p.

The cases I
(∗)
0 , II

(∗), III(∗), IV(∗). For the generator (γ1, γ2, . . . , γl) of N, we have b(γj) =

ρ̃(γj)− 1. Hence there is an a matrix P ∈ GL(l, A) such that

(b(γ1), b(γ2), . . . , b(γl)) = (β, 0, . . . , 0) · P

for an element β ∈ A. Here we can choose β as follows:

β =



2, in the case I
(∗)
0 ;

ω, in the case II(∗);

i− 1, in the case III(∗);

ω − 1, in the case IV(∗).

By 4.3.2, we have

Hp(m , b) �
⊕
j≥0

Hp−j(m , β)⊗
j∧
A⊕(l−1).

Here Hp(m , β) = 0 for p #= 1 and H1(m , β) =m⊗A/βA is isomorphic to the following

abelian groups:

m ⊗ A/βA �



(Z/2Z)⊕2 , in the case I
(∗)
0 ;

0, in the cases II(∗);

Z/2Z, in the case III(∗);

Z/3Z, in the case IV(∗).

The case I(+). We infer thatm � A as an A-module and that

(b(γ1), b(γ2), . . . , b(γl)) = (αε, 0, . . . , 0) · P

for α = gcda and for some P ∈ GL(l, A). Thus by 4.3.2,

Hp �
⊕
j≥0

Hp−j(A, αε)⊗
j∧
A⊕(l−1).

We have H0(A, αε) � εA = Z, H1(A, αε) � A/αε � Z ⊕ Z/αZ, and Hp(A, αε) = 0 for

p ≥ 2. Thus H0 � Z and for p ≥ 1,

Hp � Z
⊕(l−1

p ) ⊕ (Z⊕ Z/αZ)⊕(
l−1
p−1) � Z

⊕( l
p) ⊕ (Z/αZ)⊕(

l−1
p−1).
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The cases I
(∗)
(+)(0) and I

(∗)
(+)(1). Let ĉ : N→ Z ⊂ A be the homomorphism defined by

ĉ(γj) =

0, if c(γj) = 0;

1, if c(γj) #= 0.

This also depends on the choice of generator {γj}. Then b = −2ĉ + εa∗ and

(b(γ1), b(γ2), . . . , b(γl)) = (β, 0, . . . , 0) · P

for some β ∈ A and for some P ∈ GL(l, A). We can choose β as follows:

β =

2, in the case I
(∗)
(+)(0);

2 + ε, in the case I
(∗)
(+)(1).

Thus by 4.3.2, we have

Hp �
⊕
j≥0

Hp−j(A, β)⊗
j∧
A⊕(l−1).

Here Hp(A, β) = 0 for p #= 1 and H1(A, β) � A/βA is isomorphic to the following abelian

groups:

A/βA �

(Z/2Z)
⊕2, in the case I

(∗)
(+)(0);

Z/4Z, in the case I
(∗)
(+)(1).

The case I
(∗)
(+)(2). The condition ĉ ∧ a∗ #≡ 0 mod 2 implies that there exist a matrix

P ∈ GL(l, A) such that

(b(γ1), b(γ2), . . . , b(γl)) = (−2, ε, 0, . . . , 0) · P.

By 4.3.2, we have

Hp �
⊕
j≥0

Hp−j(A, (−2, ε))⊗
j∧
A⊕(l−2).

Moreover we have Hp(A, (−2, ε)) = Z/2Z for p = 1, 2 and Hp(A, (−2, ε)) = 0 for other

p. Thus

Hp � Z/2Z⊕( l−2
p−1) ⊕ Z/2Z⊕( l−2

p−2) � Z/2Z⊕( l−1
p−1). �

Leray’s spectral sequence

Ep,q
2 = Hp(S◦, Rqj�

∗H) =⇒ Ep+q = Hp+q(S�, H)

for the immersion j� : S� ↪→ S◦ induces a long exact sequence:

(4.1) · · · → Hp(S◦, j�
∗H)→ Hp(S�, H)→ Hp−1(S◦, R1j�

∗H) → Hp+1(S◦, j�
∗H) → · · · ,
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since Rqj�
∗H = 0 for q ≥ 2. The support of R1j�

∗H is contained in D� =
⊔k

i=1 D
�
i . Thus

for a vertex νi, we have natural homomorphisms

(4.2) Ep = Hp(S�, H)→ E
(i)p−1,1
2 := Hp−1(D�

i , R
1j�
∗H|D�

i
).

As in the proof of 4.3.1, we consider Z⊕2, a fiber of H, as an A-module m . The coho-

mology group Hp(S�, H) is calculated by the Koszul complex Kos•M⊗A(m , b). Suppose

that b(νi) = ρ̃(νi) − 1. This is satisfied if νi = γj for some j or if the monodromy of

H is unipotent. Let b(i) be the homomorphism N/N(νi) → A/b(νi) determined by the

commutative diagram:

N
b−−−→ A� �

N/N(νi)
b(i)

−−−→ A/b(νi).

Then b(i) is considered as an element of (ν⊥i ∩ M) ⊗ A/b(i). We define a morphism of

complexes

Kos•M⊗A(m , b)→ Kos•(ν⊥
i ∩M)⊗A(m ⊗A A/b(νi), b

(i))[−1]
as follows: The homomorphism of p-th level

m ⊗A

( p∧
M ⊗ A

)
→m ⊗A

(p−1∧
(ν⊥i ∩M) ⊗A/b(νi)

)
is induced from the surjection

∧p M → N(νi)
∨⊗∧p−1(ν⊥i ∩M) and from the isomorphism

N(νi)
∨ ∼→ Z which is the dual of Z � 1 �→ νi ∈ N(νi).

Lemma 4.3.3. Suppose that b(νi) = ρ̃(νi)−1. Then the homomorphism (4.2) is described

as the Hp of the morphism of complexes

Kos•M⊗A(m, b)→ Kos•(ν⊥
i ∩M)⊗A(m⊗A A/b(νi), b

(i))[−1].

Proof. We consider the open subset S◦νi
= S◦ � (

⋃
j =i Dj). We denote the immersion

S� ↪→ S◦νi
by j◦i . Then R1j�

∗H|D�
i
� R1j◦i ∗H|D�

i
and the homomorphism (4.2) is derived

from Leray’s spectral sequence for j◦i . The immersion j◦i : S
� ↪→ S◦νi

is homotopically

equivalent to the projection N ⊗Z S
1 → N/N(νi) ⊗Z S

1. Thus Leray’s spectral sequence

for j◦i is isomorphic to that for the projection and for a local constant system of N⊗Z S
1

defined by the same monodromy representation π1(S
�) = N → SL(2,Z) as H. The

spectral sequence is then expressed as the following Hochschild–Serre’s spectral sequence:

Ep,q
2 = Hp(N/N(νi), H

q(N(νi),m)) =⇒ Hp+q(N,m).

We have Hp(m , b(νi)) � Hp(N(νi),m), since b(νi) = ρ̃(νi) − 1. The Koszul complex
Kos•M⊗A(m , b) is isomorphic to the total complex of

m ⊗Kos•A(A, b(νi))⊗Kos•(ν⊥
i ∩M)⊗A(A, b′)
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for some b′ ∈ (ν⊥i ∩M) ⊗ A with b(i) = b′ mod b(νi). For the complex Kos
•
A(m , b(νi)),

we have a triangle

· · · +1−→m b(νi) → Kos•A(m , b(νi))→m/mb(νi)[−1] +1−→ · · · ,

where Mb(νi) = {x ∈m | xb(νi) = 0}. This induces the triangle

· · · +1→ Kos•(ν⊥
i ∩M)⊗A(m b(νi), b′)→ Kos•M⊗A(m , b)→

→ Kos•(ν⊥
i ∩M)⊗A(m ⊗ A/b(νi), b

(i))[−1] +1→ · · ·

The associated long exact sequence is isomorphic to the long exact sequence derived

from Hochschild–Serre’s spectral sequence above. Because, the morphism of complexes is

naturally derived from a double complex given by resolutions of Z by free Z[N]-modules

and free Z[N/N(νi)]-modules. �

Suppose that H is of type Ia for an element 0 #= a ∈ σ∨ ∩M. Let u = α−1a be the

primitive element. The set a⊥∩σ = {ν ∈ σ | a(ν) = 0} is a face of σ. The abelian group
N(a⊥∩σ) was defined to be N∩ (a⊥∩σ+(−a⊥∩σ)). We define l+ := l− rankN(a⊥∩σ)
and define k+ to be the number of indices 1 ≤ i ≤ k with ai := a(νi) > 0. Then l+ ≤ k+

and l− l+ ≤ k−k+ hold. Note that l = k if and only if (S, 0) is a quotient singularity. Let

S< be the complement of
⋃

ai>0Di in S and let j< : S< ↪→ S denote the open immersion.

Then the toroidal embedding S� ⊂ S< is associated with the cone a⊥ ∩ σ ⊂ N ⊗ R. In

particular, S< is homotopically equivalent to

TN(a⊥∩σ)(a
⊥ ∩ σ)× TN/N(a⊥∩σ).

We know that RΓ (S�, H) is quasi-isomorphic to the Koszul complex Kos•M⊗A(A,aε)

for A = Z[ε]. We have the following triangle

· · · +1→ Kos•M(Z, 0)→ Kos•M⊗A(A,aε)→ Kos•M(Z, 0)
∧a−→ Kos•M(Z, 0)[1]→ · · ·

Hence Hp(S�, H) is isomorphic to

Ker
( p∧

M
∧a−→

p+1∧
M
)
⊕ Coker

(p−1∧
M

∧a−→
p∧

M
)
.

Next, we consider the complex Kos•(ν⊥
i ∩M)⊗A(A/b(νi), b

(i)) for b = aε. Here b(νi) =

a(νi)ε, and b(i) = a(i)ε is determined by the commutative diagram

N
a−−−→ Z� �

N/N(νi)
a(i)

−−−→ Z/a(νi).
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Then we have a triangle

· · · +1→ Kos•ν⊥
i ∩M(Z/aiZ, 0)→ Kos•(ν⊥

i ∩M)⊗A(A/aiεA,a(i)ε)→

→ Kos•ν⊥
i ∩M(Z, 0)

∧a(i)

−−−→ Kos•ν⊥
i ∩M(Z/aiZ, 0)[1]→ · · ·

Lemma 4.3.4. Suppose that H is of type Ia for 0 #= a ∈ σ∨ ∩M.

(1) H1(S◦, j�
∗H) is torsion-free of rank k+ − 1.

(2) H1(S�, H) � Z ⊕M/Za.

(3) H0(S◦, R1j�
∗H) � Z⊕k ⊕⊕ai>0 Z/aiZ.

(4) The rank of H2(S◦, j�
∗H) is

(
l+
2

)
+k−l. The torsion part of H2(S◦, j�

∗H) is mapped

to zero in H2(S�, H). If S is non-singular, then H2(S◦, j�
∗H) is torsion-free.

(5) H2(S�, H) � M/Zu ⊕ ∧2 M
/
(M ∧ a).

Proof. We have known (2) and (5) by the Koszul complex. The homomorphisms (4.2)

for p = 1, 2 are described as follows:

Case p = 1. We have isomorphisms E1 � Z⊕M/Za and

E
(i) 0,1
2 �

Z, for ai = 0;

Z ⊕ Z/aiZ for ai > 0.

by Koszul complexes. In particular, we have (3). If ai > 0, then E1 → E
(i) 0,1
2 is given as

the direct sum of the identity Z → Z and M/Za → Z/aiZ induced from νi : M → Z. If

ai = 0, then E1 → E
(i) 0,1
2 is induced from νi : M/Za → Z.

Case p = 2. For the primitive element u = α−1a, we have isomorphisms E2 �
M/Zu ⊕ ∧2 M

/
(M ∧ a) and

E
(i) 1,1
2 �

Z ⊕ (ν⊥i ∩M)/Za, if ai = 0;

M/Zu ⊕ ((ν⊥i ∩M) ⊗ Z/aiZ)/Za(i), if ai > 0.

In the case ai = 0, i.e., a ∈ ν⊥i , E
2 → E

(i) 1,1
2 is given as the direct sum of M/Zu → Z

induced from νi : M → Z and
∧2 M/(M ∧ a) → (ν⊥i ∩ M)/Za induced from

∧2 M →
ν⊥i ∩M. In the case ai > 0, then E2 → E

(i) 1,1
2 is given as the direct sum of the identity

M/Zu → M/Zu and
∧2 M/(M ∧ a) → ((ν⊥i ∩M) ⊗ Z/aiZ)/Za(i) induced from

∧2 M →
(ν⊥i ∩M)⊗ Z/aiZ.

Therefore, E1 → E0,1
2 is isomorphic to the direct sum of Z → ⊕

ai>0 Z and M/Za →⊕k
i=1 Z/aiZ. We have a commutative diagram of exact sequences:

0 −−−→ N(a⊥ ∩ σ)⊥/Za −−−→ M/Za −−−→ N(a⊥ ∩ σ)∨ −−−→ 0

h1

� � �h2

0 −−−→ ⊕
ai>0 Z/aiZ −−−→ ⊕k

i=1 Z/aiZ −−−→ ⊕
ai=0 Z −−−→ 0.
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The right vertical arrow h2 is injective and the torsion-part Zu/Za of N(a⊥ ∩ σ)⊥/Za

is mapped injectively into
⊕

ai>0 Z/aiZ by the left arrow h1. Hence the kernel of h1 is

isomorphic to E1,0
2 � H1(S◦, j�

∗H) and is a torsion-free abelian group of rank l+ − 1.
Thus (1) is proved. The cokernel of M/Za → ⊕k

i=1 Z/aiZ is the direct sum C1 ⊕ C2
for C1 = Cokerh1 and C2 = Cokerh2. The C1 is a torsion group and the rank of C2
is (k − k+) − (l − l+). If S is non-singular, then C1 = 0. If S< is non-singular, then

C2 = 0. Thus the cokernel of E1 → E0,1
2 is isomorphic to Z⊕(k+−1) ⊕ C1 ⊕ C2 and is of

rank k − 1− (l− l+).

The homomorphism E2 → E1,1
2 is the direct sum of M/Zu → ⊕

ai=0 Z⊕⊕M/Zu and∧2 M/M ∧ a→ ⊕
ai=0(ν

⊥
i ∩M)/Za ⊕⊕ai>0((ν

⊥
i ∩M) ⊗ Z/aiZ)/Za(i). Hence the kernel

of the latter homomorphism is the kernel E2,0
∞ of E2 → E1,1

2 . Thus (4) is reduced to the

following claim. �

Claim 4.3.5. We have an isomorphism

E2,0
∞ �

k⋂
i=1

(
2∧
(ν⊥i ∩M) +M ∧ a)

/
M ∧ a.

Moreover, the abelian group is torsion-free of rank
(
l+
2

)
− (l+ − 1).

Proof. We have inclusions ai
∧2 M ⊂ ∧2(ν⊥i ∩ M) + M ∧ a. In fact, for w ∈ ∧2 M, we

define θi ∈ M by the property θi(ν) = w(νi, ν) for any ν ∈ N. Then aiw + θi ∧ a ∈∧2(νi ∩ M). Hence we have the equality above. The torsion part of E2,0
∞ is contained

in that of M ∧ u/M ∧ a. If θ ∧ u ∈ ∧2(νi ∩ M) for some θ ∈ M and for ai > 0, then

θ(νi)u(ν) = u(νi)θ(ν) for any ν ∈ N. Thus θ ∧ u = 0. Therefore, E2,0
∞ is torsion-free. In

order to calculate the rank, we may replace a by u. If ai > 0, then
∧2(ν⊥i ∩M) +M ∧ a

is a finite index subgroup of
∧2 M. We shall show

⋂
ai=0

(
2∧
(ν⊥i ∩M) +M ∧ u) =

⋂
ai=0

2∧
(ν⊥i ∩M) +M ∧ u =

2∧
N(a⊥ ∩ σ)⊥ +M ∧ u.

Suppose that w ∈ ∧2 M is contained in the left hand side. Then w− θi ∧u ∈ ∧2(ν⊥i ∩M)

for some θi ∈ M. Thus w(νi, ν) = θi(νi)u(ν). Let θ ∈ M be determined by w(ν, x0) = θ(ν)

for a fixed x0 ∈ M with the property u(x0) = 1. Then w − θ ∧ u ∈ ∧2(ν⊥i ∩M) for any

i with ai = 0. Thus we have the equality above. Therefore, the rank of E2,0
∞ is equal to(

l+
2

)
− (l+ − 1), since

∧2 N(a⊥ ∩ σ)⊥ ∩M ∧ u = N(a⊥ ∩ σ)⊥ ∧ u. �

Lemma 4.3.6. Suppose that H is of type Ia for 0 #= a ∈ σ∨∩M. Let TH/S◦ := (R1j�
∗H)tor

be the torsion part of R1j�
∗H as sheaf of abelian groups. Then we have the isomorphisms:

H0(S◦,TH/S◦) �
⊕
ai>0

Z/aiZ, and H1(S◦,TH/S◦) =
⊕
ai>0

(ν⊥i ∩M)⊗ Z/aiZ.
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Proof. By the proof of 4.3.3, RΓ (S◦,TH/S◦) is quasi-isomorphic to⊕
ai>0

Kos•ν⊥
i ∩M(Z/aiZ, 0). �

4.4. ∂-étale cohomology

Let S = (S,D) be the associated ∂-space. We also denote S◦ := (S◦, D�). The related

inclusions are written as follows:

j� : S� ↪→ S◦, j◦ : S◦ ↪→ S, j = j◦ ◦ j� : S� ↪→ S,

j� : S� ↪→ S◦, j◦ : S◦ ↪→ S, j := j◦ ◦ j� : S� ↪→ S.

We shall calculate the stalks at 0 of cohomology groups such as Rpj∗H.

Lemma 4.4.1. The stalk at the origin of the Rpj∗H is calculated as follows :

(1) In the case when every monodromy matrices have finite orders:

(j∗H)0 � Z⊕2, and (Rpj∗H)0 � Q
⊕2( l

p) for p ≥ 1.

(2) In the other cases, i.e., I(+) and I
(∗)
(+):

(j∗H)0 � Z, (R1j∗H)0 � Q⊕l ⊕Q/Z, and (Rpj∗H)0 � Q
⊕( l

p) for p ≥ 2.

In particular, for p ≥ 2, Rpj∗H is a sheaf of Q-vector spaces and there exist isomorphisms:

(Rpj∗H)⊗Q � Rpj∗(H ⊗Q) � ε∗(R
pj∗H).

Proof. A ∂-étale neighborhood of 0 in S is essentially given by a finite index subgroup

N1 of N. Let S1 → S be the finite ∂-étale Galois covering corresponding to N1. Then

S1 = sp(S1) is isomorphic to TN1(σ)
<1×∆d−l. Let S�

1 be the open part of S1, j1 : S
�
1 ↪→ S1

the open immersion, and let H1 be the pullback of H by S�
1 → S�. The stalk (Rpj∗H)0 is

the inductive limit of (Rpj
1∗H1)0 � H1(S�

1 , H1) for finite index subgroups N1. Therefore,

we may assume that H has only unipotent monodromies. Thus we suppose that H is of

type Ia for some a ∈ σ∨∩M. Let A be the algebra Z[ε]/(ε2) and let us considerm = Z⊕2

as an A-module as follows: If a = 0, then the action of ε onm is zero. If a #= 0, thenm
is the same A-module as in the proof of 4.3.1. Then the Koszul complex Kos•M⊗A(m ,aε)

is quasi-isomorphic to RΓ (S�, H). Let M1 be the dual of N1. Then there is a natural

morphism of complexes

Kos•M⊗A(m ,aε)→ Kos•M1⊗A(m ,aε),

whose p-th level is simply the inclusionm ⊗∧p M ↪→m ⊗∧p M1. Therefore (Rj∗H)0 is

quasi-isomorphic to the inductive limit of the Koszul complexes. This is written as

0→m ∧aε−−→m ⊗MQ
∧aε−−→m ⊗

2∧
MQ

∧aε−−→ · · · ,
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where MQ = M⊗Q. The complex may be expressed by Kos•MQ⊗A(m ,aε). If a = 0, then

(Rj∗H)0 is quasi-isomorphic to

Z⊕2 ⊕
⊕
p≥1

p∧
M ⊗ (Q⊕2)[−p].

Suppose that a #= 0. Then we have also a triangle

· · · +1→ Kos•MQ
(Z, 0)→ Kos•MQ⊗A(m ,aε)→ Kos•MQ

(Z, 0)
∧a−→ Kos•MQ

(Z, 0)[1]→ · · ·

Hence (j∗H)0 � Z, (R1j∗H)0 � Qa⊕MQ/Za � Q⊕l⊕Q/Z, and (Rpj∗H)0 � (R
pj∗H)0⊗

Q for p ≥ 2. �

Leray’s spectral sequence:

Ep,q
2 = Rpj◦∗(R

qj�
∗H) =⇒ Ep+q = Rp+qj∗H

induces a long exact sequence:

· · · → Ep−2,1
2 → Ep,0

2 → Ep → Ep−1,1
2 → Ep+1,0

2 → · · · ,

since Rqj�
∗H = 0 for q ≥ 2.

Lemma 4.4.2. If p + q ≥ 2, then Ep,q
2 = Rpj◦∗(R

qj�
∗H) is a sheaf of Q-vector spaces

except for (p, q) = (2, 0). Moreover, the following properties hold :

(1) Suppose that H has only monodromies of finite orders. Then Ep,q
2 is a sheaf of

Q-vector spaces for p + q > 0.

(2) Suppose that H is of type Ia for 0 #= a ∈ σ∨ ∩M.

(a) (E1,0
2 )0 is a torsion-free abelian group with infinitely many generators and

(E1,0
2 )0 ⊗Q isomorphic to (N(a⊥ ∩ σ)⊥/Za)⊗Q.

(b) (E0,1
2 )0 is isomorphic to

⊕k
i=1 Q⊕⊕ai>0 Q/aiZ.

(c) (E2,0
2 )0 is the sum of a Q-vector space of dimension

(
l+
2

)
+k−l and a divisible

group. If S< has only quotient singularities, then the divisible group is zero.

Remark. If Ep,q
2 is a sheaf of Q-vector spaces, then, by 3.1.4, we have isomorphisms:

(Rpj◦∗R
qj�
∗H) ⊗Q � Rpj◦∗((R

qj�
∗H)⊗Q) � Rpj◦∗R

qj�
∗(H ⊗Q) � ε∗(R

pj◦∗R
qj�
∗H).

Proof. We have only to check stalks at the origin 0 ∈ S and thus we replace the Ep and

Ep,q
2 by their stalks at 0. Further, we may assume that H is of type Ia. If a = 0, then

Ep and Ep,1
2 are Q-vector spaces by 4.4.1. Thus Ep,0

2 also is a Q-vector space for p ≥ 1.
Hence, we may assume that a #= 0. Let N1 ⊂ N be a subgroup of finite index as in the
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proof of 3.1.4. Then there is a positive integer nN1(i) such that R≥0νi∩N1 = Z≥0nN1(i)νi.

Thus we have a commutative diagram∧p M −−−→ ∧p−1(ν⊥i ∩M)� �×nN1
(i)∧p M1 −−−→

∧p−1(ν⊥i ∩M),

where the horizontal arrows are induced from νi : M → Z and nN1(i)νi : M1 → Z. Then

we have also a commutative diagram of complexes:

Kos•M⊗A(A,aε) −−−→ Kos•(ν⊥
i ∩M)⊗A(A/(aiε),a

(i)ε)[−1]� �nN1
(i)

Kos•M1⊗A(A,aε) −−−→ Kos•(ν⊥
i ∩M1)⊗A(A/(nN1(i)aiε),a

(i)ε)[−1]

Let L•i denote the inductive limit of

Kos•(ν⊥
i ∩M)⊗A(A/(aiε),a

(i)ε)
nN1

(i)
−−−→ Kos•(ν⊥

i ∩M1)⊗A(A/(nN1(i)aiε),a
(i)ε)

for all the finite index subgroups N1. Since the inductive limit lim−→A/(nN1(i)aiε) is iso-

morphic to AQ/aiεA, where AQ := A⊗Q, L•i is written as

0→ AQ/aiεA
∧a(i)

−−−→ MQ ⊗ A/(aiε)
∧a(i)

−−−→
2∧

MQ ⊗A/(aiε)
∧a(i)

−−−→ · · ·

Then we may write

L•i � Kos•(ν⊥
i ∩MQ)⊗A(AQ/aiεA,a(i)ε).

The stalk Ep,1
2 = (Rpj◦∗(R

1j�
∗H))0 is isomorphic to the direct sum of p-th cohomology

groups L•i for 1 ≤ i ≤ k. We have a triangle

· · · +1→ Kos•ν⊥
i ∩MQ

(Q/aiZ, 0)→ L•i →

→ Kos•ν⊥
i ∩MQ

(Q, 0)
∧a(i)

−−−→ Kos•ν⊥
i ∩MQ

(Q/aiZ, 0)[1]→ · · ·

If ai > 0, then Kos•ν⊥
i ∩MQ

(Q/aiZ, 0) is isomorphic to the single complex Q/aiZ. Thus,

H0(L•i ) � Q⊕Q/aiZ and

Hp(L•i ) �
p∧
(ν⊥i ∩M)⊗Q � Q

⊕(l−1
p )
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for p > 0. If ai = 0, then H0(L•i ) � Q and

Hp(L•i ) �Ker
 p∧

(νi ∩M) ⊗Q
∧a(i)

−−−→
p+1∧
(νi ∩M)⊗Q


⊕ Coker

p−1∧
(νi ∩M)⊗Q

∧a(i)

−−−→
p∧
(νi ∩M) ⊗Q


�

p∧
(νi ∩M) ⊗Q � Q

⊕(l−1
p )

for p > 0. In particular, Ep,1
2 is a Q-vector space for p ≥ 1. Thus Ep,0

2 is also a Q-

vector space for p ≥ 3. We also have isomorphisms E1 � Qa ⊕ MQ/Za and E0,1
2 �⊕

ai=0 Q ⊕⊕ai>0(Q ⊕ Q/aiZ). The composite of E
1 → E0,1

2 and the projection to the

i-the direct summand is isomorphic to written by

Qa⊕MQ/Za→

Q for ai = 0;

Q⊕Q/aiZ for ai > 0.

If ai = 0, then this homomorphism is induced from the evaluation map νi : MQ/Qa→ Q.

If ai > 0, then this is the sum of the map Qa � a �→ 1 ∈ Q and the mapMQ/Za→ Q/aiZ

induced from νi : MQ → Q. We have a commutative diagram

0 −−−→ N(a⊥ ∩ σ)⊥Q/Za −−−→ MQ/Za −−−→ N(a⊥ ∩ σ)∨Q −−−→ 0

h′
1

� � �h′
2

0 −−−→ ⊕
ai>0 Q/aiZ −−−→ ⊕k

i=1 Q/aiZ −−−→ ⊕
ai=0 Q −−−→ 0.

Here h′2 is injective and h′1 restricted to the torsion part Qa/Za is injective. Therefore,

E1,0
2 = H1(S◦, j�

∗H) is isomorphic to the kernel of h1 and torsion-free. The cokernel of

the middle arrow is isomorphic to C′1 ⊕ C′2, where C′1 = Cokerh′1 and C′2 = Cokerh′2. Here
C′2 is a Q-vector space of dimension k − k+ − (l − l+). C′1 is a divisible group and is zero
if S< has only quotient singularities. We have an exact sequence

0→ Q⊕(k+−1) ⊕ C′1 ⊕ C′2 → E2,0
2 → E2,0

∞ → 0.

Since E2 and E1,1
2 are Q-vector spaces, E2,0

∞ is also a Q-vector space and dimE2,0
∞ =(

l+
2

)
− (l+ − 1) by 4.3.5. Thus E2,0

2 is the direct sum of the divisible group C′1 and a
Q-vector space of dimension

(
l+
2

)
+ k − l. �

Corollary 4.4.3. Let TH/S◦ be the torsion part of R1j�
∗H as a sheaf of abelian groups.

Then we have the followings :

(1) The image of the composite j◦∗TH/S◦ ↪→ E0,1
2 → E2,0

2 is the torsion part of E2,0
2 .

(2) Rpj◦∗TH/S◦ = 0 for p > 0.
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Proof. We may assume the monodromy type is Ia with a #= 0. As in the proof of 4.3.3,

4.4.2, (Rj◦∗TH/S◦)0 is quasi-isomorphic to⊕
ai>0

Kos•ν⊥
i ∩MQ

(Q/aiZ, 0).

Hence (j◦∗TH/S◦)0 �
⊕

ai>0 Q/aiZ. Thus (1) holds since the torsion part of E
2,0
2 is iso-

morphic to C′1. Further, for p > 0, we have

(Rpj◦∗TH/S◦)0 �
⊕
ai>0

p∧
(ν⊥i ∩M)⊗Q⊗Q/aiZ = 0. �
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5. Elliptic fibration

The notion of basic elliptic fibration plays an important role in the classification of

elliptic fibration. A basic elliptic fibration is an elliptic fibration with a meromorphic

section. This is bimeromorphically equivalent to a Weierstrass model. If we fix a VHS

H on the open part S� for a toroidal embedding S� = S � D ⊂ S, then there exists

uniquely up to bimeromorphic equivalence over S, a basic elliptic fibration p : B(H) →
S. In Section 5.1, we recall Weierstrass models and properties of B(H). If D is non-

singular, then a non-singular relative minimal model of B(H) uniquely exists and it

contains a so-called Néron model as a Zariski-open subset. As a classification of elliptic

fibrations over S with the same VHS as H on S�, we introduce the set Ẽ(S,D,H) of

bimeromorphic equivalence classes of marked elliptic fibrations in Section 5.2 and some

important subsets E(S,D,H), Eproj(S,D,H), and E0(S,D,H). They are shown to have

abelian group structures and are analogous to Weil–Châtelet groups or Tate–Shafarevich

groups of elliptic curves defined in algebraic situation. The description of these groups

corresponds to the classification. The sheaf SH/S of germs of meromorphic sections of

the basic elliptic fibration has an abelian group structure and the cohomology group

H1(S,SH/S) is considered to be the set of meromorphic torsors of B(H). The subgroup

E0(S,D,H) consisting of elliptic fibrations having local meromorphic sections is realized

as a subgroup of H1(S,SH/S). If D is non-singular, then E0(S,D,H) = H1(S,SH/S).

5.1. Weierstrass model

Let S be a normal complex analytic space. Let L be an invertible sheaf of S and let

α ∈ H0(S,L⊗(−4)), β ∈ H0(S,L⊗(−6)) be sections such that the zero locus of 4α3+27β2

is purely of codimension one. Let D(L,α,β) denote the divisor div(4α3 + 27β2). For

such a triplet (L,α,β) above, the Weierstrass model W = WS(L,α,β) is defined as

follows [N3]: Let p : P → S be the projective bundle associated with the locally free

sheaf OS ⊕L⊗2 ⊕L⊗3. Here the tautological invertible sheaf OP(1) is determined by the

isomorphism p∗OP(1) � OS⊕L⊗2⊕L⊗3. According to the natural embeddings from OS,

L⊗2, L⊗3 into OS ⊕ L⊗2 ⊕L⊗3, we have sections

Z ∈ H0(P,OP(1)), X ∈ H0(P,OP(1) ⊗ p∗L⊗(−2)), Y ∈ H0(P,OP(1) ⊗ p∗L⊗(−3)).

The Weierstrass modelW is a divisor of P defined by the section

Y2Z− (X3 +αXZ2 + βZ3) ∈ H0(P,OP(3)⊗ p∗L⊗(−6)).

The triplet (L,α,β) is called minimal if there is no prime divisor Γ satisfying both

div(α) ≥ 4Γ and div(β) ≥ 6Γ.
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Lemma 5.1.1. (1) p :W → S is a proper surjective flat Gorenstein morphism.

(2) ωW/S � p∗L⊗(−1).
(3) p :W → S is smooth outside D(L,α,β).

(4) A fiber Ws = p
−1(s) of W → S is isomorphic to an irreducible plane cubic

curve: an elliptic curve, a rational curve with one node, or a rational curve with

one (2, 3)-cusp.

(5) The locus X = Z = 0 defines a holomorphic section of W → S. This is called a

canonical section. In each fiberWs, the intersection point is a point of inflection.

(6) Let W	 ⊂ W be the set of all points along which W is smooth over S. Then

W	 → S has a structure of relative complex analytic Lie groups over S (i.e., a

group object in the category of complex analytic spaces over S) with the canonical

section being zero.

(7) The (relative) left action ofW	 on W	 over S extends to that on W.

(8) The relative tangent bundle of W → S restricted to the canonical section is iso-

morphic to L. Let V(L) → S be the (geometric) line bundle associated with L.
Then the relative exponential mapping V(L) →W	 is a surjective local isomor-

phism.

Proof. Locally W → S is obtained as the pullback of a special Weierstrass model

W(O, x, y) → C2, where (x, y) is a coordinate system of C2. Thus (1), (3), (4) hold.

(2) is induced from the adjunction and the canonical bundle formula for a projective

bundle. (5) is directly checked. (6) and (7) are essentially derived from the group struc-

ture of the non-singular part of a plane cubic curve with a point of inflection being zero.

The first half of (8) is derived from (2). The latter half is also derived from a property

of plane cubics. �

We recall the following:

Theorem 5.1.2 ([N3, 2.1, 2.4]). (1) Let π : X → S be an elliptic fibration between

non-singular varieties. Suppose that π is smooth outside an effective divisor D of

S and that π admits a holomorphic section σ : S → X. Then there exist a triplet

(L,α,β) on S and a bimeromorphic morphism µ : X →WS(L,α,β) over S such

that

(a) L � π∗(OX(σ(S))⊗Oσ(S)),

(b) µ is isomorphic over S � D,

(c) µ ◦ σ is the canonical section.

(2) Let (L,α,β) be a minimal triplet defined over a non-singular variety S such that

D(L,α,β) is a normal crossing divisor. Then the Weierstrass modelW(L,α,β)

has only rational Gorenstein singularities.
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Next, we consider generalized Weierstrass models (cf. [N3, 3.1]). Let L be a reflexive
sheaf of rank one. Suppose that it is Q-invertible, i.e., the double-dual L[m] of some

multiple L⊗m is invertible but the index m #= 0 exists locally on S. Let α ∈ H0(S,L[−4])

and β ∈ H0(S,L[−6]) be sections such that 4α3 + 27β2 is not identically zero on S.

We defineWS(L,α,β) as follows: Suppose that L[m] is invertible for a positive integer

m. Then there is a finite Galois morphism τ : S ′ → S from a normal variety such

that the double-dual L′ of τ ∗L is an invertible sheaf. Then we can define α′ = τ ∗α

and β′ = τ ∗β as sections of L′⊗(−4) and L′⊗(−6), respectively. The Weierstrass model
W′ = W(L′,α′,β′) admits a natural action of the Galois group of τ compatible with

that on S ′. The quotient spaceW(L,α,β) does not depend on the choice of the Galois

covering τ : S ′ → S. In general case, we can patch these local quotient spaces and obtain

a global model W(L,α,β) → S. This is called a generalized Weierstrass model. The

minimality of triplets (L,α,β) is similarly defined.

