Form factors of SU(N) invariant Thirring model
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Abstract. We obtain a new integral formula for solutions of the rational quantum
Knizhnik-Zamolodchikov equation associated with Lie algebra sly at level zero. Our
formula contains the integral representation of form factors of SU(N) invariant Thirring
model constructed by F. Smirnov. We write down recurrence relations arising from the
construction of the form factors. We check that the recurrence relations hold for the
form factors of the energy momentum tensor.
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1 Introduction

In this paper we study solutions of the quantum Knizhnik-Zamolodchikov (qKZ) equation
satisfied by form factors of the SU(N) invariant Thirring model (SU(N) ITM), and give
recurrence relations for the solutions to be form factors of SU(N) ITM.

In the study of integrable quantum field theories it is an important problem to determine all
local operators in the theory. To study this problem the form factor bootstrap approach is an
appropriate method. The form factors of a local operator O are functions {f(B1,---, 3:)}n
satisfying certain axioms written by certain difference equations and recurrence relations.
Thus the problem of determining all local operators is reduced to giving all the solutions to
the equations.

In this paper we consider the SU(N) ITM. Form factors of some local operators in this
model constructed by Smirnov [S1] are not sufficient in order to determine all local operators.
To construct a large family of form factors one of suitable methods is to use the hypergeometric
solutions of the qKZ equation [TV1, TV2, NPT].

Now let us recall some results in [NT] for form factors in the N = 2 case. In [NT] suffi-
ciently many form factors have been constructed for the SU(2) ITM using the hypergeometric
solutions as follows. Form factors {f(f1,---,/3,)} of SU(2) ITM are functions taking values
in the tensor product of the n-copies of the vector representation V of SU(2), and they satisfy
the following axioms:

(D) Pjj1Si41(B5 = Big ) f (- Bys Bigny o) = [ (5 Biga, By o),
(H) Poin--- P1,2f(51 —2m1, By, - - - aﬁn) = (—1)_%f(52’ T ’5”’51)’
(IIT) 272 vesg, =g, y4xif(B1y-- s Bn)
= (I = (=1)27" Snctm-2(Bact = Buz) -+ Suc1.1(Buct — B1)) (F(Br,- -+, Pama) @ €0),

where S(f3) is the S-matrix of the model, P, ;
ponents and e is the suitably normalized sl; singlet vector in V®2. A family of solutions to
(I), (IT) and (III) is constructed in the following way. First we note that (I) and (II) imply
the following system of difference equations:

f(Biy---, B =271, -+, 3n) = (—1)_%5}‘,3‘—1(5;‘ — Bjo1 — 2mi) - S54(B — P — 2mi)
X Sin(Bi = Ba) -+ Siip1 (B — Biw) f(Buy- -+, Bjs- 5 B).

This is nothing but the qKZ equation associated with sl, at level zero. In [NPT], the integral
formulae for solutions of the qKZ equation were given. These solutions take values in the space
of singular vectors of sly. Moreover these solutions span the subspace of singular vectors over
the field of appropriate periodic functions [T]. Any solution is obtained by applying sl,
successively to these solutions. Thus we have the complete description of the solutions of the

is the permutation of the ¢-th and j-th com-

sly qKZ equation at level zero. Next let us consider the axiom (III). In the hypergeometric
description a solution of (I) and (II) is specified by a certain function P, called deformed cycle
[S2] (or “p-function” in [BK]). Then the axiom (III) is derived from a recurrence relation
for P, and P,_,. Each local operator corresponds to a sequence of deformed cycles {FP,},
satisfying this recurrence relation. A large family of solutions to the recurrence relation has
been constructed extending Smirnov’s construction of the chargeless (or weight zero) local
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operators for the sine-Gordon model [S3]. This construction was extended to charged local
operators and a new abelian symmetry was found [NT].

In this paper we consider form factors in the SU(N) ITM. The form factors of a local
operator O are functions {fO (=3, ... B.)} such that

fOlr By, B €V @ @ VI,

where V) is the [-th fundamental representation of SU(N). Now let us recall the axioms
satisfied by form factors of SU(N) ITM [S1]:

'lJ’ZJ 1 AELE ELYE o ERAL I (N . . ) — IAELVE b BLY KR S . C e e
(1) P Ssoiit (B = Biy) eI By, By, o) = fO0om (e By By,
(II) Pn 1n " Pl f(ll’lhm’ln)(ﬂ —QWi,ﬂg,"',/Bn) = e—NJGIﬂ'Z.E;L=1 ij(l%m’ln’ll)(ﬂ?’“'757L—17/61>a
(II) 27e resg, —p, 1+mf (0tn) (51, 5 Bn)

_2m

= Olyy41n,N <]+ P LD iy JSnfl,lnln22 (Bam1 = Br—2) -~ '57(1121,11711)(571—1 - 51))
« [ (11, ln—2) (Biy- -y Prr2) @ €q,

where SU)(3) is the S-matirx acting on V) @ V) and ey is the suitably normalized singlet
vector in V{n-1)@V (n) Moreover, they satisfy a number of formulae for residues corresponding
to bound states. The most fundamental one is the following. If [,_; 4+ [, < N the residue of

f(ll7"'7ln—17ln)(ﬁ1’ .. 7//3n) at ﬂn = ﬁn—l —+ %7{'@ 1s given by

l,71

(IV)eresf In=1,In) (51,"',5n) ai,_ i, f fn—2:ln-1+n) (51, N ),

where a; ; is a certain constant. In [S1] the form factors of some local operators are constructed.
We study the problem to give the solutions of (I)-(IV) in a similar approach to the case of
N = 2. Again the first step is to solve the gKZ equation derived from (I) and (II):

FOt (B By =2y B) = €T 8 MRS, (B — Bioy — 2mi) - Siu(B; — By — 2mi)
X Sj,n(ﬁ ﬁn) J]+1(ﬁ] /8j+1>f(ll7m7ln)(ﬁla" '7/8ja"'aﬁn>'

However, it is difficult to construct solutions of the qKZ equation above for general [y, ---,[,.
Some representations of solutions were constructed in [TV3, BKZ] in terms of Jackson inte-
grals, that is, formal infinite sums. It seems difficult to prove the convergence of these sums.
In this paper we give a new integral formula for solutions of the qKZ equation taking values
in the product of the vector representations, that is , [y = --- = [, = 1, and consider the form
factors of chargeless local operators of type

f(l’...,17k)(ﬂ1’ . ,6n—ka 6n—k+1) € (V(U)@(n—k) ® V(k)

The conditions (I)-(IV) are closed conditions among these functions. In fact we suppose
that (D (B3y,---,3,) is a form factor. Then, by taking the residue as in the axiom (IV)
successively, we obtain form factors f(>V8) (B, -+ B, 1, Bu_psr), (k=2,---, N—1). At last,
we obtain a form factor f(V (3, -+, B,_n) from fL-1N=1 by the axiom (III). In this way
the form factor on (V)2("=N) is given by one on (V)8 Moreover we consider form factors
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of chargeless local operators. Then form factors are of weight zero, and hence the number of
the components of the tensor product that f(l""’l)(ﬁl, -+, 3,) takes values in is a multiple of
N, say n = mN. Then the axioms imply some relation between f,, := f(l""’l)(ﬁl, .-+, 3,) and
fne1 o= fON(By, -+ Bo_n). We write down this relation by using our integral formula for
solutions of the qKZ equation taking values in the product of the vector representations. As
a result we get recurrence relations as in the case of N = 2.

First we start from a certain integral formula for solutions on the tensor product of the
vector representations, that is, (V(l))®”. This integral formula is obtained as the limit ¢ — 1 of
the hypergeometric solutions of the trigonometric K7 equation associated with the quantum
affine algebra U,(sly) at |¢| = 1, which was constructed in [MTT]. In [MTT] it is proved
that, if the parameters in the qKZ equation are generic, the set of the solutions become a
basis of the weight subspace that the solutions take values in. Nevertheless, in the case of
N > 2, it is not easy to calculate the residues of solutions in the axioms (III) and (IV) from
this integral formula. One reason for this is that this integral formula contains much more
integrations than the integral representation of form factors of SU(N) ITM constructed by
Smirnov. In order to avoid this difficulty we simplify the integral formula in the following
way. The integral formula for solutions of the sly qKZ equation at level zero contains as the
integrand solutions of the sly_1 qKZ equation at level one. Substituting the siy_; part with
a special solution, we get a simplified integral formula for solutions of the sly qKZ equation
at level zero. The method above of rewriting the integral formula was used by A. Nakayashiki
in the case of the differential KZ equation [N1].

