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A constructive approach to traveling waves in
chemotaxis

Dirk Horstmann * Angela Stevens |

Abstract

In this paper we study the existence of one and multidimensional trav-
eling wave solutions for chemotaxis or so-called Keller-Segel models. We
present a constructive approach to give modelers a choice of sensitivity,
production and decay functionals at hand.
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1 Introduction and Motivation

In this paper we study the existence of traveling wave solutions for Keller-Segel
models of the form

Uy
Ut

V (k(u) Vu — ug(v) Vo) } (1)

k.Av + g(u,v)

in one and higher space dimensions. This system is known as one of the classical
models to describe chemotaxis, the active motion of a population u towards a
chemical signal v, a phenomenon which is well known in microbiology. Many
different patterns can be observed in chemotactic species. One of them are
traveling waves or pulses which spread trough the population. These can occur
due to growth of the respective population but also due to the dynamics of
motion of populations especially when they are in a non-reproductive stage.
Here we are concerned with the later phenomenon.

For simplified versions of the above given system several results on the ex-
istence of one-dimensional traveling wave solutions are known (see for instance
[2, 3, 4, 6, 11, 13] and [15]). None of these references deals with the case where
the evolution of the chemical includes diffusion, production and decay. But
there are hints for the existence of such solutions in some of these papers (see
for example [14, Figure 3, page 212]). In [11] E. F. Keller discussed several
functional forms for which one might expect a traveling wave solution. The dy-
namics of the chemical signal includes diffusion and different decay terms, but
no production. Furthermore the connection between the chemotactic sensitivity
and the decay term are discussed. In [2, 3, 4] a phase plane analysis is done for
the bifurcation of traveling waves in chemotaxis models without diffusion of the
chemical. As far as we know there are no existence results concerning traveling
wave solutions for the above given Keller-Segel type model (1) in space dimen-
sions larger than one. In [7] traveling wave patterns in 2-dimensional chemotaxis
systems are considered which are mainly caused by population growth.

In the present paper we show the existence of traveling wave solutions for
(1) with homogeneous Neumann boundary conditions in case of space dimension
one. Our results allow a general class of nonlinearities which include some of
the systems studied in previous papers like [6, 13] and [15] as special cases.

Furthermore we will prove for space dimensions higher than one that there
exist traveling wave solutions for (1) in the cylindrical domain @ = IR xI", where
T is a bounded domain in RN =1 (N > 1), with no-flux-boundary conditions for
the first equation and homogeneous Dirichlet boundary conditions on OT'.

For homogeneous Neumann boundary data mass is conserved for u(z,t). Thus
one expects traveling pulse solutions for u(t,z), whereas the second equation
might generate a traveling front for v(z,t).



Before we start our calculations we give a short motivation why multidimen-
sional traveling wave solutions for (1) can be expected.
Consider

0 V(Vu +uV(1/v)) @)
vy = Av+u-—uv

with homogeneous Neumann boundary conditions. This is a stationary chemo-
taxis problem where mass is not conserved. Thus looking for a traveling front
solution for u makes sense. First we express v in terms of v.

u=Xe 1/, (3)
Suppose A = 1. Then substituting (3) into the second equation we obtain
vy = Av+ e (1 —v) 4)

with homogeneous Neumann boundary data. For (4) existence of a traveling
front solution was proved by Berestycki and Nirenberg, [1]. Here the result is
cited from ( [19, Theorem 3.4, p. 22]).

Theorem 1.1 (citation from [19]) Consider (4) on a cylindrical domain Q@ =
R x T, where T is a bounded domain in RN 1. Then there exists a critical speed
c* > 0 such that solutions on (4) exist, satisfying v(z,t) = v(zy —ct, 22, ..., TN),
v(—00, %2, ..., zN) = 0, v(0c0, T2, ....,xN) = 1, and zero Neumann boundary con-
ditions on R x 0T, if and only if —c > ¢*. For every —c > c*, there is a solution
with vs > 0 (s = z1 — ct).

In the present paper we will give a constructive approach to show the existence of
traveling pulse, respectively traveling wave solutions for (1). For the derivation
and description of this model (1) and results about the time asymptotic behavior
of the solutions we refer to [9, 10, 12, 16, 18] and especially the references therein.