Now we restrict ourselves to the case that there is a reduced effective divisor D such

that S� := S � D ⊂ S is a toroidal embedding. Let H be a VHS defined over S�.

There is a natural injection H ↪→ LH . As a group object over S
�, H corresponds to a

relative subgroup V(H) of the line bundle V(LH). The relative quotient group object

B(H)� := V(LH)/V(H) over S
� defines a smooth elliptic fibration p� : B(H)� → S� and

its zero section. The sheaf SH of germs of sections of B(H)� → S� is isomorphic to the

cokernel of H ↪→ LH . There is an isomorphism R1p�
∗ZB(H)� � H as VHS.

Definition. The p� : B(H)� → S� is called the smooth basic elliptic fibration associated

with H. We sometimes write B� = B(H)� if H is fixed.

By 5.1.2, we have a triplet (LH ,α�,β�) such that B(H)� is isomorphic toW(H)� :=

W(LH ,α�,β�) over S�, where the zero section is sent to the canonical section.

Let LH/S be the reflexive sheaf defined in 4.2.1. By [N3, 2.5], there exist sections

α ∈ H0(S,L[−4]
H/S) and β ∈ H0(S,L[−6]

H/S) such that

(1) α� = ε4α|S� and β� = ε6β|S� for a nowhere-vanishing function ε on S�,

(2) (LH/S,α,β) is minimal.

In fact, [N3, 2.5] treated the case where S is non-singular, and our case is reduced to

the case, since LH/S is reflexive. Moreover, LH/S is Q-invertible, since LH/S is invertible

for S = (S,D). Therefore, the smooth elliptic fibration p� : B(H)� → S� extends to the

generalized Weierstrass model W(H) := W(LH/S,α,β) → S. We call p :W(H) → S

by the generalized Weierstrass model associated with H.

Remark. Suppose that the local monodromies of H around D are all unipotent. Let

τ : S ′ → S be a holomorphic mapping such that S ′ is normal and that τ−1S� ⊂ S ′ is
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a toroidal embedding. Then for the pullback H ′ = τ−1(H) defined on τ−1S�, we have

LH ′/S′ � τ ∗LH/S. ThusW(H)×S S ′ is isomorphic toW(H ′).

Theorem 5.1.3. For the generalized Weierstrass model p :W(H) =W(LH/S,α,β) →
S associated with H, let σ0 : S → W(H) be the canonical section and let φ0 be an

isomorphism R1p�
∗ZW(H)�

∼→ H of VHS. Let p : B → S be an elliptic fibration having a

meromorphic section σ : S ···→ B. Suppose that

(1) the restriction p−1(S�)→ S� is bimeromorphically equivalent to a smooth elliptic

fibration p′� : B′� → S� over S�,

(2) there is an isomorphism φ : R1p′�∗ZB′� ∼→ H as VHS.

Then, there is a bimeromorphic mapping µ : B ···→W(H) over S such that µ ◦ σ is the

canonical section and φ0 = φ ◦ µ∗|S�.

Proof. Let µ : Ŝ → S be a resolution of singularities such that D̂ := µ−1D is a nor-

mal crossing divisor and that Ŝ � D̂ � S� by µ. The double-dual of µ∗LH/Ŝ is LH/S.

By [N3, 2.5], there are sections α̂ ∈ H0(Ŝ,L⊗(−4)
H/Ŝ

) and β̂ ∈ H0(Ŝ,L⊗(−6)
H/Ŝ

) correspond-

ing to α and β, respectively. Then W(LH/Ŝ, α̂, β̂) is bimeromorphically equivalent to

W(LH/S,α,β) over S. Therefore, we may assume that S is non-singular. By 5.1.2, we

may assume that B =W(L′,α′,β′) for a minimal triplet (L′,α′,β′). Then L′ � LH/S.

We have an isomorphism W(L′,α′,β′) � W(LH/S,α,β) preserving canonical sections

by [N3, 2.5]. For an automorphism ϕ : H ∼→ H as VHS, we have an automorphism

f : W(LH/S,α,β) ∼→ W(LH/S,α,β) over S such that f∗|S� = ϕ. Hence we have a

required bimeromorphic mapping µ : B ···→W(H). �

Definition. An elliptic fibration is called a basic elliptic fibration if it admits a mero-

morphic section. We call the elliptic fibration p : B → S satisfying the condition of 5.1.3

by the basic elliptic fibration associated with H. We write B = B(H) with respect to H.

If LH/S is invertible, then W = W(LH/S,α,β) defined above is a usual Weierstrass

model. The image of a holomorphic section S →W is contained in the open subsetW	.

Thus we can define the sheaf SW
H/S of germs of holomorphic sections ofW→ S from the

group structure ofW	 → S. By the surjective exponential mapping V(LH/S)→W	, we

have a short exact sequence

0→ j∗H → LH/S → S
W
H/S → 0.

We thus define SW
H/S by the exact sequence above also in the case LH/S is not invertible.

Lemma 5.1.4. SW
H/S is isomorphic to the sheaf of germs of automorphisms ϕ :W

∼→W
over S such that ϕ∗|S� is identical on R1p∗ZW|S�. This is also isomorphic to the sheaf

of germs of holomorphic sections of W→ S.
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Proof. Let τ : U ′ → U be a finite Galois covering over an open neighborhood U of s ∈ S

such that it is étale outside D and that the pullback H ′ = τ−1H defined on U ′�τ−1D has

only unipotent monodromies. Then LH ′/U ′ is invertible and LH/S|U is the G-invariant part
of τ∗LH ′/S′ for the Galois group G. Thus the G-invariant part of τ∗S

W
H ′/U ′ is isomorphic

to SW
H/S|U . LetW′ :=WU ′(LH ′/U ′ ,α′,β′) be the minimal Weierstrass model.

Let η be a section of SW
H/S defined over U . As a section of τ∗SW

H ′/U ′ , it defines a G-

equivariant section σ′ : U ′ → W′ of W′ → U ′. Thus we have a holomorphic section of
W → S over U . Further, η acts on W′ as the translation mapping over U ′ by σ′. This

induces an automorphism ofW over U that preserves the VHS H.

Let ϕ be an automorphism W → W over U preserving H. Then, for the Galois

covering U ′ → U , it defines an automorphism ϕ′ : W′ ∼→ W′, since W′ → W is finite

over U . For the canonical section σ′
0 : U ′ →W′, let σ′ := ϕ′ ◦ σ′

0. If σ′ = σ′
0, then ϕ′

is the identity of W′, since it preserves H1(W′
s′ ,Z) for any smooth fibers W

′
s′. Thus ϕ

′

is the translation mapping by the section σ′. By the construction, σ′ is a G-equivariant

section ofW′ → U ′.
If σ is a holomorphic section ofW→ S over U , then it induces a holomorphic mapping

σ′ : U ′ →W′, since U ′ is normal andW′ →W is finite over U . Since σ′ is G-equivariant,

it is considered to be a section of SW
H/S. �

Let η be an element of H1(S,SW
H/S). Then η is represented by a cocycle {ηλ,µ}λ,µ∈Λ

with respect to an open covering {Sλ}λ∈Λ of S, where ηλ,µ is a holomorphic section of

W → S over Sλ ∩ Sµ satisfying ηλ,µ = −ηµ,λ and ηλ,µ + ηµ,ν + ην,λ = 0 on Sλ ∩ Sµ ∩ Sν .

By 5.1.4, we can glue p−1(Sλ) = W ×S Sλ by the cocycle. Then we have an elliptic

fibration pη : Wη → S that is smooth over S� with H(pη) � H. This depends only on

the cohomology class η. There is a section of pη if and only if η = 0.

Remark. The statement of [N3, 2.11] is not true. We must replace meromorphic sections

by holomorphic sections.

5.2. Classification problem

Let S be a normal complex analytic variety and let D be a reduced effective divisor

such that S� := S � D ⊂ S is a toroidal embedding. We denote the ∂-space (S,D) by S

as before. We want to classify elliptic fibrations f : X → S satisfying:

Condition 5.2.1. The restriction f−1(S�) → S� is bimeromorphically equivalent to a

smooth elliptic fibration over S�.

For the elliptic fibration f : X → S satisfying the condition 5.2.1, the smooth ellip-

tic fibration f ′� : X ′� → S� bimeromorphically equivalent to f−1(S�) → S� over S� is
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uniquely determined up to isomorphisms over S�. In particular, we can define a VHS

H(f) := R1f ′
�
∗ZX ′� .

Note that if X is non-singular, then H(f) � (R1f∗ZX)|S� as local constant systems.

A VHS H over S� is determined by a period mapping and a monodromy represen-

tation. By a property of Weierstrass model, H is also determined by a minimal triplet

(L,α,β) consisting of a Q-invertible reflexive sheaf L and sections α ∈ H0(S,L[−4]),

β ∈ H0(S,L[−6]) such that div(4α3 + 27β2) ⊂ D. Thus the classification of such VHS

is related to a kind of moduli problem. Hence, we fix such a VHS H and consider the

classification of marked elliptic fibrations (with respect to (S,D,H)) defined as follows:

A marked elliptic fibration is a pair (f : X → S, φ) consisting of an elliptic fibration

f : X → S from a normal variety satisfying the condition 5.2.1 and of an isomorphism

φ : H(f) ∼→ H as VHS. The φ is called a marking of f . Two marked elliptic fibrations

(f1 : X1 → S, φ1) and (f2 : X2 → S, φ2) are called bimeromorphically equivalent over S,

if there is a bimeromorphic mapping µ : X1 ···→ X2 over S such that φ2 = φ1 ◦ µ∗. The
marked elliptic fibration (p : B(H)→ S, φ) for a basic elliptic fibration p associated with

H is unique up to the bimeromorphic equivalence relation by 5.1.3.

Let Ẽ(S,D,H) denote the set of bimeromorphic equivalence classes of all the marked

elliptic fibrations with respect to (S,D,H).

The set Ẽ(S�, ∅, H) is identical to the set of torsors of the smooth basic elliptic fibration
p� : B(H)� → S�. Therefore, we have a one to one correspondence:

Ẽ(S�, ∅, H)←→ H1(S�,SH).

Remark 5.2.2. In purely algebraic context, Tate–Shafarevich group is similarly defined

to Ẽ(S,D,H). Let S be an irreducible normal separated algebraic scheme over SpecC

and let D be a divisor such that S� := S � D ↪→ S is a toroidal embedding. Assume that

S = San, S� = (S�)an, and D = Dan. There is a basic elliptic fibration p : B → S smooth

over S� such that p = pan : B(H) = Ban → S is a basic elliptic fibration associated

with H. Let η denote the generic point of S and let Bη denote the generic fiber of p.

The curve Bη is a smooth curve of genus one defined over the field C(η) = C(S) that

admits a rational point. Thus Bη is a group scheme over C(η). The Weil–Châtelet group

WC(Bη) is the group H1(SpecC(η)ét,Bη) of isomorphism classes of torsors. The torsor

is a pair (C,Φ) consisting of a smooth projective curve C of genus one over C(η) and

an isomorphism Φ : C ×C(η) C ∼→ Bη ×C(η) C over C via second projection that sends

the diagonal to the zero section. Two pairs (C1, Φ1) and (C2, Φ2) are called isomorphic

if there is an isomorphism µ : C1
∼→ C2 such that (id × µ) ◦ Φ1 = Φ2 ◦ (µ × µ). The

Tate–Shafarevich group XS(Bη) is the subgroup of WC(Bη) consisting of étale locally
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trivial torsors. This is expressed as H1(Sét, ι∗Bη) for the morphism ι : SpecC(η) → S

(cf. [D5]). In particular, XS�(Bη) is similar to Ẽ(S,D,H) or Ẽ(S�, ∅, H) (cf. 7.2).

Remark. In the complex analytic situation, the restriction map Ẽ(S,D,H)→ Ẽ(S�, ∅, H)
is not necessarily injective. For example, an elliptic surface with multiple fibers is con-

structed from an elliptic surface without multiple fibers by means of logarithmic trans-

formations. Two surfaces are isomorphic outside the related fibers, but these are not

bimeromorphically equivalent to each other.

Definition 5.2.3. Let f : X → S be a proper surjective morphism of normal complex

analytic varieties.

(1) An invertible sheaf A of X is called f-ample, if A|f−1(s) is ample for any fiber

f−1(s).

(2) f is called a projective morphism , if there is an f -ample invertible sheaf on X.

(3) f is called a locally projective morphism , if there is an open covering {Sλ} of S
such that f−1(Sλ)→ Sλ is projective for any λ.

(4) f is called BP , if f is bimeromorphically equivalent to a projective morphism over

S.

(5) f is called LBP , if there is an open covering {Sλ} of S such that f−1(Sλ) → Sλ

is BP for any λ.

Remark ([N2, 1.6]). If A is f -ample, then there exist an open covering S = ⋃Sλ, positive

integersmλ, nλ, and closed embeddings f
−1Sλ ↪→ Pnλ×Sλ over Sλ such that the pullback

of the tautological invertible sheaf O(1) of Pnλ to f−1Sλ is isomorphic to the restriction

of A⊗mλ to f−1Sλ.

We introduce some important subsets of Ẽ(S,D,H).

Definition 5.2.4.

E(S,D,H) := {(f : X → S, φ) ∈ Ẽ(S,D,H) | f is LBP};

Eproj(S,D,H) := {(f : X → S, φ) ∈ Ẽ(S,D,H) | f is BP};

Ẽ0(S,D,H;S�) := {(f : X → S, φ) ∈ Ẽ(S,D,H) | f admits local

meromorphic sections over any points of S� };

E0(S,D,H;S�) := E(S,D,H) ∩ Ẽ0(S,D,H;S�);

Eproj0 (S,D,H;S�) := Eproj(S,D,H) ∩ Ẽ0(S,D,H;S�),

for a Zariski-open subset S� ⊂ S� ⊂ S. We write E0(S,D,H) := Ẽ0(S,D,H;S) =

E0(S,D,H;S), Eproj0 (S,D,H) := Eproj0 (S,D,H;S), for the sake of simplicity. Here, we
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denote by (f : X → S, φ) the bimeromorphic equivalence class of (f : X → S, φ) by abuse

of notation.

Proposition 5.2.5. E(S,D,H) has an abelian group structure with the class of basic el-

liptic fibration being zero. The restriction map E(S,D,H) → E(S�, ∅, H) ∼→ H1(S�,SH)

is a group homomorphism.

Proof. We shall define the addition + and the inverse η �→ −η on E(S,D,H) in a natural

way. Let η = (f : X → S, φ) be a marked elliptic fibration. We set−η := (f : X → S,−φ)
for the marking

−φ : H(f) φ−→ H
×(−1)−−−→ H.

If η is a basic elliptic fibration, then η = −η. Let η1 = (f1 : X1 → S, φ1) and η2 =

(f2 : X2 → S, φ2) be two marked elliptic fibrations belonging to E(S,D,H). Let

η�
i = (f

�
i : X

�
i = f−1i S� → S�, φi)

be the restriction of ηi to E(S�, ∅, H) for i = 1, 2. Assume that f�
i are smooth. Then

η�
3 := η�

1 + η�
2 defines a marked smooth elliptic fibration η�

3 = (f�
3 : X

�
3 → S�, φ3) and a

morphism

a� : X�
1 ×S� X�

2 → X�
3

over S� as a gluing of the addition map B(H)� ×S� B(H)� → B(H)�. Let Y denote

the fiber product X1 ×S X2, Y
� := X�

1 ×S� X�
2 and let Γ

� denote Y � ×X�
3
Y �. Then

Γ� ⊂ Y �×S�Y � is proper and smooth over Y � by the second projection and the fiber of the

projection Γ� → Y � over y ∈ Y � is isomorphic to the elliptic curve Ey := (a�)−1(a�(y)).

Therefore, it defines a morphism h : Y � →DY/S into the relative Douady space Y over S.

Let π : Y → S be the structure morphism and let Yy denote the fiber π
−1(π(y)). Then

the relative Zariski-tangent space of DY/S at h(y) is isomorphic to H0(Ey,N Ey/Yy) �
H0(Ey,OEy) � C. Thus h is smooth and h(Y �) is a connected component of DY/S near

h(Y �). By the construction, h(Y �) � X�
3 . By [F2], there is a subvariety X3 ⊂ DY/S

proper over S containing h(Y �) as a Zariski-open subset. Let Γ ⊂ Y ×S X3 be the

induced family of subspaces of Y . Then Γ|S� is isomorphic to the graph of a� : Y � → X�
3 .

In particular, the first projection Γ → Y is bimeromorphic. Therefore, Γ defines a

meromorphic mapping a : Y ···→ X3 that is an extension of a
�. We can define η3 =

η1 + η2 by the induced elliptic fibration X3 → S. If f�
i are not smooth over S

�, then we

replace S� by an open dense subset over which f�
i are both smooth and apply the same

argument above. Then η1+ η2 is similarly defined and is compatible with the addition of

H1(S�,SH). �
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Corollary 5.2.6. Ẽ(S,D,H) has a structure of an abelian group. The subsets E(S,D,H)

and Ẽ(S,D,H;S�) are subgroups.

Proof. It is enough to show the addition + is naturally defined on Ẽ(S,D,H). Let

(f : X → S, φ) be a marked elliptic fibration associated with (S,D,H). By Hironaka’s

flattening [H3], there is a bimeromorphic morphism µ : Ŝ → S such that the main com-

ponent X̂ of X ×S Ŝ induces a flat morphism f̂ : X̂ → Ŝ. We may assume that Ŝ is

non-singular and that D̂ := µ−1D is a normal crossing divisor. We infer that f̂ is a

locally projective morphism, since R1f̂∗O�
X̂
→ R2f̂∗ZX̂ is surjective. Thus (X̂ → Ŝ, µ∗φ)

defines an element of E(Ŝ, D̂, Ĥ) for the induced VHS Ĥ on µ−1S� = Ŝ � D̂ and for

the pullback µ∗φ of the marking. The map E(S,D,H) → E(Ŝ, D̂, Ĥ) is a group homo-

morphism. Thus the addition + of Ẽ(S,D,H) is induced from + of all E(Ŝ, D̂, Ĥ). The

subset Ẽ(S,D,H;S�) is then the kernel of Ẽ(S,D,H) → Ẽ(S�, D ∩ S�, H). �

Theorem 5.2.7 (cf. [K9]). Let f : X → S be an elliptic fibration satisfying 5.2.1. Sup-

pose that X is non-singular. Then Rpf∗OX = 0 for p ≥ 2 and R1f∗OX � LH/S.

Proof. There exist an elliptic fibration f̂ : X̂ → Ŝ between non-singular varieties smooth

outside a normal crossing divisor D̂ of Ŝ, a bimeromorphic morphism µ : Ŝ → S, and a

bimeromorphic morphism ν : X̂ → X such that µ−1D ⊂ D̂, µ is an isomorphism over S�,

and that f ◦ ν = µ ◦ f̂ . Then we have Rpf̂∗OX̂ = 0 for p ≥ 2 and R1f̂∗OX̂ � LH/Ŝ, by

[N4, 3.2.3] (cf. [K9], [M9]). By the spectral sequence

Rpµ∗R
qf̂∗OX̂ =⇒ Rp+qf∗OX,

it suffices to show Rpµ∗LH/Ŝ = 0 for p > 0 and µ∗LH/Ŝ � LH/S. These are done in

4.2.4. �

Corollary 5.2.8. Let f : X → S be an elliptic fibration satisfying 5.2.1. Suppose that

X is non-singular and that there is a subvariety T ⊂ X generically finite over S. Then

Rf∗OX ∼qis OS ⊕LH/S[−1] for H = H(f).

Proof. Suppose that S is non-singular. Let Y → T be a desingularization and let h : Y →
S be the composite. Let R be the ramification divisor of h: KY ∼ h∗KX +R. Then we

have an injection OY ↪→OY (R) and a trace map Rh∗OY (R)→ OS. The composite

OS → Rf∗OX → Rh∗OY → Rh∗OY (R)→ OS

is the multiplication map by deg h > 0. Thus gives the splitting of OS → Rf∗OS. Next,

we consider general case. Let µ : Ŝ → S be a bimeromorphic morphism from a non-

singular variety such that µ−1D is a normal crossing divisor and let f̂ : X̂ → Ŝ be an
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elliptic fibration from a non-singular variety bimeromorphically equivalent to the pullback

of f to Ŝ. Then by 5.2.7,

Rf∗OX ∼qis Rµ∗Rf̂∗OX̂ ∼qis Rµ∗OŜ ⊕ Rµ∗LĤ/Ŝ[−1] ∼qis OS ⊕ LH/S[−1]. �

Remark 5.2.9. Let f : X → S be an elliptic fibration satisfying 5.2.1. Then the expo-

nential sequence of X induces a surjective homomorphism R1f∗O�
X → R2f∗ZX . Hence,

we infer that if X is a Kähler manifold, then f is a locally projective morphism, by the

argument of [N4, 3.3].

Notation 5.2.10. (1) In what follows, we fix a normal complex analytic variety S

and a toroidal embedding S� ⊂ S. D denotes the complement S � S�. We set

S◦ := S � SingD. The related open immersions are denoted by j : S� ↪→ S,

j� : S� ↪→ S◦, and j◦ : S◦ ↪→ S.

(2) For an open subset U ⊂ S, we denote by U the ∂-space (U,D ∩ U). For an open

immersion λ : U1 ↪→ U2, the associated ∂-open immersion is denoted by λ.

(3) We fix a Z-polarized variation of Hodge structure H of weight one and of rank

two, defined on S�.

Note that if S is non-singular, then D is a normal crossing divisor. S◦ is always

non-singular.

5.3. Minimal basic elliptic fibration over S◦

Before studying elliptic fibrations over S, we discuss basic elliptic fibrations defined

over S◦. This corresponds to the case D is non-singular. The structure of these fibrations

are well-known, but we present a brief explanation. The basic fibration p : B(H) → S

is not uniquely determined up to biholomorphic equivalence relation over S, but the

following 5.3.1 asserts that we can select its unique minimal model over S◦. A minimal

model of an elliptic fibration f : X → S is defined to be an elliptic fibration g : Y → S

satisfying the following conditions (cf. [K4], [N2]):

• f and g are bimeromorphically equivalent to each other over S;

• Y has only terminal singularities and KY is g-nef.

An elliptic fibration g : Y → S satisfying the latter condition above is called a minimal

elliptic fibration.

Lemma 5.3.1. There exists a minimal basic elliptic fibration p◦ : B(H)◦ → S◦ of p|S◦.

This is a flat morphism and is determined uniquely up to isomorphisms over S◦. Further

B(H)◦ is non-singular.
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Proof. Let W = W(H) be the generalized Weierstrass model associated with H. By

5.1.1, 5.1.2, W◦ := p−1S◦ = W ×S S◦ has only rational Gorenstein singularities and

the dualizing sheaf ωW◦ is relatively trivial over S◦. Since D� is a smooth divisor, a

singularity of W◦ is isomorphic to the singularity F × Cd−1 for a rational double point

singularity F and d = dimS. Thus we can resolve singularities ofW◦ over S◦ in a natural

way to obtain the minimal model B(H)◦ flat over S◦. The canonical bundle of B(H)◦ is

also relatively trivial over S◦. An irreducible curve in a singular fiber of p◦ : B(H)◦ → S◦

is a fiber of the restriction of p◦ to a prime divisor that does not dominate S◦. Thus

there is no small contraction and hence B(H)◦ is the unique minimal model. �

Remark. (1) There is an isomorphism

ωB(H)◦ � (p◦)∗(ωS◦ ⊗ L⊗(−1)H/S◦ ).

(2) The canonical section of the Weierstrass model W◦ lifts to a section of B(H)◦

sinceW◦ is non-singular along the section.

(3) A singular fiber of p◦ : B(H)◦ → S◦ is isomorphic to one of the non-multiple

fibers of minimal elliptic surfaces (cf. [K7]).

(4) p◦−1D� is not necessarily a normal crossing divisor.

We denote by (B◦)	 the set of all the points of B◦ := B(H)◦ at which p◦ is smooth.

Lemma 5.3.2. Let Γ ⊂ B◦ be a meromorphic section of p◦ : B◦ → S◦. Then Γ is a

holomorphic section, i.e., Γ→ S◦ is an isomorphism. In particular, Γ ⊂ (B◦)	.

Proof. Assume the contrary. Then the canonical divisor KΓ is not relatively nef over

S◦, thus there is a curve γ contained in a fiber of p◦ with the intersection number

KΓ ·γ = Γ ·γ < 0. Over an open neighborhood of the point p◦(γ), there is a prime divisor

F of B◦ such that γ is a fiber of F → p◦(F ). Hence F ⊂ Γ. This is a contradiction. �

Lemma 5.3.3. A bimeromorphic mapping B◦ ···→ B◦ over S◦ is holomorphic.

Proof. Let f be the bimeromorphic mapping. Then f is an isomorphism in codimension

one, since B◦ is a relative minimal model. We may replace S◦ by an open subset and

thus assume that p◦ : B◦ → S◦ is the composite of a closed embedding B◦ ↪→ Pn × S◦

for a projective space Pn and the second projection. If f is not holomorphic, then the

proper transform A′ of a relatively ample divisor A of B◦ is not p◦-nef. Thus A′ contains

a divisor F with p◦(F ) #= S◦ by the same argument as in 5.3.2. For a general relatively

ample divisor A, A′ is irreducible. This is a contradiction. �
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Proposition 5.3.4. The S�-group structure ofB(H)� extends to an S◦-group structure of

(B◦)	. Moreover (B◦)	 acts on B◦ over S◦ compatibly with the open immersion (B◦)	 ↪→
B◦.

Proof. Let π : T → S◦ be a morphism from a non-singular variety and let T � := π−1(S�).

We denote by B◦
T the normalization of the fiber product B◦ ×S◦ T . The canonical

section (zero section) Σ ⊂ B◦ of p◦ : B◦ → S◦ induces a meromorphic section ΣT of

p◦T : B◦
T → T . For a meromorphic section σ : T ···→ B◦

T , we denote by Γσ the prime

divisor of B◦
T defined as the image of σ. For two meromorphic sections σ1 and σ2, let

N be the reflexive sheaf

N := OB◦
T
(Γσ1 + Γσ2 −ΣT ).

Since the restriction of N to a smooth fiber of p◦T is an invertible sheaf of degree one, its

the direct image (p◦T )∗N is a torsion-free sheaf of rank one. This is an invertible sheaf,

since p◦T is an equi-dimensional morphism. There is an effective divisor Γ
′ of B◦

T such

that

N � (p◦T )∗(p◦T )∗N ⊗OB◦
T
(Γ′).

The horizontal part of Γ′ is a prime divisor dominating T bimeromorphically. This

is the meromorphic section corresponding to σ1 + σ2 under the the group structure

B� ×S� T � → T �, where we write B� = B(H)�. Thus we can define the sum σ1 + σ2 as

a meromorphic section. For a meromorphic section σ of p◦T , letM be the reflexive sheaf

M := OB◦
T
(2ΣT − Γσ).

Then its direct image (p◦T )∗M is an invertible sheaf. There is an effective divisor Γ′′ of

B◦
T such that

M� (p◦T )∗(p◦T )∗M⊗OB◦
T
(Γ′′).

The horizontal part of Γ′′ is a prime divisor dominating T bimeromorphically. This is the

meromorphic section corresponding to−σ under the the group structureB�×S�T � → T �.

Thus we can define −σ as a meromorphic section. If π : T → S◦ is a smooth morphism,

then B◦
T � B◦ ×S◦ T and T � T � is a non-singular divisor. Hence the meromorphic

sections σ1, σ2, σ1 + σ2, σ, and −σ are all holomorphic by 5.3.2.

Let us consider the case T = (B◦)	 ×S◦ B◦. The projections p1 : T → (B◦)	 ↪→ B◦

and p2 : T → B◦ induce meromorphic sections σ1 and σ2 of p◦T , respectively. The

meromorphic section σ1 + σ2 induces a meromorphic mapping

µ : (B◦)	 ×S◦ B◦ ···→ B◦
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over S◦. This is an extension of the addition morphism B� ×S� B� → B� of the group

structure B� → S�. The first projection p1 and µ induce a meromorphic mapping

(p1, µ) : (B
◦)	 ×S◦ B◦ ···→ (B◦)	 ×S◦ B◦

over (B◦)	, which corresponds to the translation by σ1 + σ2. This is holomorphic by

5.3.3. Thus µ is also holomorphic. Next, we consider the case T = B◦ and a meromorphic

section id of p◦T corresponding to the identity mapping T = B◦ → B◦ (or the diagonal

locus of B◦×S◦ B◦). Then the “inverse” −id defines a meromorphic mapping B◦ ···→ B◦

over S◦. This is holomorphic also by 5.3.3 and is an extension of the inverse morphism

B� → B� of the group structure p� : B� → S�. In particular, (B◦)	 → S◦ has the

required group structure and (B◦)	 acts on B◦. �

Remark. Let S be a normal integral scheme of finite type over C of dimension one and

let S� ⊂ S be a Zariski-open dense subset. Let p� : B� → S� be an algebraic smooth

basic elliptic fibration over C, S = San, S� = (S�)an, and let H be the VHS defined by

p� = (p�)an. Then B(H)� � (B�)an and (B◦)	 corresponds to the Néron model of the

generic fiber of p�.

Corollary 5.3.5. Let p : B(H) → S be a basic elliptic fibration associated with H and

let σ : S ···→ B(H) be a meromorphic section. Then there exist meromorphic mappings

B(H) ×S B(H) ···→ B(H) and B(H) ···→ B(H) such that their restrictions to S� are

bimeromorphically equivalent to the multiplication mapping and the inverse mapping of

the group structure of B(H)� → S� with σ|S� being zero, respectively. In other words,

p : B(H)→ S has a meromorphic S-group structure.

Proof. B(H) is bimeromorphically equivalent to a generalized Weierstrass model W

over S and W◦ = W ×S S◦ is bimeromorphically equivalent to B(H)◦ over S◦. Since

codim(W�W◦) ≥ 2, the multiplication mapping and the inverse mapping extend toW
as meromorphic mappings. �

Definition 5.3.6. (1) Let p◦ : B(H)◦ → S◦ be the minimal basic elliptic fibration

associated with H. For a holomorphic section of σ◦ of p◦, the sheaf of germs of

holomorphic sections of p◦ has an abelian group structure with σ◦ being zero. We

denote the sheaf by SH/S◦ .

(2) Let p : B(H) → S be a basic elliptic fibration associated with H. For a mero-

morphic section σ : S ···→ B(H) of p, the sheaf of germs of meromorphic sections

of p has an abelian group structure with σ being zero. We denote the sheaf by

SH/S.
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There are natural isomorphisms:

SH/S|S◦ � SH/S◦ , j◦∗SH/S◦ � SH/S.

The second one follows the property codim(S � S◦) ≥ 2.

Notation 5.3.7. In what follows, we fix a basic elliptic fibration p : B = B(H) → S

associated with H and a meromorphic section σ : S ···→ B. The image of σ is denoted

by Σ. σ and Σ are called the zero sections. We assume that B is non-singular and that

p is smooth over S�. The minimal basic elliptic fibration over S◦ is always denoted by

p◦ : B◦ → S◦. Note that p−1S◦ is not necessarily isomorphic to B◦.

5.4. Fundamental diagram

Let f : X → S be an LBP surjective morphism from a non-singular variety such that

f−1S� → S� is bimeromorphically equivalent to a smooth morphism. Then H(f) :=

R1f∗ZX |S� is a locally constant system. Let i : X� := f−1(S�) ↪→ X denote the open

immersion. The quasi-isomorphism

Rf∗RΓ f−1D(ZX) ∼qis RΓD(Rf∗ZX)

induces two spectral sequences

IE
p,q
2 = Rpf∗Hq

f−1D(ZX) =⇒ Ep+q, and IIE
p,q
2 = Hp

D(R
qf∗ZX) =⇒ Ep+q.

Here, E1 = 0 and E2 � IE
0,2
2 = f∗H2

f−1D(ZX) hold.

Lemma 5.4.1. IIE
p,0
2 → Ep is injective for any p. In particular, H0

D(R
1f∗ZX) = 0.

Proof. We can localize S and may assume that there exist a generically finite surjective

morphism µ : Y → S and a morphism σ : Y → X from a non-singular variety Y with

µ = f ◦ σ. We have a trace map Rµ∗ω
top
Y → ωtop

S for the topological dualizing complexes

by Verdier duality (cf. [V2]). Here ωtop
Y ∼qis ZY [2d] and there are natural morphisms

ZS [2d]→ ωtop
S and ωtop

S → Rj◦∗ZS◦ [2d]. The composite

ZS → Rf∗ZX → Rµ∗ZY → ωtop
S [−2d]→ Rj◦∗ZS◦

factors through the multiplication mapping ZS → ZS by the degree of µ and the natural

morphism ZS → Rj◦∗ZS◦ . We know that IIE
p,0
2 = Hp

D(ZS) are sheaves of torsion-free

abelian groups and Hp
D(ZS)→ Hp

D(Rj◦∗ZS◦) are injective by 3.3.1. Thus we are done. �

Remark 5.4.2. There is a trace map Rf∗ω
top
X → ωtop

S . The homomorphism Rdim ff∗ZX →
ZS obtained as H−2d is also called the trace map of f . If f admits a meromorphic section

Σ ⊂ X and if S is non-singular, then ZS → Rf∗ZX has a splitting by the composite

Rf∗ZΣ → Rf∗ω
top
Σ [−2d]→ ωtop

S [−2d] ∼→qis ZS .
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Lemma 5.4.3 (cf. [F5, (1.5)]). Let h : Y → V be a projective surjective morphism with

connected fibers between normal varieties and let D be a Cartier divisor of Y . Assume

that

(1) V has only 1-rational singularities (cf. 3.2.1),

(2) h(SuppD) #= V ,

(3) D · γ = 0 for any irreducible curves γ contained in fibers of h.
Then, locally on V , there exists a positive integer m such that mD is the pullback of a

Cartier divisor of V .

Proof. Let µ : V̂ → V be a bimeromorphic morphism from a non-singular variety and let

ν : Ŷ → Y be a bimeromorphic morphism such that there is a morphism ĥ : Ŷ → V̂ with

µ◦ĥ = h◦ν. Then the pullback ν∗D is a Cartier divisor not dominating V̂ and ν∗D ·γ̂ = 0
for any curves γ̂ contained fibers of ĥ. For a prime divisor E contained in ĥ(Supp ν∗D),

let aE be the maximum of such rational numbers r that ν∗D−rĥ∗E is effective. Then we

have ν∗D = ĥ∗(
∑

aEE) as Q-divisors. In particular, there is a positive integer m (locally

on S) such that mν∗D is the pullback of a Cartier divisor of V̂ . Thus we are reduced to

the case Y is non-singular and h is bimeromorphic. Then the connecting homomorphism

R1h∗O�
Y → R2h∗ZY of the exponential sequence is injective by the assumption (1). Since

D is h-numerically trivial, D = 0 in any stalks (R2h∗QY )v for v ∈ V . Hence, locally on

V , mD is the pullback of a Cartier divisor for some m. �

Lemma 5.4.4. IIE
1,1
2 = H1

D(R
1f∗ZX) is a sheaf of torsion abelian groups.