The special solution mentioned above of the sly_; qKZ equation is obtained as the limit
g — 1 of a solution of the trigonometric ¢KZ equation associated with U, (;\ZN_l) at |q| < 1.
The highest-to-highest matrix element of the product of intertwining operators

(Ail@(z1) - D(2)|A) = Y (Ail®e, (21) - - Dy (20)[Ai)ve, @+ D,

€1,°00,62

satisfies the qKZ equation [FR]. In the case that representations are at level one, we can
calculate this matrix element by using the bosonization of intertwining operators [K]. The
coefficients in this matrix element are given by some integral formulae. However, the coeffi-
cients in the rhs above are determined from functional relations arising from the commutation
relation of intertwining operators [DO] and the coefficient of the extremal component calcu-
lated explicitly in [N2]. We choose the limit ¢ — 1 of this solution as the special solution of
the rational sly_; qKZ equation at level one.

Note that we can get a certain integral formula for solutions of the qKZ equation by gener-
alizing suitably the integral representation of form factors constructed by Smirnov. We show
that this integral formula is obtained from our simplified integral formula in the following way.
The simplified integral formula still contains one more integration than Smirnov’s formula.
However, we can carry out one-time integration of the simplified integral formula in a similar
way to the case of sl [NPT]. After this integration, Smirnov’s formula is obtained.

Now let us return to the construction of form factors {f, }. The solutions of the qKZ
equation given by the simplified integral formula are parameterized by functions called de-
formed cycles as in the case of N = 2. Fix m and let P,, be the deformed cycle associated
with f,,. By calculating the dimension of the space of deformed cycles, we can find that the
space spanned by these solutions is quite smaller than the weight subspace of weight zero (See
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[N3] for a similar argument in the case of the differential KZ equation). Hence, even if f,, is
given in terms of the simplified integral formula, the form factor f,,—_1, which is obtained by
calculating residues of f,, successively, may not be represented by the simplified integral for-
mula. However, under some conditions for the deformed cycle P,,, the form factor f,,_; is also
given in terms of the simplified integral formula. Then we obtain recurrence relations for P,
and P,,_; (see Proposition 7.2), where P,,_; is the deformed cycle associated with f,,_;. We
check that the recurrence relations hold for the form factors of the energy momentum tensor
presented by Smirnov [S1]. It is still an open problem to construct solutions of the recurrence
relations different from the deformed cycles associated with the form factors constructed by
Smirnov.

The plan of this paper is as follows. In Section 2 we give the qKZ equation studied in
this paper. The integral formula obtained by taking the limit ¢ — 1 of the hypergeometric
solutions of the U,(sly) qKZ equation at |g| = 1 is given in Section 3. In Section 4 we construct
a special solution of the siy_1 qKZ equation at level one. By using this special solution we
rewrite the integral formula obtained in Section 3 and get the simplified integral formula for
the sly qKZ equation in Section 5. In Section 6 we see that the formula in Section 5 contains
Smirnov’s formula. We study form factors of SU(NN) ITM in Section 7 by using the simplified
integral formula and write down recurrence relations for deformed cycles. We check that the
deformed cycle associated with the energy momentum tensor satisfies the recurrence relations.
In Section 8 we give some supplements about the special solution in Section 4 and proofs of
lemmas and propositions in the previous sections.
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2 The qKZ equation

Let Vy = @jV:‘OIC v; be the vector representation of sly with the highest weight vector vy.
We denote by R(f3) the rational R-matrix given by

hP
R(3) = 651 !

Here h is a nonzero complex number and P is the permutation operator: P(u ® v) :=v @ u.

€ End((Vy)®?). (2.1)

Fix a nonzero complex number p. We consider the (rational) qKZ equation:

¢(Bla"'aﬁj+p7"'7/3n):](j(ﬂla'“7Bn)¢(/617"'76j5'"7/6n)a (jzla"'an)a (22)

where

Ki(Bry--+,Bn) = Rj;-1(Bj—Bi-1+p)--Rijx1(B; — B+ p)
X Rjn(Bj = Bu) -+ Rjjs1(Bj — Bjr). (2.3)
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Here ¢ is a (Viy)®"-valued unknown function and R, ;(/) is the operator acting on the tensor
product of ¢-th and j-th components as R(/3). The number —N + p/h is called the level of
this qKZ equation.

Let e be the generator of sl associated with the simple root a;. The action of ex on Vi
is given by epv; = 6 jv;_1.

In the following, we consider the qK7 equation at level zero, that is, the case of

p=Nh (2.4)
and solutions of (2.2) satisfying the highest weight condition:

Byb(Bry-+,B) =0, where Fp:=3 10--0% 001, (k=1,---,N —1).(25)

i=1

Hereafter we assume that ImhA < 0.

3 General solution at level zero

Let us write down an integral formula for solutions of (2.2). We can obtain this formula by
taking the limit ¢ — 1 of solutions to the qKZ equation associated with U,(sly) at |¢| =1
[MTT].
First we introduce some notations. For non-negative integers vy, - -, vy_y satisfying
vwi=n=uv = =2vn_g = vy =0, (3.1)
we denote by Z,, ...,y_, the set of all n-tuples J = (Jy,---,J,) € (Z3o)" such that
#{r:J, > j} = v;. (3.2)

For J = (Ji,--+,Jn) € Zuy oy, We set

vy =g @ - Quy, € (V)" (3.3)
We set
N = g > ) (3.4
and define integers r}{m, (0<y< N-1,1<m< )by
5 = el h <<t 05

Note that TE)],m = m. For example, for J = (1,2,0,1,0,2) € Z4,, we have N7 = {1,2,4,6}
and Ny = {2,6}.

For J € Z,,. we define sets M}/, (k =1,--- N — 1) as follows. The set M’ satisfies

YN -—19

M C{1,2,-,ma}, #M] = (3.6)



The elements of M := {mi’l, e mi’yk}, (mil <-ee < mi’yk) are defined by the following
rule:

T}C] J ) (3.7)

7j = rk_lym]ij
For example, for J = (1,2,0,1,0,2) € 24, we have M] = {1,2,4,6} and M = {2,4}.

Let us introduce some functions. For a subset K = {ky,---, &} C {l,---,m}, (ks < - <
ki), we define the rational function gx and the trigonometric function Px by

! ka—1
1 —~ t,—z2;—h
gr(te, iz, 2m) ::H<t — I ) IT (ta—t—n), (3.8)

a=1 j=1 J 1<a<hgl
PK(e%tla' te ae%tl 6%215 e 76%27”) = H (H (1 - e%(ta_zj_ﬁw H (1 - ez;n(ta_zj))> .
a=1 \ j=1 J=ka+1
(3.9)
Introduce a set of variables {y;,,}, (1 <J<N—-1,1<m<v;). For J € Z, ..,,_,, we set

N-1
wt(]N)({’Yj,mH/Bla e aﬁn) = SkeWN—l 0---0 Sker (H gM,g({7k,m}|{7k—l,m’}>) 3 (310)

k=1

where 4o, := [, and the operator Skew; is the skew-symmetrization with respect to the
variables g, (1 < m < vy):

Skews X (Ye1,7 5 Yown) = Y, (800) X (Th(1)s s Vro(wn))- (3.11)
aGSl,k
Next we set
2ms 2w 2me V-1 2me 2w
Py({er e P en )= [T Pagg({e 7 b {e s ), (3.12)
k=1
and define the space P, ...y, by
Porvwwa = .  CPy. (3.13)
JEZu vy
ForJe€ Z, .., and P € P, ..,y_,, we define a function I;[P] = I;[P|(f1,---,5.) by
N—-1 vy N-1
P = (H 11/ dw,m> I (4 i) 2 ) (3.14)
7=1 m=1 3 k=1
N-1 I1 Shr_i(,y. — ;5 — h) ,
N 1<a<b<1/j J:a Js ﬂ 5,m
< W™ ({1 B T S e P{er ")),
J=1 Hm:l m,’:l(1 —er s=hm )



where

I m p(ﬂ)
Aty t]zn, oy 2m) 1= HH . (ta_zj) (3.15)
a=1 j=1 »