2 One dimensional traveling wave and pulse so-
lutions

In this section we consider (1) in IR x {¢t > 0}. With the traveling wave ansatz
u(z,t) = u(x — ct), v(z,t) = v(z — ct) and no-flux boundary conditions for the
first equation we obtain

—cu = k(u)u, — u®(v), + const, (5)
where
v
d(v) = /d)(s) ds.
0
Because of the conservation of mass we can only expect traveling pulse solutions
for u. This results in the condition that

u(z) = 0, 2 = +oo. (6)



Together with Neumann boundary condition this implies that the constant in
(5) equals zero. Dividing by u we obtain

—c=—u, — ®(v),. 7

e=""u. @) ("

It @ is integrable with respect to u and K (u) is invertible with K'(u) = &y
then

u(z) = K1 (B(v(2)) — c2). (8)

If k(u) = 1, respectively k(u)/u = 1/u, then K (u) =logu and K~1(y) = e¥. If
®(v(z)) = log(v(z)) then
v(z) = u(z)e. (9)

Therefore the traveling wave ansatz allows us to solve the first equation of the
Keller-Segel model explicitly.
2.1 A short survey on known results

In [13] E.F. Keller and L.A. Segel studied the following system:

Ut

Wtgy — (Guv™ g, } (10)
Ut

—ku

with homogeneous Neumann boundary data.
The traveling wave ansatz yields
u(z) = const - (v(z))%/ e~k (11)
Substitution into the second equation of (10) and integration results in

-1/((8/w)—1)
v(z) = (const ke 2(8 — p)e M 4 v(lxj(cz/”)) " , (12)

where —00 < v 1= v(00) < 0. If one assumes

vi- /W = const - ke 2(8 — p).

Then v(z) (1 L 7CZ/H)—1/((5/1L)—1) (13)
Voo €
and ’LL(Z) _ 1 —cz/u <1 + 762/”) —3/(0—n) (14)
oo (k)T (0/u) —1° ‘ '
Since we are looking for bounded solutions we suppose
6> p, (15)
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Figure 1: The shape of the functions u/(c?ve(uk)™!) and v/ve given by the

formulas (14) & (13) for 6 =4, p =3, ¢ = 2 and ¢ = 0,20, 40, 60, 80, 100.

which implies
lim v=0, lim w»=0.
cz/pu——o0 cz/p——0o0
The functions v and v are plotted in Figure 2.1.
In [15], T. Nagai and T. Ikeda studied the existence and stability of traveling
wave solutions of the system

Ut

WPtgr — (Ouv™ vy, } (16)
(%

EVzg — kU

with homogeneous Neumann boundary data. They considered both cases € = 0
and € > 0. It was proved that traveling wave solutions (u.,ve) for (16) with
€ > 0 satisfy

|[ve — vollLe(m) = O(e) and |Jue — wo|[p=(m) = O(Ve) ase = 0. (17)

Here u.(z) is given by e °*v?. Furthermore it was shown that traveling wave

solutions are linearly unstable for perturbations in the sets

X = {(u,v) | u,v € L'(R), / u(z) dz = 0}

—00

and
X = {(u,v) € X | wu,wv € L*(R)}
where the weight function w(z) equals e~ ¢* for z < 1 and e*“# for z > 1. Here

w > ¢, which is the wave speed, and ¢ > ¢/(§ — 1).

To our knowledge no further results on the existence of traveling wave solu-
tions for the full system (1) are known.



2.2 Construction of traveling waves for chemotaxis with-
out reproduction
In this section we develop a constructive approach to find traveling wave solu-

tions for the Keller-Segel model.

First we consider the situation when k(u,v) = 1. Using the traveling wave
ansatz we conclude from the first equation that

u(z) = Gv)e” * = G(v)a(z).
Similar to the approach in [17] we assume

dizu = F(v)b(z)
which implies
v, = F'(0)F(0)b?(2) + F(v)b'(2).