Proof. Let IIF
1(E2) be the kernel of E2 → IIE

0,2
2 . Then, by 5.4.1, we have an exact

sequence

0→ IIE
2,0
2 → IIF

1(E2)→ IIE
1,1
2 → 0.

Since E2 � f∗H2
f−1D(ZX) � f∗H0

f−1D(DivX), by 5.4.3, the kernel IIF
1(E2) is considered

to be the sheaf of germs of Q-Cartier divisors supported in D whose pullback to X are

Cartier. Therefore, any stalk of IIE
1,1
2 is a torsion group. �

Corollary 5.4.5. If one of the following conditions is satisfied, then H1
D(R

1f∗ZX) = 0

and the sequence

0→ IIE
2,0
2 → E2 → IIE

0,2
2 → IIE

2,1
2

is exact :

(1) S is non-singular and f admits local meromorphic sections over the complement

of an analytic subset of S of codimension ≥ 2;
(2) f admits local meromorphic sections over S.
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Proof. In the case (1), the assertion follows the argument of 5.4.4. For the case (2), we

may localize S and may assume that f admits a meromorphic section. Let Y → X be a

bimeromorphic morphism onto the meromorphic section from a non-singular variety and

let µ : Y → S be the composite. We may assume also that µ−1D is a normal crossing

divisor. There is a commutative diagram

f∗H2
f−1D(ZX) −−−→ H0

D(R
2f∗ZX)� �

µ∗H2
µ−1D(ZY ) −−−→ H0

D(R
2µ∗ZY ).

Here, the IIF
1(E2) is the kernel of the top arrow. The kernel of the bottom arrow is

H2
D(ZS) = IIE

2,0
2 since R1µ∗ZY = 0. By the argument of 5.4.4, we infer that IIE

1,1
∞ = 0

and hence IIE
1,1
2 = 0 by 5.4.1. �

Let f : X → S be an LBP elliptic fibration satisfying 5.2.1 from a non-singular variety.

Suppose that f is smooth over S � D′ for a divisor D ⊂ D′ ⊂ X. We set VX :=

H0
D′(R1f∗O�

X).

Lemma 5.4.6. (1) LetM be an invertible sheaf of X. Its image under H1(X,O�
X)→

H0(S,R1p∗O�
X) is contained in H0(S,VX) if and only if, for any point s ∈ S, there

exist an open neighborhood U and a Cartier divisor E defined on p−1U such that
SuppE ⊂ p−1D′ and thatM|f−1U � Of−1U(E).

(2) VX does not depend on the choice of D′.

(3) Let f ′ : X ′ → S be another elliptic fibration from a non-singular variety that is

bimeromorphically equivalent to f over S. Then R1f∗O�
X/VX � R1f ′∗O�

X ′/VX ′.

Proof. (1) It is enough to show the ‘only if’ part. Let N be the double-dual of f∗M. By

3.3.6, locally on S, N � OS(∆) for a Weil divisor ∆ supported inD. Thus we may assume

that N � OS. Locally over S, there is an effective divisor E
′ satisfying codim f(E ′) ≥ 2,

f(E ′) ⊂ D′, and N � f∗(M⊗OX(E
′)). Since f∗f∗M → M is an isomorphism over

S � D′, we have a local isomorphismM�OX(E) for a divisor E supported in f−1D′.

(2) If f is a smooth morphism, then the trace map R2f∗ZX → ZS is an isomorphism.

In particular, H0
T (R

1p∗O�
B) = 0 for any proper subset T . Therefore, for D′ ⊂ D′′,

H0
D′′(R1f∗O�

X)|S�D′ = 0. Thus VX � H0
D′′(R1f∗O�

X).

(3) We may assume that there is a bimeromorphic morphism ν : X ′ → X over S. By

(2), we may assume that X ′ is also smooth outside D′. Then ν-exceptional divisors define

elements of VX ′. Thus we have the isomorphism. �
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We apply the argument above to the basic elliptic fibration p : B → S, where B is

non-singular and p is smooth over S�. Then we have the spectral sequences

IE
p,q
2 = Rpp∗Hq

p−1D(ZB) =⇒ Ep+q, and IIE
p,q
2 = Hp

D(R
qp∗ZB) =⇒ Ep+q

from the quasi-isomorphism

Rp∗RΓ p−1D(ZB) ∼qis RΓD(Rp∗ZB).

The exponential sequence of B induces a long exact sequence

0→ R1p∗ZB → R1p∗OB → R1p∗O�
B → R2p∗ZB → 0,

by 5.2.7. The image of R1p∗OB → R1p∗O�
B is isomorphic to SW

H/S by 5.4.5. We set VB :=

H0
D(R

1p∗O�
B). Then, by 5.4.6, the quotient sheaf R

1p∗O�
B/VB is uniquely determined by

H. We have

VB ∩SW
H/S = H0

D(S
W
H/S) � H1

D(R
1p∗ZB) = 0,

by 5.4.5. In particular, the composite VB → R1p∗O�
B → R2p∗ZB is injective and there

is an exact sequence

(5.1) 0→ S
W
H/S → R1p∗O�

B/VB → R2p∗ZB/VB → 0.

The quotient sheaf R2p∗ZB/VB also does not depend on the choice of B.

Lemma 5.4.7. (1) Hp
D(O�

S) → Hp(Rp∗RΓ p−1D(O�
B)) is injective for any p. In par-

ticular, the sequence

0→ H1
D(O�

S)→ H1(Rp∗RΓ p−1D(O�
B))→ VB → 0

is exact.

(2) For the spectral sequence IIE
p,q
2 = Hp

D(R
qp∗ZB) =⇒ Ep+q above, we have IIE

2,0
2 =

IIE
2,0
∞ , E

2/IIE
2,0
∞ � IIE

0,2
∞ � VB.

Suppose that [S,D] satisfies the condition 3.2.6. Then the following properties also

hold :

(3) Hp
D(S,Z)→ Hp

p−1D(B,Z) and Hp(S,Z)→ Hp(B,Z) are injective for p ≤ 3.
(4) Hp

D(S,O�
S) → Hp

p−1D(B,O�
B) and Hp(S,O�

S) → Hp(B,O�
B) are injective for p ≤

2. In particular, the sequence

0→ H1
D(S,O�

S)→ H1
p−1D(B,O�

B)→ H0(S,VB)→ 0

is exact.



105

Proof. (3) and the injectiveness of (1), (4) follow from the existence of meromorphic

section of p and 3.3.1. In particular, for the spectral sequences

Hp
D(R

qp∗O�
B) =⇒Hp+q(Rp∗RΓ p−1D(O�

B)), Hp
D(S,R

qp∗O�
B) =⇒ Hp+q

p−1D(B,O�
B),

we have exact sequences

0→ H1
D(O�

S)→ H1(Rp∗RΓ p−1D(O�
B))→H0

D(R
1p∗O�

B) = VB → 0,

0→ H1
D(S,O�

S)→ H1
p−1D(B,O�

B)→ H0
D(S,R

1p∗O�
B) = H0(S,VB)→ 0.

Thus (1) and (4) hold. The equality IIE
2,0
2 = IIE

2,0
∞ of (2) follows from 3.3.1 or 5.4.1. We

have a quasi-isomorphism

RΓD(Rp∗O�
B) ∼qis RΓD(Rp∗OB)⊕RΓD(Rp∗ZB)[1]

by 3.2.4. The second projection induces a commutative diagram of exact sequences

0 −−−→ H1
D(O�

S) −−−→ H1
D(Rp∗O�

B) −−−→ VB −−−→ 0� � � �
0 −−−→ IIE

2,0
2 −−−→ E2 −−−→ IIE

0,2
2 −−−→ IIE

2,1
2 ,

by 5.4.5. Here the first vertical arrow is isomorphic and the second vertical arrow is

surjective. Thus VB � IIE
0,2
∞ . �

The trace map R2p∗ZB → ZS derived from Verdier duality is an isomorphism over S�.

The composite R1p∗O�
B → R2p∗ZB → ZS is the homomorphism measuring the degree of

invertible sheaves restricted to smooth fibers. The trace map and the composite are sur-

jective, since there is a meromorphic section of p. In particular, IIE
1,2
2 = H1

D(R
2p∗ZB) = 0

and IIE
0,2
2 = H0

D(R
2p∗ZB) is the kernel of the trace map.

Lemma 5.4.8. The kernel of R1p∗O�
B/VB → ZS is isomorphic to SH/S.

Proof. Let Ψ: SH/S → R1p∗O�
B/VB be a homomorphism defined as follows: Let Γ ⊂ B

be a meromorphic section of p. Then we attach an invertible sheaf OB(Γ−Σ), where Σ
is the zero section. We define Ψ(Γ) to be the invertible sheaf modulo VB. By localizing

S, we have the sheaf homomorphism Ψ that is injective. We shall show Ψ(SH/S) is

the kernel. Let M be an invertible sheaf such that M · p−1(s) = 0 for s ∈ S�. Then

p∗ (M⊗OB(Σ)) is a torsion-free sheaf of rank one. Hence there is a meromorphic section

Γ ⊂ B and a divisor ∆ supported in p−1D such thatM⊗OB(Σ) � OB(Γ +∆). Hence

Ψ(Γ) =M modulo VB. �
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Let TH/S be the cokernel of E
2 → IIE

0,2
2 . Then we have two exact sequences

0→ TH/S → R2p∗ZB/VB → ZS → 0;(5.2)

0→ SW
H/S → SH/S → TH/S → 0.(5.3)

The first sequence is split by a meromorphic section of p. TH/S also does not depend on

the choice of B. There is an injection

TH/S ↪→ IIE
2,1
2 = H2

D(R
1p∗ZB) � R1j∗H

whose cokernel is IIE
2,1
∞ . As a result, we have:

Theorem 5.4.9. Let p : B = B(H) → S be a basic elliptic fibration associated with H

such that B is non-singular and that p is smooth over S�. Then we have a commutative

diagram Figure 1 of exact sequences.

0 0� �
ZS ZS� �

0 −−−→ R1p∗ZB −−−→ R1p∗OB −−−→ R1p∗O�
B/VB −−−→ R2p∗ZB/VB −−−→ 0∥∥∥∥ ∥∥∥∥ �Ψ �

0 −−−→ j∗H −−−→ LH/S −−−→ SH/S −−−→ TH/S −−−→ 0� �
0 0

Figure 1.

Lemma 5.4.10. TH/S◦ = TH/S|S◦ is isomorphic to the torsion part (R1j�
∗H)tor.

Proof. We may assume S = S◦ and p : B → S is the minimal basic elliptic fibration.

Thus IIE
2,0
2 � ZD. Let p−1D =

∑h
i=1Ci be the irreducible decomposition over a suitable

open neighborhood of a point s ∈ D. Then p−1(s) ∩ Ci are all irreducible curves. The

stalk (E2)s is a free abelian group of rank h generated by Ci. The stalk (IIE
0,2
2 )s is the

kernel of the trace map H2(p−1(s),Z) → Z. Thus (IIE
0,2
2 )s is also a free abelian group

of rank h− 1. By 5.4.5, the cokernel (TH/S)s of (E
2)s → (IIE

0,2
2 )s is a torsion group. On

the other hand, (E3)s is a torsion-free abelian group, since IE
1,2
2 = R1p∗H2

p−1D(ZB) and

IE
0,3
2 = p∗H3

p−1D(ZB) are sheaves of torsion-free abelian groups (cf. 3.3.2, 3.3.1). The
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vanishing IIE
3,0
2 = H3

D(ZS) = 0 implies that there is an injection IIE
2,1
∞ → E3. Hence

(IIE
2,1
∞ )s is torsion-free. Therefore (TH/S)s is the torsion part of (IIE

2,1
2 )s � (R1j∗H)s. �

Corollary 5.4.11. SH/S◦ is characterized by the following condition as a subsheaf of

j�
∗SH containing SW

H/S◦ :

SH/S◦/SW
H/S◦ =

(
j�
∗SH/SW

H/S◦

)
tor

.

Proof. The commutative diagram of exact sequences

0 −−−→ SW
H/S −−−→ SH/S −−−→ TH/S −−−→ 0� � �

0 −−−→ j∗LH/j∗H −−−→ j∗SH −−−→ R1j∗H −−−→ 0

is derived from Figure 1. Then the assertion follows 5.4.10. �

Let S	 ⊂ S be a Zariski-open subset such that S� ⊂ S	 and codim(S � S	) ≥ 2. Let
j	� : S� ↪→ S	 and j	 : S	 ↪→ S denote the open immersions.

Lemma 5.4.12. The natural homomorphism

Rqj	
∗ (j

	�
∗ H) → Rqj	

∗ LH/S�

is zero for q ≥ 1.

Proof. The morphism RΓD(j∗H)→ RΓD(LH/S) is zero by 4.2.3. Let Z
	 be the comple-

ment S�S	. Then RΓZ�(j∗H)→ RΓZ�(LH/S) is zero, sinceRΓ Z� ∼qis RΓ Z�◦RΓD. �

Proposition 5.4.13. Suppose that S	 ⊂ S◦. Then there exists a commutative diagram

of exact sequences :

0 −−−→ R1j	
∗ (j

	�
∗ H) −−−→ TH/S −−−→ j	

∗ (R
1j	�
∗ H)tor −−−→ R2j	

∗ (j
	�
∗ H)∥∥∥∥ � � ∥∥∥∥

0 −−−→ R1j	
∗ (j

	�
∗ H) −−−→ R1j∗H −−−→ j	

∗ (R
1j	�
∗ H) −−−→ R2j	

∗ (j
	�
∗ H).

In particular, TH/S is isomorphic to the kernel of

R1j∗H → j◦∗
(
R1j�

∗H/(R1j�
∗H)tor

)
.

Proof. Let Z	 be the complement of S	 in S. It is enough to show that H0
Z�(TH/S) �

H0
Z�(R1j∗H) and thatH1

Z�(TH/S)→H1
Z�(R1j∗H) is injective. We infer that the injection

TH/S ↪→ R1j∗H is obtained as the composite

H0
D(R

2p∗ZB/VB)→ H1
D(S

W
H/S)→H2

D(j∗H)
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where the left homomorphism is derived from (5.1). Since SH/S � j	
∗ SH/S�, we have an

isomorphism H0
Z�(TH/S) � H1

Z�(SW
H/S) and an injection H1

Z�(TH/S) ↪→H2
Z�(SW

H/S) from

(5.3). By 5.4.12, we have an isomorphism

H0
Z�(TH/S) � H1

Z�(SW
H/S) � H2

Z�(j∗H) � H0
Z�(H2

D(j∗H)).

Further we have an exact sequence

0→ H2
Z�(LH/S)→ H2

Z�(SW
H/S)→ H3

Z�(j∗H).

Since H1
Z�(TH/S) is a sheaf of torsion groups by 5.4.10, the composite

H1
Z�(TH/S) ↪→H2

Z�(SW
H/S)→ H3

Z�(j∗H)

is also injective. This is also obtained as the composite

H1
Z�(TH/S)→ H1

Z�(R1j∗H) � H1
Z�(H2

D(j∗H))→H3
Z�(j∗H),

where the last homomorphism is derived from the spectral sequence associated with

RΓ Z�(RΓD(j∗H)) ∼qis RΓZ�(j∗H). Thus we are done. �

Corollary 5.4.14. Suppose that S� ⊂ S together with 0 ∈ S is a d-dimensional toroidal

embedding of type (N, l, σ). Then

(TH/S)0 �


0, H is of type I0;

N(a⊥ ∩ σ)⊥/Za, H is of type Ia for a #= 0 (cf. 4.3.4);

(R1j∗H)0, otherwise.

Lemma 5.4.15. Suppose that S = S◦. Then we have the following isomorphisms :

R1j∗H � j	
∗ (R

1j	�
∗ H); R2j	

∗ (j
	�
∗ H) = 0;

R1j	
∗ LH/S� � R1j	

∗ SW
H/S� � R1j	

∗ SH/S� .

In particular, R1j	
∗ SH/S� is a sheaf of C-vector spaces.

Proof. We have R1j∗H � j	
∗ (R

1j	�
∗ H) since R1j�

∗H is locally constant over D. Thus

the edge sequence of Leray’s spectral sequence for Rj∗H ∼qis Rj	
∗ (Rj	�

∗ H) induces an

injection R2j	
∗ (j

	�
∗ H) → R2j∗H. We have R

2j∗H = 0 since S = S◦. The sheaf TH/S =

(R1j∗H)tor is also locally constant over D. Hence H1
Z�(TH/S) = 0 and

j	
∗ (R

1j	�
∗ H)→ j	

∗

(
R1j	�

∗ H/TH/S�
)
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is surjective. Hence H2
Z�(TH/S) → H2

Z�(R1j∗H) is injective. We have the following

commutative diagram
H2

Z�(TH/S) −−−→ H2
Z�(R1j∗H)� �

H3
Z�(SW

H/S) −−−→ H4
Z�(j∗H),

where the right arrow is ′′E2,1
2 → ′′E4,0

2 for the spectral sequence

′′Ep,q
2 = Hp

Z�(Rqj∗H) =⇒Hp+q(RΓZ�(Rj∗H)) = 0.

Since R2j∗H = 0, the right arrow is injective. Hence the left arrow is also injective.

Therefore H2
Z�(SW

H/S) � H2
Z�(SH/S). The rest isomorphism H2

Z�(LH/S) � H2
Z�(SW

H/S) is

derived from H3
Z�(j∗H) = R2j	

∗ (j
	�
∗ H) = 0. �

5.5. Elliptic fibration having local meromorphic sections

Proposition 5.5.1. There is an injective group homomorphism

E0(S,D,H) ↪→ H1(S,SH/S).

This is bijective if S = S◦.

Proof. We fix a basic elliptic fibration p : B → S associated with H. Let (f : X → S, φ)

be a marked elliptic fibration contained in E0(S,D,H). Then there exist an open covering

{Uα} of S and meromorphic sections σα : Uα ···→ f−1(Uα). Thus there is a bimeromorphic

mapping hα : f
−1(Uα) ···→ p−1(Uα) such that h

∗
α induces φ over Uα and that hα ◦ σα is

the zero section. The transition mapping

hα ◦ h−1β : p−1(Uα ∩ Uβ) ···→ p−1(Uα ∩ Uβ)

is the translation mapping tr(ηα,β) of a meromorphic section ηα,β of p over Uα ∩Uβ. The

cohomology class of {ηα,β} in H1(S,SH/S) does not depend on the choice of {Uα} and
{hα}. Thus we have an injection E0(S,D,H) ↪→ H1(S,SH/S). By the construction and

by 5.2.5, we infer that this is a group homomorphism. The converse construction has

a problem on gluing p−1Uα by meromorphic translation mappings tr(ηα,β). If S = S◦,

then we can choose p : B → S to be the minimal basic elliptic fibration. Thus the

meromorphic sections ηα,β are holomorphic by 5.3.2. Thus we can glue p−1(Uα). �

Let (f : X → S, φ) be a marked elliptic fibration belonging to E0(S,D,H) such that

X is non-singular. Let D′ ⊃ D be an analytic subset such that f is smooth outside

D′. We define VX := H0
D′(R1f∗O�

X). Then R1f∗O�
X/VX does not depend on the choice

of bimeromorphically equivalent non-singular models X over S by 5.4.6. The composite

VX ↪→ R1f∗O�
X → R2f∗ZX is injective and R1f∗ZX � j∗H by 5.4.5.
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Lemma 5.5.2. Under the situation above, there exist a homomorphism ΨX : SH/S →
R1f∗O�

X/VX and a commutative diagram Figure 2 of exact sequences.

0 0� �
ZS ZS� �

0 −−−→ R1f∗ZX −−−→ R1f∗OX −−−→ R1f∗O�
X/VX −−−→ R2f∗ZX/VX −−−→ 0∥∥∥∥ ∥∥∥∥ �ΨX

�
0 −−−→ j∗H −−−→ LH/S −−−→ SH/S −−−→ TH/S −−−→ 0� �

0 0

Figure 2.

Proof. Let {Uα} be an open covering of S and let Σα ⊂ f−1(Uα) be a meromorphic

section of f−1(Uα)→ Uα. Let hα : f
−1(Uα) ···→ p−1(Uα) be the bimeromorphic mapping

over Uα such that the proper transform of Σα is the zero section Σ ∩ p−1(Uα) and

that hα preserves the marking φ of H. By 5.4.9, over Uα, we have the homomorphism

(ΨX)α : SH/Uα → (R1f∗O�
X/VX)|Uα with the desired property. Note that the (ΨX)α is

obtained as follows: A meromorphic section Γ ⊂ p−1(Uα) is mapped to the equivalence

class of the invertible sheaf O(Γα −Σα), where Γα denotes the proper transform of Γ by

h−1α . We have only to check (ΨX)α = (ΨX)β on Uα ∩ Uβ for any α, β. We know that

hβ ◦ h−1α : p−1(Uα ∩ Uβ) ···→ p−1(Uα ∩ Uβ) is the translation mapping of a meromorphic

section Σβ,α ⊂ p−1(Uα ∩ Uβ). Since a translation mapping of an elliptic curve does not

change invertible sheaves of degree zero, O(Γα − Σα) and O(Γβ − Σβ) are equivalent

over Uα ∩ Uβ modulo VX. Hence we have a global homomorphism ΨX with the desired

property. �

By the construction of ΨX , we have:

Corollary 5.5.3. The cohomology class in H1(S,SH/S) corresponding to (f : X → S, φ)

by 5.5.1 is identical to the image of 1 under the connecting homomorphism H0(S,Z) →
H1(S,SH/S) of the exact sequence:

0→ SH/S
ΨX−−→ R1f∗O�

X/VX → ZS → 0

appearing in Figure 2.
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Proposition 5.5.4. Let (f : X → S, φ) be an element of E0(S,D,H). Then f is BP

if and only if the corresponding cohomology class in H1(S,SH/S) is a torsion element.

Conversely, for a torsion element of H1(S,SH/S), there is a marked elliptic fibration

(f : X → S, φ) belonging to E0(S,D,H) such that f is a BP elliptic fibration smooth

outside D and that (f, φ) represents the torsion element. In particular, we have an

identification:

Eproj0 (S,D,H)←→ H1(S,SH/S)tor.

Proof. If f : X → S is BP and if X is non-singular, then there is an invertible sheaf

M on X whose restriction to a smooth fiber has positive degree. Since the degree is

nothing but the image of the equivalence class ofM in R1f∗O�
X/VX under the surjection

R1f∗O�
X/VX → ZS . Therefore the corresponding cohomology class is a torsion element.

Conversely, suppose that a cohomology class in H1(S,SH/S) is a torsion element of order

m. Let {Uα} be an open covering and let ηα,β be meromorphic sections of p over Uα ∩Uβ

representing the cohomology class. We want to patch p−1(Uα) by the meromorphic

translation mappings tr(ηα,β). Here we consider the multiplication map B
m×···−→ B over

S. The Stein factorization µ : B′ → B is a finite morphism étale over S�. Let p′ : B′ → S

denote the structure morphism. Then there is a commutative diagram

p′−1(Uα ∩ Uβ)
tr(ηα,β)···−→ p′−1(Uα ∩ Uβ)

µ

�
�µ

p−1(Uα ∩ Uβ)
tr(mηα,β)···−→ p−1(Uα ∩ Uβ).

Since {mηα,β} is cohomologous to zero, we can patch p′−1(Uα). Hence we have an elliptic

fibration X ′ → S and a finite morphism X ′ → B over S. In particular, X ′ → S is a BP

morphism smooth outside D. �

Proposition 5.5.5. Let f◦ : X◦ → S◦ be an LBP elliptic fibration smooth outside D�.

If a union of irreducible components of multiplicity 1 of f∗D� dominates D�, then there

exist local meromorphic sections of f◦ over any points of S◦.

Proof. We may assume that S◦ is a polydisc and D� is a coordinate hyperplane and that

f◦ is BP. Let R ⊂ f∗D� be an irreducible component of multiplicity 1 dominating D�. For

a desingularization R̃ → R, the composite R̃ → D� is smooth outside a proper Zariski-

closed subset T ⊂ D� ⊂ S◦. Thus R→ D� admits local sections over D� � T . f◦ is flat

over a Zariski-open subset S@ ⊂ S with codim(S�S@) ≥ 2. Let S	 denote the Zariski-open

subset S@ � T of S◦. Then the restriction of f◦ to S	 belongs to E0(S	, D� ∩ S	, H) and
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corresponds to a torsion element of H1(S@,SH/S◦). For the open immersion j◦	 : S	 ↪→
S◦, we have an isomorphism SH/S◦ � j◦	∗ SH/S� and an exact sequence

0→ H1(S◦,SH/S◦)→ H1(S	,SH/S�)→ H0(S◦, R1j◦	∗ SH/S�).

There is an isomorphism H1(S◦,SH/S◦)tor � H1(S	,SH/S�)tor, since R1j◦	∗ SH/S� is a

sheaf of Q-vector spaces by 5.4.15. Thus f◦ admits a meromorphic section over S	 ∩ U
for an open neighborhood U of 0. Since f◦ is BP, we may assume that (f◦)−1(U) is
bimeromorphically equivalent over U to a closed subvariety of Pn ×U◦ for some n. Since
codim(S◦ � S	) ≥ 2, the meromorphic section extends to U . �

Corollary 5.5.6. Let f◦ : X◦ → S◦ be an LBP elliptic fibration smooth outside D� and

let U ⊂ S◦ be the set of points over which f◦ admits local meromorphic sections. Then

U is a Zariski-open subset.
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6. Description of global structure

In Section 5, we relate E0(S,D,H) with H1(S,SH/S). However, unfortunately, the

method is not sufficient to classify other elliptic fibrations, for example, that have multiple

fibers. In Section 6, we realize E(S,D,H) as a subgroup of the ∂-étale cohomology group

H1(S,SH/S) for the sheaf SH/S of germs of meromorphic sections in the ∂-étale topology

on S = (S,D) defined below. Here, the group of BP-fibrations coincides with the torsion

part of H1(S,SH/S). The calculus in Section 6.2 is important for the proof and other

applications.

For a basic elliptic fibration p : B = B(H) → S, let B be the ∂-space (B,p−1D)

and let p be the induced morphism B → S. The sheaf SH/S of germs of meromorphic

sections of p over S is defined as follows: For a ∂-étale morphism U = (U,∆)→ S with

U = sp(U ),

SH/S(U) := {U ···→ B | meromorphic mapping over S }.

6.1. Fundamental diagram in ∂-étale topology

Let E1(S,D,H) be the subset of E(S,D,H) consisting of marked elliptic fibrations

(f : X → S, φ) such that f satisfies the following condition: For any point of S, there

is a ∂-étale neighborhood (U,∆) → S such that X ×S U → U has a meromorphic

section. E1(S,D,H) is also a subgroup of E(S,D,H) (cf. 5.2.5). We set Eproj1 (S,D,H) :=

Eproj(S,D,H) ∩ E1(S,D,H).

Let f : X → S be an elliptic fibration such that X is non-singular, f−1D is a normal

crossing divisor, and that (f, φ) ∈ E1(S,D,H) for some marking φ. Let X := (X, f−1D)

be the ∂-space and let f : X → S be the induced morphism. Let U = (U,DU)→ S be a

∂-étale morphism, where [U,DU ] is the top realization of U , XU the normalization of the

main component of the fiber product X ×S U , and let fU : XU → U denote the induced

morphism by f . Then XU has only quotient singularities and XU � f−1U DU ↪→ XU is a

toroidal embedding. The analytic space with boundary [XU , f
−1
U DU ] is the top realization

of X ×S U . We denote by f
U
: X ×S U → U the induced morphism.

Let µ : Y → XU be a bimeromorphic morphism from a non-singular variety such that

DY := µ−1f−1U DU is a normal crossing divisor and that µ is an isomorphism outside DU .

Let Y denote the ∂-space (Y,DY ) and let µ : Y → X×SU denote the induced morphism.

Lemma 6.1.1. We have the following isomorphisms, where p ≥ 0:

R1fU∗ZXU
� R1(fU ◦ µ)∗ZY ,

(
R1f∗ZX

) ∣∣∣
U
� R1(f

U
◦ µ)∗ZY ,

RpfU∗OXU
� Rp(fU ◦ µ)∗OY ,

(
Rpf ∗OX

) ∣∣∣
U
� Rp(f

U
◦ µ)∗OY .
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Proof. We have R1µ∗ZY = 0 and Rpµ∗OY = 0 for p > 0, since XU has only rational

singularities. By considering the toroidal embedding XU � f−1U DU ⊂ XU , we also have

R1µ∗ZY = 0 and Rpµ∗OY = 0 for p > 0 from 3.4.2 and 2.2.6. Thus we have the

isomorphisms. �

As in Section 5.4, we consider the quasi-isomorphism

Rf ∗RΓ f−1D(ZX) ∼qis RΓD(Rf ∗ZX).

The cohomology sheaves have Q-structures by 3.4.1. We have two spectral sequences

IE
p,q
2 = Rpf∗H

q
f−1D(ZX) =⇒ Ep+q, and IIE

p,q
2 = Hp

D(R
qf ∗ZX) =⇒ Ep+q,

where E1 = 0 and E2 � IE
0,2
2 = f∗H

2
f−1D(ZX). Let U → X and Y → X ×S U be as

above. Then we have a similar quasi-isomorphism

R(f
U
◦ µ)∗RΓDY

(ZY ) ∼qis RΓDU
(R(f

U
◦ µ)∗ZY )

and similar spectral sequences

IĚ
p,q

2 = Rp(f
U
◦ µ)∗Hq

DY
(ZY ) =⇒ Ě

p+q
,

IIĚ
p,q

2 = Hp
DU
(Rq(f

U
◦ µ)∗ZY ) =⇒ Ě

p+q

for f
U
◦ µ : Y → U . There are natural homomorphisms

IE
p,q
2 |U → IĚ

p,q

2 , IIE
p,q
2 |U → IIĚ

p,q

2 , and Ep+q |U → Ě
p+q

.

Claim 6.1.2. IIE
p,0
2 → Ep is injective for any p. In particular, IIE

0,1
2 = H0

D(R
1f∗ZX) = 0.

Proof. Let εU be the morphism U → U = (U, ∅). The sheaves IIE
p,0
2 have Q-structures

by 3.4.1. Thus εU∗(IIĚ
p,0

2 ) → εU∗(Ě
p
) is injective by 5.4.1. Since IIE

p,0
2 |U � IIĚ

p,0

2 ,

IIE
p,0
2 → Ep is injective. �

Lemma 6.1.3. The following sequence is exact :

(6.1) 0→ IIE
2,0
2 → E2 → IIE

0,2
2 → IIE

2,1
2

We have IIE
1,1
∞ = H1

D(R
1f∗ZX) = 0. In particular, R

1f∗ZX → R1f∗OX is isomorphic to

j∗H → LH/S by the marking φ : (R1f∗ZX)|S�
∼→ H.

Proof. This follows the argument of 5.4.4 and 5.4.3. Because, if ∆ · γ = 0 for any

irreducible curves γ contained in fibers of fU for a Cartier divisor ∆ with Supp∆ ⊂ DY ,

then ∆ = f∗(∆′) for a Q-Weil divisor ∆′ supported in DU . Here ∆
′ is Q-Cartier and

hence ∆′ ∈ DivDU
(U). Therefore, IIE

1,1
∞ = IIE

1,1
2 = 0. �
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The exponential sequence of X induces a long exact sequence:

0→ R1f∗ZX → R1f ∗OX → R1f ∗O
�
X → R2f∗ZX → 0,

by 5.2.7. The first homomorphism is isomorphic to j∗H → LH/S by 6.1.3. Let SW
H/S be

the cokernel of j∗H → LH/S. Then we have the the following two short exact sequences:

0→ R1f∗ZX →R1f∗OX → S
W
H/S → 0;(6.2)

0→ SW
H/S →R1f∗O

�
X → R2f∗ZX → 0.(6.3)

Let D′ ⊃ D be a reduced divisor such that f is smooth over S � D′. We define VX :=

H0
D′(R1f ∗O

�
X). As in 5.4.6, it does not depend on the choice ofD

′. We have VX∩SW
H/S = 0

since H0
D(S

W
H/S) � H1

D(R
1f∗ZX) = 0 by 6.1.3. Thus (6.3) induces an exact sequence

(6.4) 0→ SW
H/S → R1f∗O

�
X/VX → R2f ∗ZX/VX → 0.

Lemma 6.1.4. Let D′
U be the pullback of D

′ by U → S and let

VY := H0
D′

U
(R1(f

U
◦ µ)∗O�

Y ).

Then the sheaf R1f ∗O
�
X/VX is associated with the presheaf

U �−→WPic(XU )/Vf−1
U D′

U
(XU ) � Pic(Y )/Vµ−1f−1

U D′
U
(Y ).

Moreover the following isomorphisms exist :(
R1f∗O

�
X/VX

) ∣∣∣
U
� R1(f

U
◦ µ)∗O�

Y /VY ,
(
R2f∗ZX/VX

) ∣∣∣
U
� R2(f

U
◦ µ)∗ZY /VY .

Proof. The first assertion follows 3.4.5. The second isomorphisms are derived from the

same argument as 5.4.6 and from 6.1.3. �

We have a trace map R2f∗ZX → ZS which is just the restriction homomorphism

R2f∗ZX → j∗

(
(R2f∗ZX)|S�

)
� ZS .

The composite R1f∗O
�
X → R2f∗ZX → ZS is the homomorphism measuring the degree

of invertible sheaves restricted to smooth fibers. Since (f : X → S, φ) ∈ E1(S,D,H),

the trace map is surjective. In particular, IIE
1,2
2 = H1

D(R
2f∗ZX) = 0 and IIE

0,2
2 =

H0
D(R

2f ∗ZX) is the kernel of the trace map.

Assume that B is non-singular and that p−1D is a normal crossing divisor for the

basic elliptic fibration p : B → S. We follow the argument of 5.4.8. Then the kernel of

R1p∗O
�
B/VB → ZS is isomorphic to SH/S by a homomorphism

ΨB : SH/S → R1p∗O
�
B/VB

defined as follows: For a meromorphic section σ : U ···→ B of p : B → S over U , the

image Γσ = σ(U) ⊂ BU is a prime divisor, where BU denotes the normalization of the
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main component of B ×S U . The pullback ΣU of the canonical section Σ ⊂ B of p is a

meromorphic section of pU : BU → U . The homomorphism ΨB sends σ to the equivalence

class of the invertible sheaf

OB×SU (Γσ −ΣU).

Even if f : X → S does not admit a meromorphic section, we can define such a homo-

morphism ΨX that

0→ SH/S

ΨX−−→ R1f∗O
�
X/VX → ZS → 0

is exact. This is because (f : X → S, φ) ∈ E1(S,D,H) and we can apply the same

argument as 5.5.2.