Pt ) =[] T (ta‘t”h) r (tb ta”b) : (3.16)

1<a<bgl

The contour C; for 4., (1 < m < v;) is a deformation of the real axis (—oo, c0) such that
the poles at

Vit + h—pLso, (1 <m' <vjy), 7jau—h—pLso, (a#m) (3.17)
are above C; and the poles at
Vimtm' + Lo, (1 <m' S wjo1), Vja + h 4 pLso, (a # m) (3.18)

are below C;. These conditions are not compatible if all the poles really exist. However, we
can define I;[Py] for each Py € Py, ,...y_, because Py has zeroes at some points of (3.17)
and (3.18), and we can deform the real axis such that the conditions above are satisfied
for the actual poles of the integrand of (3.14). Then we define I;[P] for P € Py, ...y, =
ZJ/EZV17"‘7”N—1 C Py as a linear combination of I;[Pj/] (See [MTT] for details).

Set

Vp(Br- i B) = > L[PIBr-, Bavs (3.19)

JEZy, vy _q

Theorem 3.1 If vy, --,vNn_q satisfy
Viey + vjy1 2 2vj, forallj=1,--- N —1, (3.20)

then the integral (3.14) converges and p is a solution of the ¢KZ equation (2.2) satisfying
the highest weight condition (2.5).

Remark. In the case of N =2, (3.19) is nothing but the integral formula for solutions of the
sly qKZ equation at level zero constructed in [NPT].

Proof. The convergence of the integral (3.14) under the condition (3.20) can be proved in a
similar way to the proof of Proposition 2 in [MT].
Set

R(B)ve @ ve = Y R(B)id vy © vy, (3.21)

61,62

For J € Z,,...,y_,, we abbreviate wJ1 Jn({%m}|517 , Bn) to wy, g, (Br,- -+, Bn), and we
(N

write down dependence on f3,-- -, 3, of the integrand wy} ) and P in 1;]P] as follows:

I;[P] = I(wgy g, (Brs -5 ), P(B1y -+ -5 Bn))- (3.22)



Then we can show the following formulae in the same way as the proof of Lemma 1 and

Lemma 3 in [MT]:

L0 SURRNY SRR ARSI | (/315 e aﬂk-f-la /316’ e aﬁn)

— Z (5k_5k+1)Jk7Jk+l T d Ty (Bt By Brats -+ Ba), (3.23)

Iy

I(meJh'--,Jn_l (ﬁna 51; Tty ﬁn—l)a P(/gla o 5/8’/L>>|ﬁn—>ﬁn+p
= I(wg, . 1,(B1s -+ Pty Bn), P(Bry -+, Bn))- (3.24)

It is easy to see that tp is a solution of the qKZ equation from (3.23) and (3.24).
Let us prove that ¢ p satisfies the highest weight condition. Note that

EkLZJP = Z Z ]17 7J'+17 ST [P] vjt. (325)

T€EZy, =1,

Hence it suffices to prove that

Y D1 [P1=0 (3.26)

for J' € Z, vt w1 -

First we prove (3.26) in the case of N = 3. The proof for the highest weight condition
with k& = 2, that is, Eytbp = 0, is similar to the proof for the case of sly in [NPT]. Let us
prove the case of N = 3 and k£ = 1.

In this proof we set v; , =: o, and 7, ,, =: 7, and

O({7m}{eu} {3} =[] (cﬁ({%,m}l{vk_l,m})’ (frm DT sh (%m Vgt = h)) (3.27)

k=1 1<m<m/' vy

for simplicity’s sake. Then the following equality holds.

Lemma 3.2

hz le, RS A SkeW(QMJ’({O‘a}Ka@lHﬂy})ng’({’M}|{aa}2<a<ul) (3:28)

_]I

1

a=2 m=1 a=2

Here J' = (Jj,---,J!) € 2, _1,, and Skew is the skew-symmetrizations with respect to

Y57y Y andala"'7av2'



This lemma is proved in Section 8.2.
From Lemma 3.2, we have

B Inpesgin e [P = (H [Tl dvm) O({1m} {ea} {5,)) (3.29)

P({es ™, 500 })

X (therhsof (3.28))

27

| 1 (Hfizl(l —er OmTe T2 (1 - 67<aa—m>>)

Note that

V1

q)|a1—>a1+p :ﬁal_ﬂj_h ﬁ Ym — Q1 — P al_aa+h (3 30)
o ar — B m_17m—011—h—Pa:2011—04a—h+P

i=1

Hence the integration in (3.29) with respect to oy is given by

2 Vo S "
(/01 - /Cl+p)da1<1>({’7m}|a1|{/5’j}) H(O‘l —a, —h) H %

(8%
a=2 m=1 m 1

P({e7 "))
[T (= e 7 o) [T, (1 — e 02y
It is easy to see that the contour C'; can be deformed to C; + p without crossing the poles of
the integrand in (3.31). Hence (3.31) equals zero, and this completes the proof for the case of
N =3 and k£ = 1.
The proof for the cases N > 3 is similar. The case of £ = N — 1 can be proved in a similar
manner to the proof for the sly case in [NPT], and the other case can be proved from Lemma
3.2 and the calculation (3.31) for 8; = Yk—1,j, % = Yk« a0d Yip = Yeg1,m. I

X

(3.31)

Now let us see that the formula (3.14) contains as the integrand the integral representation
of solutions to the sly_1 qKZ equation at level one. Set o, := 7, , and £ := v4. Let us consider
I;[P], where P € P, ...,n_, is in the following form:

—1

P({er ™} {er ™ hise) = Pi({er “}{e» PHP({e s ™ hisal{e 7 ™)) (3.32)
(V)

We write down the skew-symmetrization in w; ' with respect to «,’s. Then we get

1;[P] = (H/C daa) o({aa}{fiHr({aa}) (3.33)

= 1<a<bgl Sh% o —ay—h 2mi 2mi
x Z(sgna)gMg({aa@)}|{6j})1§°)[P]({aa})H Cocrt S | Py {5y,

4 n 2me Qag—
0ES, Ha:l H]:l(l —er ( ﬁj))

The notation in the above formula is as follows. For J = (Jy,---,J,,) € Z4,, ... ,n_,, We define
Ji=(J1,-,J0) € 2y oy, DY
Jo=Jy — 1. (3.34)
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In other words, .J is obtained by picking up non-zero components of J = (Jy,---,.J,) and
adding (—1) to each component. For example, for J = (1,2,0,1,0,2) € Z4,, we have J =

(0,1,0,1) € Z5. For J = (J,---,.J}) € Z,,. we define sets ]\/[g, (k=1,---,N—=2)in

YN -—19
the same way as (3.7) and the function ng_l) from M’s. Then we set
N-1 vg N-1
I [PY(on, -+ ) o= (H 11 / d’rk,m> IT (¢t nsmd) o(fnmd))  (3.35)
k=2 m=1 Ck k=2
N-1 hr_i( - — h) , ,
(N-1) Il cacogu SN (Vea = hd 5 ik 2rig,
™ e oalor)) [T it S s P a0
k=2 m=1 m’=1( € )
Set
vii=vy @ Quy, € (Vv_1)®" (3.36)
and
Uplar, -, ap) == Z ]}id) [P)(ay,- -+, a)vg. (3.37)
JE€Zuy vy

Recall that p = Nh. Then we see that 105 is a solution of the qKZ equation associated with
sly_y at level —=(N — 1)+ p/h = 1 satisfying the highest weight condition. In the next section
we construct a special solution to this sl,,_; qKZ eqaution at level one without any integration.

4 Special solution at level one

In the following we fix a positive integer m and assume that
vi=(N—j)m, (0<j5<N), (4.1)

that is, we consider singlet solutions in (Viy)®N™ at level zero.
Let us construct a special solution of the qKZ equation associated with sly_; at level one.
Note that { = vy = (N —1)m.