Using this for the second equation of the Keller-Segel model we get after some
rearrangements

F'(v) = - - - ) . (18)

If b solves

which means b(z) = Ce %~ then

o255 7 v
F(v) = \/—2027/ 9(s,G(s)ec#)ds + const. (20)

All equations are supposed to hold for general v. For our constructive ansatz
we first make the following assumption on g(v, G(v)e °?)

g(v,G(v)e %) = i e I2GI (v) i a; jv° (21)
j=—00 i=—o0
where
G(v) = i gt (22)
l=—
Let
b(z):ibje_Cjz and F(v) = i fivl. (23)
iz i=—oco



Then we have to solve

k. Z ifivil Z vaZbke C’”Zbe_dz (24)

i=—00 j=—o0
= —c E vaJE bre ** + ck, E f]fUJE kbye k=
]_—OO ]_—OO
E a,-jviGje*Cjz
i,j=—00

Comparison of the coefficients for v™e~°"# results in

k Z Zfzfm i+1 Zbl n—Il = _Cfmb +Ck nfm n_ m (25)

i=—o00

where A,, is the overall coefficient of v™ in Z;’ifoo ainv*G™.

For F(v) = fiv, which means F'(v) = f;, we get the following identities:

) i/ o
b = ( Z blvl> ( Z ai,jv"1> =: k; = const., Vj.

l=—0c0 i=—00

i=—o00

As a consequence b(z) must solve

V'(2) = —f1b*(2) -

76]2 (26)

Thus we get the following system of equations for the coefficients b;.

— g Cy ko
0 = ~hb-yph-pn
—bjjec = —f1§ bibj — —bj — — b (27)
J P J— kc J k fl

Now going back to our first assumption on the shape of %U we see that v equals

fiboz—LL i TJG_CjZ
v(z) = const - e =1 (28)

Since we are interested in traveling wave solutions, the following conditions have
to be satisfied:
v(—o0) = 0, v(co) = const.



Thus

oo
bp = 0in (28) and therefore ky = Z aiov'™! = 0.

i=—00

Consequently a; o = 0 Vi.

In the examples given in the next section we will see how to use the above
method to find traveling waves and pulses.

2.2.1 Examples

In this section we give some explicit examples for the existence of traveling wave
and pulse solutions by using the above given methods. First we consider the
following u-equation

Ut = Ugz — X (u (IOg ’U)z)w (29)

with Neumann boundary conditions and x € IN. This is because our construc-
tions favor polynomial functionals (xlogv = logvX). Later we discuss also
x € R. After applying the traveling wave ansatz z = x — ¢t we get

u=vXe . (30)

So in our notation G(v) = vX. Now we want to construct suitable equations
for v to get a traveling pulse for v and a traveling wave for v. Let us assume
F(v) = fiv. Since by = 0 in this case we start with conditions (27):

—kcfibic= —cfibi — k1 or ki =X Z aipv' ' = (k. — Dbicfr.  (31)

For simplicity we assume that b(z) = e=°*, s0 by = 1 and b; = 0 for j # 1. With
this we have

kg = U2X Z aig'l}i71 = —kcff. (32)
So
a1—x,1 = (kc — ].)Cfl and a1-2x,2 = —k'cf12. (33)

Therefore the second equation has the form
Vg = kovgg + (ke — Defror ™Xu — ko fiol 7Xu?, (34)

For x =1 this results in

2
0 = kevas + (ke — Defru — k, ff“7 (35)



The general system has the traveling wave solutions

xf1 —c(z—ct) f1 _—c(z—ct)

u(z,t) =e ¢ © e @) y(x,t) =e T (36)

Furthermore we see from (34) and (36) that the wave speed c is uniquely deter-
mined and we have the equality ¢ = f;.

For general coefficients ¥ € IR we can always construct an example by com-
paring with a model for x € IN. Let u,v be traveling pulse and wave solutions
for

u=1vXe" % and v = kg + g(u,v). (37)

Then @& = 9Xe~°* and @ solve
Uy = kobgy + g(aX X, 0) (38)
More general we see,

Corollary 2.1 Let us assume that there is a traveling wave solution for the

system
( z (1 ())w)z
e Lot | )

Ut
Ut

with homogeneous Neumann boundary data. Then there exists also a traveling
wave solution for the system

u = (um—u(log@(v))z)x}

Vi = KkeUgpz +9 (%’U) . (40)

Remark 2.1 Whether the solution of the second equation satisfies also the Neu-
mann boundary conditions and is therefore a reasonable solution or not depends
on the function ®(v).