We have a quasi-isomorphism

RΓD(Rf ∗O
�
X) ∼qis RΓD(Rf ∗OX)⊕ RΓD(Rf ∗ZX)[1]

by 3.4.1. The second projection induces a commutative diagram of exact sequences

H1
D(O�

S) −−−→ H1
D(Rf ∗O

�
X) −−−→ VX −−−→ 0� � � �

H2
D(ZS) −−−→ E2 −−−→ IIE

0,2
2 −−−→ IIE

2,1
2 .

Hence VX is isomorphic to the image of E2 → IIE
0,2
2 . Let TH/S be the cokernel of

E2 → IIE
0,2
2 . Then we have two exact sequences

0→ TH/S → R2f ∗ZX/VX → ZS → 0;(6.5)

0→ S
W
H/S → SH/S → TH/S → 0.(6.6)

Thus TH/S also does not depend on the choice of X. Further there is an injection

TH/S ↪→ IIE
0,2
2 = H2

D(R
1f∗ZB) � R1j∗H

whose cokernel is IIE
2,1
∞ . Therefore, we have the following theorem from 5.4.9, 5.4.10,

5.4.11, 5.4.13, and 6.1.4.

Theorem 6.1.5. Let (f : X → S, φ) be a marked elliptic fibration in E1(S,D,H) such that

X is non-singular and f−1D is a normal crossing divisor. Then we have a commutative

diagram of exact sequences : Figure 3. Further, the following properties are satisfied :

(1) TH/S◦ = (TH/S)|S◦ is isomorphic to the torsion part (R1j�
∗H)tor.

(2) SH/S◦ is a subsheaf of j�
∗SH such that

SH/S◦/SW
H/S◦ =

(
j�
∗SH/SW

H/S◦

)
tor

.

(3) TH/S is isomorphic to the kernel of

R1j∗H → j◦∗

(
R1j�

∗H/(R1j�
∗H)tor

)
.
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0 0� �
ZS ZS� �

0 −−−→ R1f ∗ZX −−−→ R1f∗OX −−−→ R1f∗O
�
X/VX −−−→ R2f∗ZX/VX −−−→ 0∥∥∥∥ ∥∥∥∥ �ΨX

�
0 −−−→ j∗H −−−→ LH/S −−−→ SH/S −−−→ TH/S −−−→ 0� �

0 0

Figure 3.

Corollary 6.1.6. Suppose that S� ⊂ S together with a point 0 ∈ S is a d-dimensional

toroidal embedding of type (N, l, σ). Then

(TH/S)0 �

0, H has only finite modomoromies;

N(a⊥ ∩ σ)⊥Q/Za, H has infinite monodromies, where a is defined in 4.3.

Let S� ⊂ S	 ⊂ S be the Zariski-open subset introduced in 5.4. Let S	 denote the

∂-space (S	, D ∩ S	), and let j	 : S	 ↪→ S and j	� : S� ↪→ S	 be the related ∂-open

immersions. Then

0→ Rpj	
∗LH/S� → Rpj	

∗S
W
H/S� → Rp+1j	

∗ (j
�
∗H)→ 0

is a split exact sequence for p > 0 by 4.2.3.

Lemma 6.1.7. Suppose that S	 ⊂ S◦. Then the following properties hold :

(1) The natural homomorphisms

Rpj◦∗(j
�
∗H)→ Rpj	

∗ (j
	�
∗ H)

are isomorphic for p ≤ 2.
(2) The sequence

0→ R1j	
∗ (j

	�
∗ H)→ TH/S → j	

∗TH/S� → R2j	
∗ (j

	�
∗ H)

is exact.

(3) The image of the composite

j	
∗TH/S� → R1j	

∗S
W
H/S� → R2j	

∗ (j
	�
∗ H)

is the torsion part of R2j	
∗ (j

	�
∗ H).
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(4) The composite R1j	
∗TH/S� → R2j	

∗S
W
H/S� → R3j	

∗ (j
	�
∗ H) is injective. In particu-

lar,

R1j	
∗S

W
H/S� → R1j	

∗SH/S�

is surjective.

Proof. (1) Let j◦	 : S	 → S◦ denote the ∂-open immersion. Then we have an isomorphism

R1j�
∗H � j◦	∗ (R

1j	�
∗ H). In particular, R1j◦∗(R

1j�
∗H) → R1j	

∗ (R
1j	�
∗ H) is injective. By

considering two spectral sequences:

Rpj	
∗ (R

qj	�
∗ H) =⇒ Rp+qj∗H, and Rpj◦∗(R

qj�
∗H) =⇒ Rp+qj∗H,

we have the expected isomorphisms.

(2) is derived from (1) and from the diagram of 5.4.13.

(3) By (1), we may assume S◦ = S	. Then this follows 4.4.3.

(4) Let us consider the commutative diagram

R1j◦	∗ TH/S� −−−→ R1j◦	∗ (R
1j	�
∗ H)� �

R2j◦	∗ SW
H/S� −−−→ R3j◦	∗ (j

�
∗H).

The top arrow is injective, since R1j�
∗H is locally constant on D�. The right vertical

arrow is an isomorphism since Rpj�
∗H = 0 for p ≥ 2. Next, we consider the commutative

diagram
R1j	

∗TH/S� −−−→ R3j	
∗ (j

	�
∗ H)� �

j◦∗(R
1j◦	∗ TH/S�) −−−→ j◦∗(R

3j◦	∗ (j
	�
∗ H)).

The bottom arrow is injective by the previous diagram. The left vertical arrow is an

isomorphism since Rpj◦∗TH/S◦ = 0 for p > 0 by 4.4.3. Thus we are done. �

Lemma 6.1.8. R1j	
∗SH/S� is a sheaf of Q-vector spaces.

Proof. Let Z	 be the complement S � S	. Then

R1j	
∗SH/S� � H2

Z�(SH/S) � H0
Z�(H2

Z�∪SingD(SH/S)).

Thus we are reduced to the case S	 ⊂ S◦. Then it follows 6.1.7. �
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6.2. Calculation of cohomology groups

Definition 6.2.1. (1) Let L•
H/S be the object of the derived category of sheaves of

abelian groups of S corresponding to the complex

[· · · → 0→ LH/S → SH/S → 0→ · · · ],

where LH/S lies in the degree zero.

(2) Let L•
H/S be the object of the derived category of sheaves of abelian groups of the

∂-space S corresponding to the complex

[· · · → 0→ LH/S → SH/S → 0→ · · · ],

where LH/S lies in the degree zero.

(3) Let QH/S be the cokernel of TH/S → R1j∗H. This is IIE
2,1
∞ of Section 5.4. Simi-

larly, let QH/S be the cokernel of TH/S → R1j∗H.

Lemma 6.2.2. QH/S is a sheaf of torsion-free abelian groups supported in D. QH/S is a

sheaf of Q-vector spaces supported in D. There exist a canonical isomorphism

ε∗QH/S � QH/S ⊗Q

for ε : S → S and an exact sequence

0→ R1j◦∗(j
�
∗H)⊗Q→ R1j∗H ⊗Q→ QH/S ⊗Q→ 0.

Proof. The last exact sequence is derived from 5.4.13, since TH/S◦ is a sheaf of torsion

abelian groups. The natural homomorphism R1j∗H → ε∗R
1j∗H induces TH/S → ε∗TH/S

and QH/S → ε∗QH/S. Thus we can check only on the stalks at a point of S. Thus we may

assume that S and D are as in Section 4 and we consider stalks at the origin 0 ∈ S. Then

the stalk (QH/S)0 is a Q-vector space by 4.4.1. If H is of type I0 or I(+), then (QH/S)0 is

torsion-free and (QH/S)0 ⊗Q � (ε∗QH/S)0 by 4.3.1 and 4.4.1. Suppose that H is not of

type I0 nor I(+). Then (R
1j∗H)0 is a finite group. Thus (QH/S)0 = 0 and

(R1j∗H)0 ⊗Q � (R1j∗(H ⊗Q))0 � (ε∗R1j∗(H ⊗Q))0 � (ε∗R1j∗H)0 ⊗Q = 0

by 2.2.6. We have a short exact sequence

0→ TH/S ⊗Q→ (R1j∗H) ⊗Q→ QH/S → 0.

Since R1ε∗(TH/S ⊗Q) = 0, we have (ε∗QH/S)0 = 0. �
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Remark 6.2.3. Suppose that S� ⊂ S together with a point 0 ∈ S is a d-dimensional

toroidal embedding of type (N, l, σ). Then

(QH/S)0 �


Z⊕2l, H is of type I0;

Z⊕N(a⊥ ∩ σ)∨, H is of type Ia for a #= 0 (cf. 4.3.4) ;

0, otherwise.

From the exact sequence: 0→ H → LH → SH → 0, we have quasi-isomorphisms

[· · · → 0→ j∗LH → j∗SH → 0→ · · · ] ∼qis τ≤1Rj∗H;

[· · · → 0→ j∗LH → j∗SH → 0→ · · · ] ∼qis τ≤1Rj∗H.

Thus there are natural morphisms L•
H/S → τ≤1Rj∗H and L•

H/S → τ≤1Rj∗H. Their

mapping cones are quasi-isomorphic to QH/S[−1] and QH/S[−1], respectively. We have
morphisms Rj∗H → LH/S and Rj∗H → LH/S by 4.2.3. Thus the morphisms L•

H/S →
LH/S and L•

H/S → LH/S are decomposed into L•
H/S → τ≤1Rj∗H → LH/S and L•

H/S →
τ≤1Rj∗H → LH/S, respectively. Hence we have the following two commutative diagrams

of triangles:

· · · +1−−−→ L•
H/S −−−→ LH/S −−−→ SH/S

+1−−−→ · · ·� � ∥∥∥∥
· · · +1−−−→ τ≤1Rj∗H −−−→ LH/S ⊕QH/S[−1] −−−→ SH/S

+1−−−→ · · ·

(6.7)

· · · +1−−−→ L•
H/S −−−→ LH/S −−−→ SH/S

+1−−−→ · · ·� � ∥∥∥∥
· · · +1−−−→ τ≤1Rj∗H −−−→ LH/S ⊕QH/S[−1] −−−→ SH/S

+1−−−→ · · ·

(6.8)

Definition 6.2.4. We denote the image of H1(S�, H)→ H1(S,LH/S)⊕H0(S,QH/S) by

C(H/S), and the image of H1(S�, H)→ H0(S,QH/S) by C(H/S).

Theorem 6.2.5. We have the following long exact sequence:

H0(S,SH/S)→ H1(S�, H)→ H1(S,LH/S)⊕H0(S,QH/S ⊗Q)→ H1(S,SH/S)→

→ H2(S�, H)→ H0(S,R2j∗H ⊗Q).

In particular, we have further the following two short exact sequences:

0→ C(H/S)⊗Q/Z→ H1(S,SH/S)tor → H2(S�, H)tor → 0;

0→ QH/S ⊗Q/Z→ R1ε∗SH/S → (R2j∗H)tor → 0.



121

Proof. We have isomorphisms H1(S, τ≤1Rj∗H) � H1(S,Rj∗H) � H1(S�, H) and an

exact sequence

0→ H2(S, τ≤1Rj∗H)→ H2(S,Rj∗H) � H2(S�, H)→ H0(S,R2j∗H).

Since R2j∗H is a sheaf of Q-vector spaces by 4.4.1, we have ε∗(R
2j∗H) � R2j∗H ⊗ Q.

Hence the first exact sequence is derived. The torsion part H2(S�, H)tor is contained in

the kernel of H2(S�, H)→ H0(S,R2j∗H ⊗Q). Since H1(S,LH/S) and H1(S,QH/S ⊗Q)

are Q-vector space, the homomorphism H1(S,SH/S)tor → H2(S�, H)tor is surjective.

Further its kernel is coming from C(H/S)⊗Q. Thus we have the second sequence. The

last sequence is also obtained by Riε∗. We note here that R
1ε∗LH/S = 0, and the image

of ε∗SH/S � SH/S → H1(Rε∗Rj∗H) � R1j∗H is TH/S. �

Let p : B = B(H)→ S be the basic elliptic fibration associated with H (cf. 5.3.7). Let

i : B� ↪→ B denote the open immersion. Then we have a natural morphismRi∗ZB� →OB

as in 3.2.2.

Theorem 6.2.6. There are quasi-isomorphisms

Rp�
∗ZB� ∼qis ZS� ⊕H[−1]⊕ ZS� [−2];(6.9)

Rp∗OB ∼qis OS ⊕LH/S[−1].(6.10)

The induced morphism Rj∗Rp�
∗ZB� ∼qis Rp∗Ri∗ZB� → Rp∗OB (cf. 3.2.2) is decomposed

into the natural morphisms Rj∗ZS� →OS (cf. 3.2.2), Rj∗H[−1]→ LH/S[−1] (cf. 4.2.3),
and Rj∗ZS� [−2]→ 0.

Proof. For the zero section Σ ⊂ B, Σ→ S is isomorphic over S�. Thus ZS� → Rp�
∗ZB�

admits a splitting. Similarly, the trace map Rp�ωtop
B� → ωtop

S� admits a splitting. Hence

we have (6.9). Let Ŝ → Σ be a desingularization and let µ : Ŝ → S denote the composite.

Then OS → Rp∗OB → Rµ∗OŜ
∼qis OS is identical. Thus we have (6.10) by 5.2.7. For the

component Rj∗ZS� of Rj∗Rp�
∗ZB� ∼qis Rp∗Ri∗ZB� , the morphism into Rp∗OB factors

through OS. For the component Rj∗ZS� [−2], we consider the composite

Ri∗ZΣ� [−2] ∼qis Ri∗ω
top
Σ� [−2d− 2]→ Ri∗ω

top
B� [−2d − 2] ∼qis Ri∗ZB� →OB,

for Σ� = Σ ∩ B�. This factors through RΓΣ(OB). The morphism RΓΣ(Ri∗ZB�) →
RΓΣ(OB) is zero as in 3.2.2, 4.2.3 provided that Σ ∪ p−1D is a normal crossing divisor.

By replacing B, we may assume this condition. Hence Rj∗ZS� [−2] → Rp∗OB is zero.

There is a commutative diagram:

Rp∗Ri∗ZB� −−−→ Rµ∗ZŜ
−−−→ Rj∗ZS�� � �

Rp∗OB −−−→ Rµ∗OŜ
−−−→ OS.
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Since H[−1] → Rp�
∗ZB� → ZS� is zero, the composite Rj∗H[−1] → Rp∗OB → OS is

zero. The rest thing to show is that the induced morphism Rj∗H → LH/S coincides with

the morphism of 4.2.3. This is reduced to the case S is non-singular. Because, by a

desingularization µ : Ŝ → S that is isomorphic over S�, Rj∗H → Rp∗OB is written as

Rµ∗ of the similar morphism over Ŝ. Moreover, we may assume S is a local object: S is a

unit polydisc and D is a union of coordinate hyperplanes. By considering the unipotent

reduction of H, we may further assume that H is of type I0 or I(+). This is because

Rj∗H → Rp∗OB is written as Rε∗ of Rj∗H → Rp∗OB for p : B = (B,p−1D) → S.

We can also replace B by a bimeromorphic model that is isomorphic over B�. Thus we

assume that p : B → S is a toric model or a smooth model (cf. [N4]). We follow an

argument in [Z, 15.5]. Let Ω1
B/S(logp−1D) be the cokernel of

p∗Ω1
S(logD)→ Ω1

B(logp−1D).

This is locally free by the figure of p−1D and is isomorphic to the relative dualizing sheaf

ωB/S � p∗L−1H/S. For the relative logarithmic de Rham complex Ω•B/S(logp−1D), there is

a triangle

· · · +1−→ Ω1
B/S(log p−1D)[−1]→ Ω•B/S(logp−1D) → OB

+1−→ · · ·

Since Rip∗ωB/S are torsion-free, we have isomorphisms

R0p∗Ω
•
B/S(log p−1D) � R2p∗Ω

•
B/S(log p−1D) � OS,

an exact sequence

0→ R1p∗ωB/S → R1p∗Ω
•
B/S(logp−1D) → R1p∗OB → 0,

and vanishings Rqp∗Ω
•
B/S(logp−1D) = 0 for q ≥ 2. Hence the Hodge spectral sequence

Rqp∗Ω
p
B/S(logp−1D) =⇒ Rp+qp∗Ω

•
B/S(logp−1D)

degenerates at E1 and the locally free sheaf R
qp∗Ω

•
B/S(logp−1D) is isomorphic to the

canonical extension H(q)can
S of Rqp�

∗ZB� ⊗OS� . Here

H(q)can
S �


OS, q = 0, 2;

Hcan
S , q = 1;

0, otherwise.

Let Lp be the filtration of Ω•B(logp−1D) defined by

Lp(Ω•B(log p−1D)) = p∗Ωp
S(logD) ∧ Ω

•−p
B (logp−1D).

Then we have quasi-isomorphisms

GrpL(Ω
•
B(log p−1D)) ∼qis p∗Ωp

S(logD)
L
⊗Ω•B/S(logp−1D)[−p].
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For the spectral sequence LE
p,q
1 associated with L, we have

LE
p,q
1 = Rp+qp∗Gr

p
L(Ω

•
B(logp−1D)) � Ωp

S(logD)⊗ Rqp∗Ω
•
B/S(logp−1D)

� Ωp
S(logD)⊗ H

(q)can
S ,

where the complex LE
•,q
1 is isomorphic to the logarithmic de Rham complex Ω•S(logD)⊗

H(q)can
S defined by the logarithmic connection ∇. For the filtration Dec(L), we have

quasi-isomorphisms

GrpDec(L)Rp∗Ω
•
B(logp−1D) → Ω•S(logD)⊗ H

(−p)can
S [p] ∼qis Rj∗(R

−pp�
∗CB�)[p].

Since the induced filtration L on OB by the natural morphism Ω•B(logp−1D) → OB is

trivial, we have GrpDec(L)Rp∗OB ∼qis R
−pp∗OB[p]. Therefore, Rj∗(H ⊗C)→ R1p∗OB �

LH/S is the same morphism as 4.2.3. �

Remark. The relation between logarithmic de Rham complexes both on B and on S is

mentioned in [Z, 15.5, 2.16] for general fibration B → S over a non-singular curve S.

The theory of mixed Hodge modules [S1] by Saito treats more general object and shows

the similar compatibility at least in the category of algebraic varieties.

Lemma 6.2.7. OS(∗D)� � p∗OB(∗p−1D)�.

Proof. We consider the basic elliptic fibration p : B → S. We have a triangle

· · · +1−→ τ≤2Rj∗Rp�
∗ZB� → Rp∗OB → τ≤1Rp∗OB(∗p−1D)� +1−→ · · · .

The left complex is quasi-isomorphic to τ≤2Rj∗ZS� ⊕ τ≤1Rj∗H[−1] ⊕ ZS [−2] by 6.2.6.
Since j∗H → R1p∗OB � LH/S is injective, we have a triangle

· · · +1−→ τ≤1Rj∗ZS� → p∗OB → p∗OB(∗p−1D)� +1−→ · · ·

and the isomorphism OS(∗D)� � p∗OB(∗p−1D)� by 3.2.3. �

From the morphism Ri∗ZB� → OB, we have a triangle:

(6.11) · · · +1−→ Ri∗ZB� → OB ⊕ RΓ p−1D(ZB)[1]→O�
B

+1−→ · · ·

Combining with a similar triangle for S and D, we have a commutative diagram of exact

sequences

H2(S�,Z) −−−→ H2(S,OS)⊕H3
D(S,Z) −−−→ H2(S,O�

S)� � �
H2(B�,Z) −−−→ H2(B,OB)⊕H3

p−1D(B,Z) −−−→ H2(B,O�
B).

If [S,D] satisfies the condition 3.2.6, then every vertical arrows are injective by 3.3.1 and

5.4.7.
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Lemma 6.2.8. (1) There is a triangle

· · · +1−→ p∗H2
p−1D(ZB)[−1]→ τ≤1Rp∗O�

B → OS(∗D)� ⊕ (SH/S ⊕ ZS)[−1] +1−→ · · ·

(2) There exist a triangle

· · · +1−→ p∗H2
p−1D(ZB)[−2]→ τ≤2Rp∗ZB → τ≤1Rj∗ZS� ⊕ L•

H/S[−1]⊕ ZS [−2] +1−→ · · ·

and a commutative diagram of triangles

· · · +1−−−→ VB[−2] −−−→ R1p∗O�
B[−2] −−−→ SH/S[−2]⊕ ZS [−2] +1−−−→ · · ·∥∥∥∥ � �

· · · +1−−−→ VB[−2] −−−→ τ≥1τ≤2Rp∗ZB −−−→ L•
H/S[−1]⊕ ZS [−2] +1−−−→ · · ·

(3) If [S,D] satisfies the condition (3.2.6), then the following sequence is exact :

0→ Divp−1D(B)/DivD(S)→ Pic(B)/Pic(S)→ H0(S,SH/S)⊕ Z→ 0.

(4) If [S,D] satisfies the condition (3.2.6), then the torsion-free group C(H/S) is

isomorphic to the image of

H2(B�,Z)/H2(S�,Z)→ H2(B,OB)/H
2(S,OS)⊕H3

p−1D(B,Z)/H3
D(S,Z).

Proof. (1) Let us consider the following morphism induced from (6.11):

(6.12) p∗H2
p−1D(ZB)[−1] ∼qis (τ≤2Rp∗RΓ p−1D(ZB))[1]→ τ≤1Rp∗O�

B

and let C• be its mapping cone. Note that the mapping cone of similar morphism

H2
D(ZS)[−1] → O�

S is quasi-isomorphic to OS(∗D)� by 3.2.3. Since the image of the

induced morphism p∗H2
p−1D(ZB) → R1p∗O�

B from (6.12) is VB, we have H0(C•) =
OS(∗D)�, H1(C•) = SH/S ⊕ ZS, Hp(C•) = 0 for p ≥ 2. In particular, there is a commu-
tative diagram of triangles

(6.13)

· · · +1−−−→ (τ≤2RΓD(ZS))[1] −−−→ O�
S −−−→ OS(∗D)� +1−−−→ · · ·� � �

· · · +1−−−→ (τ≤2RΓ p−1D(ZB))[1] −−−→ τ≤1Rp∗O�
B −−−→ C• +1−−−→ · · ·

The zero section Σ ⊂ B is bimeromorphic to S and Σ� = Σ ∩ B� is isomorphic to

S�. Let Y → Σ be a bimeromorphic morphism from a non-singular variety and let

µ : Y → Σ→ S be the composite. We may assume that µ−1D is a normal crossing divisor.

Note that Y � µ−1D � S � D = S�. Let jY : S
� ↪→ Y be the open immersion. Then

we have OS(∗D)� � µ∗OY (∗µ−1D)� by 3.2.3. By the restrictions Rp∗RΓ p−1D(ZB) →
Rµ∗RΓ µ−1D(ZY ) and Rp∗OB → Rµ∗OY , we have a morphism C• → Rµ∗OY (∗µ−1D)�.
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Since µ∗H2
µ−1D(ZY ) → R2µ∗ZY is surjective by 3.3.1-(5), we have another commutative

diagram

· · · +1−−−→ (τ≤2RΓ p−1D(ZB))[1] −−−→ τ≤1Rp∗O�
B −−−→ C• +1−−−→ · · ·� � �

· · · +1−−−→ (τ≤2RΓ µ−1D(ZY ))[1] −−−→ τ≤1Rµ∗O�
Y −−−→ µ∗OY (∗µ−1D)� +1−−−→ · · ·

Thus OS(∗D)� → C• has a splitting and C• ∼qis OS(∗D)� ⊕ (SH/S ⊕ ZS)[−1].
(2) The triangle

· · · +1−→ Rp∗RΓ p−1D → Rp∗ZB → Rp∗Ri∗ZB�
+1−→ · · ·

induces another triangle

· · · +1−→ τ≤2Rp∗RΓ p−1D(ZB)→ τ≤2Rp∗ZB → τ≤1Rj∗ZS� ⊕ L•
H/S[−1]⊕ ZS [−2] +1−→ · · ·

This is because τ≤2Rp∗RΓ p−1D(ZB) is quasi-isomorphic to p∗H2
p−1D[−2] and the image

of p∗H2
p−1D → R2p∗ZB is VB. Combined with a triangle in the proof of (1), we have the

commutative diagram.

(3) H3
D(S,Z) → H3

p−1D(B,Z) and H2(S,O�
S) → H2(B,O�

B) are injective by 5.4.7.

Thus we have an exact sequence

0→ H2
p−1D(B,Z)/H2

D(S,Z) � H0(S,VB)→ Pic(B)/Pic(S)→ H0(S,SH/S)⊕ Z

from (6.13). Here, the right arrow is surjective, since an element of H0(S,SH/S) defines

a divisor of B by Ψ (cf. 5.4.8) and since the invertible sheaf OB(Σ) attached to the zero

section Σ goes to 1 ∈ Z.

(4) By (3), the cokernel of the homomorphism

Pic(B)/Pic(S)→ H2(B�,Z)/H2(S�,Z) � H1(S�, H)⊕H0(S�,Z)

induced from (6.11) is isomorphic to C(H/S). �

Theorem 6.2.9. There is an exact sequence

(6.14) 0→ H0(S,SH/S)⊗Q/Z→ lim−→m
H1(S�, H ⊗ µm)→ H1(S,SH/S)tor → 0,

where µm := m−1Z/Z ⊂ Q/Z. In particular, we also have an exact sequence

(6.15) 0→ TH/S ⊗Q/Z→ R1j∗(H ⊗Q/Z)→ R1ε∗SH/S → 0.

Suppose that [S,D] satisfies the condition (3.2.6). Then for the basic elliptic fibration

p : B → S associated with H, there is an exact sequence:

(6.16) 0→ Pic(B)

Vp−1D(B) + Pic(S)
⊗Q/Z→ lim−→m

H2(B�,µm)

H2(S�,µm)
→ H1(S,SH/S)tor → 0,

where Vp−1D(B) is the image of Divp−1D(B)→ Pic(B) (cf. 3.4.5).
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Proof. Let us consider the multiplication mappings by a positive integerm in the triangle

· · · +1−→ τ≤1Rj∗H → LH/S ⊕QH/S[−1]→ SH/S
+1−→ · · ·

Then the map SH/S
×m−−→ SH/S is surjective and its kernel mSH/S is isomorphic to j∗(H⊗

µm) ∼qis Rj∗(H ⊗ µm) by 4.4.1. Thus we have an exact sequence

0→ H0(S,SH/S)⊗µm → H1(S�, H ⊗ µm)→ mH
1(S,SH/S)→ 0.

The inductive limit for µm ⊂ Q/Z induces the first exact sequence (6.14). The second

sequence (6.15) follows the isomorphism SH/S ⊗ Q/Z � TH/S ⊗ Q/Z. The morphism

O�
B → Ri∗ZB� [1] of (6.11) induces a homomorphism

Pic(B)⊗ µm → H2(B�,µm) � H2(S�,µm)⊕H1(S�, H ⊗ µm)⊕ µm.

by (6.9). Then we have an exact sequence

Divp−1D(B)

DivD(S)
⊗ µm →

Pic(B)

Pic(S)
⊗ µm →

H2(B�,µm)

H2(S�,µm)
→ mH

1(S,SH/S)→ 0.

by 6.2.8. The third exact sequence (6.16) is obtained by the inductive limit for µm ⊂
Q/Z. �

Definition 6.2.10. Let S� ⊂ S be a Zariski-open subset with S� ⊂ S�. We define the

group X(S�/S,H) to be the kernel of H1(S,SH/S)tor → H0(S�, R1ε∗SH/S). In the case

S� = S, we simply write X(S,H) :=X(S/S,H) � H1(S,SH/S)tor.

Proposition 6.2.11. Let S� ⊂ S be a Zariski-open subset with S� ⊂ S�. Then, there is

an exact sequence

(6.17) 0→ H0(S,SH/S)⊗Q/Z→ lim−→m
H1(S�,L•

H/S

L
⊗µm)→X(S�/S,H)→ 0.

For the basic elliptic fibration p : B → S associated with H, suppose that p is flat over

S� and set B� := p−1S�. Then we have an exact sequence

(6.18) (Pic(B)/Pic(S))⊗Q/Z→ lim−→m
H2(B�,µm)/H

2(S�,µm)→X(S�/S,H).

If S is compact, then the cokernel of the right homomorphism is a finite group (cf. [D5,

2.24]).

Proof. For a positive integer m, we have quasi-isomorphisms

SH/S

L
⊗µm[−1] ∼qis mSH/S � j∗(H ⊗ µm) ∼qis Rj∗(H ⊗ µm).

They induce a triangle

· · · +1−→ SH/S

L
⊗µm → (τ≤1Rj∗(H ⊗ µm))[1]→ m(R

1ε∗SH/S)
+1−→ · · ·
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By taking cohomology groups over S�, we have a commutative diagram of exact sequences

0 −−−→ H0(S�,SH/S

L
⊗µm) −−−→ H1(S�, H ⊗ µm) −−−→ H0(S�,m(R

1ε∗SH/S))� ∥∥∥∥ �
0 −−−→ H0(S,SH/S)⊗ µm −−−→ H1(S�, H ⊗ µm) −−−→ mH

1(S,SH/S),

where the right bottom arrow is surjective. The first exact sequence (6.17) follows the

quasi-isomorphism SH/S

L
⊗µm ∼qis L

•
H/S

L
⊗µm[1]. Let ν : C̃ → p−1D be the normaliza-

tion. Then H2
p−1D(ZB) � ν∗ZC̃ by 3.2.4, since B is non-singular. For simplicity, we write

ZC̃ for ν∗ZC̃ . Since R
1(p ◦ ν)∗ZC̃ is a sheaf of torsion-free abelian groups, we have

p∗H2
p−1D(ZB)

L
⊗µm ∼qis p∗(ZC̃ ⊗µm).

For the normalization D̃ → D, we have only an injection H2
D(ZS) ↪→ ZD̃. Now S� is

non-singular, since p is flat over it. Let D̃� ⊂ D̃ be the pullback of D∩S� and let C̃� ⊂ C̃

be the pullback of C ∩B�. Then H2
D(ZS)|S� � ZD̃� , H2

D(ZS)|S�
L
⊗µm ∼qis ZD̃� ⊗ µm,

and VB|S� � p∗ZC̃�/ZD̃� by 5.4.7. Since ZS� → Rp∗ZB� has a splitting (cf. 5.4.2), we

have an exact sequence

H0(C̃�,µm)

H0(D̃�,µm)
→ H2(B�,µm)

H2(S�,µm)
→ H1(S�,L•

H/S

L
⊗µm)⊕ µm → H1(S�,VB ⊗µm)

from 6.2.8-(2). Here, the last homomorphism is decomposed as

H1(S�,L•
H/S

L
⊗µm)⊕µm → H0(S�,TH/S

L
⊗µm)→ H1(S�,VB ⊗ µm).

Let G(m,S�) be the image of the composite. Since H1(C̃�,µm)→ H1(C̃� ∩ p−1S◦,µm)

is injective, we have injections

H1(S�,VB ⊗ µm) ↪→ H1(S� ∩ S◦,VB ⊗ µm), and G(m,S�) ↪→ G(m,S� ∩ S◦).

If m is divisible by 12, then H0(S� ∩ S◦,TH/S

L
⊗µm) � H1(S� ∩ S◦,TH/S◦) ⊕ H0(S� ∩

S◦,TH/S◦). Thus, lim−→m
G(m,S�) is a finite group provided that S is compact. Now we

have the following commutative diagram of exact sequences

H0(C̃,Z)

H0(D̃,Z)
⊗ µm −−−→ Pic(B)

Pic(S)
⊗ µm −−−→ H0(S,SH/S)⊗ µm ⊕ µm� � �

H0(C̃�,µm)

H0(D̃�,µm)
−−−→ H2(B�,µm)

H2(S�,µm)
−−−→ H1(S�,L•

H/S

L
⊗µm)⊕ µm.
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Here the left vertical arrow is surjective, since C̃� is a Zariski-open subset of C̃ . Hence

the first exact sequence (6.17) induces the second sequence (6.18). The cokernel of

lim−→m

H2(B�,µm)

H2(S�,µm)
→X(S�/S,H)

is isomorphic to lim−→m
G(m,S�). �

Remark. Assume that there exist another open immersion S� ↪→ S ′ and a bimeromorphic

morphism µ : S ···→ S ′ such that

(1) S� is a Zariski-open subset of S ′,

(2) S� ⊂ S ′ is a toroidal embedding,

(3) µ|S� is the identity of S�.

Then X(S�/S,H) �X(S�/S ′, H) by 6.2.11.

Theorem 6.2.12. Suppose that S� ⊂ S together with a point 0 ∈ S is a d-dimensional

toroidal embedding of type (N, l, σ). Then we have

H1(S,SH/S) � (R1ε∗SH/S)0 and H1(S,SH/S) � H1(S◦,SH/S◦)tor.

Let {ν1, ν2, . . . , νk} be the set of all the vertices of σ,
⊕k

i=1 Zνi → N the induced morphism,

and let M = Hom(N,Z)→ M′ be its dual. Then the cohomology groups H1(S,SH/S) and

H1(S◦,SH/S◦), and the restriction mapping H1(S◦,SH/S◦) → H1(S�,SH) � H2(S�, H)

are described as follows:

• The case H is of type I0. There are isomorphisms H
1(S,SH/S) � M ⊗ (Q/Z)⊕2,

H1(S�,SH) � M⊗ Z⊕2, and

H1(S◦,SH/S◦) � (M′
Q/M)

⊕2 ⊕H1(S◦,OS◦).

The restriction mapping H1(S◦,SH/S◦)→ H1(S�,SH) is a zero map.

• The case H is of type I(+). Assume that H is of type Ia for 0 #= a ∈ σ∨ ∩M and

a = αu for a positive integer α > 0 and for a primitive element u ∈ M. For

numbers ai = 〈a, νi〉, let M′ = M< ⊕ M+ be the direct sum, where M< is dual to⊕
ai=0 Zνi and M+ is dual to

⊕
ai>0 Zνi. Then

H1(S,SH/S) � Q/Z ⊕ Hom(N(a⊥ ∩ σ),Q/Z) ⊕ (M ∧ u/M ∧ a),

H1(S◦,SH/S◦) � H1(S◦,OS◦) ⊕ M+
Q/Za ⊕ M<

Q/Hom(N(a
⊥ ∩ σ),Z)⊕

⊕ M/Zu ⊕
2∧

M
/

M ∧ a.

The restriction map H1(S◦,SH/S◦)→ H1(S�,SH) is the projection to the factor

M/Zu ⊕
2∧

M
/

M ∧ a � H1(S�,SH) � H2(S�, H).
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• Other cases. There are isomorphisms

H1(S,SH/S) � H2(S�, H) and H1(S◦,SH/S◦) � H1(S◦,LH/S◦)⊕H2(S�, H).

The restriction map H1(S◦,SH/S◦) → H1(S�,SH) � H2(S�, H) is the second

projection.

Proof. We have H1(S,LH/S) = 0. Hence H1(S�, H) → H1(S◦,LH/S◦) is zero since it

passes through H1(S,LH/S). Hence H1(S◦,SH/S◦) contains H1(S◦,LH/S◦) as a direct

factor. The rest factor is an extension of H2(S�, H) by the cokernel of H1(S�, H) →
H0(S◦,QH/S◦ ⊗Q), since R2j∗H|S◦ = 0.