Lemma 4.1 There exists a set of rational functions { H, ..., (aq,- -, cp) }(
uniquely determined by the following conditions:

€1 7"'7EZ)€Z(N—2)m,»-~2m,m

Op — Op+1

H"'75p+175p7"'(' .. 7pr+1, Ofp’ .- ) = m "'7Ep75p+]7"'(‘ SRR ap7 ap+la .- .)
h
Oy — Oy + hH"'75P+175P7"'(. "y Opy Qp1, 7 ')7 (42)
P p
-1
a, —oy+h
Hq,---,q(ala e, Q1,0 — Nh) = H a, — ap + (N _ 1)hH€£7517"'75£—1 (aﬁ’ Qy, - ?af—l)'(4'3)
a=1 ¢
Moreover,
1
Ho...01...1...(N_2)...(]\]_2)(0[1, e ,Ozg) = H o, — oy — h (44)

m
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Remark. From (4.2) and (4.4), it is easy to see that

I (cw = =) Heypoy(0n, -+ ) (4.5)
1<a<bge
is a polynomial in ay,---,a, of order less than or equal to m — 1 in each variable.

In the following we construct {H., ...} from a solution of the qKZ equation associated
with Uq(;lN_l) with 0 < ¢ < 1 at level one.
Let A;, (0 < 7 < N — 2) be the fundamental weights of siy_y and V(A;) the level one

irreducible highest weight U, (;l ~n—1) module with the highest Weiwght A; and the highest weight
vector |A;). Then there exist the type I intertwining operators ®((2) [DO]:

OV (2): V(Aipr) — V(A) @ V2, OV ()| Aip1) = |A) @ v+ -+ -, (4.6)
where V, is the homogeneous evaluation module associated with the vector representation
V-1,

Set

A, + 2p|A,

(1)(2)(2) A-_Ai.}.lq)( )( )7 Az = (1 7 + P|1 2>’ (47)
2N
and

G(z1,- -+, 20) = (N|D(21) - P(20)|[A;) €V, @ --- OV, (4.8)

Then (& satisfies the (trigonometric) qKZ equation at level one [FR]:

Gz, g zg o z) = R (6% 25/ z-0) - R (6% 25/ 21) - (72072,
-1 -1

X (R j(z0/2)) " - (Ripa (21 /2)) " Gz, 200 20)- (4.9)

Here Ri(z) is the trigonometric R-matrix given by

2(N-1) 2N-4_. 2(N-1) B _
(q zZ5q )oo(q z5q )OO Rq(Z), Rq(Z)('UO () vo) = 7 & Vg- (410)

g .
Ri(z) = qN (Z PRIy —1))Oo(q2N‘22;q2(N‘1))oo

Now we set

HY(zy, -, 2) = HZ(1_N1_1)a H

a=1 1<a<bg?

(PN V2 ) 2,5 * N1,

2AN-1))

(4*2/ 2459
From the commutation relation

O(z2)P(2 ) (4.12)

(A (q2N 1), 2/ 21; q 1)) (q 21/22’ 2(N-1 )>Oo _— . .
- <22> (q2 21/22,(]2(N ))Oo(q z2/z1’ 1))OOR ( 1/ 2)(1)( 1)(1)( 2))
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we find

Pyppi1 R (2p/ 2pp 1 JHO (- 2py 21, 0) = HO( o 2pgn, 2,0 0). (4.13)
Expand HY as
Hi(z,--,z Z (21,0, 20) 0 B B v, (4.14)
€1, y€¢

From (4.9) and (4.13), we have

-1 9
2 — q*z
q -2N — CN,2 I S B = '
H617,,.7q(21, yZi—1,q" " ze) = ¢ | | 21, HEZ7517...7Q_1(Z£,215 yZo—1), (4.15)
a

Zr—4q

where ¢y is a certain constant.
The extremal component is calculated in [N2]:

L (i+1)m
(- _ 1
HE gryovnyovon =112 " H S G
_'V_J a=1 a<b
m m m (ca<ey)

Now we consider the scaling limit of H? as

qg= ekg, ze = €%, A — oo. (4.17)
Then R(z) goes to the rational R-matrix (2.1).
Set
Heooflar, -+ ap) := /\h—{go M(zl, ey zp). (4.18)

It is easy to see that {H., ...} satisfies (4.2), (4.3) and (4.4) from (4.13), (4.15) and (4.16),
respectively.

Remark. We have a more explicit formula for the scaling limit of H?. See Proposition 8.3.

By using {H,, ..., }, we have a special solution of the qKZ equation at level one.

Proposition 4.2 Set

blag, ) (4.19)

r(emat)
= H F(aa—ab-}-ﬁ,) (Ola — p — h) Z Hﬁl,"',ﬁg(ala st ,OZ@)’UEI ® Tt ® vq.

1<a<bge P €1,,€p

Then ) is a solution of the qKZ equation (2.2) associated with sly_y at level one satisfying
the highest weight condition.

Proof. Tt is easy to see that 1 is a solution of the qKZ equation from (4.2) and (4.3). The
highest weight condition is proved in Section 8.1. [
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5 Simplified integral formula at level zero

By using the special solution (4.19), we can find a simpler integral formula in the case of level
zero as follows.
Suppose that there exists P € P(N-2)ym,..2mm such that

o T ag—ap—h
]?d)[P](al,---,ag) = H (%ﬁ’wh)(aa T h)) Hi(ay, -, ap) (5.1)

1<a<bge F( P )

for all J € Z(N=2)m,2mm- In the following we omit P and abbreviate ]](\;)[]3] to ]](\;). In order

to rewrite (3.33) using H ;u, we need a formula for I](\;) for any o € S,. This formula is given

by

Faa—ab—h
1= T (Fommoe o0 B, o ses. G

a—apth
1<a<bge (O‘ ]C;b )

where T, is the permutation of variables defined by
TU(X)(ah”' 7al> = X(aa(l)a'”7aa(£)) (53)

for a function X.
We can see (5.2) by induction on the length of o. In the case of ¢ = id, (5.2) is nothing
but (5.1). Assume that (5.2) holds for o € Sy. Set 7 := (k,k + 1) € S;. From (3.23), we find

(k) ~ Oo(etn) T I (or) (2) h 7

U A0 AT S AN A A
aa(k) — ad(k+1) wWkivk+1, Wk4+19Yk, ad(k) — aa(k+1) Whkivk+1,

(5.4)

Then we have

F(aa—ab—h) -1 I3
S ek o o )
{1<£[b<£ (F(a“"”’*h)(a “ )> } ( e gy = g (g e

P
h
H,,,Jk’ij’,,,) from (5.2)

Qp — Opgq

TT(H...’]k7Jk+17...)> from (4.2)

=T, (H...7jk+17jk7... +

_T (ak — o1+ h
O — Opqq
_ Qu(k) — Q1) T h

TO’T H7 Tod1,) 5.5
Qo(k) = Co(kt1) (Fee i) (5:5)

Hence we have (5.2) for o1 € 5.
By substituting (3.33) with (5.2), we get

ot ¢ e%"aa e%"ﬂ;
I;[P] = (—pﬂ'i)¥ (H/C daa> ¢({aa}|{ﬁj})ngpl(li[[,} (1}—|{62:i(a“}_)ﬁj))

X Y (sgno)Ty(gary Hpsr) (o, - ). (5.6)

oESy

14



Here we used

r(* : h)r(_:”]:r " - h)sh%i(x —h) = —pri (5.7)

and note that the function ¢({a,}) is canceled out. In this way we find a simplified represen-
tation (5.6) of the integral (3.14).

Now let us prove that the formula (5.6) gives really an integral formula for solutions of the
sly qKZ equation at level zero. First we set

wi({ad{B;}) ==Y (sgno)To(gary Hy)(ou, -+, )

UES[
= Skew(gyy ({aa} {5 1) Hs({aa})), (5.8)
where Skew is the skew-symmetrization with respect to ay,-- -, a,. Note that w; is a rational
function of ey, - -, a, with at most simple poles at points /3y, - - -, 3, from Remark (4.5).