The proof of this corollary is obvious.
In a second approach we again consider

ue = (ug — xu (logv),), (41)

but assume that F'(v) depends on v. The traveling wave ansatz gives, as before,
u = vXe °* or G(v) = vX. The simplest assumption for b is that b(z) =
e *<*. In any case formula (20) holds. For kl—c =n € IN the comparison of the
coefficients of the series expansions yields

0 = _Cfmbn + cfmkcnbn — Gm—xn,n (42)

o0

1
2 .
Ebn Y ififmoitt = —Gm_xon2n

i=—00
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Figure 2: The functions u and v given by the formulas (36) for f; = 0.5 and
x =1.

where b, = 1. Assume k. = 1. Then a;,—y,1 = 0 for all m. Since F(v) was
supposed to be nonlinear we start to look for a suitable functional g for the case
F(v) = f2v%. So f; = 0 for j # 2. We have

2f3 = az_ay,2 (43)
This results in the following equation for v
Ut = Ugg — 2f22u2’l}3_2x, (44)

which for x = 2 is
2
V= VUgy — 2f22% (45)

Here the traveling wave and - pulse solutions are given by

e * 1

u(z) = m———ox, v(2) = m

Rk (48)

where y =1/(x—1),x > 1 and ¢ = fo, /ﬁ. For x = 2 we obtain v = 1 and
¢ = fa. Once the solutions for u and v are known one can add additional birth

and death terms into the equation, but which finally disappear, e.g.
ug = (up—u(log v2)$)x (47)

2
Vi = Upy + fo (1)3 —v? +uw — 2%) . (48)

For general x € IR we can again argue with Corollary 2.1.

10



As a third example we consider the following version of (1) with nonlinear

diffusion: - (®©)))s (m > 1)
’U: _ Vge +wg(u,v) o a } (49)

on IR with homogeneous Neumann boundary data. With the traveling wave
ansatz u(z,t) = u(z — ct), v(z,t) = v(z — ct), we are led to the identity

u(2) = (m(@(v(2)) — e2)"/™. (50)

Since we are looking for a traveling pulse solution for the function u(z), we have
to assume
®(v(z)) —cz = 0 as z = too. (51)

For simplicity we consider the case m = 2. Though it seems to be extremely
unlikely we assume also in this case

u(z) = G(v)a(z) = G(v)e "% (52)
The last equality is a simplified ansatz. Again
d
—wv=F —cz
e (v)e (53)

and we consider the situation that

c V() g(v,G)e ) (54)

PO =50 "5%0 ~ FoRe

depends on v. Here k. was supposed to be equal to 1. Doing the usual expansion
and since by = 1 and b; = 0 for j # 1 we end up with

oo oo oo
E ifivt! E fivle % = — E a;jv'Gle” "7 (55)
i=—o00 j=—00 i,j=—o00

Since we have assumed m = 2, a first good guess, after comparing the expression
and conditions for v and v is v = §. Of course this is just a try. With this we
have

i ifz'?}iil i fj?)j = - i ai4viG4. (56)

i=—00 Jj=—00 i=—00

Since F'(v) depends on v, the simplest ansatz is F(v) = fov?. Then for e.g.
G(v) = Pv we get

2f; = —B'a_14 (57)

which gives the following v-equation

Vp = Vgg — ——=—. (58)



Now the conditions on u have to be checked

V2(®(v) — cz) = e /2 (59)

We know already that

1

YT Tt (60)

due to our choice for F'(v). To cancel cz in (59) the functional ® = ®; + P9

has to include a suitable term. For instance ®;(v) = log(1 —1) =log(1=2) is a

good choice. So we are left with the condition ’
28, (v) = fPve . (61)
This is fulfilled for e.g.
®y(v) =v —v? and = V2. (62)

Again additional birth and death terms which cancel can be included into the
equation for v, e.g.

wo ot
vtszz+f22(v3—v2+7—%>. (63)
We see that
ul(z) = V2 c2/2 o(z) = 1
(14 ec?)’ T 14ecz

is a traveling wave solution of (49). Also in this example the unique wave speed
is given by ¢ = fa. In all three cases a traveling wave solution with a traveling
pulse u(z — ct) exists. Obviously there seem to be a large number of possible
systems of type (1), where traveling wave solutions exist, as can be seen from the
construction principle. Although the special ansatz for the first two examples
allows us to construct also traveling wave solutions for the third example, it is
not reasonable to always expect that

u(2) = (m(®(v(z)) — 2))™ = G(v)e 7. (64)

To get rid of this condition we have to use a different approach. This will be
described in the next section.