We have Hp(S�, H) � (Rpj∗H)0 for any p and H0(S,QH/S) � (QH/S)0 by 3.1.4. The

isomorphism H1(S,SH/S) � (R1ε∗SH/S)0 is derived from the commutative diagram

H1(S�, H) −−−→ H0(S,QH/S ⊗Q) −−−→ H1(S,SH/S) −−−→ H2(S�, H)tor −−−→ 0∥∥∥∥ ∥∥∥∥ � ∥∥∥∥
(R1j∗H)0 −−−→ (QH/S)0 ⊗Q −−−→ (R1ε∗SH/S)0 −−−→ (R2j∗Htor)0 −−−→ 0

obtained by 6.2.5. Thus H1(S,SH/S) is a torsion group and hence H1(S,SH/S) �
H1(S◦,SH/S◦)tor by 6.1.8. From 6.2.5, we infer that H1(S,SH/S) is the extension of

H2(S�, H)tor by C(H/S) ⊗ Q/Z. Since C(H/S) is a free abelian group of finite rank,

H1(S,SH/S) � C(H/S)⊗Q⊕H2(S�, H)tor.

Therefore, in order to calculate these cohomology groups, it is enough to describe the

following two homomorphisms

H1(S�, H)→ H0(S,QH/S ⊗Q);(6.19)

H1(S�, H)→ H0(S◦,QH/S◦ ⊗Q).(6.20)

If H is neither of type I0 nor I(+), then we have QH/S = 0. If H is of type I0, then

R1j∗H � QH/S. Hence (6.19) is isomorphic to the natural injection M⊕2 → M⊕2
Q . Since

H0(S◦,QH/S◦) �
k⊕

i=0

H0(Di,Z
⊕2) � M′⊕2,

(6.20) is isomorphic to M⊕2 → M′⊕2
Q . Suppose finally that H is of type Ia for 0 #= a ∈

σ∨ ∩M. By 4.3.4, 4.3.6 (or 4.4.2, 4.4.3), we have isomorphisms

H0(S,QH/S ⊗Q) � Q⊕ Hom(N(a⊥ ∩ σ),Q), and H0(S◦,QH/S◦ ⊗Q) � M′
Q,

and we infer that H0(S,QH/S⊗Q)→ H0(S◦,QH/S◦⊗Q) is isomorphic to the direct sum

of Q
a−→ M+

Q and the natural inclusion Hom(N(a⊥ ∩ σ),Q) → M<
Q. The homomorphism

(6.19) is written as Z⊕M/Za → Q⊕Hom(N(a⊥∩σ),Q) which is the sum of Z→ Q and

the natural homomorphism M/Za → Hom(N(a⊥ ∩ σ),Q). Hence the cokernel of (6.19)
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is isomorphic to the direct sum Q/Z⊕ Hom(N(a⊥ ∩ σ),Q/Z) and the cokernel of (6.20)

is isomorphic to M+
Q/Za ⊕M<

Q/Hom(N(a
⊥ ∩ σ),Z). �

Remark. There is another way to calculate (R1ε∗SH/S)0 by using (6.15).

6.3. Description of E(S,D,H).

We assume that p−1D is a normal crossing divisor for our basic elliptic fibration

p : B → S. Recall that the fixed zero section σ of p defines a relative meromorphic

group structure of p.

Definition 6.3.1. A ∂-étale covering family {ϕα : Uα → S}α∈Λ is called good if the

following two conditions are satisfied:

(1) Let [Uα, Dα] be the top realization. Then the image Sα := ϕα(Uα) is an open

subset of S.

(2) The morphism ϕα : Uα → Sα is a finite Galois covering.

For a good ∂-étale covering family {Uα → S}α∈Λ, letHα be the pullback of H to Uα�Dα.

Let pα : Bα = B(Hα) → Uα denote a basic elliptic fibration associated with Hα. For

two indices α, β ∈ Λ, let Uα,β be the normalization of Uα ×S Uβ . Then [Uα,β, Dα,β] is

the top realization of Uα×S Uβ for a naturally defined boundary Dα,β . We have also the

pullback Hα,β of H to Uα,β � Dα,β. Let pα,β : Bα,β = B(Hα,β) → Uα,β denote a basic

elliptic fibration associated with Hα,β. Note that Uα,α � Gα × Uα for the Galois group

Gα of ϕα : Uα → Sα. For a given ∂-étale covering family of S, there is a finer and good

∂-étale covering family. Thus we need only good ∂-étale covering families in order to

consider ∂-étale cohomology groups.

Let (f : X → S, φ) be a marked elliptic fibration belonging to E1(S,D,H) such that X

is non-singular and that f−1D is a normal crossing divisor. Then the exact sequence

0→ SH/S → R1f∗OX/VX → ZS → 0

defines a cohomology class η(X/S, φ) in H1(S,SH/S) that depends on the bimeromorphic

equivalence class of (f, φ). The η(X/S, φ) is also constructed as follows: By the assump-

tion, there exist a good ∂-étale covering family {Uα = (Uα, Dα) → S} as before and
bimeromorphic mappings hα : Xα ···→ Bα over Uα that preserves the marking φ, where

Xα denotes the normalization of the main component of X ×S Uα. The bimeromorphic

mapping hβ ◦ h−1α : Bα,β ···→ Bβ,α is the translation mapping of a meromorphic section

ηα,β of Bα,β → Uα,β, since this preserves the pullback Hα,β of H. By the construction

of ΨX , we infer that η(X/S, φ) above is determined by the cocycle {ηα,β} (cf. 5.5.2).
Moreover, the map E1(S,D,H) → H1(S,SH/S) is a group homomorphism by 5.2.5.
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Lemma 6.3.2. E1(S,D,H) → H1(S,SH/S) is injective.

Proof. For two marked elliptic fibrations (f1 : X1 → S, φ1) and (f2 : X2 → S, φ2) in

E1(S,D,H), suppose η(X1/S, φ1) = η(X2/S, φ2). Then there exist a good ∂-étale covering

family {Uα → S} and bimeromorphic mappings

h1,α : X1,α ···→ Bα, and h2,α : X2,α ···→ Bα

over Uα that preserve the marking φ, where Xi,α denotes the normalization of the main

component of X ×S Uα, for i = 1, 2. The bimeromorphic mappings

hi,β ◦ h−1i,α : Bα,β ···→ Bα,β

for i = 1, 2, respectively, are the translation mappings of meromorphic section ηi
α,β of

Bα,β → Uα,β. By taking a finer ∂-étale covering family, we may assume that there is a

collection of meromorphic sections σα of Bα → Uα such that

η1α,β − η2α,β = p∗α(σα) − p∗β(σβ),

where pα and pβ , respectively, stand for the projections Uα,β → Uα and Uα,β → Uβ .

Thus we have a collection of bimeromorphic mappings qα : X1,α ···→ X2,α such that the

pullbacks of qα and qβ to Uα,β are same. Therefore we can glue these qα to a global

bimeromorphic mapping X1 ···→ X2 over S. �

Lemma 6.3.3 (cf. 5.5.4).

Eproj1 (S,D,H) = H1(S,SH/S)tor ∩ E1(S,D,H).

If (f : X → S, φ) is contained in the set above, then there is a finite surjective morphism

τ : S ′ → S such that τ is étale outside D and that X ×S S ′ → S ′ admits a meromorphic

section.

Proof. Let (f : X → S, φ) be a marked elliptic fibration contained in E(S,D,H). If f is

BP and if X is non-singular, then there is an invertible sheaf of X with positive degree on

a smooth fiber. Thus if further (f, φ) ∈ E1(S,D,H), then the cohomology class η(X/S, φ)

is a torsion element. Therefore, we have Eproj1 (S,D,H) ⊂ H1(S,SH/S)tor.

Next, suppose that (f, φ) ∈ E1(S,D,H) and that the order m of η(X/S, φ) is fi-

nite. There are a good ∂-étale covering family {ϕα : Uα → S}α∈Λ and a Čech cocycle
{ηα,β} of SH/S representing η(X/S, φ). Let pα : Uα,β → Uα and pβ : Uα,β → Uβ stand

for projections. We may assume that there are sections σα of Bα → Uα such that

mηα,β = p∗β(σβ) − p∗α(σα) for any α, β ∈ Λ. Let µ : B ···→ B be the multiplication
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mapping by m. Then we have µ ◦ tr(ηα,β) = tr(mηα,β) ◦ µ for the same multiplication
mapping µ : Bα,β ···→ Bα,β. Therefore, the meromorphic mappings defined by

X ×S Uα
bim···→ Bα

µ···→ Bα

tr(−σα)···−→ Bα

can be patched to a generically finite meromorphic mapping µX : X ···→ B over S. Let

X� → S� be a smooth elliptic fibration bimeromorphically equivalent to f−1S� → S�.

Then µX induces a finite étale covering X� → B�. Let S ′′ be an irreducible component

of the proper transform of the zero section Σ of p : B → S by µX and let S ′′ → S ′ → S

be the Stein factorization. Let S�′ ⊂ X� be the proper transform of S ′′ ∩ f−1S�. Then

S�′ is an irreducible component of the proper transform of Σ ∩B�. Since Σ ∩B� ∼→ S�,

S�′ → S� is a finite étale morphism. In particular, S ′ ×S S� � S�′. Therefore the finite

morphism S ′ → S is étale outside D. �

The following theorem is proved in the case S is non-singular in [N4, §4].

Theorem 6.3.4.

E1(S,D,H) = E(S,D,H).

This means that for any LBP elliptic fibration f : X → S satisfying the condition 5.2.1

and for any point s ∈ S, there exist a ∂-étale neighborhood (U,DU) → (S,D) of s and
a meromorphic section of X ×S U → U .

Proof. First we shall show E1(S◦, D�, H) = E(S◦, D�, H). Thus we may assume that S

and D are non-singular, i.e., S = S◦. Since the property is local, we can localize S if

necessarily. Let (X → S, φ) be a marked elliptic fibration in E(S,D,H). Then there

exists locally over S a finite branched covering S ′ → S such that it is étale outside D

and that the general singular fiber of X ×S S ′ → S ′ is reduced. By 5.5.5, X ×S S ′ → S ′

admits a local meromorphic section. Hence (X → S, φ) ∈ E1(S,D,H).

Next, we treat the general case. Let (f : X → S, φ) be an element of E(S,D,H). Then

its restriction to S◦ determines an element of E1(S◦, D�, H) � H1(S◦,SH/S◦). There is

an exact sequence:

0→ H1(S,SH/S)→ H1(S◦,SH/S◦)→ H0(S,R1j◦∗SH/S◦).

By 6.1.8, the image of the cohomology class η(X◦/S◦, φ) in any stalk of R1j◦∗SH/S◦

is zero. In particular, there is a ∂-étale covering family {ϕα : Uα = (Uα, Dα) → S}
such that X ×S Uα → Uα admits a meromorphic section over U

◦
α = Uα ×S S◦. Since

codim(Uα � U◦
α) ≥ 2, the meromorphic section extends to Uα ···→ X ×S Uα. Therefore

(f, φ) ∈ E1(S,D,H). �

We pose the following
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Problem 6.3.5. Is the map E(S,D,H) → H1(S,SH/S) bijective?

For an element η ∈ H1(S,SH/S), we have a good ∂-étale covering family {Uα → S}α∈Λ
and a Čech cocycle {ηα,β}α,β∈Λ of SH/S representing η. The ηα,α is a meromorphic section

of the pullback of p : B → S to Uα,α � Gα × Uα. Thus it defines a cocycle contained

in Z1(Gα, H
0(Uα,SHα/Uα)). Therefore, we have a new meromorphic action of Gα on Bα

compatible with Uα. Since Gα is a finite group, we can define the ‘quotient’ Gα\Bα up to

the bimeromorphic equivalence over Sα � Gα\Uα. Let us choose a model Xα of Gα\Bα

such that fα : Xα ···→ Sα is holomorphic. By the cocycle condition for ηα,α and ηα,β, there

is a bimeromorphic mapping

Xα ×Sα (Sα ×S Uβ) ···→ p−1(Sα)×S Uβ

over Sα ×S Uβ . Therefore we have meromorphic mappings

hα,β : f
−1
α (Sα ∩ Sβ) ···→ f−1β (Sα ∩ Sβ)

such that hα,β ◦ hβ,γ ◦ hγ,α = id over Sα ∩ Sβ ∩ Sγ. Hence if we choose models Xα so

that hα,β are all holomorphic, then we have a marked elliptic fibration (f : X → S, φ)

corresponding to η.

Theorem 6.3.6. The injection E(S◦, D�, H) → H1(S◦,SH/S◦) is bijective. Further any

cohomology class is attained by uniquely a relatively minimal locally projective elliptic

fibration.

Proof. We may assume that S = S◦. Thus D is non-singular. According to the argument

above, it suffices to construct models Xα of Gα\Bα such that Xα → Sα is minimal and

that hα,β are all holomorphic. The minimal models Xα → Sα are constructed in [N4,

§5]. �

Proposition 6.3.7. Suppose that mη ∈ E(S,D,H) for an element η ∈ H1(S,SH/S) and

for a positive integer m. Then η ∈ E(S,D,H). More precisely, if (g : Y → S, φg) corre-

sponds to mη, then there exist a marked elliptic fibration (f : X → S, φf ) corresponding

to η and a finite morphism µ : X → Y over S such that the homomorphism

H
φ−1

g−−→ H(g)
µ∗
−→ H(f)

φf−→ H

is the multiplication by m. In particular, if g is smooth over S�, then (f−1S� → S�, φ) is

a marked smooth elliptic fibration corresponding to η|S� ∈ E(S�, ∅, H), and µ : X → Y is

the unique extension of a finite étale morphism f−1S� → g−1S�
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Proof. Let {Uα → S}α∈Λ be a good ∂-étale covering family and let {ηα,β}α,β∈Λ be a Čech

cocycle of SH/S representing η. Let Xα and hα,β be the varieties and the meromorphic

mappings, respectively, defined as before. Let (g : Y → S, φ) be a marked elliptic fibration

corresponding to mη. The multiplication mapping B ···→ B by m induces meromorphic

mappings µα : Xα ···→ g−1(Sα) such that µα ◦ hα,β = µβ over Sα ∩ Sβ. By replacing Xα,

we may assume that µα : Xα → g−1Sα are finite morphisms. Then hα,β are holomorphic

and thus we have a marked elliptic fibration (f : X → S, φ) corresponding to η. �

Remark. The multiplication mapping SH/S
×m−−→ SH/S by a positive integer m is surjec-

tive, the kernel mSH/S is isomorphic to j∗(H⊗µm), andH
1(S,mSH/S) � H1(S�, H⊗µm).

Thus we have a commutative diagram

H0(S,SH/S) −−−→ H1(S,mSH/S) −−−→ H1(S,SH/S)� ∥∥∥∥ �
H0(S�,SH) −−−→ H1(S�, H ⊗ µm) −−−→ H1(S�,SH).

If mη′ = mη and if η′|S� = η|S� for another η′ ∈ H1(S,SH/S), then η′ − η is coming

from σ� ∈ H0(S�,SH). Let (g : Y → S, φ) be a marked elliptic fibration representing

mη = mη′. Suppose that g is smooth outside S�. By 6.3.7, there exist marked elliptic

fibrations (f : X → S, φ) and (f ′ : X ′ → S ′, φ), and finite morphisms µX : X → Y and

µX ′ : X ′ → Y such that η = η(X/S, φ), η′ = η(X ′/S, φ) and that µX and µX ′ are derived

from the multiplication mapping by m. Then we have an isomorphism h� : X|S� ∼→ X ′|S�

such that µX ′ ◦ h� = tr(σ�) ◦ µX for the translation mapping tr(σ�) : B� → B�.

Theorem 6.3.8. The subgroup Eproj(S,D,H) ⊂ E(S,D,H) is identified with the torsion

part H1(S,SH/S)tor. For an elliptic fibration f : X → S satisfying the condition 5.2.1, f

is BP if and only if there is a prime divisor Γ ⊂ X such that f(Γ) = S. If f is smooth

outside S�, we can choose Γ to be étale over S�.

Proof. Let m be the order of an element η ∈ H1(S,SH/S)tor. Let p : B → S be a basic

elliptic fibration associated with H such that p−1S� → S� is smooth. By 6.3.7, there

exist a marked elliptic fibration (f : X → S, φ) representing η and a finite morphism

µ : X → B of degree m2 over S. Let Σ ⊂ B be the zero section and let Γ be an

irreducible component of µ−1Σ. Then f(Γ) = S and Γ is étale over S�. �

By 6.2.12, we have

Corollary 6.3.9. Let s ∈ S be a point. Then (R1ε∗SH/S)s describes all the germs of

marked projective elliptic fibrations defines near s that is smooth over S�.



135

Theorem 6.3.10. Let S� ⊂ S together with a point 0 ∈ S be a toroidal embedding of type

(N, l, σ). Let f : X → S be a BP elliptic fibration satisfying 5.2.1. Suppose that H(f)

is not of type I
(∗)
(+). If f has no meromorphic section, then there exist a bimeromorphic

mapping M → S and a prime divisor Γ ⊂ M such that the singular fiber type along Γ is

mIa for some m > 1, a ≥ 0.

Proof. Step 1. We follow the notation of 4.3. Let ν ∈ σ ∩ N be a primitive element. It

corresponds to a prime divisor Γ of a normal variety V over S, where µ : V → S is a

bimeromorphic mapping obtained by a subdivision of σ and hence V � := µ−1S� ∼→ S�

and V � ⊂ V is a toroidal embedding. Let U ⊂ V be the complement of the reduced

divisor (µ∗D)red − Γ. Then Γ� = Γ∩ U is non-singular and jU : V
� ⊂ U is also a toroidal

embedding. We have an exact sequence

(6.21) 0→ H0(S,TH/S)⊗Q/Z→ H1(S�, H ⊗Q/Z) → H1(S,SH/S)→ 0

by 6.2.9 and an isomorphism H0(S,SH/S) ⊗ Q/Z � H0(S,TH/S) ⊗ Q/Z. According to

the argument of 4.3.3, we infer that the restriction homomorphism

(6.22) H1(S�, H ⊗Q/Z)→ H0(Γ�, R1jU ∗(H ⊗Q/Z))

is written as H1 of the following morphism of complexes:

Kos•M⊗A(m ⊗Q/Z, b)→ Kos•(ν⊥∩M)⊗A(m ⊗A A/b(ν)⊗Q/Z, b′)[−1],

where b′ is determined as the homomorphism N/N(ν) → A/b(ν) inducing the commuta-

tive diagram

N
b−−−→ A� �

N/N(ν)
b′−−−→ A/b(ν).

Step 2. The case H has only unipotent monodromies. We have b = 0 in the case I0,

and b = aε in the case Ia. First we consider the case I0. Then (6.22) is isomorphic to

M ⊗ (Q/Z)⊕2 → (Q/Z)⊕2

induced by ν : M→ Z. There is a generator {γ1, γ2, . . . , γl} of N such that γj ∈ σ for any

j. Hence if the elliptic fibration f : X → S is not basic, then the singular fiber type over

Γ is mI0 for some m > 0 for some ν. Next, we consider the case Ia with a #= 0. Then

(6.22) is isomorphic to

α−1M+Qa

M
⊕ M ⊗Q

M+ Qa
→

α
−1Z/Z ⊕Q/Z, if a(ν) = 0;

Q/Z, if a(ν) > 0.
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Here if a(ν) = 0, then this is the sum of (α−1M +Qa)/M → α−1Z/Z and M ⊗Q/(M +

Qa) → Q/Z both of which are induced from ν : M → Z. If a(ν) > 0, then this is

derived from the natural homomorphism (α−1M + Qa)/M ↪→ M ⊗ Q/M
ν−→ Q/Z. Let

(α−1x + λa,y) for λ ∈ Q, x ∈ M, y ∈ M ⊗Q be a representative of (α−1M+ Qa)/M ⊕
M ⊗Q/(M +Qa) whose image under the restriction mappings are zero for all primitive

ν ∈ σ ∩ M. Since α−1x(ν) + λa(ν) ∈ Z for all ν, we infer that α−1x + λa ∈ M. Since

y(ν) ∈ Z for ν with a(ν) = 0, we infer that y ∈ M+N(a⊥ ∩ σ)⊥⊗Q. However, we have

M+ N(a⊥ ∩ σ)⊥ ⊗Q

M +Qa
� N(a⊥ ∩ σ)⊥/Za⊗Q/Z � H0(S,TH/S)⊗Q/Z.

Therefore, the element of H1(S�, H ⊗ Q/Z) corresponding to (α−1x + λa,y) is coming

from H0(S,TH/S)⊗Q/Z. Consequently, the induced marked elliptic fibration is basic.

Step 3. Good choice of a generator of N. We may assume the type of H is one of I
(∗)
0 ,

III(∗), IV(∗). Let Nunip ⊂ N be the subgroup consisting of all γ with ρ(γ) being unipotent.

Let m be the order of N/Nunip. Then m ∈ {2, 3, 4}. There is a generator {γ1, γ2, . . . , γl}
of N such that γ1 generates N/Nunip � Z/mZ and that γj ∈ Nunip for j ≥ 2. We want to
change it to satisfy further condition: γj ∈ σ for j ≥ 2. For i ≥ 2, we set

γ′i = mciγ1 + γi,

for integers ci. Then {γ1, γ′2, . . . , γ′l} is also a generator of N and γ′j ∈ Nunip for j ≥
2. For some choice of (ci), the hyperplane cut σ ∩ ⊕l

i=2 Rγ′i is still a strictly convex

rational polyhedral cone in
⊕l

i=2 Rγ′i. Hence there exist primitive vectors γ
′′
2 , . . . , γ

′′
l in

the hyperplane cut. Thus {γ1, γ′′2 , . . . , γ′′l } is a required generator.
Step 4. The cases I

(∗)
0 , III

(∗), IV(∗). As in the argument of Step 1, we consider the

exact sequence (6.21), and the restriction homomorphism (6.22) for a primitive element

ν ∈ σ∩Nunip. By Step 3, we have a generator {γ1, γ2, . . . , γl} of N such that γj ∈ σ∩Nunip

for j ≥ 2. Then b(γj) = 0 for j ≥ 2. The β := b(γ1) is −2 in the case I(∗)0 , ±i− 1 in the
case III(∗), ω±1−1 in the case IV(∗). We infer that (6.22) is a factor of the homomorphism

m ⊗ Qb+ β−1M⊗ A

Qb+M⊗ A
→m ⊗A/b(γj)A⊗Q/Z

derived from γj ⊗ id: M⊗A→ A. Let β−1x for x ∈ M⊗A be a representative of the left

hand side. Then the image is zero if and only if β−1x(γj) ∈ A + b(γj)AQ. If the images

are zero for any j, then β−1X ∈ Qb+M⊗A. Hence all the intersection of the kernels of

(6.22) is zero. �

Example 6.3.11. Let us consider the following special case of I
(∗)
(+)(0): Let S be a two-

dimensional unit polydisc ∆2, D = D1 + D2 the union of coordinate hyperplanes, and

assume that the monodromy type of H is I∗0 along D1 and I2 along D2. Let γi ∈ N � Z⊕2
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be an element corresponding to Di for i = 1, 2. Let (e1, e2) be the base of M dual to

(γ1, γ2). Then b = −2e1 + 2εe2. Let ν ∈ σ ∩ N correspond to a prime divisor Γ of a

blown-up surface from S. Then the homomorphism (6.22) for Γ is a factor of

Qb+ 2−1M ⊗A

Qb+M ⊗ A
→ A/b(ν) ⊗Q/Z,

for A = Z[ε]. We have b(ν)AQ = AQ if e1(ν) #= 0 and b(ν)AQ = εAQ otherwise. The

image of v := 2−1εe2 ∈ Qb+2−1M⊗A is zero for any ν, since v(ν) = 2−1εe2(ν) ∈ b(ν)AQ.

However, v #∈ Qb+M⊗ A. Hence, 6.3.10 does not hold in this case.

Concerning with Problem 6.3.5, we have

Theorem 6.3.12. Suppose that η ∈ H1(S,SH/S) is mapped to a torsion element of

H1(S,TH/S) by SH/S → TH/S. Then η ∈ E(S,D,H).

Proof. By 6.3.7, we may assume that η is the image of θ ∈ H1(S,SW
H/S). A section

of SW
H/S over S defines a holomorphic automorphism W → W as the translation for

the generalized Weierstrass model W = W(H) associated with H by 5.1.4. In order

to construct marked elliptic fibration representing η, let {Uα → S} be a good ∂-étale

covering family as before and let {θα,β} be a Čech cocycle of SW
H/S representing θ. We

may assume that the local monodromies around Hα are all unipotent. Then we can

replace a basic elliptic fibration Bα → Uα by the minimal Weierstrass modelWα → Uα

associated with Hα. Then Wα ×Uα Uα,β � Wβ ×Uβ
Uα,β and it is isomorphic to the

minimal Weierstrass modelWα,β associated with Hα,β . Since the translations by θα,β are

holomorphic, we have holomorphic quotients Xα := Gα\Wα and holomorphic transition

mappings hα,β. Thus we have the twistW
θ → S ofW that represents θ. �

Corollary 6.3.13. Let Z ⊂ D be the set of points x around which H is of type I(+). If

dimZ ≤ 0, then E(S,D,H) = H1(S,SH/S).

Proof. If x #∈ Z, then (TH/S)x is a torsion group and 2(TH/S)x = 0. Let 2TH/S be

the image of the multiplication map TH/S → TH/S by 2. Then H1(S, 2TH/S) = 0 by

dimZ ≤ 0. Therefore, 2H1(S,TH/S) = 0. Thus we are done by 6.3.12. �

Example 6.3.14. Let p : Xσ → ∆2 = {(t1, t2) ∈ C | |ti| < 1(i = 1, 2)} be the toric
model (cf. [N4, §4]) associated with the sign function σ : Z → {1, 2} given by σ(n) = 1

for n odd, and σ(n) = 2 for n even. Then p has singular fibers of type I1 over both

coordinate line {ti = 0} (i = 1, 2). The Xσ is defined as a quotient of Xσ which is a
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localization of a toric variety. We have an open covering {Un} of Xσ defined as follows:

Un := {(t2, ζn, ηn) ∈ C3 | |ζnηn| < 1, |t2| < 1} for n odd,

Un := {(t1, ζn, ηn) ∈ C3 | |ζnηn| < 1, |t1| < 1} for n even,

and the patching relation is given by: ζnηn = tσ(n) and ζn+1ηn = 1. There is an isomor-

phism Xσ×∆2 (∆2)� � C�× (∆2)�. Here, we can choose a coordinate of C� to be s := ζ0,

for example. Then Xσ is obtained as the quotient of Xσ by the automorphism s �→ st1t2.

The meromorphic section {s = t1} of Xσ → ∆2 induces a meromorphic section Γ ⊂ Xσ.

Similarly, the section {s = 1} induces a holomorphic section Σ ⊂ Xσ. We consider Σ as

the canonical section. Let g : Xσ ···→ Xσ be the translation by the meromorphic section

Γ. For the induced VHS H0, the group (TH0/∆2)0 is a free abelian group generated by Γ.

Thus any compositions gm are not identical except for m = 0. In fact, the gm corresponds

to the meromorphic section {s = tm1 }.
Let M be a complex manifold with an element c ∈ H1(M,Z) of infinite order. For the

base space S = ∆2×M , we define a VHS H to be the pullback of H0 to (∆
2)�×M . We

can find a cohomology class η ∈ H1(S,SH/S) as the image of Γ⊗ c ∈ H0(∆2,SH0/S) ⊗
H1(M,Z). There exist an open covering {Vα}α∈Λ of M and integers cα,β for Vα ∩ Vβ #= ∅
such that the collection {cα,β} satisfies the cocycle condition:

cα,β = −cβ,α,

cα,β + cβ,γ + cγ,α = 0 for Vα ∩ Vβ ∩ Vγ #= ∅,

and that {cα,β} represents c. If there is a marked elliptic fibration that induces η under
the map E(S,D,H) → H1(S,SH/S), then it is bimeromorphic to Xσ × Vα over ∆

2 × Vα

and the patchings are given by:

Xσ × (Vα ∩ Vβ)
g

cα,β×id···−→ Xσ × (Vα ∩ Vβ).

It seems to be impossible to patch them. We have another description of η. Let π1(M) �
Z be the surjective homomorphism induced by c. This induces an étale covering λ : M̃ →
M with the Galois group isomorphic to Z. Let θ be the generator 1 of the Galois group.

Then we have a meromorphic automorphism

Xσ × M̃
g×θ···−→ Xσ × M̃ ,

which is not holomorphic. Them-times composite is not holomorphic except form = 0. If

a marked elliptic fibration associated with η exists, then it is bimeromorphically equivalent

to the quotient of the meromorphic action g×θ ofXσ×M̃ . Does the meromorphic quotient

exist ? In this case, the image of η under H1(S,SH/S)→ H2(S�, H) is non-zero.
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7. Applications

We consider the following applications: Ueno’s extension problem (Section 7.1); a rela-

tion between Tate–Shafarevich group and our E(S,D,H) (Section 7.2); a generalization

of some results of Gross [G5] on the study of minimal models with trivial canonical di-

visors and with elliptic fibration structures (Section 7.3); a characterization of Kähler

morphisms (Section 7.4); a new description of logarithmic transformation by means of

∂-étale cohomology theory and its generalization to higher dimension (Section 7.5); and

on the projectivity of logarithmic transform of elliptic surfaces (Section 7.6).

7.1. Extension of elliptic fibrations

Let V be a normal complex analytic variety and let DV be a nowhere-dense analytic

subset such that the complement V � := V �DV is non-singular. Suppose that a VHS H

is defined on V �. Let us consider the set Eproj(V,DV , H) of bimeromorphic equivalence

classes of marked elliptic fibrations (f : X → V, φ) satisfying the following conditions:

(1) f is BP;

(2) The restriction f−1V � → V � is bimeromorphically equivalent to a smooth elliptic

fibration f ′� : X ′� → V �;

(3) φ is an isomorphism H(f) := R1f ′�∗ZX ′� ∼→ H as VHS.

Let us fix a Zariski-open subset V ◦ ⊂ V satisfying the following conditions:

(1) V � ⊂ V ◦ and the complement D�
V := V ◦ � V � is a normal crossing divisor.

(2) codim(V � V ◦) ≥ 2.
We denote V ◦ := (V ◦, D�

V ).

Theorem 7.1.1. There is an identification:

Eproj(V,DV , H)←→ H1(V ◦,SH/V ◦)tor.

Proof. We have a bimeromorphic morphism µ : S → V such that

(1) S is non-singular,

(2) µ−1(V ◦)→ V ◦ is an isomorphism,

(3) D := µ−1(DV ) is a normal crossing divisor.

In particular, S� = S � D � V � and H is defined on S�. Then we can identify

Eproj(V,DV , H) with Eproj(S,D,H), by considering pullbacks and compositions. There-

fore we have only to show that the restriction map Eproj(S,D,H) → Eproj(V ◦, D�
V , H) is

bijective. Note that the map is identified with

(7.1) H1(S,SH/S)tor → H1(V ◦,SH/V ◦)tor



140

by 6.3.8. We have a commutative diagram of exact sequences

0 −−−→ C(H/S)⊗Q/Z −−−→ H1(S,SH/S)tor −−−→ H2(S�, H)tor −−−→ 0� � ∥∥∥∥
0 −−−→ C(H/V ◦)⊗Q/Z −−−→ H1(V ◦,SH/V ◦)tor −−−→ H2(V �, H)tor −−−→ 0

by 6.2.5. Since codim(V � V ◦) ≥ 2, a meromorphic mapping V ◦ ···→ B over S into

the basic elliptic fibration B → S associated with H extends to V ···→ B. Thus

H0(S,SH/S) � H0(V ◦,SH/V ◦). Hence C(H/S) � C(H/V ◦) and (7.1) is bijective. �

Corollary 7.1.2. Any smooth projective elliptic fibration over V � extends to a BP elliptic

fibration over V .

Proof. It suffices to show H1(V ◦,SH/V ◦)tor → H1(V �,SH)tor is surjective. By 6.2.5, this

is surjective if C(H/V ◦) → C(H/V �) is surjective. Since C(H/V ◦) and C(H/V �) are

both quotients of H1(V �, H), this is surjective. �

Concerning with extension of non-BP elliptic fibrations, we have the following problem

posed by Ueno (cf. [F4, II, 1.15]):

Problem. Let g◦ : Y ◦ → (∆2 � {0}) be a smooth elliptic fibration having no global
sections. Then does it extend to an elliptic fibration over ∆2 ?

The VHS H(g◦) has only trivial monodromies, since ∆2 � {0} is simply connected.
Let H be the natural extension of H(g◦) to S as VHS. We can attach a cohomology

class in H1((∆2 � {0}),SH) to g◦. We have an isomorphism H1((∆2 � {0}),SH) �
H1((∆2 � {0}),O), which is an infinite-dimensional C-vector space. By the assumption,

the cohomology class is not a torsion element. Therefore, we can not extend g◦ as a

projective morphism. Furthermore, by [N4, §3], it is also impossible to extend as a
Kähler fibration. Therefore, if we have a positive answer to the problem, we will find an

interesting non-Kähler threefold. However, here we shall give a negative answer by using

the ∂-étale cohomology theory. We can treat similar extension problem also for the case

of other types of VHS and for higher dimensional case.

We assume that S is a d-dimensional unit polydisc ∆d with a coordinate system

(t1, t2, . . . , td) and that D is the union of coordinate hyperplanes Di = {ti = 0} for
1 ≤ i ≤ l, where 1 ≤ l ≤ d. Let us fix a Zariski-open subset S	 ⊂ S such that S� ⊂ S	

and codim(S � S	) ≥ 2. The answer to the problem is negative by the following:

Theorem 7.1.3. Let g : Y → S	 be an LBP elliptic fibration over S	 which is smooth

over S�. Then the following two conditions are equivalent :
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(1) There is an elliptic fibration f : X → S whose restriction f−1S	 → S	 is bimero-

morphically equivalent to g over S	;

(2) g is a BP elliptic fibration.

Proof. The implication (2) =⇒ (1) follows 7.1.1. We divide the proof of the other impli-

cation into the following 7 steps. Let H = H(g) be the VHS defined on S�.

Step 1. We may assume that S	 ⊂ S◦.

Suppose that the restriction of f to the open subset S	◦ := S	 ∩ S◦ is BP. Then the

injection H1(S	,SH/S) → H1(S	◦,SH/S) sends the cohomology class [g] to a torsion

element. Hence g is BP by 6.3.8.

Step 2. We may assume that H has only unipotent monodromies.

Let τ : S ′ � ∆d → S be the Kummer covering given by τ ∗ti = tmi
i for some positive

integers mi. We may assume that τ is étale outside D and τ−1H defined on S ′ � τ−1D

has only unipotent monodromies. If the pullback of g to τ−1S	 is BP, then so is g.