Next we consider the part of P in (5.6). Let us define the space of “deformed cycles” as
follows. Let C, be the space of p-periodic entire functions of f,---,3,. We denote by Pt

27

the space of polynomials in e » **,--- e’7 ¢ of order less than or equal to n in each vartiable

Y Y

e%a“ with the coefficients in C,,. Then we set

F = { : ]:({e p az}w)i(a P E 73;?5}. (5.9)
[Tomi [T (1 = e 2 222757

We call the elements of ﬁ?e deformed cycles.

For a deformed cycle W € ﬁ?f, we set

Fy W= (H/Cd%> ({ou {8 Hws({aa B HW ({e 7 {3 }) (5.10)

where the contour C' is a deformation of the real axis (—oco,00) such that the poles at 3; +
h— pZyo are above C' and the poles at 3; + pZyo are below C. Note that, unlike the integral
(3.14), the integrand in (5.10) does not have poles at the points a, = a3, £ h £ pZs, (a # b)
because the function p({a,}) was canceled out.

The function Fj;[W] gives the simplified integral formula of solutions to the siy qKZ
equation as follows. First we have that

Lemma 5.1 The integral (5.10) converges for any deformed cycle W .

Proof.  From the Stirling formula, we have

Ha|fy,- -, Bn) = (a/p)_”ﬁ/p(l +o0(1)), as a— too. (5.11)

Note that nh/p = m.
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Recall Remark (4.5). By using (5.11), we see that there exist two constants C' and M > 0
such that

) £
T

qﬁ({aa})wj({aa})W({ezTa“}) <C H loa|72 for  |ao| > M (a=1,---,1). (5.12)

a=1

This completes the proof. [

Theorem 5.2 For W € ]?fg, set

L/)W(ﬂl, e ,571) = Z FJ[W](ﬁla T 75n)UJ- (5-13)

J€I(N—l)m,»-~,2m,m

Then 1w is a solution of the ¢KZ equation (2.2) satisfying the highest weight condition.

Remark. In the case of N =2 we have H; =1 for all J. Then (5.13) is the integral formula
constructed in [NPT].

From the definition (5.10), we have that tskewiw = (!¢bw. Hence the dimension of the
space spanned by the solutions (5.13) is at most that of /\E .7/':q, where /\é .7?q is the subspace of
deformed cycles skew-symmetric with respect to ay,---,a,. In the case of N > 2 and m > 1,
the dimension of /\E .7?q is much less than that of the subspace of singlet vectors in (V)®"
(This can be shown by a similar argument to Discussions in [N3]). Therefore the space of
solutions given by the simplified integral formula is quite smaller than the space of singlet
vectors.

Proof.  We abbreviate wy, ... j, (a1, -, 0|1, -+, 8,) to wy .. 7,(P1,- -+, Bn). In order to see
that ¢y is a solution, it suffices to prove (3.23) and (3.24) for w; and F;[W] as in the proof
of Theorem 3.1.

We can prove (3.24) for F;[W] in a similar way to the proof of Lemma 3 in [MT] by using
(4.3). Here let us prove (3.23). If J, = 0 or Ji4q = 0, it is easy to see (3.23) in the same way
as the proof in the case of sl, (see [NPT]). Here we consider the case of J; > 0 and J,; > 0.

Let a, be the integral variable attached to the k-th component of (Vy)®", that is, ri]’a = k.
For two functions f; and f; we write f; ~ fy if fi — fo is symmetric with respect to «, and
a4y1. We use the following abbreviation:

Hjl7"'7ja7ja+17"-,jg(ala SR Cl’aa O[a_l_l’ P ,Cl’f) = Hja,ja+1 (aa, Oza+1). (514)
The rhs of (3.23) for wy in (5.10) is the skew-symmetrization of

1 1 aa+1 - /Bk - h
ag — P Ogy1 — 5k+1 Qgy1 — B

Br = Brsr B
X {mHJQ,Ja+1(aaaaa+l> + m]{ja+1,ja(aa’aa+l> ,

Qg ayr) (g — Qgy1 — h) (5.15)
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where Q(ay,, @,41) is a certain symmetric function with respect to o, and o, ;. From (4.2),
we have

1 1 aa-l—l - ﬁk - h
o — P Agy1 — 5k+1 g1 — Br

(5.15) = Q(vq, ataq1)

% { Br — Bry

(Co — o — )

ja7ja+1 (aa’ aa-l—l)

Br — Pry1 + 1
h Oy — Qgp1 + 1 h )
+ T, Qgt1,0q) — Hj, 1 1\@ay Ca }
B — ﬁk+1 +h ( Qg — Qgp1 Ja7Ja+l( +1 ) Qg — Qg JayJay ( +1)
~ Q(aaa O‘a+1>Hja,Ja+1 (O‘aa aa+1>
1 1 - —h -
% { Qgt1 B (aa  Qapr — h) B /3’k+1
Qg — B Qg1 — Brp1 Qay1 — B Br— Pry1 + R
a - Ug r 1 1 a — 3 — h h
_Qap1 =t h LR AL PN ) W —
Qa1 — QO Ogp1 — PBr 0 — By 0 — B Br— Bry1 + 1
h 1 1 a1 — B —h h
. (8% +1 ﬁk (O{a o O{a+1 o h)—}
Qg — Qg1 ¥ — B Qa1 — Broy1 Qa1 — B Br — Bry1 + R

= Q(aaa O-’a+1)]_JJ_a,J_a+1 (aaa aa+1)
o (@0 = aays = 1) (@0 = Brpn)(@ass = i) = Pl@ays = fen) + 77}

5.16
(0 — B)(te — Brrn) (g — B)(tars — Brr) (516)
On the other hand, the lhs of (3.23) is the skew-symmetrization of
Q(aa, aa‘l'l)Hja_{.l,ja(aa-l-l’ aa)
1 1 a1 — —h
x Qotr = Pei =R ), (5.17)
Qg — 5k+1 Qgt1 — B Qgt1 — 5k+1
where Q(ay, ctgq1) is the same function as Q(a,, ag41) in (5.15). From (4.2), we have
1 1 Qg1 — /Bk-}-l —h
5.17) = Q(ay, a, Qy — Qga1 — h
( ) Q( +1)Oéa - 5k+1 Qgt1 — B Qgt1 — 5k+1 ( i )
Qy — Qg1 + h h
" {ﬁ Joduna (Gatis ) = memW““’“““)}
~ Q(aq, aa+1)Hja,ja+1 (@, at1)
1 1 . — —h 0w — Qg h
X {— @ Brtr (a1 — g — h)—a Qat1 +
Ogy1 — 6k+1 Oy — /jk Qg — /3k+1 Og — Ogy1
_ 1 1 Qa+1—/3k+1—h(a —a —h) h }
Oy — /jk+1 Qg1 — /Bk Qo411 — ﬁk+1 ¢ o Qg — Qg1
= (5.16). (5.18)

Hence (3.23) holds.
Let us prove the highest weight condition. In the same way as (3.25), it suffices to prove
that

Z FJ{,---,J&-]—I,-'-,JA [W] = 07 (k = 17 e 7N - 1)) (5.19)

Ji=k—1
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where (J],--+,J0) € Zyy it ein-
First consider the case of £ > 1. From the highest weight condition for ¢), we can see that

Z w‘]{7"'7]¢’1+17"'7‘]r,1 [W] = 0' (5.20)

Ji=k—1

Hence (5.19) holds in the case of k > 1.
Now we consider the case of £ = 1.