2.2.2 An alternative approach

We consider system (1) where k(u)/u is integrable with respect to u and its
integral K (u) is assumed to be invertible, on IR, so

K Y ¢(v) — cz) = u. (65)

12



Then we are left to analyze

—ev' = k" +g (v, K (p(v) —cz)) (66)
v(—00) = 0,v(00) = const. (67)

where the condition K 1 (¢(v) — cz) = 0 for 2 = +o0 has to be fulfilled.

Now we choose v(z) = w(e™%*) = w(y) where c is the traveling wave speed and
w(oo) = 0,w(0) = const . Then we obtain

Ayw' = k.Pyw' + kety?w” + g (w, K ((w) +logy)) . (68)
We define
9 (w, K~ (¢(w) +logy)) = §(w,y) = ar(w)y + az(w)y® + az(w,y)  (69)
and consider the following three cases:

(a) ke # 1:

In this case we look for a solution w which satisfies:

(1 —k)w' = ai(w) (70)
ktw" = —ag(w) (71)
az(w,y) = 0. (72)
So
—aa(w) = T2 g () = T (W) (73)
Therefore
y w(y) 4, (p
/0 ds = kcki : /w(O) d;2(1£))dr =: A(w). (74)
We assume that A(w) is invertible. Then
w=A"(y) (75)
with az(w,y) = 0 solves our problem.
(b) k. =1:
Here we define
9 (w, K7 (¢(w) +logy)) = §(w,y) = ar(w)y® + a(w,y). (76)
And we assume that
Aw'" = —ax(w) (77)

13



solves a(w,y) = 0. Then

y w(y)
¢ [Cw)is=cu) = [ -aode (78)
0 w(0)
So in this case
w(y) 2 A(w) (79)
y= —/ ——————dr =: A(w 79
w(0) fr(gy)) as (q)dq

has to be invertible. And w = A~1(y) has to solve a(w,y) = 0.

(c) ke=0:
Here we define
g9 (w, K~ (¢p(w) +logy)) = §(w,y) = a1 (w)y + a(w,y) (80)
And we assume that
Aw' = ay(w) (81)
solves a(w,y) = 0. Then
y w(y)
2 ' _ 2 _ _
¢ [ wais = ) —wo) = [ o, @ (s2)

This identity gives us the function w, which has to solve a(w,y) = 0.

The conditions given in this section are more general and also allow models
and nonlinearities like in our third example, but where our special choice (64)
does not work.

Since we are looking for traveling front solutions for the chemical with a
“classical shape” we can look for a function w(s) that satisfies w'(s) < 0 on
[0,00). Now we see in case (a) that ai(s) has to be a positive function for all
s € R' if k. > 1. This shows that in such a case a production term is necessary
to guarantee the existence of a traveling wave solution. Furthermore this implies
for k. # 0 that az(w) does not vanish, which is obvious in case (b) if one looks
for nontrivial solutions. This however implies that we need a u2-term in the
second equation to construct examples for traveling wave solutions. For further
remarks on non vanishing functions as(w) we refer to the concluding section.

In case (c) we see that a;(s) has to be negative for all s € R to guarantee
the existence of a traveling front solution. Thus a decay term is the crucial
term in this case. Furthermore we see that it has to be a u-term of order one
in contrast to case (a) where we need a u-term of order 2 to get traveling wave
solutions.

Remark 2.2 The system studied by Keller and Segel [13] fits into the setting
of case (c). In their case we have that a;(w) = w and a(w,y) = 0. However
this setting does not include the systems studied by Nagai and Ikeda [15] with

e#0.