Step 3. Flattening of f .

We have a Zariski-open subset S@ ⊂ S such that codim(S � S@) ≥ 2 and the restriction
f−1S@ → S@ is flat. By Hironaka’s flattening [H3] of f , we have a bimeromorphic mor-

phism µ : M → S from a non-singular variety and an LBP elliptic fibration h : X ′ → M

satisfying the following conditions:

• µ induces an isomorphism µ−1S@ ∼→ S@;

• M � µ−1S@ is a divisor E =
∑

j Ej;

• DM := µ−1(D) is a simple normal crossing divisor on M ;

• µ ◦ h is bimeromorphically equivalent to f over S.

Note thatDM =
∑l

i=1 D
′
i+E, whereD

′
i denotes the proper transform ofDi inM . By 6.3.2

and 6.3.4, h defines a cohomology class [h] ∈ H1(M,SH/M), where H is the same VHS

defined on M �DM � S� and M stands for the ∂-space (M,DM ). The original fibration

g defines a cohomology class [g] ∈ H1(S	,SH/S). By the condition (1), the restrictions

of h and g to the open subset µ−1(S	 ∩ S@) � S	 ∩ S@ =: S	@ are bimeromorphically

equivalent. Thus they determine the same cohomology class in H1(S	@,SH/S). By 6.1.8,

[g] is a torsion element if and only if so is the image of [h] under the restriction

(7.2) H1(M,SH/M)→ H1(S	@,SH/S).

Thus it is enough to show that the image of (7.2) is a torsion group.

Step 4.

Claim. Let jM : M � DM ↪→M be the open immersion.
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(a) There is a point x ∈ µ−1(0) such that for an open neighborhood U in M ,

µ∗ : π1(U � DM )→ π1(S � D)

is an isomorphism.

(b) H2(S�, H ⊗Q)→ H0(M,R2jM∗H ⊗Q) is injective.

(c) The homomorphism H1(S�, H)→ H1(S	@,LH/S) appearing in 6.2.5 is a zero map.

Proof. (a) Let Wi be the intersectionD1∩D2∩· · ·∩Di for 1 ≤ i ≤ l and letW0 = S. We

can define inductively subvarieties M = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vl satisfying the following

condition:

• Vi+1 is the proper transform ofWi+1 by the bimeromorphic morphism µi : Vi →Wi

induced from µ, for i < l.

Then there exist uniquely irreducible components Γ1,Γ2, . . . ,Γl of DM such that Vi =

Γ1∩· · ·∩Γi for i > 0. Let x be a general point of Vl and let U be an open neighborhood of
x inM such that DM ∩U = (

∑l
i=1 Γi)∩U . We may assume that there is an isomorphism

U � ∆d where Γi ∩ U correspond to coordinate hyperplanes. It is enough to show

µ∗ : H1(S�D,Z)→ H1(U�DM ,Z) is an isomorphism. By 3.1.4 and 3.2.4, this condition

is equivalent to that the matrix (ai,j)1≤i,j≤l defined by

µ∗Di =
l∑

j=1

ai,jΓj |U

is non-singular. We have a1,1 = 1, ai,1 = 0 for i > 1. For i > 1, we have

µ∗1(Di|W1) = µ∗Di|V1 =
l∑

j=2

ai,jΓj|V1∩U .

Hence, we have a2,2 = 1 and ai,2 = 0 for i > 2, since Γ2|V1 = V2 is the proper transform

of D2|W1 = W2. Further, for i > 2,

µ∗2(Di|W2) = (µ
∗
1Di)|V2 =

∑
j>2

ai,jΓj|V2∩U .

In this way, we have ai,i = 1 and ai,j = 0 for i > j. Thus the matrix is non-singular.

(b) We have H2(S�, H) � (R2j∗H)0. By (a), we also have (R
2j∗H)0 � (R2jM∗H)x for

the point x.

(c) This is expressed as the composite

H1(S�, H)→ H1(S,LH/S)→ H1(S	@,LH/S),

where H1(S,LH/S) = 0. �
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Step 5. More reduction.

By 6.2.5 and Step 4 -(b), we have a commutative diagram of exact sequences:

H1(S�, H) −−−→ H1(M,LH/M )⊕H0(M,QH/M ⊗Q) −−−→∥∥∥∥ �
H1(S�, H) −−−→ H1(S	@,LH/S)⊕H0(S	@,QH/S ⊗Q) −−−→

−−−→ H1(M,SH/M) −−−→ H2(S�, H)tor −−−→ 0� �
−−−→ H1(S	@,SH/S) −−−→ H2(S�, H) −−−→ 0.

Thus, the image of (7.2) is a torsion group if and only if the image of

(7.3) H0(M,QH/M ⊗Q)→ H0(S	@,QH/S ⊗Q)

is contained in the image of H1(S�, H ⊗Q)→ H0(S	@,QH/S ⊗Q). Since H1(S,SH/S) is

a torsion group by 6.2.12, we have enough to show that the image of (7.3) coincides with

the image of

(7.4) H0(S,QH/S ⊗Q)→ H0(S	@,QH/S ⊗Q).

Step 6. The case H is of type I0.

We have j∗H � Z⊕2
S and TH/S = 0. Hence R1j∗H � QH/S and εS∗QH/S �

⊕l
i=1 Q⊕2

Di

for εS : S → S. Similarly, we have LH/M � OM , jM∗H � Z⊕2
M , TH/M = 0, and an

isomorphism

εM∗QH/M �
⊕

Q⊕2
D′

i
⊕
⊕

Q⊕2
Ej
,

where j
M
: S� � M �DM → M is the ∂-open immersion. Hence, (7.3) and (7.4) are both

surjective.

Step 7. The case H is of type I(+).

Suppose that H is of type Ia for 0 #= a ∈ σ∨ ∩M for the first quadrant σ ⊂ N⊗R for the

standard free group N =
⊕l

i=1 Zνi of rank l and for its dual M. Since M � H1(S�,Z), the

local system H is determined by the extension

0→ ZS� → H → ZS� → 0

corresponding to a. We also denote by a the connecting homomorphisms Rpj∗ZS� →
Rp+1j∗ZS� . The monodromy matrix around Di is of type Iai for ai = 〈a, νi〉. Let D+ be

the union of Di with ai > 0, S< := S � D+, and let j< : S< ↪→ S and j<� : S� ↪→ S< be
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related immersions. Then we have the following exact sequences (cf. 4.3.4, 5.4.14, 6.2.3):

0→ ZS → j∗H → j<
! ZS� → 0,

0→ ZD+
a−→ R1j<

∗ZS� → TH/S → 0,

0→ TH/S ⊕ j<
∗(R

1j<�
∗ ZS�)→ R1j∗H → ZD+ ⊕ j<

! (R
1j<�
∗ ZS�)→ 0,

0→ j<
∗(R

1j<�
∗ ZS�)→ QH/S → ZD+ ⊕ j<

! (R
1j<�
∗ ZS�)→ 0.

We can consider similar sequences to jM : µ
−1S� ↪→M . The local monodromy around the

exceptional divisor Ej is of type Iej for some ej ≥ 0. Let D+
M := µ−1D+. This is the union

of all D′
i with ai > 0 and all Ej with ej > 0. We also define M < :=M �D+

M = µ−1S< and

denote the related injections by j<
M : M

< ↪→M and j<�
M : S

� ∼→ µ−1S� ↪→M <. Further, we

write the restriction of µ to M < by µ<. Then we have an exact sequence

0→ j<
M∗(R

1j<�
M∗ZS�)→ QH/M → ZD+

M
⊕ j<

M !(R
1j<�

M∗ZS�)→ 0.

Note that there is an isomorphism

R1j<�
M∗ZS� �

⊕
ai=0

ZD′
i∩M � ⊕

⊕
ej=0

ZEj∩M �.

Since H1(D′
i,Z) = 0 and H1(Ej,Z) = 0, we have H1(M, j<

M∗(R
1j<�

M∗QS�)) = 0. We also

have

H0(M, j<
M !(R

1j<�
M∗QS�)) �

⊕
Ej∩D+

M=∅
Q.

Thus we have a commutative diagram of exact sequences:

0 −−−→ ⊕
ai=0

Q −−−→ H0(S,QH/S ⊗Q) −−−→ Q −−−→ 0� � �
0 −−−→ ⊕

ai=0
Q⊕ ⊕

ej=0
Q −−−→ H0(M,QH/M ⊗Q) −−−→ Q⊕ ⊕

Ej∩D+
M
=∅

Q −−−→ 0.

Since Di ∩ S	@ #= ∅ and Ej ∩ S	@ = ∅, we have

0→
⊕
ai=0

Q→ H0(S	@,QH/S ⊗Q)→ Q⊕H0
(
S	@, j<

! (
⊕

ai=0
QDi∩S�)

)
→ 0.

Hence (7.3) and (7.4) have same images. �

7.2. Tate–Shafarevich group

Suppose that S is a projective variety. Let S be a normal projective scheme over

C with San � S. For a projective basic elliptic fibration p : B → S associated with

H, we have a projective morphism p : B → S of schemes over C such that pan � p.

The generic fiber Bη of p is uniquely determined by H and is an elliptic curve over the

function field C(S). For Zariski-open subsets S� ⊂ S� of S , let S� ⊂ S� be corresponding
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Zariski-open subsets of S. We shall compareX(S�/S,H) defined in 6.2.10 with the Tate–

Shafarevich groupXS�(Bη) for the generic fiber Bη. Previously, we defined a similar group

Eproj0 (S,D,H;S�) ⊂ Eproj(S,D,H) (cf. 5.2.4). By 6.2.10, Eproj0 (S,D,H;S�) is identified

with X(S�/S,H).

Proposition 7.2.1. If S� is non-singular, then

X(S�/S,H) �XS�(Bη).

Proof. We fix a bimeromorphic mapping p−1S◦ ···→ B◦ over S◦ for basic elliptic fibrations

p : B → S and p◦ : B◦ → S◦, where p◦ is minimal. Let (f : X → S, φ) be a marked

projective elliptic fibration contained in Eproj0 (S,D,H;S�). Then the multiplication map

by a positive integer m induces a generically finite meromorphic mapping µ : X ···→ B

over S. Let Σ ⊂ B be the zero section of p and let Σ◦ be the corresponding section

of p◦ over S◦. Let Σ′ be the proper transform of Σ in X. Let τ : T → S be the

Stein factorization of of Σ̃
′ → S from the normalization Σ̃

′
of Σ′. Let T 	 ⊂ T be

the maximal open subset of T along which τ is étale. Then X ×S T 	 → T 	 admits a

meromorphic section. It suffices to show that S� ⊂ τ (T 	). For a point s ∈ S�, we have

an open neighborhood U ⊂ S� and a bimeromorphic mapping ϕ : f−1U ···→ p−1U . We
may assume that U is isomorphic to a unit polydisc and that D ∩ U is isomorphic to

a union of coordinate hyperplanes. Then the generically finite meromorphic mapping

ρ = µ ◦ ϕ−1 : p−1U ···→ p−1U is composed of the multiplication mapping by m and

the translation by a section of p over U . Let ρ◦ : p◦−1U◦ ···→ p◦−1U◦ be the induced
meromorphic mapping over U◦ := U ∩ S◦ by ρ and let Σ◦

U be the proper transform of

Σ◦∩p◦−1U◦ in p◦−1U◦ by ρ◦. The multiplicationmappingB◦ ···→ B◦ bym is holomorphic

over the Néron model (B◦)	. Thus by 5.3.3, we have an irreducible component V of Σ◦
U

such that p◦(V 	) = U◦ for an open subset V 	 along which V → U◦ is étale. The Stein
factorization V ′ → U◦ of V → U◦ is a finite Galois covering, since it is étale outside
D and since π1(U◦ � D) is abelian. Thus V ′ is étale over U◦ and hence V ′ � U◦ since
π1(U◦) = {1}. Therefore, V is a holomorphic section of p◦ over U◦ by 5.3.2. Let Γ◦U be
the proper transform of V in f−1U◦ by the bimeromorphic mapping ϕ and let ΘU◦ be

the corresponding irreducible component of τ−1U◦. Then ΘU◦ extends to an irreducible

component ΘU of τ
−1U and ΘU → U is biholomorphic since it is finite and bimeromorphic.

Hence ΘU ⊂ T 	 and s ∈ τ (T 	). �

The cohomological Brauer group Br′(Y) of a non-singular algebraic variety (scheme) Y

over C is defined to be H2(Yét,Gm) for the group scheme Gm := SpecC[x, x−1]. This is a

torsion group by [G6, II, 1.4].
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Theorem 7.2.2 (cf. [D5, 1.17, 2.24]). Let S� ⊂ S be a toroidal embedding of algebraic

varieties (schemes) over C such that S = San, S� = (S�)an. Let p : B→ S be an algebraic

basic elliptic fibration such that B is non-singular and that p = pan is associated with H.

We set B := Ban, B� := p−1S�, B� := B�an.

(1) There is an isomorphism

Br′(B�)/Br′(S�) � H1(S,SH/S)tor �X(S�/S,H).

(2) For a Zariski-open subset S� ⊂ S� ⊂ S, assume that p is flat over S� and set

B� := p−1S�, S� = (S�)an. Then X(S�/S,H) is an extension of a finite group

by Br′(B�)/Br′(S�).

Proof. By a comparison theorem, we have isomorphisms Hp(B�,µm) � Hp(B�
ét,µm) for

B� := B� and Hp(S�,µm) � Hp(S�
ét,µm). The Kummer sequence 0 → µm → Gm

×m−−→
Gm → 0 of étale sheaves of B� induces an exact sequence

0→ Pic(B�)⊗Q/Z→ lim−→m
H2(B�

ét,µm)→ Br′(B�)→ 0.

There is an isomorphism Pic(B�) � Pic(B)/Vp−1(S�S�)(B). Thus (1) follows 6.2.9 and

(2) follows 6.2.11. �

We present some sufficient conditions forX(S�/S,H) to be a finite group for a Zariski-

open subset S� containing S�. Here S is only an analytic space; not necessarily projective.

Lemma 7.2.3. X(S�/S,H) is a finite group provided that the following three conditions

are satisfied :

(1) H i(S�, H) are finitely generated abelian groups for i ≤ 2;
(2) H0(S�,QH/S) is a finitely generated abelian group;

(3) C(H/S)→ C(H/S�) is injective.

Proof. Let us consider the commutative diagram

0 −−−→ C(H/S)⊗Q/Z −−−→ H1(S,SH/S)tor −−−→ H2(S�, H)tor� �
0 −−−→ H0(S�,QH/S ⊗Q/Z) −−−→ H0(S�, R1ε∗SH/S).

Under the conditions (1) and (2), the kernel of the second vertical arrow is a finite group

if and only if C(H/S)→ H0(S�,QH/S) is injective. �

Proposition 7.2.4. Suppose that S is compact, H1(S,LH/S) = 0, and that the restriction

map H0(S,SH/S) → H0(S�,SH/S) is an isomorphism. Then X(S�/S,H) is a finite

group.
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Proof. Since H1(S,LH/S) = 0, the homomorphism H1(S�, H) → H1(S�,LH/S) is also

zero. Hence C(H/S) = C(H/S) and C(H/S�) = C(H/S�). Now C(H/S) � C(H/S�).

Thus C(H/S) → C(H/S�) is an isomorphism. Cohomology groups H i(S�, H) and

H0(S�,QH/S) are all finitely generated since S is compact. Thus the conditions of 7.2.3

are all satisfied. �

Let V be a normal analytic variety, DV a reduced divisor, and let H be a VHS defined

on V � = V �DV as in 7.1. For an open subset U ⊂ V , we define Eproj0 (V,DV , H;U) to be

the subgroup of Eproj(V,DV , H) consisting of all marked elliptic fibrations (f : X → V, φ)

such that f admits local meromorphic sections over any points of U . Let V ◦ ⊂ V be

a Zariski-open subset such that V � ⊂ V ◦, codim(V � V ◦) ≥ 2, and that DV ∩ V ◦ is

non-singular.

Corollary 7.2.5. Let µ : S → V be a bimeromorphic morphism from a non-singular

variety such that µ is isomorphic over V �. If V is compact and if H1(S,LH/S) = 0, then

Eproj0 (V,DV , H;V
◦) is a finite group.

Proof. We may assume that D := µ−1DV is a simple normal crossing divisor. Let S
� :=

µ−1V ◦. Then Eproj0 (V,DV , H;V
◦) is identified with Eproj0 (S,D,H;S�). Since codim(V �

V ◦) ≥ 2, H0(S,SH/S) → H0(S�,SH/S) is isomorphic. Hence, the assertion follows

7.2.4. �

The following is a generalization of [G5, 3.2].

Theorem 7.2.6. Suppose that S is compact and let E be the complement S � S�. Then

the quotient group X(S�/S,H)
/

X(S,H) is finite if the following two conditions are

both satisfied :

(1) For the J-function S → P1, E does not contain any connected component of

J−1(∞);
(2) Let U(E) be the set of prime divisors Γ ⊂ E such that there is an open neighbor-

hood U ⊃ Γ, H extends to a VHS H̃ on U , and that H̃|Γ is trivial constant system.
For any prime divisor Γ ∈ U(E), there is an irreducible curve C ⊂ ⋃

Γ′∈U(E) Γ
′

with Γ · C #= 0.

Proof. By 6.2.11, the quotient group is isomorphic to the cokernel of

lim−→m
H1(S,L•

H/S

L
⊗µm)→ lim−→m

H1(S�,L•
H/S

L
⊗µm),

and hence is a subgroup of lim−→m
H2

E(S,L
•
H/S

L
⊗µm). The triangle

· · · +1−→ L•
H/S → τ≤1Rj∗H → QH/S[−1] +1−→ · · ·
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induces an exact sequence

0→ H0
E(S,QH/S ⊗ µm)→ H2

E(S,L
•
H/S

L
⊗µm)→ H0

E(S,m(R
2j∗H)),

because RΓE(τ≥2Rj∗H)[−1] ∼→qis RΓ E(τ≤1Rj∗H). There is also a commutative diagram

H2
E(S,L

•
H/S

L
⊗µm) −−−→ H0

E(S,m(R
2j∗H))� �

H2(S,L•
H/S

L
⊗µm) −−−→ H0(S,m(R

2j∗H)),

where the right vertical arrow is injective. Thus the quotient group is contained in the

kernel of the composite

(7.5) lim−→m
H0

E(S,QH/S ⊗ µm)→ lim−→m
H2

E(S,L
•
H/S

L
⊗µm)→ lim−→m

H2(S,L•
H/S

L
⊗µm).

For a non-zero element θ ∈ lim−→m
H0

E(S,QH/S ⊗ µm), let D(E, θ) be the set of prime

divisors Γ ⊂ E such that Γ ⊂ Supp θ and let D(E) be the union of D(E, θ) for all θ. If

Γ ∈ D(E, θ), then H is unipotent along Γ: the local monodromies along Γ� := Γ�SingD

are unipotent. If Γ′ is a prime divisor contained in D with Γ ∩ Γ′ #= ∅, then by 6.2.3, H
is unipotent along Γ′. Assume that H is of type I(+) along Γ. If the monodromy along

Γ′ is of type I(+), then Γ
′ ∈ D(E, θ) by 6.2.3. Thus any irreducible component of the

connected component of J−1(∞) containing Γ belongs to D(E, θ). This contradicts the

condition (1). Hence the monodromy along Γ is trivial. Let UΓ denote the open subset

S� ∪ Γ�. Then H extends to a VHS H̃ on UΓ and R1j∗H|UΓ
� QH/S|UΓ

� H̃ ⊗ ZΓ� .

Hence H0(UΓ,QH/S ⊗ µm) � H0(Γ�, H̃ ⊗ µm). If the local constant system H̃|Γ� is not

trivial, then H0(Γ�, H̃) = 0 by 4.2.5. Thus lim−→m
H0(Γ�, H̃ ⊗ µm) � H1(Γ�, H̃)tor is a

finite group. Hence lim−→m
H0

E�Γ�(S,QH/S ⊗µm) is a subgroup of lim−→m
H0

E(S,QH/S ⊗µm)

of finite index. Thus, by replacing E by E � Γ�, we may assume that D(E) ⊂ U(E). In
other words, there is an open subset U ⊂ S such that Γ ⊂ U for any Γ ∈ D(E) and that
H extends to a VHS H̃ on U , where H̃ |Γ is a trivial local system for any Γ ∈ D(E). We
have

L
•
H/S |U ∼qis j∗H|U ∼qis H̃ |U and QH/S|U � R1j∗H|U � (ZD ⊗ H̃)|U .

In particular, H0
E(U,QH/S⊗µm) � H0

E(U∩D, H̃⊗µm). There is a commutative diagram

H0
E(S,QH/S ⊗ µm) −−−→ H2(S,L•

H/S

L
⊗µm)� �

H0(U ∩D, H̃ ⊗ µm) −−−→ H2(U, H̃ ⊗ µm),



149

where the bottom arrow is derived from a Gysin map for U ∩D ⊂ U . Let ν : C → U be

the normalization of an irreducible curve such that d := Γ · ν∗C #= 0. The bottom arrow

of the commutative diagram

H0(U ∩D, H̃ ⊗ µm) −−−→ H2(U, H̃ ⊗ µm)� �
H0(Γ, H̃ ⊗ µm) −−−→ H2(C, ν−1H̃ ⊗ µm)

is isomorphic to the multiplication mapping d× : µ⊕2
m → µ⊕2

m . Hence the kernel of

lim−→m
H0(Γ, H̃ ⊗ µm)→ lim−→m

H2(C, ν−1H̃ ⊗µm)

is isomorphic to µ⊕2
d . The kernel of

lim−→m
H0

E(S,QH/S ⊗ µm)→
⊕

Γ∈D(E)

lim−→m
H0(Γ, H̃ ⊗ µm)

is finite since H0
E(S,QH/S) →

⊕
Γ∈D(E)H

0(Γ, H̃) is an injection to a finitely generated

abelian group and since H1
E(S,QH/S)tor is a finite group. Therefore the kernel of (7.5) is

finite. �

Remark. (1) The conditions (1) and (2) of 7.2.6 are satisfied if there is a bimeromor-

phic mapping µ : S → V such that E is µ-exceptional.

(2) Under the assumption of 7.2.6, if H1(S,LH/S) = 0, then X(S�/S,H) is also a

finite group. This is because X(S,H) � H1(S,SH/S)tor and there is an exact

sequence 0 → H0(S,QH/S) → H1(S,SH/S) → H2(S,L•
H/S). In particular, we

have another proof of 7.2.5.

7.3. Minimal models with trivial canonical divisor

A locally projective elliptic fibration over a normal surface have a standard elliptic

fibration as a minimal model [N4, Appendix A]. A standard elliptic fibration f : Y → T

has the following properties:

(1) Y has only terminal singularities and is locally Q-factorial;

(2) f is equi-dimensional;

(3) KY ∼Q f∗(KT +∆) for an effective Q-divisor ∆ with (T,∆) being log-terminal.

We investigate similar elliptic fibration over higher dimensional varieties but assuming

stronger condition: KY is relatively linearly equivalent to zero.

Let π : Y → V be a locally projective elliptic fibration between normal varieties such

that Y has only rational Gorenstein singularities and that the canonical sheaf ωY =

OY (KY ) is π-trivial, i.e., M := π∗ωY is invertible and ωY � π∗M. Then locally on

V , there is an effective Q-divisor ∆ such that KY ∼Q π∗(KV + ∆) and that (V,∆)



150

is log-terminal by [N3, 0.4]. In particular, V has only rational singularities. Further,

R1π∗OY � ωV ⊗M−1 (cf. 5.2.7). Let V � ⊂ V be a non-singular Zariski-open dense subset

over which π is smooth. Let V ◦ ⊂ V be a non-singular Zariski-open subset containing V �

such that codim(V � V ◦) ≥ 2 and that V ◦ � V � is a non-singular divisor. Let H denote

the VHS over V � induced from π. Then ωV ⊗M−1 � j◦∗LH/V ◦ for j◦ : V ◦ ↪→ V by 5.2.7.

Proposition 7.3.1 (cf. [G5, 0.2]). Assume that Y has only terminal singularities, V is

Q-Gorenstein, and that π is equi-dimensional. Then V has only canonical singularities.

Proof. By the flattening of π (cf. [H3]), there exist bimeromorphic morphisms µ : S → V

and X → Y ×V S over S from non-singular varieties S and X, respectively, such that

any exceptional divisor for f : X → S is exceptional for ρ : X → Y . We may assume that

S� := µ−1(V �) is isomorphic to V � by µ and that S �S� is a normal crossing divisor. We

write S �S� =
⋃

i Ei ∪
⋃

α Dα for µ-exceptional prime divisors Ei and for non-exceptional

prime divisors Dα. The singular fiber type of f along Dα is not multiple, since KY is

relatively trivial. Thus f∗ωX � ωS ⊗ L−1H/S and

(f∗ω
⊗m
X )∨∨ � ω⊗m

S ⊗L⊗(−m)
H/S ⊗OS( �

∑
m(1− 1/mi)Ei� )

for m > 1, where mi is the multiplicity of singular fiber type along Ei. Let LH/S stand

for formally a divisor with OS(LH/S) � LH/S. If it really exists, then it is determined up

to the linear equivalence. Even if it does not exit, we consider LH/S formally as a divisor

like a canonical divisor KS . Similarly, let M stand for a divisor of V with OV (M) �M.

By the choice of µ, we haveM� µ∗(ωS ⊗L−1H/S) and

π∗ω
⊗m
Y � µ∗OS(mKS −mLH/S + �

∑
m(1− 1/mi)Ei� ).

Let E@ be the µ-exceptional effective divisor determined byKS − LH/S ∼ µ∗M + E@.

Claim 7.3.2. For any µ-exceptional prime divisor Ei,

multEi(E
@ +

∑
(1− 1/mj)Ej) > 0.

Proof. We have KX ∼Q ρ∗KY +
∑

bβGβ for ρ-exceptional prime divisors Gβ and for

positive rational numbers bβ . Since π is equi-dimensional, for any Ei, there is a positive

rational number δi such that
∑

bβGβ ≥ δif
∗Ei. Hence KX − δif

∗Ei ≥ ρ∗KY ∼ f∗µ∗M

and

f∗OX(mKX)⊗OS(−mδiEi) ⊃ µ∗M⊗m

for m > 0 with mδi ∈ Z. Thus

OS(mKS −mLH/S + �
∑

m(1− 1/mj)Ej� ) � (f∗ω
⊗m
X )∨∨ ⊃ µ∗M⊗m ⊗OS(mδiEi).

Therefore, E@ +
∑
(1− 1/mj)Ej ≥ δiEi. �
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Proof of 7.3.1 continued. Since KV is Q-Cartier, KS ∼Q µ∗KV +
∑

εiEi for rational

numbers εi. For a prime divisor Γ of S, let σΓ(L) stand for the relative σ-invariant [N6]

of a Q-divisor/line bundle L of S with respect to µ. We have the formula

L⊗(−12)H/S � J∗OP1(1)⊗OS(
∑

aiEi +
∑

aαDα)

for integers 0 ≤ ai, aα ≤ 10 (cf. [U1], [K2], [N4, §3]). Thus

εi + ai/12 + 1− 1/mi ≥ σEi(KS − LH/S +
∑
(1− 1/mj)Ej)

= multEi E
@ + 1− 1/mi.

In particular, εi + ai/12 ≥ multEi E
@ ≥ 0. Suppose that mi = 1. Then multEi E

@ ≥ 1

by the claim above. Thus εi + ai/12 ≥ 1 and hence εi > 0, since ai ≤ 10. Next

suppose that mi ≥ 2. Then ai = 0 and εi ≥ multEi E
@ ≥ 0. Thus V has only canonical

singularities. �

Corollary 7.3.3 (cf. [G5, 3.4]). Suppose that dimV = 2 and that P ∈ V is a singular

point. Then (V, P ) is an Am-singularity for some m, the J-function is holomorphic at

P , and J(P ) #=∞.

Proof. We use the same notation as in 7.3.1. We may replace V by an open neighborhood

of P . Thus we assume any exceptional divisorsEi are contained inE := µ−1(P ). We know

that the negative part of the relative Zariski decomposition of KS−LH/S+
∑
(1−1/mj )Ej

is E@ +
∑
(1 − 1/mj)Ej. Thus by 7.3.2, (KS − LH/S − E@) · Ej = 0 for any j. We write∑

(aj/12 + εj)Ej − E@ =
∑

λjEj . Then λi ≥ 0 and

(1/12)J ∗OP1(1) ·Ei +
∑
(aα/12)Dα · Ei +

∑
λjEj · Ei = 0

for any i. Now εi = 0 for some exceptional curve Ei mapped to P . Thus mi ≥ 2 and

λi = 0. If λi = 0 for some exceptional curve Ei, then J ∗O(1) · Ei = 0, Dα · Ei = 0

if aα #= 0, and Ej · Ei = 0 if λj > 0. Therefore, λi = 0 for any exceptional divisor

Ei ⊂ µ−1(P ) and J(µ−1(P )) is a point. In particular, J : S ···→ P1 is holomorphic at P .

Moreover if Dα ∩ µ−1(P ) #= ∅, then aα = 0. The fibration f : X → S defines a non-zero

element of X(S�/S,H)
/

X(S,H) since mi ≥ 2 for some i. By the argument of 7.2.6,

X(S�/S,H)
/

X(S,H) is contained in the kernel of

lim−→m
H0

E(S,QH/S ⊗ µm)→ lim−→m
H2(S,L•

H/S

L
⊗µm),

for E = µ−1(P ). The argument also implies that J(P ) #= ∞ and that we can extend

H to a VHS H̃ on S, after replacing V by an open neighborhood of P . Let
∑

qjEj for

qj ∈ (Q/Z)⊕2 correspond to the element of lim−→m
H0

E(S,QH/S ⊗ µm) defined by f . Then∑
qjEj · Ei ≡ 0mod Z⊕2 for any i. Let e be the number of irreducible components of E



152

and let A be the (e × e)-matrix whose (i, j)-coefficient is Ei · Ej . Then A : Z⊕e → Z⊕e

is injective since A is negative-definite. If for any element (xj) ∈ A−1Z⊕e ⊂ Q⊕e, the

i-th coefficient xi is integral, then mi = 1. Thus εi > 0 and Ei is exceptional for the

bimeromorphic morphism S → V̂ to the minimal desingularization V̂ of V . If (V, P )

is not an Am-type singularity, then there is a component Ei such that xi ∈ Z for any

(xj) ∈ A−1Z⊕e and that Ei is not exceptional for S → V̂ . �

We assume the following extra-conditions:

(1) V is Q-Gorenstein;

(2) π is equi-dimensional.

Then, by (1), there is a generalized Weierstrass model p :W =WV (ωV ⊗M−1,α,β)→
V associated with H.

Lemma 7.3.4. Under the situation above, W has only rational Gorenstein singularities

and ωW = OW(KW) � p∗M.

Proof. If V is Gorenstein, thenW is a usual Weierstrass model. Thus an open neighbor-

hood of the canonical section Σ has only rational singularities. Let V̂ → V and X →
W×V V̂ , respectively, be resolutions of singularities. Then for the composite µ : X →W,

T := µ∗Σ is non-singular and isomorphic to Ŝ. Thus Rµ∗OT (mT ) ∼qis OΣ(mΣ) and

Rf∗OT (mT ) ∼qis p∗OΣ(mΣ) � (ωV ⊗M−1)⊗m for any integers m, where f = p ◦ µ.
Thus we infer that W has only rational singularities by the argument of [N3, 2.4]. In

non-Gorenstein case, there is a cyclic covering τ : V ′ → V locally on V such that it is

étale in codimension one and that ωV ′ is invertible. Let Y ′ denote the normalization of

Y ×V V ′. Then Y ′ → Y is étale in codimension one, and hence Y ′ has only rational

Gorenstein singularities. Thus the Weierstrass model W′ defined from the pullback of

H has only rational singularities. Therefore, W also has only rational singularities. In

order to show ωW � p∗M, we may replace V by V ◦. Then this follows from 5.1.1. �

If log-flip conjectures are true, then we have elliptic fibrations Y → V of this kind as

minimal models. A projective variety X has numerical Kodaira dimension κσ(X) = 0 if

and only if, for a non-singular projective model Z of X, the function

m �−→ dimH0(Z,OY (mKZ + A))

is bounded for any ample divisor A and is non-trivial for some A (cf. [N6]). If the

existence and the termination of flips are proved for varieties birational to X, then the

condition κσ(X) = 0 is equivalent to that X is birational to a normal projective variety

Y with only terminal singularities and with KY ∼Q 0.



153

Let f : X → S be an elliptic fibration between non-singular projective varieties such

that f is smooth outside a simple normal crossing divisor D of S, the geometric genus

pg(X) = 1, and that κσ(X) = 0. Let H = H(f) be the induced VHS defined on

S� = S � D and let p : B → S be an associated basic elliptic fibration from a non-

singular variety.

Over the open subset S◦ = S�SingD, we have a minimal elliptic fibration f◦ : X◦ → S◦

which is bimeromorphically equivalent to f−1S◦ → S◦ over S◦. Here the canonical bundle

formula

KX◦ ∼Q (f
◦)∗(KS −LH/S +

∑
(1− 1/mi)D

�
i )

holds for irreducible components D�
i = Di ∩ S◦. There is also an isomorphism

L⊗(−12)H/S � J ∗OP1(1)⊗OS(
∑

aiDi)

for 0 ≤ ai ≤ 10 and for the J -function S → P1. There is a non-singular divisor L such

that OS(L) � J ∗OP(1) and that L+D is also a simple normal crossing divisor. We set

∆H/S := (1/12)(L +
∑

aiDi), and ΛX/S := ∆H/S +
∑
(1− 1/mi)Di.

Then (S,∆H/S) and (S,ΛX/S) are log-terminal pairs. We have

KW ∼Q p
∗(KS +∆H/S) and KX ∼Q f∗(KS + ΛX/S) + G

for an f -exceptional divisor Q-divisor G. In particular, the double-dual of f∗ω
⊗m
X is

isomorphic to OS(mKS + �mΛX/S� ) for m ≥ 0.

Theorem 7.3.5. The equalities of Hodge numbers hp,0(X) = hp,0(B) hold for any p,

and κ(B) = κσ(B) = 0. If the log-flip conjecture holds for varieties birational to S,

then there exist an elliptic fibration p : Y → V between normal projective varieties and

birational mappings ν : B ···→ Y , µ : S ···→ V satisfying the following conditions:

(1) µ ◦ p = p ◦ ν;
(2) Y has only rational Gorenstein singularities with KY ∼ 0;
(3) V is Q-factorial ;

(4) µ−1 : V ···→ S contracts no prime divisors of V ;

(5) Every prime divisor Di with mi > 0 is µ-exceptional.

Proof. There are quasi-isomorphisms

Rf∗OX ∼qis OS ⊕LH/S[−1] ∼qis Rp∗OB,

by 5.2.8. Thus hp,0(X) = hp,0(B). Further, f∗ωX/S � p∗ωB/S � L−1H/S. Let p : W =

W(H) → S be the minimal Weierstrass model associated with H. Since W has only
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canonical singularities, we have

p∗(ω
⊗m
B/S) � p∗(ω⊗m

W/S) � L
⊗(−m)
H/S

for any m ≥ 1. Since (f∗ωX)
⊗m ⊂ f∗(ω

⊗m
X ), we have κ(B) = 0.