Lemma 5.3 For J' = (J{,---,JN) € Zi—1,, 0y, the following equality holds:
1 N W24 VN

h Z W o Tt 1,73, = Skew (QM{’({%}Kangﬁj}) (5.21)
- ‘ - ar— B, —h ‘
X {H(al —a, — h)H(ay) — H — —Jﬂj H(al —a,+ (N —=1)h)H(ay + Nﬁ)}),

Here we used the following abbreviation:
H(ar) = Ho g, ..q,_, (00,00, 0). (5.22)

This lemma is proved in Section 8.2.
From (5.21), we can get (5.19) for £ =1 by the same calculation as (3.31). O

6 Modification of the integral formula

6.1 One-time integration

Recall that n = Nm. Let {we,,...c, (81, Bn) Ha W) EE(N—1ym be the set of vectors in

2m,m

(V)®N™ uniquely defined by the following condltlons

w"',6]+17€]7"'(' o 76]4-17 6]7 ) ) J+1R J+1(6 /3j+1)w""6]76]+17"'(. te 7/6)j7 /8j+17 o ')7 (61)

and

Wwo...01---1--(N - 1) —1(51, aﬂn)
NP \____,
=’Uo®"'®vo®v1®"'®U1®"'®UN_1®"'®UN_1J. (6.2)

Here P; ;41 is the permutation operator acting on the tensor product of j-th and (5 4 1)-th
components.
For J € Zn_1ym,...2m,m, We set

](7:] NJ\ 1 - {kr B 7k7‘"],m}7 k;l,l <-- < k;"],m (63)
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Note that {1,---,n} = UNZ'K/.
We define rational functlons /LS) and w; by

a— [ —h .
(0‘|{/3J = /3 H 5a_5k_hH a—ﬂ] ) (aE[‘;j)a (6.4)

k;éa

wr({ag}{3;}) := Skew (1:[ HM(J’“JJV—“ (4 (s=1)m I{ﬁg})>, (6.5)

where Skew is the skew-symmetrization with respect to oy, -+, a,. Note that { = (N —1)m

Proposition 6.1

Z wyvy (66)

— (_ Z(Zzi_l) D 1w (ﬁb_ﬁa_h)(ﬁa_ﬁb_h) ﬁa ﬁb
= 2 eI 5.~ i 252

aekJ beK;
a<b oLr<sgN-1

b

This proposition is proved in Section 8.1.
By using Proposition 6.1, we rewrite ¢y in terms of w; and wjy. Then we can carry out
the integration once as follows.

Recall the definition of ¢ (3.15):
n F a—ﬁj—h
slalp, - 8.) =] % (6.7)

oa—p
7=1 (TJ>

For a function f(«), we define a function D f by

(Df)e) = (@)~ fla+n 5 = flo) = o+ [[ T2 (68)
Set
L(a) == [[ (=B = NB) (6.9)

Proposition 6.2

(DL _hz > T B =8 -r0) I ﬁkﬂkffﬁjh ) (@), (6.10)

r=1 keK/J jeK efkj
7
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This proposition is proved in Section 8.2.
From Proposition 6.2, we have

. h klm
w4 a, =
J({ }> Hjefcg(ﬂkl{m - '—h E 51& —5g—h
a#kfm
k] 1,1 ki]m—l
x Skew (1™ en) -y e ) (DL (e)) (6.11)

Take the deformed cycle of the following form:

wer =] . Ple ? ) € Fo. (6.12)

7?_ (1 _ eT(a“_ﬁJ))

Let us consider the following integral:

(H/Cda) o({aa B D ms({aHW ({e 7)) (6.13)

Using (6.11), we can carry out the integration once in (6.13) by using the following formula:

70) G
/da¢( DLy ) (e )H?ZI(l_ezgi(a—m)

</ /C+p> dag(a) (o >H] (]ia(_e:;;za—ﬁ])):pm(Pa_oo_Pcfoo)a (6.14)

where

27

P,(er» )

Pa:':OO = hrin = i) (6.15)
e [, (1 - e e)
The formula (6.14) can be obtained from (5.11).
Especially, if PE* =0, (1 <a < /{—1), then we have
h — B
6.13) = p" (P> — Pt
(6.13) L) s e I @c _5_h
#k{m
-1 /-1 —oz
[ P :
(H / m) H({onhrsocml{5) e
a=1 ¢ H H]— ( ! )
kJ 1,1 ki]m—l
x Skew (pf] =t )(al) .- -,ug ’ )(ag_1>> ) (6.16)
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6.2 Smirnov’s formula

From (6.16), we can get the integral formula for solutions of the qKZ equation constructed by
Smirnov [S1] as follows.
For a rational function f(«), let [f(a)]; € Cla] be its polynomial part:

fla) =[f(a)l+ +0o(1), as a— oo. (6.17)

Denote by T} the difference operator defined by T f(e) := f(a) — f(a + h).
Set

D)= [[ (=B = Nh), (r=0,---,N—-1) (6.18)

JEK]
) (6.19)
+

and

T2 LS (a+ (r = DR TISL, LY (@ + rh)
(o + rh)k

N-1
QW)= LY (a+rh)T, (

rT=

for k =1,---,(. Here we note that /{ = (N — 1)m and hence fo) =0.
Proposition 6.3 Fora € K/, (r > 0), the following equality holds:

n -1

i [ (Tt = 8= ) = 3 (8 + Vi QP(a) (6.20)
i=1 k=1
i#a
= [T =5-0 TL =5 - ] (5= ()
Jtei(rt] .7]6;‘;" Jtei(rt]

N—r—1

B~ B —h
+22Hﬁ

u=1 beI{v“’+u JeI(TJ-I—u
J#b

u-l HtJS:JfJ(ﬁa — B — 1) Hffff(ﬂa — B;) ®)
X Z H (65 _/Bj - (U—S)h)(ﬁb — B, — (u_s — l)h)(ﬁb — B, — (u—s)h)ﬂ‘] (Oz)

—0 7T
s=0 ]GI‘T+S

This proposition is proved in Section 8.2.
27
From the same calculation as (6.14), it is easy to see that, if P = P(e r %) satisfies

P(er ©
lim — (e Qm)(a_ﬁ) =0, (6.21)
e Hj:l(l €r ")
then we have
- P
dadol{a )0 ([Tl — 8 - Nm) ——2) (6:22)
c o1 ?:1(1 —ep (a @J))
j#a
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From Proposition 6.3 we see that, for a € K/, (r > 0), by adding the linear sum of ;Lf;))’s

(be K/,s>r) to ;Lf]a) as in the rhs of (6.20), we get the lhs of (6.20). Moreover, the first
term in the lhs of (6.20) vanishes after the integral over C' from (6.22). Therefore, in (6.16),
we can replace

ko1 ki m1
Skew (,ug N )(al) .- -,uf, : )(ag_1)> (6.23)
by
det[@a + Nh)k_l] agky a#k] det[QSk)(ab)]lsk,béf—l (6-24)
1<hge—1
multiplied by a certain rational function of f3,,---, 3, determined from (6.20).

Finally we get the following formula for solutions:

Theorem 6.4 Suppose that W is a deformed cycle of the form (6.12) with P> =0, (1 <
a<l{—1). Then

b = (=1)2 DR (proe _ pec) (6.25)

1
8 Z 7 H ﬂa - ﬂb

JEZ(N_1)ym, - 2mm a€K] beK]
0Lr<sgKN -1

=1 /=1 2mi
. (b) 1 [Tz Pale® ™)
’ (H/da> e T

Corollary 6.5 Suppose that W is a deformed cycle satisfying the assumption in Theorem
6.4. If it also holds that Pfoo =0, then Yy = 0.

Remark. The formula (6.25) is nothing but the integral formula constructed by Smirnov [S1].
Note that indices for basis of the vector representation in [S1] are reverse to that of Vi, that
is, e; in [S1] is equal to vy_;. Let Ap(a|BM|---|BM) be the polynomial defined in [S1], page
185. Then

i)

k . ) . me
Qf])|ﬁ=—%ﬂ,p=—2ﬂi = Ari (a — mi|{f; — 271 — N}jek’]{,_l ‘{/5}‘ — 271 — Nh’ek}f) .(6.26)

7 Form factors of SU(V) invariant Thirring model

7.1 Axioms for form factors

In the following we assume that

o
h = —%, p= Nh= —2m1. (7.1)

Consider the [-th fundamental representation of SU(N):

VO~ Al (7.2)
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This space is realized as the subspace of (Viy)® spanned by the following vectors

(Va)®' 3 Vleg yye] - Z(sgna)vea(l) ® @ Ve, 0<g<---<g<N-1). (73)
oES;

In the following we denote by V() this subspace.
Fix a positive integer m and assume that n = Nm. As mentioned in Introduction we
consider form factors of type

f(l’m’Lk)(ﬁla . ;ﬁn—:h ﬁn—k+1) c (V(l))®(n—k) ® V(k) (74)