14



3 Traveling pulse solutions with multiple peaks

An interesting question is whether the chemotaxis-system generates traveling
wave solutions with multiple peaks. Corollary 2.1 allows to construct examples
where multiple peak traveling wave exist by making appropriate choices for the
sensitivity functional. Here we only consider two different classes. The first one
is given by the system

U = Uss — B0PL (83)

~|

U = (“z_u(log(‘};(v))w)z }

where the chemotactic sensitivity function has to have suitable properties. We
will be more precise below. Using the traveling wave ansatz we get that

u(z) = ®(v)e™ .
Now the second equation implies that the wave speed ¢ = o and

1

v(z) = m.

Thus we see that possible multiple peak traveling waves for the function u are
generated by the chemotactic sensitivity. Numerical experiments show that
multiple peak traveling waves are generated if ®(v) is a small perturbation of
the traveling front v. To give a concrete example we look at the system

Up = (um — u(lOg(4’U2 — 4’1]3/2 + 'U))z)z (84)
U = Vgz — 60 yrEmT Y
A solution of the problem is given by
L (]- - e—a(w—at))2 —a(z—at) — 1
U(Il]' - at) = me and ’U(.’L' — at) = m
(85)

As we can see in Figure 3 we have two traveling peaks which follow the chemoat-
tractant. The same arguments also imply that the system

u = (uy —u(log(®(v))z)s }

vu vu® (86)
" 2uzp + 2 (W - QW)

Il

has traveling wave solutions, which are

u(z — at) = ®(v(z — at))e” =) and v(z — at) = eme T
For appropriate ®(v) the function u(z,t) might become a traveling pulse solution
with multiple peaks. One possible function ®(v) that would generate a multiple

peak traveling wave is
B(v) = v — v/t + ot (87)

15
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Figure 3: The functions u(z) = %e““ (left) and v := m (middle)
and the sensitivity function ®(v) = 4v> — 4v%/2 4+ v (right) for the speed ¢ =

a=1.

The second traveling peak in the population is caused by the sensitivity function.
This becomes, as mentioned above, after substituting the solution into the func-
tional form, a perturbation of the traveling front of the chemical distribution.
More then two traveling peaks are also possible to construct. These systems
might be of interest to describe spiral patterns during chemotactic movement of
populations. Once again one can add arbitrary many growth and decay terms
to this example.

4 Multidimensional traveling waves and pulses
in cylinders

Now we look for multidimensional traveling wave solutions for (1). We know
from the results in [7] that 2-dimensional traveling wave solutions for the system

= V(Vu—-uV(log(®(v)))) + u(u — a)(1 - u)
7:): nAvqify:+a(;g. ’ e ! } (88)

exist. As mentioned in the introduction, we are interested in traveling waves
that are due to the dynamics in populations which are in a non-reproductive
stage and which therefore are not initialized by a growth term of the respective
population. Here we only give some examples where multidimensional traveling
wave solutions exist. Consider the following system

u V(Vu — uV(log(®(v))))
’UZ = nAv+yv+ g(()sa v) } (%)

on 2 = R xI' with no-flux boundary conditions for the first equation and where
the function v satisfies homogeneous Dirichlet boundary data on 8I'. Assume

log(®(s - 1)) = 1 (s) + ¥a(r) (90)

16



and
g (ellll(s)—‘,-‘l’z(’l‘)—cﬁ’ s r) = rg(eM1)=<E ) (91)

for arbitrary s, r € IR. Also suppose that there is a one-dimensional traveling
wave solution for the system

Ut
Ut

V(Vu - uV(log(®(v))))
nAv 1—?— glqzu, v;).g ’ } (92)

and a positive solution of the Dirichlet problem

-nAyp = winT c RN
v = 0Oondl.

Then there exists a positive traveling wave solution for (89) with u(z,t) = u(x;—
ct, T, ..., tN) = ur(x1 — ct)uz(x2,...,zNn) and v(z,t) = v(z1 — ct, 22, ..., TN) =
vy (z1 — ct)va (22, ..., zN) such that u is a traveling pulse.