By a flattening of f , there exist birational morphisms ρ : Ŝ → S and λ : X̂ → X ×S Ŝ

such that

(1) Ŝ and X̂ are non-singular projective,

(2) ρ is isomorphic over S�,

(3) ρ−1(L+D) is a simple normal crossing divisor,

(4) the induced elliptic fibration f̂ : X̂ → Ŝ is smooth outside ρ−1D,

(5) f̂ -exceptional divisor is exceptional for X̂ → X.

Let ∆H/Ŝ and ΛX̂/Ŝ be similarly defined Q-divisors on Ŝ. By considering the Weierstrass

model over Ŝ, we have

κ(B) = κ(KŜ +∆H/Ŝ) = κ(KS +∆H/S), κσ(B) = κσ(KŜ +∆H/Ŝ) = κσ(KS +∆H/S).

For KX̂ , we have

KX̂ ∼Q f̂∗(KŜ + ΛX̂/Ŝ) + Ĝ

for f̂ -exceptional Q-divisor Ĝ. Hence, for m ≥ 0,

f∗ω
⊗m
X � ρ∗OŜ(mKŜ + �mΛX̂/Ŝ� ).

Therefore, κ(KŜ + ΛX̂/Ŝ) = κσ(KŜ + ΛX̂/Ŝ) = 0. Thus κσ(B) = 0.

By [N6], there is a unique effective Q-divisor N such that KS + ∆H/S ∼Q N . Here

N is the negative part of the Zariski-decomposition of KS + ∆H/S. By replacing S by

Ŝ, we may assume κ(KS + ΛX/S) = κσ(KS + ΛX/S) = 0. Then N +
∑
(1 − 1/mi)Di is

the negative part of the Zariski-decomposition of KS + ΛX/S. Applying the log-minimal

model program for (S,ΛX/S), we have a birational mapping µ : S ···→ V such that the

pair (V, µ∗ΛX/S) is log-terminal, V is Q-factorial, µ∗(N +
∑
(1 − 1/mi)Di) = 0, and

that µ satisfies the conditions (4), (5) of the statement. In particular, KV + µ∗∆H/S =

KV + µ∗ΛH/S ∼Q 0 and the double-dual of µ∗LH/S is isomorphic to ωV , since pg(B) = 1.

Let p : W = WS(LH/S,α,β) → S be the minimal Weierstrass model associated with

H for α ∈ H0(S,L⊗(−4)H/S ) and β ∈ H0(S,L⊗(−6)H/S ). We denote by same α and β the

corresponding sections in H0(V, ω
[−4]
V ) and H0(V, ω

[−6]
V ), respectively. Since KV is Q-

Cartier, we have a generalized Weierstrass model Y :=WV (ωV ,α,β) → V . Then Y is

birational to B and KY ∼Q 0. Hence Y has only canonical singularities of index one with

KY ∼ 0. �
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Remark (cf. [N3]). (1) Let p : Y → V be the basic elliptic fibration obtained in 7.3.5.

Under the flip conjecture, there is a birational morphism β : T → V from a normal

projective variety T with only terminal singularities such that T is Q-factorial

and KT is β-nef. The sections α and β extend to sections of OT (−4KT ) and

OT (−6KT ), since β∗OT (−mKT ) is reflexive for m ≥ 0. Thus for the generalized

Weierstrass modelWT :=WT (ωT ,α,β), KWT
is linearly equivalent to 0. There-

fore, WT has only rational Gorenstein singularities, since it is birational to Y .

However, the divisor Di with multiplicity mi > 0 may not be exceptional for the

birational mapping S ···→ T .

(2) Under the flip conjecture, we also have a relative minimal model of T : there is a

birational mapping T ···→ R such that it is a composition of extremal divisorial

contractions and flips with respect to canonical divisors and that any extremal

ray of R defines a contraction of fiber type. The sections α and β also descend

to sections of OR(−4KR) and OR(−6KR), respectively. Thus the generalized

minimal model WR :=WR(ωR,α,β) has only rational Gorenstein singularities

and KWR
is linearly equivalent to zero.

By replacing X by a birationally equivalent variety, we may assume that the composite

fV = µ◦f : X → V is holomorphic. We have a reduced effective divisorDV of V such that

Supp µ∗∆H/S ⊂ DV and that µ
−1 : V ···→ S is holomorphic over V �DV . Let V

� = V �DV

and let V � ⊂ V ◦ ⊂ V be a Zariski-open subset such that codim(V � V ◦) ≥ 2, B ∩ V ◦

is non-singular, and that µ−1 : V ···→ S is holomorphic over V ◦. Then, for a marking

φ, (fV : X → V, φ) belongs to Eproj0 (V,DV , HV ;V
◦), where HV denotes the induced VHS

defined on V � from H. By 7.2.5 or 7.2.6, Eproj0 (V,DV , HV ;V
◦) is finite, if h2,0(X) = 0.

This observation in the case dimS = 2 is due to Gross [G5] and is the first step to

show a kind of boundedness of Calabi–Yau threefolds with elliptic fibrations.

7.4. Kähler morphism

Definition 7.4.1. Let f : X → S be a proper surjective morphism between normal

complex analytic varieties.

(1) A real C∞-form ω on X is called a Kähler form if there exist an open covering

{Xλ} of X and strictly pluri-subharmonic functions pλ on Xλ such that ω|Xλ
=

√
−1∂ ∂ pλ, and that (pλ − pµ)|Xλ∩Xµ are pluri-harmonic.

(2) If there is an open covering {Sα}α∈A of S such that f
−1(Sα) admit Kähler forms,

then f is called a locally Kähler morphism .
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(3) A d-closed real (1, 1)-form ω on X is called a relative Kähler form if there exist

an open covering {Sα}α∈A of S and Kähler forms ηα on Sα such that ω|Xα + f∗ηα

is a Kähler form for any α, where Xα = f−1(Sα).

(4) If there is a relative Kähler form on X, then f is called a Kähler morphism .

(5) An element ξ in H2(X,R) is called a relative Kähler class if there is an open

covering {Sα}α∈A of S such that the restriction of ξ in H2(Xα,R) is induced from

a relative Kähler form for Xα = f−1(Sα)→ Sα.

(6) If there is a relative Kähler class, then f is called a cohomologically Kähler mor-

phism .

(7) f is called a cohomologically projective morphism , if there exist a cohomology

class ξ ∈ H2(X,Z) and an open covering {Sα}α∈A of S such that the restriction of

ξ in H0(Sα, R
2f∗ZX) is represented by the first Chern class of a relatively ample

invertible sheaf on f−1(Sα).

(8) f is called BK if it is bimeromorphically equivalent over S to a Kähler morphism.

f is called LBK , if f is BK locally over S: there is an open covering {Sλ} of S
such that f−1(Sλ)→ Sλ is BK for any λ.

(9) f is called BCP and BCK , respectively, if f is bimeromorphically equivalent

over S to a cohomologically projective morphism and a cohomologically Kähler

morphism.

Remark. The composite of two Kähler morphisms is not necessarily a Kähler morphism

but a locally Kähler morphism. In fact, this is Kähler over a relatively compact open

subset. The same property holds for cohomologically Kähler morphisms.

Let S� = S � D ↪→ S be a toroidal embedding as before and let H be a VHS defined

on S�. We use the same notation as before, e.g. S = (S,D), j : S� ↪→ S, j : S� ↪→ S, etc.

We recall the complex L•
H/S defined in 6.2.1. Let c : H

1(S,SH/S)→ H2(S,L•
H/S) denote

the connecting homomorphism derived from

· · · +1−→ L•
H/S → LH/S → SH/S

+1−→ · · ·

Let (f : X → S, φ) be a marked elliptic fibration associated with (S,D,H). If f is a

locally Kähler elliptic fibration, then it is locally projective by 5.2.9, [N4, §3]. Thus, if f
is LBK, then (f : X → S, φ) belongs to E(S,D,H).

Proposition 7.4.2. For an element η ∈ H1(S,SH/S), we consider the following five

conditions:

(1) η is represented by a BCP marked elliptic fibration;

(2) η is represented by a BCK marked elliptic fibration;
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(3) η is represented by a marked elliptic fibration (f : X → S, φ) such that X is non-

singular and that a cohomology class ω ∈ H2(X,R) satisfies degω|Xs > 0 for a

general fiber Xs = f−1(s);

(4) c(η) is sent to zero by H2(S,L•
H/S)→ H2(S,L•

H/S

L
⊗R);

(5) c(η) is a torsion element.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) hold. If Hp(S�, H) are finitely generated abelian groups

for p ≤ 2, then (4) =⇒ (5) holds. If [S,D] satisfies the condition 3.2.6, then (5) =⇒ (1)

holds.

Proof. (1) =⇒ (2) and (2) =⇒ (3) are trivial.

(3) =⇒ (4) We may assume that f−1D is a normal crossing divisor. The η is determined

as the image of 1 under the connecting homomorphism H0(S,Z) → H1(S,SH/S) of the

exact sequence:

0→ SH/S → R1f ∗O
�
X/VX → ZS → 0.

Let L̃
•
X/S be the complex

[· · · → 0→ R1f∗OX → R1f∗O
�
X/VX → 0→ · · · ],

where R1f∗OX lies in the degree zero. We have H0(L̃
•
X/S) � j∗H and H1(L̃

•
X/S) �

R2f ∗ZX/VX . Thus there exist a natural morphism

τ≥1τ≤2Rf ∗ZX → L̃
•
X/S[−1]

and a triangle

· · · +1−→ L•
H/S → L̃

•
X/S → ZS [−1] +1−→ · · ·

Here, the composite τ≥1τ≤2Rf ∗ZX → ZS [−2] is derived from the trace map R2f∗ZX →
ZS . The ω ∈ H2(X,R) goes to a positive number under the homomorphism

H2(S, τ≥1τ≤2Rf ∗RX)→ H0(S,R) � R.

Hence c(η) goes to zero under H2(S,L•
H/S)→ H2(S,L•

H/S

L
⊗R).

(4) =⇒ (5) under the assumption above. From the triangle

· · · +1−→ L
•
H/S → τ≤1Rj∗H → QH/S

+1−→ · · · ,

we have a commutative diagram of exact sequences:

H1(S�, H) −−−→ H0(S,QH/S ⊗Q) −−−→ H1(S,L•
H/S) −−−→ H2(S�, H)� � � �

H1(S�, HR) −−−→ H0(S,QH/S ⊗R) −−−→ H1(S,L•
H/S

L
⊗R) −−−→ H2(S�, HR),
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where HR = H ⊗ R. The universal coefficient theorem gives the isomorphism

Hp(S�, HR) � Hom(H2d−p
c (S�, H∨),R),

for H∨ = Hom(H,ZS�) and d = dimS. Under the assumption, H2d−i
c (S�, H∨) are finitely

generated for i ≤ 1. Hence Hp(S�, H)⊗R � Hp(S�, HR) for p ≤ 1 and H2(S�, H)⊗R →
H2(S�, HR) is injective. Further, H

0(S,QH/S ⊗Q)→ H0(S,QH/S ⊗ R) is also injective.

Thus, H2(S,L•
H/S) ⊗ R → H2(S,L•

H/S

L
⊗R) is injective. Therefore, if c(η) goes to zero

in H2(S,L•
H/S

L
⊗R), then c(η) is a torsion element.

(5) =⇒ (1) under the assumption above. The image of η under the homomorphism

H1(S,SH/S) → H1(S,TH/S) is a torsion element, since so is c(η). Thus by 6.3.12, η is

represented by a marked elliptic fibration (f : X → S, φ) ∈ E(S,D,H). Suppose that

c(mη) = 0 for a positive integer m. Then for a marked elliptic fibration (X ′ → S, φ)

corresponding to mη, we have a generically finite meromorphic mapping X ···→ X ′ over

S. Hence, we may assume that c(η) = 0. Then η is the image of an element ζ ∈
H1(S,LH/S) under H

1(S,LH/S) → H1(S,SH/S). Let V = V(LH/S◦) → S◦ be the line

bundle associated with the invertible sheaf LH/S◦ and let Vζ → S◦ be its twist by ζ.

Then Vζ is isomorphic to the open subset P(F ζ |S◦)� P(OS◦) for the extension

0→ LH/S → F ζ → OS → 0

corresponding to ζ. The image θ of ζ in H1(S,SW
H/S) defines the twist π : W

θ → S of

the minimal Weierstrass model W → S associated with H. We may replace X byWθ.

We have an exact sequence

0→ S
W
H/S → R1π∗O�

Wθ → R2π∗ZWθ � ZS → 0.

The extension class is θ. Let us consider Leray’s spectral sequence

Ep,q
2 = Hp(S,Rqπ∗ZWθ) =⇒ Ep+q = Hp+q(Wθ,Z).

Since θ is the image of ζ, the generator 1 ∈ Z � E0,2
2 goes to zero in E2,1

2 . Hence

1 ∈ E0,2
3 . We have a natural morphism Vζ → Wθ whose image is the twist (W	|S◦)θ.

Since Vζ → S◦ is an affine bundle, Hp(S◦,Z) → Hp(Vζ ,Z) is an isomorphism for any p.

By the condition 3.2.6, the restriction H3(S,Z)→ H3(S◦,Z) is injective. Therefore, the

composite

H3(S,Z)→ H3(Wθ,Z)→ H3(Vζ ,Z)

is injective and hence Ep,0
2 = Ep,0

∞ . Thus 1 ∈ E0,2
2 comes from E2 = H2(Wθ,Z). Conse-

quently, π :Wθ → S is cohomologically projective. �
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Lemma 7.4.3. Let η = (f : X → S, φ) be a marked elliptic fibration such that c(η) is a

torsion element. Then there exist a family of elliptic fibrations X → S × T and points 0,

t ∈ T such that X0 → S×{0} is bimeromorphically equivalent to f and that Xt → S×{t}
is BP.

Roughly speaking, a BCK elliptic fibration is deformed to a BP elliptic fibration up to

bimeromorphic equivalence.

Proof. In viewing the exact sequence

H1(S,LH/S)
ϕ−→ H1(S,SH/S)

c−→ H2(S,L•
H/S),

we find a positive integer m and an element ζ ∈ H1(S,LH/S) such that ϕ(ζ) = mη.

Then η − ϕ((1/m)ζ) ∈ H1(S,SH/S)tor. Thus it corresponds to a BP elliptic fibration.

Let p : S × C → S be the first projection and let p−1H be the pullback of H defined on

S� × C. Let C → H1(S,LH/S) be the homomorphism sending 1 to ζ. Then it defines a

section

ζ̃ ∈ H1(S ×C,Lp−1H/S×C), and ϕ(ζ̃) ∈ H1(S × C,Sp−1H/S×C).

Let (X → S ×C, φ) be the marked elliptic fibration corresponding to ϕ(ζ̃) + p∗(η). This

exists by 6.3.12. We may assume that X → C is flat and X is smooth over S�×C. Then

the fiber Xt → S×{t} corresponds to ϕ(tζ)+ η. Thus T = C, 0 ∈ C, and t = −1/m ∈ C

satisfy the condition. �

A compact complex variety is called to be in the class C if it is the image of a compact
Kähler manifold under a meromorphic mapping [F2]. By [V1], a variety in the class C is
bimeromorphically equivalent to a compact Kähler manifold.

Theorem 7.4.4. Let S� ⊂ S be a d-dimensional toroidal embedding such that S is

compact and is in the class C. Let f : X → S be an elliptic fibration that is smooth over

S�. Then the following three conditions are equivalent :

(1) X is in the class C;
(2) f is a BCK morphism ;

(3) The homomorphism H2d(S,C)→ H2d(X,C) is injective.

Proof. (1) =⇒ (2) is trivial.

(2) =⇒ (3) We knowH−2d(ωtop
S ) � ZS and H1−2d(ωtop

S ) = 0. Hence, the Verdier duality

RΓ (S,Z) ∼qis RHom(RΓ (S,ωtop
S ),Z) and H1(S,Z)tor = 0 induce an isomorphism

H2d(S,Z) � Hom(H0(S,Z),Z) � Z.

The dual of the pullback H2d(S,R) → H2d(X,R) is the homomorphism H2(X,R) →
H0(S,R) induced from the trace map Rf!ω

top
X → ωtop

S . For a cohomology class ω ∈
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H2(X,R), the image in H0(S,R) is considered as degω|Xs for a general fiber Xs. Thus

H2d(S,R)→ H2d(X,R) is injective if f is BCK.

(3) =⇒ (1) We may assume that S is a compact Kähler manifold. Let H = H(f)

and let η ∈ H1(S,SH/S) be the cohomology class corresponding to (f : X → S, φ) for

a suitable marking φ. Then c(mη) = 0 for a positive integer m by 7.4.2 and by the

proof of (2) =⇒ (3) above. Let ψ and ϕ denote the homomorphisms H1(S,LH/S) →
H1(S,SW

H/S) and H1(S,LH/S) → H1(S,SH/S), respectively. Then mη = ϕ(ζ) for an

element ζ ∈ H1(S,LH/S). We set θ := ψ(ζ) ∈ H1(S,SW
H/S) and letW

θ → S be the twist

of the minimal Weierstrass modelW =W(H)→ S associated with H. Since there is a

generically finite meromorphic mapping X ···→ Wθ over S, we have only to prove that

Wθ is in the class C. Let C → H1(S,LH/S) be the homomorphism sending 1 to ζ. It

defines a cohomology class ζ̃ ∈ H1(S ×C,Lp−1H/S×C), where p
−1H denotes the pullback

of H by the first projection p : S�×C→ S�. The restriction of ζ̃ to H1(S×{t},LH/S) is

tζ for t ∈ C. Let θ̃ be the image ψ(ζ̃) in H1(S ×C,SW
p−1H/S×C). Then we have the twist

Ŵ := (W ×C)θ̃ → S × C

of the Weierstrass modelW×C→ S×C. The fiber of Ŵ→ S×C over a point t ∈ C is

isomorphic to the twistWtθ → S, where tθ := ψ(tζ). The composite π : Ŵ→ S×C→ C

is a locally trivial deformation of W. By Hironaka’s resolution of singularities, we have

an open neighborhood U of the origin of C and a bimeromorphic morphism Ŷ → π−1(U)
such that the composite h : Ŷ → U is a smooth morphism. Here we may assume that

the central fiber Y0 = h−1(0) → S × {0} of Ŷ → S × U is a projective morphism. In

particular, Y0 is a compact Kähler manifold. Hence, Y1/n is a compact Kähler manifold

for a positive integer n. Therefore Wn−1θ is in the class C. Since there is a generically
finite meromorphic mappingWn−1θ ···→Wθ,Wθ is also in the class C. �

Corollary 7.4.5 (Miyaoka [M6]). A compact elliptic surface is Kähler if and only if the

first Betti number is even.

Proof. Let f : X → S be the elliptic surface and let H = H(f) be the associated VHS.

Then f is isomorphic to the twist Bη → S of the minimal basic elliptic fibration B → S

associated with H for a cohomology class η ∈ H1(S,SH/S). We shall consider the

following edge sequence:

0→ H1(S,R)→ H1(X,R)→ H0(S,R1f∗RX)→ H2(S,R)→ H2(X,R).

Suppose that η = 0, i.e., f is a basic fibration. Then X is a projective surface. Therefore

dimH0(S,R1f∗RX) = dimH0(S, j∗H ⊗ R) is even for any η. Since H2(S,R) � R, the

first Betti number is even if and only if H2(S,R)→ H2(X,R) is injective. Thus by 7.4.4,
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it is also equivalent to: X is in the class C. Since a compact complex surface is in the
class C if and only if it is Kähler (cf. [M5], [F3]), we are done. �

Corollary 7.4.6. Let p : B → S be a minimal elliptic surface over a non-singular pro-

jective curve. Suppose that the VHS H is not trivial. Then any element of E(S,D,H)

represents a Kähler surface.

Proof. We have H2(S, j∗H)Q = 0 by 4.2.5. Hence H2(S,L•
H/S) ⊗ Q = 0. Thus by 7.4.2

and 7.4.4, any element of E(S,D,H) represents a compact Kähler surface. �

Example 7.4.7. Without the assumption of the compactness of S, a BCK elliptic fibra-

tion is not necessarily a BK morphism. Let S := ∆2 � {0} and D = ∅. We fix a VHS
H on S, which is determined by a homomorphic function S → H. Then we have the

smooth basic elliptic fibration B → S as well as an exact sequence:

0→ H � Z⊕2
S → LH � OS → SH → 0.

Then H1(S,OS) � H1(S,SH). Therefore, for any η ∈ H1(S,SH), the corresponding

twist Bη → S is a BCK morphism. However if η #= 0, then there is no d-closed (1, 1)-

form ω on X := Bη such that
∫
ω|F > 0 for any fiber F of f : X → S. In fact, if there is

such ω, then the composite

H1(X,OX/RX)→ H2(X,R) → H0(S,R2f∗RX) � R

is surjective. Since H i(S,R) = 0 for i = 1, 2, we see that H2(X,R) � R. Hence

H2(X,R)→ H2(X,OX) is a zero map. On the other hand, the η is the image of 1 under

the connecting homomorphism H0(S,Z)→ H1(S,SH) of the exact sequence:

0→ SH → R1f∗O�
X → R2f∗ZX � Z→ 0.

There is a commutative diagram:

H2(X,Z) −−−→ H2(S, τ≥1Rf∗ZX) −−−→ H0(S,R2f∗ZX)� � �
H2(X,OX) −−−→ H1(S,R1f∗OX) −−−→ H1(S,SH).

This contradicts η #= 0. Hence Bη is not Kähler.

7.5. New description of logarithmic transformations

Let j : S� ↪→ S be a toroidal embedding, D := S � S�, and let H be a VHS defined

over S�. From the triangle (6.8), we have a homomorphism

H0(S,QH/S)→ H1(S,SH/S).
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We shall relate the homomorphism above with logarithmic transformations [K8] along

D. Let us consider the morphism Rj∗H → LH/S appearing in 4.2.3. We define the sheaf

S
log
H/S by the triangle

· · · +1−→ τ≤1Rj∗H → LH/S → S
log
H/S

+1−→ · · ·

By comparing with a similar triangle

· · · +1−→ τ≤1Rj∗H → j∗LH → j∗SH
+1−→ · · · ,

we can consider S
log
H/S as a subsheaf of j∗SH . Then we have

SH/S ⊂ S
log
H/S, S

log
H/S/S

W
H/S � R1j∗H, and S

log
H/S/SH/S � QH/S.

We shall describe the stalk (Slog
H/S)P at a point P ∈ D. If (QH/S)P = 0, then (S

log
H/S)P =

(SH/S)P . Suppose that (QH/S)P #= 0. Then H is of type I0 or I(+) around P . Let U � P

be an open neighborhood such that U� = U ∩ S� ⊂ U is a toroidal embedding of type

(N, l, σ): U is isomorphic to TN(σ)
<1 ×∆d−l and U� is isomorphic to T<1

N ×∆d−l. Let

ẽN : Ũ� → U� be the universal covering mapping described by

ẽN : HN(Intσ)×∆n−l � z = (z′, t′) �−→ t = (eN(z
′), t′) ∈ T<1

N ×∆d−l,

where HN(Intσ) = N⊗ R+
√
−1 Intσ ⊂ N⊗ C.

Now H is of type Ia for some a ∈ σ∨ ∩M. The period function ω : Ũ� → H is written as

ω(z) = 〈a, z′〉+ h(ẽN(z))

for a holomorphic function h(t) defined over U . An element of H0(U�,SH) is represented

by a holomorphic function f(z) defined over Ũ� modulo Zω(z) + Z which satisfies the

condition

(7.6) f(z′ + γ, t′)− f(z) ∈ Zω(z) + Z for any γ ∈ N.

We denote the represented element ofH0(U�,SH) by [f(z)]. An element θ ∈ M⊗C defines

a holomorphic function on Ũ� by θ̂(z) := 〈θ, z′〉. In the case a = 0, the holomorphic

functions

f(z; θ1, θ2) := θ̂1(z)ω(z) + θ̂2(z)

for θ1, θ2 ∈ M satisfy the condition (7.6). In fact,

f((z′ + γ, t′); θ1, θ2)− f(z; θ1, θ2) = 〈θ1, γ〉h(t) + 〈θ2, γ〉.

In particular, the images of [f(z; θ1, θ2)] under H
0(U�,SH) → H1(U�, H) � M⊕2 form

a generator. In the case a #= 0, let α be the maximal positive integer such that u :=

α−1a ∈ M. The holomorphic functions

f(z;n, θ) :=
n

2α
ω(z)2 − n

2
â(z) + θ̂(z)
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for n ∈ Z and θ ∈ M satisfy (7.6). In fact,

f((z′ + γ, t′);n, θ)− f(z;n, θ) = n〈u, γ〉ω(z) + αn
〈u, γ〉(〈u, γ〉 − 1)

2
+ 〈θ, γ〉.

In particular, they form a generator of H1(U�, H) � Z⊕M/Za.

Proposition 7.5.1. Suppose that the local monodromy type of H around P is Ia for

a ∈ σ∨ ∩M. Then subgroups (SH/S)P , (S
log
H/S)P ⊂ (j∗SH)P are described as follows:

(1) In the case a = 0,

(SH/S)P = (S
W
H/S)P , (Slog

H/S)P = (S
W
H/S)P +

∑
θ1,θ2∈M

Z[f(z; θ1, θ2)].

(2) In the case a #= 0,

(SH/S)P = (S
W
H/S)P +

∑
θ∈N(a⊥∩σ)⊥

Z[f(z; 0, θ)];

(Slog
H/S)P = (S

W
H/S)P +

∑
n∈Z,θ∈M

Z[f(z;n, θ)].

Proof. Let F 1• := F 1(Ω̂•S(logD) ⊗ Hcan
S ) be the subcomplex

[· · · → 0→ F1(Hcan
S )

∇→ Ω̂1
S(logD)⊗ Hcan

S
∇→ Ω̂2

S(logD) ⊗ Hcan
S → · · · ]

of the logarithmic de Rham complex Ω̂•S(logD) ⊗ Hcan
S defined by the Gauss–Manin

connection ∇ with respect to H. Then the mapping cone of Rj∗HC → LH/S is quasi-

isomorphic to F 1•[1]. Therefore, the mapping cone of τ≤1Rj∗HC → LH/S is quasi-

isomorphic to the first cohomology sheaf H1(F 1•). Let F 1•
� be the subcomplex

[· · · → 0→ F1(H) ∇→ Ω1
S� ⊗H ∇→ Ω2

S� ⊗H → · · · ]

of Ω•S� ⊗H. The mapping cone of τ≤1Rj∗HC → j∗LH is quasi-isomorphic to H1(j∗F
1•
� ).

There is a natural homomorphism j∗SH → H1(j∗F
1•
� ) and an exact sequence

0→H1(F 1•)→ H1(j∗F
1•
� )→ j∗LH/LH/S → 0.

The subsheaf S
log
H/S is characterized as the kernel of j∗SH → H1(j∗F

1•
� )/H1(F 1•). Let

F̃ 1• be the pullback of F 1•
� to Ũ�. The abelian group A := H0(Ũ�, ẽ−1N H) � Z⊕2 admits

a natural N-module structure and RΓ (U�, Rj∗H) is quasi-isomorphic to RΓ (N, A) =

RHomZ[N](Z, A) � Kos•M⊗A(A,aε) under the identification A = Z[ε] (cf. 4.3). We have

a commutative diagram of triangles

· · · +1−−−→ τ≤1RΓ (N, A⊗ C) −−−→ H0(U�,LH) −−−→ H1(U�, F 1•
� )

+1−−−→ · · ·� � �
· · · +1−−−→ A⊗ C −−−→ H0(Ũ�, ẽ−1N LH) −−−→ H1(Ũ�, F̃ 1•)

+1−−−→ · · ·
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in the derived category of abelian groups. Let C be the cokernel of

H0(Ũ�, ẽ−1N F1(H)) ∇−→ H0(Ũ�,Ω1

Ũ�
⊗ ẽ−1N H)

and let us consider the composite

Φ: H0(Ũ�, ẽ−1N SH)→ H1(Ũ�, F̃ 1•)→ H0(Ũ�,Ω1

Ũ�
⊗ ẽ−1N H)→ C.

Here, H1(Ũ�, F̃ 1•)→ C is injective. We have the following diagram

H0(Ũ�, ẽ−1N H) −−−→ H0(Ũ�, ẽ−1N SH) ←−−− H0(U�,SH)

∇

� �Φ
H0(Ũ�,Ω1

Ũ�
⊗ ẽ−1N H) −−−→ C,

where the top left arrow is induced from the composite H → LH → SH that is described

as α(z)
β(z)

 �−→ β(z)ω(z)− α(z) mod Zω(z) + Z

under the isomorphisms

ẽ−1N H � O⊕2
Ũ�

and ẽ−1N SH � OŨ�/Zω(z) + Z.

Note that ẽ−1N F1(H) � OŨ� is generated by the column vector
t(ω(z), 1).

Let f(z) be a holomorphic function representing an element [f ] of H0(U�,SH), i.e.,

f satisfies the condition (7.6). If [f ] ∈ H0(U ,Slog
H/S), then its image Φ([f ]) in C is

coming from H0(U , Ω̂1
S(logD) ⊗H). Let S′

P denote the subgroup of the right hand side

of the description of (Slog
H/S)P in 7.5.1. We shall show that if Φ([f ]) ∈ C is coming from

H0(U , Ω̂1
S(logD)⊗H), then [f ] ∈ S′

P . Under the property, we have (S
log
H/S)P ⊂ S′

P . This

is enough, because the isomorphism S′
P /(S

W
H/S)P � (R1j∗H)P implies (S

log
H/S)P = S′

P .

We note that there is an isomorphism M ⊗ O⊕2
U � Ω̂1

S(logD) ⊗ Hcan
S |U in which θ ⊗

t(u(t), v(t)) for θ ∈ M, u(t), v(t) ∈ H0(U ,OU) corresponds to1 〈a, z′〉
0 1

u(t)
v(t)

 =
u(t) + â(z)v(t)

v(t)


as an element of H0(Ũ�, ẽ−1N H) � H0(Ũ�,O)⊕2.
Suppose that a = 0. Then ω(z) = h(t). Since the functions f(z; θ1, θ2) form a

generator of H1(U�, H), we have f(z) = f(z; θ1, θ2) + ψ(t) for some θ1, θ2 ∈ M, and for

a holomorphic function ψ(t) defined over U�. The element [f ] of H0(U�,SH) is coming

from t(−f(z), 0) of H0(Ũ�,O⊕2). We have

df = hdθ̂1 + θ̂1 dh+ dθ̂2 + dψ,
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in which dθ̂i for i = 1, 2 are logarithmic 1-forms on U . The differential of ξ(z) t(ω(z), 1) for
a holomorphic function ξ(z) is written by t(ω, 1) dξ + ξ t(dω, 0). Since Φ([f ]) is contained

in the image of H0(U , Ω̂1
S(logD) ⊗H), we have

−
df
0

 − dξ ⊗
ω
1

− ξ

dω
0

 ∈ H0(U , Ω̂1
S(logD) ⊗ Hcan

S ),

for some holomorphic function ξ(z) defined over Ũ�. We infer that df+hdξ+ξ dh and dξ

are both logarithmic 1-forms on U . In particular, ξ(z) = v̂(z)+ϕ(t) for some v ∈ M⊗C

and for a holomorphic function ϕ(t) defined over U . Thus

df + ξ dh = hdθ̂1 + θ̂1 dh + dθ̂2 + dψ + v̂ dh+ ϕdh

and hence

(θ̂1 + v̂) dh+ dψ

are logarithmic 1-forms. Since ψ is defined over U�, we infer that θ1 + v = 0 and that

ψ(t) is a holomorphic function U . This implies that the element [f(z)] of (j∗SH)P is

contained in S′
P . Therefore, (S

log
H/S)P = S′

P as mentioned before. In this case a = 0, we

also have (SW
H/S)P = (SH/S)P since (TH/S)P = 0.

Next, suppose that a #= 0. Then ω(z) = â(z) + h(t) and f(z) = f(z;n, θ) + ψ(t) for

n ∈ Z, θ ∈ M, and for a holomorphic function ψ(t) defined on U�. The element [f ] of

H0(U�,SH) is coming from
t(−f(z), 0) of H0(Ũ�,O⊕2). We have

df =
n

α
ω dω − n

2
dâ + dθ̂ + dψ,

in which dâ, dθ̂, and dω = dâ + dh are logarithmic 1-forms on U . If

−
df
0

 − dξ ⊗
ω
1

− ξ

dω
0

 ∈ H0(U , Ω̂1
S(logD) ⊗ Hcan

S ),

for some holomorphic function ξ(z) on Ũ�, then df + ω dξ + ξ dω and dξ are both loga-

rithmic 1-forms on U . In particular, ξ(z) = v̂(z) + ϕ(t) for some v ∈ M ⊗ C and for a

holomorphic function ϕ(t) defined on U . Thus

(n/α)â dω + dψ + â dξ + v̂ dω

=
(
(n/α)â + v̂

)
dâ + âdv̂ +

(
(n/α)â + v̂

)
dh+ â dϕ+ dψ

is a single valued logarithmic 1-form on U . Since it is invariant under the action of N, we

have(
(n/α)〈a, γ〉+ 〈v, γ〉

)
dâ+ 〈a, γ〉dv̂ +

(
(n/α)〈a, γ〉 + 〈v, γ〉

)
dh+ 〈a, γ〉dϕ = 0
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for any γ ∈ N. Hence v = −(n/2α)a and d((n/2α)h + ϕ) = 0. Thus dψ is a logarithmic

1-form and ψ(t) is a holomorphic function on U . This implies that the element [f(z)]
of (j∗SH)P is contained in S′

P . Therefore, (S
log
H/S)P = S′

P as mentioned before. The

isomorphism S′
P /(S

W
H/S)P � (R1j∗H)P sends f(z;n, θ) to (n, θ mod a) in Z⊕M/Za �

(R1j∗H)P . Hence (SH/S)P/(S
W
H/S)P is generated by [f(z; 0, θ)] for θ ∈ N(a⊥ ∩ σ)⊥. �

Definition. A section of p� : B� → S� is called a logarithmic section if it contained in

H0(S,Slog
H/S) ⊂ H0(S�,SH). We call S

log
H/S the sheaf of germs of logarithmic sections.

The homomorphism

H0(S,QH/S) = 0⊕H0(S,QH/S)→ H1(S,SH/S)

induced from the triangle (6.7) is a connecting homomorphism of the exact sequence

0→ SH/S → S
log
H/S → QH/S → 0.

Next, we shall generalize the definition of S
log
H/S to the ∂-space S = (S,D). Let

Rj∗H → LH/S be the morphism appearing in 4.2.3. Let the sheaf S
log
H/S be defined by

the triangle

· · · +1−→ τ≤1Rj∗H → LH/S → S
log
H/S

+1−→ · · ·
Then S

log
H/S is considered as a subsheaf of j∗SH . We have

SH/S ⊂ S
log
H/S, S

log
H/S/S

W
H/S � Rj∗H, and S

log
H/S/SH/S � QH/S.