In the following we abbreviate f(-1%) to f) for k =2,---, N — 1.
The form factor associated with n rank-1 particles f,(By,--+,3,) == fO (B, -+, B,)
takes values in (V(1))®" and satisfies the following conditions:

P; 11555418 = Big1) (- -+, Bi, Big1, - <) = (- -+, Bigr, Biv -+, (7.5)
(N—=1)n

Pn—l,n e Pl,?fm(ﬂl - 27ri7 525 o 75n) =e 2N mfm(ﬂ% Tt aﬂn—laﬁl)a (76>
where S(f3) is the S-matrix defined by

S(B) = So(B)R(S), So(B) = (7.7)

The function f,, has a simple pole at the point 5, = 3,_1 — h with the following residue:

h
27Tires@n=5n—1—hfm(ﬂla e 7/871) = f(2) (ﬂh o a/Bn—Qa 571—1 - 5) . (78)

where f( is the form factor associated with (n — 2) rank-1 particles and one rank-2 particle,
that is, a vector in (V(1))8(=2) o V() c (V(1))®"  Generally, for 2 < k < N — 2, the form
factor

FEBy, -, Bupgr) € (VINR=H) g /() (7.9)
has a simple pole at the point B,_p41 = Bo_ — EFLh with the residue
2mires f®) (B, -+, Buei1)
= fl+1) (51, oo B ity Bk — §h> € (V(l))®(n—k—1) @ Vk+1) (7.10)

In the case of k = N — 1, the residue at 3,_ni12 = Bo_ny1 — %h = [o-Ny1 + T is given by

omires fN V(B -+, Bueny2)
= (14 e TR O N (Ban = o) - Suonana(Baoin — 1))
X f-1(Brs- -+, Buen) @ Vo1, N=1]5 (7.11)
where fr_1(B1, -, Baen) = fO (B, -+, Bun) is the form factor associated with (n —
N) = (m —1)N rank-1 particles satisfying (7.5) and (7.6).
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7.2 Recurrence relations for deformed cycles

Define a function ((/3) by

((8) = Ty(—if + 2EN=0 7)1y (i3 4+ 2807
o Ty(—if3 + 27)Ty(if3) ’

[y(z) = y(z)27, 27). (7.12)

Here I'y(2|w;,w,) is the double gamma function satisfying

F2($+W1|UJ1,L¢)2) i 1

Fg(.’E|LJ1,L¢J2) N F1($|w2>’

(7.13)

where

I'y(z|w) := I'(—). (7.14)

We refer the reader to [JM] for other properties of the double gamma function. From the
definiton of ((3), we can see that

(B —2mi) = ((=5). (7.15)

For P € ﬁf?g, we set

fr=e Tt [ (B - Bi) Ve (7.16)

1<i<j'<n

Here Wp is the solution (5.13) of the qKZ equation given by

_ o —aany . P{e™}) 2o
Up =y, where W({e™®}):= o T (o) e F2. (7.17)

It is easy to see the following proposition from (3.23) and (3.24) for F;[W].

Proposition 7.1 If P is symmetric with respect to By,---,[3,, then fp satisfies (7.5) and

(1.6).

Suppose that the form factor f, € (V{))®" is parametrized by P,, € PO as (7.16):
fm = fp,. Similarly, suppose that f,_q = fp,_, for P,_y € P2U=N+D_ Now we give a
sufficient condition for P, and P,,_; to satisfy (7.8), (7.10) and (7.11) for certain functions
[ e (vmer-kgy® (k=2..-,N—1).

For two polynomials P, and P, of €71, ---, e~ we write

Pl ~ P2 lf SkeW(Pl — P2) = 0, (718)

where Skew is the skew-symmetrization with respect to aq,-- -, a,.
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Proposition 7.2 For P, € 7/57?5 and P,_1 € 7/5;?_“]\7]\7"_1), suppose that there exists a set of
polynomials of e

—ag ?

S

~

P(k)(ozl, 0 Py Brmk—1|Paek) € 7/5?_(?“1), and (7.19)
P(k)(ala e ,Oég_k+1|,81, e a/gn—k|/3n—k+1> € 7/55)—(!;;-];-'-1)’ (k = 13 e aN - 1) (720)

satisfying the following conditions:

P — P(ag, - By, Br), (7.21)
-k

P(k‘)|ﬁn—k+1=ﬁn_k—k2jﬁ ~ H(l - e_(aa_ﬁn_k)>P(k)a (k =1, ,N - 2), (722)
a=1

~ k k
P(k+1) = P(k)(ala e aaﬂ—kaﬂn—k + §h|5la e aﬁn—k—1|/3’n—k + gh)a (k = la e aN - 2)5

(7.23)

(—N+2
P(N_1)|ﬁn—N+2:ﬁn—N+l_%h ~ H (1 - e_(%_ﬁn_NH))(l - e_(aa_ﬁn_NH_h))P(N_l)’ (7‘24)

a=1
P(N_l)|ae—N+2=ﬁn—N+1—5(N—1)ﬁ

_ _(N-1)(2n—N _ _

= dmle 2 (Bn-n+1-6(N 1)}i)Pm—l(ala T, QY_N41 |/813 e a/gn—N)7 (725)
where 6 = 0,1 and d,, is a constant defined by (7.88).

Then there exists a set of functions

f(k)(ﬁu s Pakyr) € (V(l))®(n—k) @ VH), (k=2,---,N=1) (7.26)

satisfying (7.8), (7.10) and (7.11).

In the rest of this subsection, we prove this proposition.
Recall that ¢ = (N — 1)m. We denote by Z](Vm_)l the additive group freely generated by the

elements (€1,---,€) € Z(N_2ym - 2mm- We set
(617 Tty €h—q, [6£—a+17 Ty eﬂ—b]a €o—bt1y" ", GE)
= Z (SgHO')(Eh Tty €l—ay Cl—ato(1)y Ty El—ato(a=b)y EL=bs " "7 5£) € Z](an_)l (727)
Uesa—b
Set
Geymeron, - o) =[] (0w —ap = B)Hey gy (01, -, ). (7.28)
1<a<bge

Note that G, ..., is a polynomial of aq,---,a, from Remark (4.5). For ¢ € Z](\fni)l, we define
Ge by (7.28) and Gy := G + G
Here we note that the function w; defined in (5.8) is given by

¢ ma=1 R
wy = Skew(H ( ! H aaa_ fﬂﬁj h) G0, ,o@), (7.29)

a=1 aa - /B’ITLa j=1




where {my,---,my} == M/ (my < --- < my) and (Jy,---,.J;) is defined in (3.34). Here we
recall that the set

M ={r;J, > 1} ={r;J. #£0} (7.30)

parametrizes the position of non-zero components in J = (Jy,-- -, J,), and the values on these
componentes are determined from J = (Jy,---,.J;) by (3.34).
From (4.2), (4.3) and (4.4), we see that

Qp — Opg1

G..-,ek+1,6k,...(- SOy, Ay ) = _m "'7Ek7€k+17"'(. e Oty Qg1 - ) (7.31>
h
_ mG...,€k+l7Ek7-..(- Ce Ok Oy, .)7

G517...7q(a1, e, Op_1,0yp — Nh) ( 1)£ 1Gq,e1,-~~,q_1 (Olg, Qpyc O.’g_l), (732)

N-2

Go,...,o’l,...,1’...,]\]_2’...,1\]_2(011, e ,O(g) = H (oza — Qp — h) (733)
s=0 ( a<b )
€q=s=¢€p

Lemma 7.3 The following formulae hold:

G e, ) = =G e =T, (7.34)
G"'7[5k75k+1]7"'(. o —hyee) = G"‘7[5k75k+1]:"'(. o=l a,e), (7.35)

Gﬁly"'vﬁf—N-}-l70717"'7N_2(a1’ e ’O{E_N‘l'l’ /B’ /3 - h’ o ’/B - (N - 2>h)
£—N+1

(N-1)(N=2)
=(=1) > [T (00 = B = W) Gereroyis (01, - 1o ng). (7.36)

a=1

"'7Ek75k+17"'( "7Ek+175k7"'(

Proof. 1t is easy to see (7.34) and (7.35) from (7.31).
Let us prove (7.36). Note that both sides of (7.36) satisfy (7.31) as functions of ay, - -+, @p_ny1-
Hence it sufficies to prove that (7.36) holds for