It is not difficult to check our previous claim. To simplify the notation we
set u(z1,...,zN,t) = u(z,y,t) and v(xy,...,xn) = v(z,y,t). Using the ansatz
u(z,y,t) = ur(x — ct)ua(y) and v(z,y,t) = v1(xz — ct)va(y) and the properties
(90) and (91) we see that one is led to the equations

(1)t = (U1)zz — (©1)2 (1 (v1))z — v1(¥1(v1)) 22 (93)
for u; and
0 = (u2)yy — (u2)y (¥ (v2))y — u2(¥(v2))yy (94)
for us. We therefore get
uy (z — ct) = e¥r(v@—ct))—cle—ct) "y, (1)) = e¥2(v2(¥) (95)

Our assumption on g(u,v) now allows us to separate variables in the second
equation of the system and to derive equations for v; and v2. So we get a
parabolic equation for vy

(1) = N(V1)az + g1 (¥ (VD)D) 4y (96)
and for vy an (N — 1)-dimensional Dirichlet problem:

—Nuyy = —NAyw = yvinT
v = 0ondl,

These equations are solvable independently from each other and we find the
explicit traveling wave solution

u = ¥ (@) F¥2(va(W))=ct "y — 4 (y)uy (). (97)
An example of a system where our assumptions are fulfilled is

uy = V(Vu—uV(log))) }

98
v = 2AU+2U+a2u—2a2“72 (98)
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where the domain and boundary conditions are as described at the beginning
of this section. However we specify I' to be the interval [0, w]. This system has
the solution

u(@,y,t) = sin(y)e e gy, t) = sin(y)e "L (99)

Figure 4: The two dimensional traveling wave solution functions u(x,y,t) (first
and second on top) and v(z,y,t) (first and second below) given by the formula
(99) fora =1and t =2 and ¢t = 4.

5 Conclusion and Discussion of the results

In this paper we presented two different methods how to can find examples for
chemotaxis models which have traveling wave solution which are not caused by
growth of the respective population. In our results the traveling waves occur
due to the dynamics of motion in a population which is not reproducing but
reacting to an attractive chemical. Our approach allows diffusion, production
and decay of the chemical. Furthermore we described explicit methods to con-
struct systems with multiple peak traveling waves. These solutions might be
interesting to study spiral wave patterns during chemotactic movement of pop-
ulations. Most often such patterns are modeled by the well-known FitzHugh-
Nagumo equations. However, the mechanisms which produce the waves in our
case is completely different. In the models presented here the number of peaks
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is generated by the chemotactic sensitivity functional and the dynamics of the
chemoattractant. Thus the underlying dynamics are completely different from
those that result from a growth term of the respective population.

The problem of the existence of traveling wave solution can be reduced to
a nonlinear boundary value on the half-line [0, 0c0). There are several existence
results for the possibly singular ODE on the half-line
o= B D Gy (100)
key
with boundary values w(oo) = 0 and w(0) = const. For example one could use
the results by Chen and Zhang [5] to formulate conditions on §(w, y) that would
guarantee the existence of a solution. These would give properties for the sen-
sitivity function and the production and decay rates of the chemical. However,
most results of this type are based on the assumption that the existence of a
sub- and a supersolution is known. But these are usually as difficult to find as
the exact solution.

As we have seen in our examples and our different approaches, we need at
least a power of u in the consumption and production rates that is higher than
2 to include a diffusion term in the second equation of the system. There is
an interesting connection between these observations and a comment in [16].
Nanjundiah suggested as reasonable production rates of cAMP during the ag-
gregation of the cellular slime mold Dictyostelium discoideum: “At high cell-
densities, one can expect a fall-off in the rate proportional (say) to the number
of cell-pairs in a region: then g(u,v) = go(v)u — g1(v)u?. Similarly, one can
expect a fall-off at high v.” These are exactly the production and decay rates
that we have found in examples.

In [15] Nagai and Ikeda studied a model which was first analyzed by Keller
and Segel [13] and is covered by our second constructive approach. They proved
that the traveling wave solution of their model is unstable. Thus one is led
to the question, what happens with unstable traveling wave solutions? The
global existence of a solution of the Keller-Segel model on bounded domains €2
is guaranteed in one spatial dimension if g(u,v) is uniformly in L?(2) and in
two dimension if g belongs uniformly to L*(Q2). This gives uniformly H2(f2) in
one and W?2%() in two dimensions, according to parabolic regularity theory
(compare for example [8] for more details on the two dimensional case). We do
not have a proof for the global existence of solutions in our situation. So one
might ask whether a unstable traveling wave solution might lead to a blow-up
solution or not.
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