For a point P ∈ D, let U � P be an open neighborhood such that U� = U ∩ S� ⊂ U is a
toroidal embedding of type (N, l, σ). Let Nunip ⊂ N be the maximal subgroup such that

ρ(γ) is unipotent for any γ ∈ Nunip for the monodromy representation ρ : N → SL(2,Z).

As before, an element θ ∈ Nunip⊗C = N⊗C induces a holomorphic function θ̂(z) = 〈θ, z′〉
on the universal covering space Ũ� � HN(Intσ)×∆d−l. In the case the local monodromy

of H around D near P is finite, let f(z; θ1, θ2) := θ̂1(z)ω(z) + θ̂2(z) for θ1, θ2 ∈ N⊗Q.

Then the holomorphic function f(z; θ1, θ2) defines an element of H
0(V ,Slog

λ−1H/V) for a

∂-étale morphism λ : [V , λ−1D] → [U ,U ∩D] associated with a finite index subgroup of

N. Therefore,

(Slog
H/S)P = (S

W
H/S)P +

∑
θ1,θ2∈M⊗Q

Q[f(z; θ1, θ2)]

as a subgroup of (j∗SH)P . In the case the local monodromy of H around D is infinite

near P , ω(z) = â(z) + h(ẽN(z)) for some 0 #= a ∈ σ∨ ∩ M and for some holomorphic

function h defined on U . Let α be the maximal positive integer such that α−1a = u ∈ M.

We set f(z;n, θ) := (n/2α)ω(z)2 − (n/2)â(z) + θ̂(z) for n ∈ Q, θ ∈ N ⊗ Q. Then the
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holomorphic function f(z;n, θ) on Ũ� defines an element of (Slog
H/S)P and moreover, we

have

(Slog
H/S)P = (S

W
H/S)P +

∑
n∈Q,θ∈M⊗Q

Q[f(z;n, θ)],

(SH/S)P = (S
W
H/S)P +

∑
θ∈N(a⊥∩σ)⊥⊗Q

Q[f(z; 0, θ)].

The homomorphism

H0(S,QH/S) = 0⊕H0(S,QH/S)→ H1(S,SH/S)

induced from the triangle (6.8) is a connecting homomorphism of the exact sequence

0→ SH/S → S
log
H/S → QH/S → 0.

Two sheaves S
log
H/S and S

log
H/S are related by

S
log
H/S � ε∗S

log
H/S

for the natural morphism ε : S → S = (S, ∅).
Suppose that S is a curve. Then the connecting homomorphism η : H0(S,QH/S⊗Q)→

H1(S,SH/S) is considered to express logarithmic transformations [K8] as follows: Let

q ∈ H0(S,QH/S) � H0(S,QH/S ⊗ Q) be an element supported only at a point P ∈ D.

Let U � P be an open neighborhood U � ∆ such that U� = U ∩ S� ∼→ ∆�. This is a

toroidal embedding of type (N, l, σ) where N = Z and σ = R≥0. The monodromy type of

H around P is Ia for some integer a ≥ 0.
In the case a = 0, q is represented by a holomorphic function f(z) = f(z; θ1, θ2) for

some rational numbers θ1, θ2 ∈ M⊗Q � Q. Let m be a positive integer such that mθ1,

mθ2 ∈ M. Let V � ∆ � u �→ um ∈ ∆ � U be the cyclic covering of degree m and let

V� = V � {0}. We have a morphism Ũ� � H � z �→ e(z/m) ∈ V� as a universal covering

map. Denoting U := (U , {0}), V := (V , {0}), we consider the single ∂-étale covering

family {V → U}. Then the image of η(q) in H1(U ,SH/S) is derived from a section of

H0(V ×S V,SH/S) corresponding to

sp(V ×S V) � Z/mZ ×V � (i, u) �→ f(z + i; θ1, θ2)− f(z; θ1, θ2) = iθ1ω(u
m) + iθ2.

This defines an action of Z/mZ on B ×S V by

B ×S V � (b, u) �−→
(
tr(θ1ω(u

m) + θ2)b, e(1/m)u
)
,

where tr denotes the translation B → B by a section of p : B → S. Let XU → U be

the quotient of B ×S V → V by the action of Z/mZ. Then there is an isomorphism

XU |U� � B ×S U� given by(
b, e(z/m)

)
�−→

(
tr(−f(z; θ1, θ2))b, e(z)

)
.
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Here, note that f(z; θ1, θ2) defines a section of B ×S V� → V�. The elliptic fibration

Bη(q) → S corresponding to η(q) ∈ H1(S,SH/S) is obtained by the gluing of XU and

B ×S (S � {P}) under the isomorphism above over U�. Hence Bη(q) → S is obtained by

the logarithmic transformation associated with f(z; θ1, θ2).

In the case a > 0, q is represented by f(z;n, 0) for some n ∈ Q. Let m be the

denominator of n. Let V � ∆ � u �→ um ∈ ∆ � U be the cyclic covering of degree m

and let V� = V�{0}. The q is also represented by f(z;n, θn) for θn := −(1/2)na(m−1).
For the single ∂-étale covering family {V = (V , {0})→ U = (U , {0})}, the image of η(q)
in H1(U ,SH/S) is derived from a section of H0(V ×S V,SH/S) corresponding to

sp(V×SV) � Z/mZ×V � (i, u) �→ f(z+i;n, θn)−f(z;n, θn) = inω(z)+na
i(i− 1)
2

+iθn.

Let B →∆ be the toric model [N4] associated with the period function ω(z) = az+h(t)

and let X → B be the universal covering. Then X |∆� � C�×∆� and the central fiber of

X → ∆ is a chain of infinitely many smooth rational curves. Let s denote a coordinate

of C�. Then the quotient space of X by the action s �→ se(ω(z)) = stae(h(t)) is the toric

model B. The section of H0(V ×S V,SH/S) above defines an action of Z/mZ on B×S V
by

B ×S V � ([s], u) �−→
(
[se(nω(z) + θn)], e(1/m)u

)
,

where [s] denotes the image of s ∈ X in B. Let XU → U be the quotient of B×S V → V
by the action of Z/mZ. Then there is an isomorphism XU |U� � B ×S U� given by(

s, e(z/m)
)
�−→

(
[se(−f(z;n, θn))], e(z)

)
.

The elliptic fibration Bη(q) → S corresponding to η(q) ∈ H1(S,SH/S) is obtained by the

gluing of XU and B ×S (S � {P}) under the isomorphism over U�. Hence Bη(q) → S is

obtained by the logarithmic transformation associated with f(z;n, θn).

Definition. For q ∈ H0(S,QH/S ⊗ Q), we define Lq : H
1(S,SH/S) → H1(S,SH/S) by

Lq(y) = y + η(q) for η : H0(S,QH/S ⊗ Q) → H1(S,SH/S). We call Lq the logarithmic

transformation associated with q.

We still have the following problem related to 6.3.5.

Problem 7.5.2. For a marked elliptic fibration (X → S, φ) ∈ E(S,D,H) with the coho-

mology class y ∈ H1(S,SH/S), is the logarithmic transform Lq(y) = y + η(q) expressed

by a marked elliptic fibration?

Let E ⊂ D be an analytic subset. We set S� := S � E, S� = (S�, D ∩ S�). Suppose

that E contains the support of an element q ∈ H0(S,QH/S ⊗ Q). Then for any y ∈
H1(S,SH/S), the difference Lq(y) − y goes to zero by the restriction H1(S,SH/S) →
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H1(S�,SH/S). Therefore if both y and Lq(y) are contained in E(S,D,H), then for

the representing elliptic fibrations y = (X → S, φ) and Lq(y) = (X ′ → S, φ′), their

restrictions are bimeromorphically equivalent over S�.

Let us consider the exact sequence

H1(S�, H)→ H1(S,LH/S) ⊕H0(S,QH/S ⊗Q)→ H1(S,SH/S)→ H2(S�, H)

of 6.2.5. For K = Z, Q, R, or C, let gK denote the homomorphism H1(S�, H ⊗ K) →
H1(S,LH/S). Similarly, let rK denote the homomorphism H1(S�, H⊗K)→ H0(S,QH/S⊗
K). Recall that C(H/S) is the image of (gZ, rZ) : H

1(S�, H)→ H1(S,LH/S)⊕H0(S,QH/S)

and that C(H/S) is the image of rZ.

Proposition 7.5.3. Let (f : X → S, φ) be a marked elliptic fibration with respect to

(S,D,H) with the cohomology class y ∈ H1(S,SH/S). Let q be an element of H
0(S,

QH/S ⊗Q).

(1) Suppose that X and S are compact Kähler manifolds. Then Lq(y) is represented

by a marked elliptic fibration from a compact Kähler manifold if and only if q is

contained in C(H/S) ⊗Q.

(2) Suppose that X and S are non-singular projective varieties. Then Lq(y) is repre-

sented by a marked elliptic fibration from a non-singular projective variety if and

only if q ∈ rQ(Ker gQ).

Proof. (1) Lq(y) is represented by a BCK morphism if and only if its image inH
2(S,L•

H/S)

is torsion by 7.4.2. Since

H1(S�, H)→ H0(S,QH/S ⊗Q) � H0(S,QH/S)→ H2(S,L•
H/S)

is exact, this is equivalent to q is contained in C(H/S) ⊗Q.

(2) Lq(y) is represented by a BP morphism if and only if η(q) is a torsion element. The

condition is equivalent to that (0, q) ∈ H1(S,LH/S) ⊕ H0(S,QH/S ⊗ Q) is contained in

C(H/S)⊗Q. In other words, q is contained in the image of Ker gQ. �

Let p : B → S be a basic elliptic fibration associated with (S,D,H) such that that B

is non-singular and that p−1D is a normal crossing divisor. Let i : B� = B � p−1D ↪→
B be the open immersion and let us consider the mapping cone O	

B of the morphism

τ≤2Ri∗ZB� → OB (cf. 3.2.2, 6.2.7). Similarly, we define O	
S to be the mapping cone of

τ≤2Rj∗ZS� → OS.

Lemma 7.5.4. There is a natural quasi-isomorphism

τ≤1Rp∗O
	
B ∼qis O	

S ⊕S
log
H/S[−1]⊕ ZS[−1].
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In particular,

H1(B,O	
B) � H1(S,O	

S)⊕H0(S,Slog
H/S)⊕ Z.

Proof. We have a triangle

· · · +1−→ τ≤2(Rp∗Ri∗ZB�)→ Rp∗OB → τ≤1Rp∗O
	
B

+1−→ · · ·

The quasi-isomorphism is obtained by 6.2.6. �

Remark. The cohomology group H0(B,O	
B) is isomorphic to the group of meromorphic

functions defined over B that are invertible on p−1D (6.2.7). When B is a projec-

tive variety, the cohomology group H1(B,O	
B) is a Deligne–Beilinson cohomology group

H2
D(B

�,Z(1)) ([B1], [E]).

Lemma 7.5.5. (1) The triangle

· · · +1−→ τ≤2Ri∗ZB� → OB → O	
B

+1−→ · · ·

induces a triangle

(7.7) · · · +1−→ τ≤2Rp∗Ri∗ZB� → Rp∗OB → τ≤1Rp∗O
	
B

+1−→ · · ·

(2) The triangle

· · · +1−→ τ≤2Ri∗ZB� → OB ⊕ (τ≤3RΓ p−1D(ZB))[1]→ O�
B

+1−→ · · ·

induces a triangle

(7.8)

· · · +1−→ τ≤2Rp∗Ri∗ZB� → Rp∗OB ⊕ (τ≤3RΓD(τ≤2Rp∗ZB))[1]→ τ≤1Rp∗O�
B

+1−→ · · ·

Proof. We have a triangle

(7.9) · · · +1−→ (τ≤3RΓ p−1D(ZB))[1]→ O�
B → O	

B
+1−→ · · · ,

since τ≥1τ≤2Ri∗ZB� ∼qis (τ≤3RΓ p−1D(ZB))[1]. By applying Rp∗ to (7.9), we also have a

triangle

· · · +1−→ Rp∗(τ≤3RΓ p−1D(ZB))[1]→ Rp∗O�
B → Rp∗O	

B
+1−→ · · ·

Here the image of the homomorphism

R1p∗O�
B → R1p∗O	

B � H3
D(ZS)⊕S

log
H/S ⊕ ZS

is SH/S ⊕ ZS by 6.2.8. Thus its cokernel is isomorphic to

H3
D(ZS)⊕QH/S ⊂ H3(RΓD(Rp∗ZB)),
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where H3
D(ZS) = IIE

3,0
∞ , QH/S = IIE

2,1
∞ for the spectral sequence IIE

p,q
2 in Section 5.4.

Since IIE
1,2
2 = 0, the cokernel is the kernel of H3(RΓD(Rp∗ZB)) → R3p∗ZB . Hence, we

have another triangle

(7.10) · · · +1−→ (τ≤3RΓD(τ≤2Rp∗ZB))[1]→ τ≤1Rp∗O�
B → τ≤1Rp∗O	

B
+1−→ · · ·

The triangle

· · · +1−→ RΓD(Rp∗ZB)→ Rp∗ZB → Rj∗Rp�
∗ZB�

+1−→ · · ·

induces another triangle

(7.11) · · · +1−→ τ≤3RΓD(τ≤2Rp∗ZB)→ τ≤2Rp∗ZB → τ≤2Rj∗Rp�
∗ZB�

+1−→ · · · ,

since the image of

H2(Rj∗Rp�
∗ZB�) � R2j∗ZS� ⊕ R1j∗H ⊕ ZS → H3

D(Rp∗ZB)

is H3
D(ZS)⊕QH/S. We have then triangles (7.7) and (7.8) by (7.10) and (7.11). �

The cohomology groupH3
D(S, τ≤2Rp∗ZB) is isomorphic to the kernel ofH

3
p−1D(B,Z)→

H3(B,Z). Here, we have an injection H1(S,p∗H2
p−1D(ZB)) → H3

D(S, τ≤2Rp∗ZB) from

E1,2
2 → E3 for the spectral sequence

Ep,q
2 = Hp(S,Hq(Rp∗RΓ p−1D(ZB))) =⇒ Ep+q = Hp+q

p−1D(B,Z).

If [S,D] satisfies the condition 3.2.6, by 5.4.7, we have another injection H3
D(S,Z) →

H3
D(S, τ≤2Rp∗ZB) ⊂ H3

p−1D(B,Z).

Definition. Suppose that S is non-singular. We define an abelian group by

C̃(B/S) :=
H3

D(S, τ≤2Rp∗ZB)

H1(S,p∗H2
p−1D(ZB)) +H3

D(S,Z)
.

The triangles (7.10) and (7.11) induce homomorphisms H1(B,O	
B)→ H2(B�,Z) and

H2(B�,Z)→ C̃(B/S), respectively.

Proposition 7.5.6. Suppose that S is non-singular. Then there exists a natural injection

C̃(B/S) ↪→ H0(S,QH/S). The image of H
2(B�,Z)→ C̃(B/S) ⊂ H0(S,QH/S) coincides

with C(H/S). The image of H1(B,O	
B) → C̃(B/S) ⊂ H0(S,QH/S) coincides with

rZ(Ker gZ). In particular, the following conditions are equivalent :

(1) The image of H1(B,O	
B)→ C̃(B/S) ⊂ H0(S,QH/S) is a finite index subgroup of

C(H/S);

(2) The image of H0(S,QH/S ⊗Q)→ H1(S,SH/S) is a torsion group;

(3) Any logarithmic transformation along D produces only a projective elliptic fibra-

tion.
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Proof. We have triangle

· · · +1−→ p∗H2
p−1D(ZB)[−2]→ τ≤3RΓD(τ≤2Rp∗ZB)→ (H3

D(ZS)⊕QH/S)[−3] +1−→ · · · ,

from the quasi-isomorphism τ≤2RΓD(τ≤2Rp∗ZB) ∼qis τ≤2Rp∗RΓ p−1D(ZB) and an iso-

morphism H3
D(τ≤2Rp∗ZB) � H3

D(ZS) ⊕ QH/S. Since ZS → Rp∗ZB has a splitting, ho-

momorphisms H4
D(S,Z) → H4

p−1D(B,Z) and H2(S,H2
D(ZS)) → H2(S,p∗H2

p−1D(ZB))

are both injective. Thus we have an injection C̃(B/S) → H0(S,QH/S). We have

the decomposition H2(B�,Z) � H2(S�,Z) ⊕ H1(S�, H) ⊕ H0(S�,Z). The composite

H2(S�,Z)→ C̃(B/S) is zero since it factors H3
D(S,Z). A generator of H0(S�,Z) comes

from c1(Σ) ∈ H2(B,Z). Thus the image of H2(B�,Z) → C̃(B/S) coincides with the

image from H1(S�, H). This is C(H/S). The homomorphism H1(B,O	
B) → H2(B�,Z)

is written as the direct sum of H1(S,O	
S) → H2(S�,Z), H0(S,Slog

H/S) → H1(S�, H), and

the identity H0(S,Z)→ H0(S�,Z). Since

H0(S,Slog
H/S)→ H1(S�, H)→ H1(S,LH/S)

is exact, the image of H2(B,O	
B)→ H0(S,QH/S) is rZ(Ker gZ). �

Suppose that S is a compact Kähler manifold. Then H2(B�,Z) has a mixed Hodge

structure and H2(B,OB) is isomorphic to Gr
0
F H2(B�,C) for the Hodge filtration F .

Hence the image of H1(B,O	
B)→ H2(B�,Z) is H2(B�,Z)∩F 1H2(B�,C) and the kernel

of H1(B,O	
B)→ H2(B�,Z) is generated by Pic0(B).

Lemma 7.5.7. If S is a compact Kähler manifold, then rC(Ker gC) = Im rC.

Proof. There is a splitting H2(B�,C) =
⊕

Ip,q for vector spaces Ip,q indexed by integers

p, q ≥ 0 with p+ q ≥ 2 such that

F kH2(B�,C) =
⊕
p≥k

Ip,q, WrH
2(B�,C) =

⊕
p+q≤r

Ip,q,

Ip,q ≡ Iq,p mod
⊕

p′<p,q′<q

Ip′,q′,

where W stands for the weight filtration and I stands for the complex conjugate of I .

We have F 3H2(B�,C) = H2(B,F 3Ω•B(log p−1D)) = 0. The Leray spectral sequence

Ep,q
2 = Hp(B, Rqi∗CB�) =⇒ Hp+q(B�,C)

degenerates at E3 and Gr
W
q Hp+q(B�,C) � E2p+q,−p

3 is a pure Hodge structure of weight

q. Hence, Ip,q #= 0 except for (p, q) = (2, 0), (1, 1), (0, 2), (2, 1), (1, 2), (2, 2). Thus

Gr0F H2(B�,C) � I0,2 and Ker gC = F 1H2(B�,C). Further

Ker gC → H2(B�,C)/W2H
2(B�C) � I2,1⊕ I1,2 ⊕ I2,2

is surjective. �
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7.6. Logarithmic transformation on elliptic surfaces

Proposition 7.6.1 (cf. [K5, 3.1, 3.2]). Assume that S is a non-singular projective curve.

Let E be an elliptic curve and let H be the trivial VHS H = H1(E,Z)⊗ZS�. For a suitable

isomorphism, H1(E,OE) � C, let Λ be the image of H1(E,Z) → H1(E,OE) � C. Let

us consider an element

q ∈ H0(S,QH/S ⊗Q) � H2
D(S,Q)⊗ Λ � DivD(S,Q)⊗ Λ.

(1) The following conditions are equivalent :

(1a) η(q) ∈ H1(S,SH/S) = E(S,D,H) represents a Kähler elliptic surface;

(1b) For the expression q =
∑

P∈D qPP for qP ∈ Λ⊗Q,
∑

P qP = 0.

(2) The following conditions are equivalent :

(2a) η(q) ∈ H1(S,SH/S) = E(S,D,H) represents a projective elliptic surface;

(2b) There is a logarithmic 1-form ξ ∈ H0(S,Ω1
S(logD)) such that it is con-

tained in H1(S�,Λ ⊗ Q) and that q is its image under H1(S�,Λ ⊗ Q) →
H0(S,R1j∗QS� ⊗ Λ).

Proof. (1) (1a) is equivalent to that q ∈ C(H/S) ⊗ Q. The assertion follows from the

exact sequence

H1(S�,Z)→ H0(S,R1j∗ZS�)→ H2(S,Z) � Z.

(2) (2a) is equivalent to that q ∈ rQ(Ker gQ). Now g is induced from H1(S�,Z) →
H1(S,OS) and Λ ⊂ C by the tensor product H1(S�,Z) ⊗ Λ → H1(S,OS) ⊗C C. An

element of Ker gQ is represented by a logarithmic 1-form ξ ∈ H0(S,Ω1
S(logD)) such that

ξ ∈ H1(S�,C) is contained in H1(S�,Λ). Thus we are done. �

Corollary 7.6.2 (cf. [K5, 4.2]). Under the same situation as 7.6.1, suppose that S is

isomorphic to the elliptic curve E and D = P1 + P2 for distinct two points. Suppose

further E has a complex multiplication. Then some 0 #= q ∈ H0(S,QH/S ⊗Q) defines a

projective elliptic surface if and only if P1 ∼Q P2.

Proof. If P1 #∼Q P2, then we have H
0(S,OS(∗D)�) = C�. Hence H1(S�,Z) → H1(S,OS)

is injective. Now the image of H1(S�,Z) → H2
D(S,Z) is of rank one. Let θ ∈ H1(S�,Z)

be an element generating the image in H2
D(S,Z). Then the image of H1(S�,Z) →

H1(S,OS) � C is an abelian group of rank three generated by Λ and θ. Now ΛQ = Λ⊗Q

is a quadratic field. Hence ∅ = θΛQ ∩ ΛQ ⊂ C. Thus the kernel of H1(S�,Q) ⊗ Λ →
H1(S,OS) � C is contained in H1(S,Q)⊗ Λ. Thus rQ(Ker gQ) = 0.

If P1 ∼Q P2, then H0(S,OS(∗D)�) contains a non-constant meromorphic function. Its
image to H2

D(S,Z) is not zero. Thus we can find a non-zero element of rZ(Ker gZ). �
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Proposition 7.6.3. Let p : B → S be a modular elliptic surface (cf. [S8]) associated

with a subgroup Γ ⊂ SL(2,Z) of finite index such that −id #∈ Γ , Γ acts on H without

fixed point, and the stabilizer of any cusp consists of unipotent matrices. Let D ⊂ S be

the set of cusps and let H be the induced VHS on S� = S � D. Let Gk(Γ ) and Sk(Γ ),

respectively, denote the spaces of (holomorphic) modular forms and cusp forms of weight

k with respect to Γ .

(1) Gk(Γ ) � H0(S,L⊗(−k)
H/S ) and Sk(Γ ) � H0(S,L⊗(−k)

H/S ⊗OS(−D));
(2) Ω1

S(logD) � ωS⊗OS(D) � L⊗(−2)H/S . In particular, G2(Γ ) � H0(S,Ω1
S(logD)) and

S2(Γ ) � H0(S, ωS);

(3) For the mixed Hodge structure H1(S�, H), we have F 1(H1(S�, H)C) � G3(Γ );

(4) For the pure Hodge structure H1(S, j∗H) of weight two, its (1, 1)-component is

zero, (2, 0)-component is isomorphic to H0(S, ωS ⊗ L−1H/S) � S3(Γ ), and (0, 2)-

component is isomorphic to H1(S,LH/S).

Proof. (1) p is a natural compactification of Γ\(C×H)→ Γ\H = S�. For the universal

covering mapping τ : H→ S�, OH � τ−1LH is a Γ -linearized sheaf as follows:

fγ(z) = (cγz + dγ)f(γz), for γ =

aγ bγ

cγ dγ

 ,

where f(z) ∈ H0(H,OH) is a holomorphic function on z ∈ H. Hence H0(S�,L⊗(−k)
H ) is

the space of holomorphic functions f(z) on H satisfying

f(γz) = (cγz + dγ)
kf(z).

By the definition of LH/S and by the unipotent property of Γ , we have the expected

isomorphism.

(2) This is derived from the isomorphism Ω1
H � τ−1L⊗(−2)H as Γ -linearized sheaves.

(3) The logarithmic de Rham complex Ω•S(logD) ⊗ Hcan
S has a filtration

F 1(Ω•S(logD) ⊗ Hcan
S ) = [· · · → F 1(Hcan

S )
∇S−−→ Ω1

S(logD) ⊗ Hcan
S → · · · ],

F 2(Ω•S(logD) ⊗ Hcan
S ) = [· · · → 0→ Ω1

S(logD) ⊗ F 1(Hcan
S )→ · · · ].

Here F 1(Hcan
S ) � L−1H/S. Now the composite F 1(Hcan

S ) → Ω1
S(logD) ⊗ LH/S is injec-

tive since its restriction to S� is a kind of Kodaira–Spencer mapping. By (2), it is an

isomorphism. Thus Gr1F (Ω
•
S(logD) ⊗ Hcan

S ) ∼qis 0. Hence

F 1H1(S�, HC) � H1(S, F 1(Ω•S(logD) ⊗ Hcan
S )) � H0(S,Ω1

S(logD) ⊗ L−1H/S) � G3(Γ ).

(4) The Leray spectral sequence

Ep,q
2 = Hp(S,Rqj∗HQ) =⇒ Hp+q(S�, HQ)
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degenerates at E3 and E2p+q,−p
∞ � GrW1+q H

p+q(S�, HQ) for the weight filtration W of the

mixed Hodge structure. Since the period ofH is non-constant, H2(S, j∗H) � H2(S,L•
H/S)

is a finite group by 4.2.5. Thus GrW2 H1(S�, HQ) � H1(S, j∗HQ) and Gr
W
3 H1(S�, HQ) �

H0(S,R1j∗HQ) and

0→ H1(S, j∗HQ)→ H1(S�, HQ)→ H0(S,R1j∗HQ)→ 0

is an extension of mixed Hodge structures. Note that QH/S ⊗Q � R1j∗HQ in this case.

We have F 1H1(S, j∗HC) � F 1H1(S�, HC) ∩H1(S, j∗HC). From the residue isomorphism

Ω1
S(logD)/Ω

1
S � OD, we have a commutative diagram

H1(S�, HC) −−−→ H0(S,R1j∗HC)� �
H0(S,Ω1

S(logD)⊗ L−1H/S) −−−→ H0(D,OD ⊗ L−1H/S),

where the right vertical arrow is an isomorphism. Therefore,

F 1H1(S, j∗HC) � H0(S,Ω1
S ⊗ L−1H/S) � S3(Γ )

and Gr0F H1(S, j∗HC) � Gr0F H1(S�, HC) � H1(S,LH/S). By the proof of (3), we have

F 1H1(S�, HC) = F 2H1(S�, HC). Hence F
1H1(S, j∗HC) = F 2H1(S, j∗HC). �

We recall some properties of the space of Eisenstein series. Let N , k be integers greater

than 2 and let Γ (N) stand for the principal congruence modular group of level N . For

c, d ∈ Z, we consider the Eisenstein series

Gk(z; c, d;N) :=
∑

(m,n)≡(c,d) mod N
(m,n) =(0,0)

(mz + n)−k,

where z ∈ H. Then Gk(z; c, d;N) belongs to Gk(Γ (N)). Let Ek(N) ⊂ Gk(Γ (N)) be the

C-subspace generated by the Eisenstein series. Then Gk(Γ (N)) = Sk(Γ (N)) ⊕ Ek(N)

and Ek(N) is the orthogonal complement of Sk(Γ (N)) with respect to the Petersson

product. Hecke operators T (n) with (n,N) = 1 stabilize Sk(Γ (N)) and Ek(N) and are

diagonalized in each spaces.

Lemma 7.6.4. A Q-vector subspace Ek(N)Q ⊂ Ek(N) generates Ek(N) and the action of

T (n) with (n,N) = 1 descends to Ek(N)Q.

Proof. The space of Dirichlet series associated with Ek(N) is generated by the series of

the form (t1t2)
−sL(χ1, s)L(χ2, s), where t1, t2|N , χi is the Dirichlet character modulo

N/ti for i = 1, 2, χ1χ2(−1) = (−1)k, L(χ, s) = ∑∞
n=1 χ(n)n

−s (cf. [O4, Theorem 15]).

Here, we have

(t1t2)
−sL(χ1, s)L(χ2, s) = c

∞∑
n=1

c(n)n−s, c(n) =
∑

bi mod N/ti

χ1(b1)χ2(b2)a
b1t1,b2t2
n
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for c ∈ Q, ac,d
n ∈ Z. Let

fχ1,χ2(z) =
∑
n≥0

c(n)e(nz/N)

be the associated Eisenstein series. Then it is a common eigenfunction for T (n) with

(n,N) = 1 and its eigenvalue λ(n) = λχ1,χ2(n) satisfies c(n) = c(1)λ(n). Let UN ⊂ Ek(N)

be the K-vector subspace of Ek(N) generated by {fχ1,χ2} for K := Q(e(1/N)). Then

Ek(N) � UN ⊗K C and the action of T (n) with (n,N) = 1 descends to UN . An element

σ ∈ Gal(K/Q) acts on UN by

(fχ1,χ2)σ(z) =
∑
n≥0

c(n)σe(nz/N).

Then (fχ1,χ2)σ = fχσ
1 ,χσ

2 for χσ
i (b) = (χi(b))

σ. Hence (λχ1,χ2(n))σ = λχσ
1 ,χσ

2 (n). Thus

T (n) is commutative with the action of Gal(K/Q). Hence it descends to a rational

structure. �

Corollary 7.6.5. Let p : B → S be the modular elliptic surface associated with Γ (N)

for N ≥ 3. Let D ⊂ S be the set of cusps and let H be the induced VHS on S� = S � D.

Then E3(N) ⊂ G3(Γ (N)) ⊂ H1(S�, HC) is generated by a Q-subspace of H1(S�, HQ). In

particular, the exact sequence

0→ H1(S, j∗HQ)→ H1(S�, HQ)→ H0(S,R1j∗HQ)→ 0

of mixed Hodge structures is split.

Proof. Hecke operators T (n) acts on H1(S�, H) � H1(Γ (N),Z⊕2) compatibly with the

inclusion G3(Γ (N)) ⊂ H1(S�, H)C (cf. [S7]). Thus E3(N)Q satisfies the condition. �

Theorem 7.6.6. Let B → S be a modular elliptic surface associated with a subgroup

Γ ⊂ SL(2,Z) of finite index such that −id #∈ Γ . Then any logarithmic transform only

along singular fibers is a projective surface.

Proof. Let D ⊂ S be the set of points the fibers over which are singular, j : S� = S�D ⊂
S denote the immersion, and let H be the induced VHS on S�. Then QH/S is supported

in points the singular fiber over which is of type I(+).

There is an integer N ≥ 3 with Γ (N) ⊂ Γ . Let B(N)→ S(N) be the elliptic modular

surface associated with Γ (N). Then B(N) → S(N) is birational to the pullback of

B → S by the natural finite morphism S(N)→ S. An element q ∈ H0(S,QH/S) produces

logarithmic transform Bη(q) → S and B(N)η(q) → S(N). If B(N)η(q) is projective, then

so is Bη(q). Hence, we are reduced to the case Γ = Γ (N). Then the assertion follows

7.5.3, 7.6.3, and 7.6.5. �
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Proposition 7.6.7. Let p : B → S be a minimal basic elliptic surface over a non-singular

projective curve S, D the set of points the fibers over which are singular, and let H be

the induced VHS on S� = S � D. Suppose that H is not trivial. For a point P ∈ S�,

we set D(P ) := D + P , S�(P ) := S � D(P ), and H(P ) := H|S�(P ). Then there exist a

point P ∈ S� and an element q ∈ H0
P (S,QH(P )/S⊗Q) such that η(q) ∈ E(S,D(P ), H(P ))

represents an elliptic fibration not bimeromorphic to any projective surfaces.

Proof. There is a commutative diagram

0 −−−→ H1(S, j∗HQ) −−−→ H1(S � P, j∗HQ) −−−→ H2
P (S, j∗HQ) −−−→ 0∥∥∥∥ � �

0 −−−→ H1(S, j∗HQ) −−−→ H1(S�(P ), HQ) −−−→ H2
D(P )(S, j∗HQ) −−−→ 0

of mixed Hodge structures, where horizontal sequences are exact by H2(S, j∗HQ) = 0

(cf. 4.2.5). We have H0
P (S,SH(P )/S⊗Q) � H2

P (S, j∗HQ). The η(q) represents a projective

surface if and only if the top horizontal sequence is split as mixed Hodge structures. Note

that H1(S, j∗HQ) and H2
P (S, j∗HQ) are pure Hodge structures of weight two and three,

respectively. Varying points P in S�, we have an exact sequence

(7.12) 0→ H1(S, j∗H)⊗QS� → H̃Q → HQ → 0

of admissible variation of mixed Hodge structures, where H̃ is defined as follows: Let

π1 : S × S� → S, π2 : S × S� → S� be projections and let ∆ ⊂ S × S� be the diagonal

locus. We define

H̃ := R1(π2 ◦ i)∗
(
π−11 (j∗H)|S×S��∆

)
,

where i : S×S� �∆ ↪→ S×S� is the open immersion. The dual of the sequence (7.12) is

an extension of the trivial variation H1(S, j∗H)
∨⊗QS� of pure weight −2 by the variation

H∨
Q of pure weight −3. The extension is trivial if the stalks at each points P ∈ S� are

trivial by [S2, 4.5]. Hence, it suffices to show that (7.12) is not split on S�. We have a

morphism

HQ → H1(S, j∗HQ)⊗QS� [1]→ H1(S�, H)⊗QS� [1]

in derived category from (7.12). It is enough to show this morphism is not zero. The mor-

phism is also obtained al follows: LetRΓc(S
�, H∨)→ RΓ (S�, H∨) be a natural morphism,

where Γ (S�,−) denotes the functor taking global sections and Γc(S
�,−) denotes the func-

tor taking global sections with compact support. It induces RΓc(S
�, HQ)

L
⊗QS� → H∨

Q as

an evaluation map. We consider its dual RHomS(−,QS�). By Verdier duality, we have

RHomS�(RΓc(S
�, H∨

Q)
L
⊗QS� ,QS�) ∼qis RHom(RΓc(S

�, H∨
Q),Q)

L
⊗QS�

∼qis RΓ (S�, RHom(H∨
Q ,ω

top
S�

L
⊗Q))

L
⊗QS� ∼qis RΓ (S�, HQ)

L
⊗QS� [2].
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By 4.2.5, we have RΓ (S�, HQ) ∼qis H1(S�, HQ)[−1]. Hence the dual is a morphism

HQ → H1(S�, HQ) ⊗ QS� [1]. Since the evaluation map is not zero, the dual is also not

zero. Thus we are done. �
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()red, 22

()tor, 14
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L
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m(), 14

A, 74, 76
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An, 4, 18
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