€1y, € =(0,-++,0,---,N—2,--- N —2). 7.37
(€1 i=N41) = ( ) (7.37)

m—1 m—1

In the case of N = 2 this is trivial. In the case of N = 3 we can prove this from (7.34) and
the following formula:

Go’...,o,l,...,l’o(al,"',Oégm) (738)
m—1 m
m—1 2m—2
= (—l)m_l H(oza — 9y — 2h> H (aa — 2y —1 — h)GO,---,O,l,---,l(ala .. ,O.’Qm_g).
a=1 a=m :1\:/7:1_1

This formula can be proved easily from (7.32) and (7.33).
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In the case of N > 3, from (7.38), we have

Go, --4,0,1,- ..’1,0’2,...,2’...,]\]_2,...,]\[_2(Ql, ety a[) (739)
m—1 m
= (_1>m—1 H (oza — p — h) GO,...,0717...,1(a1, R 8 77 Y & 4, 7% + h, Aomt1y " ,C(gm>.
a,b m m

(a<b1gea=¢p)

Repeating this calculation, we find

(o, 00N =2, N = 2,N=2,N—1,m0( @1y " =+ 5 )
N N— e —

m—1 m—1

:( 1)(N 1)(N— 2)m 1) H H (O./a—Oég_s—(N—l—S)h)

(ea_ a<1{ N+1)

X GO:"'707"'7N—27"',N—2(a1’ ot 7a£—N+1>' (7.40)

m—1 m—1

By setting ay_s = f— (N —2—35)h, (0 < s < N —2) and using (7.34), we see (7.36) for (7.37).
U

Now let us calculate residues of fp, for P, satisfying the assumption of Proposition 7.2.
It is easy to see that, at each point of taking residues (7.8), (7.10) and (7.11), the coefficient

part N T, B [1¢(B; — Bjr) is regular. Hence it suffices to consider residues of 1y .
Set

RESy(F) i= (2mives, o w1nF) o, s (7.41)
for a function F = F(f1,--+,Bn—k41) and k =1,---, N — 2. Then we have

FEDBr -, Buer) = RESL O (B Bacia) (7.42)
from (7.10).
Lemma 7.4 Let P, be a polynomial satisfying the assumption in Proposition 7.2 and W, is

the deformed cycle determined from P, by (7.17). Suppose that J € Z(N_1)m,...2mm satisfies
J.#0, (a=n—Fk,---,n) for some k, (1 <k <N —2). Then the following formula holds:

RESko---oREsl (F3[Woa)) (7.43)
it E( n— 5+ t—g h ; g— t)h
k;H“mJ H ( 5 (Baok—B)+ EHF Pk — 5_2m( ) +1)F(6 527”( t) )>

(1_[1/ dOza> {Ola}|{/8j}J<n k=1]Bn— k)wJ ({aa}|{ﬁj}J<n jet| Bz k)ﬂf k+1)({ _aa}>.
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In the formula above, the functions ¢(k),wgk) and W) qre defined by

k
=k n—k—1 F(aa—ﬁ]—h) F(aa—ﬁn—k—(§+l)ﬁ)

- H -2 -2
g — Qa—Pn_ k
a=1 j:l r( _271-61']) F(M>

—271

0 ({08, icn-k-11Bamr) = Skew (o8 ({au b8 Yicn-r-118n-s))
k

98 ({0 4B Yicnmr-1180-2) 1= Gaa\ ooy ({00} B+ Brios i = 5H) - (7.45)

k k—2 k—2
X Gjl7"'j1f—k—17[jé—k7"'7j£](al’ S Qg Bk + Eh’ Br—k + Th’ o Bk — Th)’

P (femee))

6© ({aa {8 ign—k-1]Bu-r) := : (7.44)

W(Hl)({e_““}) = - . (7.46)
1225 (T (1 = emleamm)(1 — emeainort 1))
The contour C%®) is a deformation of the real axis (—o00,00) such that the poles at
k
Bi+h42mils, (1<j<n—k—=1), Bup+ (5 + 1)h + 27iZ, (7.47)
are above C¥) and the poles at
B; —2milino, (1 <j<n—k—1), Bu_p— 5% — 27miZsq (7.48)
are below C®) . The constant a, is defined by
r—1 . .
o -\ —(Nm—r—2) —@fi _i N—r N —J —1 .7_
U = (2701) € M= )T~ )j]:[lr(iN IT(55): (7.49)

Remark. Note that, under the assumption in Proposition 7.4, the residue (7.43) is skew-
(k)

symmetric with respect to J,_,---,J, from the definition of w;".
Proof. Let us calculate RES; F;[W,,,]. It can be shown that the point 3, = 3,_1—h is a simple

pole of F;[W]forany W € .7?59[ in the same way as the proof of Proposition 3 in [NT]. Hence, in
the calculation of the residue, we can replace P, by Py, |5,=p,_1 -1 = Hi;ll(l — e~ (@a=hn—1)) (1),
Then we consider the integral

E 5111 1 — e—(@a=Bn-1)y P(1) ({ g=0a
(a[[l/cdaa> ¢({Oéa})wj({aa})na_1£[i:1 H?ﬂ(l - 2_(%_(5{])) }) (7.50)

The singularity of this integral at 3, — (,_1 — h comes from the pinch of the contour C' by
the poles of the integrand at o, = 3,—1 and «, = 3, + h. Note that the integrand of (7.50) is
regular at o, = 3,1, (1 < a < ¢ —1). Hence only the contour for oy may be pinched. The

singularity at 3, = 3,_1 — h comes from the residue at o, = /3,_;.
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Let us rewrite the integrand of (7.50) as follows. First we have
1

H?:l(l — e‘(al—ﬁj))
—H( —ami)t e 2 = Wﬂ] >>- (7.51)

—2m1

¢(eul{5;})

When we put oy = f3,,_; in the rhs of (7.51), the factor F(W) appears. The singularity
of (7.50) at 3, = 3,_1 — h comes from this factor.
Expand wj in (7.50) as follows:

£ 1 ma—l Ay(aq) — i h
wr = (seno) [T ( o 1= - 7 ) Gil{on@)): (7.52)

0ES, = J=1

where M;’ =: {mq,---,my}, mqy < --- < my. It is easy to see that the pinch of the contour
for oy occurs only when o(¢ — 1) = £ or o({) = (. For such terms, we deform the contour by
taking the residue at oy = 3,1, that is,

/(;(*)dag = (regular term) + (—2m¢)res, =g, _, (*). (7.53)

Because the function (7.51) is regular at oy = 3,1, it suffices to calculate the residue of the
rational function (7.52).
Consider the case of (¢ — 1) = (. Then the residue of (7.52) at ay = (3,—1 is given by

/Bn 1 6] —h
H FR— (7.54)

" 1 el T(a _5_h 1 o /B
8 Z SgnT H(a‘r(a)_ﬂma H a;) : . )aT - _/ang o J/B]‘

r€Sy4 7(a) — /6)] T(f—l)

X Gj(aﬂ'(l)) o 7057([—2)) ﬂn—l; aT(f—l))-

Here we set 7:= 0 - ({ —1,{) € S,. Similarly, we find that the residue in the case of o(¢) = ¢
is given by

n—1 6 /-1 1 Mmae—1 aa @ — 6] _p _h
H 5n1—5] Z(Sgna)H< H Qg(a) — B )/J’n—ﬁn—l

0€Si Qo) = P 5oy O

X Gj(ac"(l)? o ?ao'(f—2)7 a(£—1)» 571—1)- (755)

Then the limit as 3, — ,_1 — h of the sum of (7.54) and (7.55) is given by

n—1 1 — B — I
D] % X (7.56)

j=1
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1 ot Ap(e-1) — Bn-1—h
X
Ag(e=1) — Bt j=1 Ao (-1) — Br1
Qg(t— — Bt —
G g ) Qo5 (0=2)5 Pn—1, U5 (4—
g <aa(z_ B 1 R0 0=, e, Gote-)
+ Gj<a0'(1)a - (f 2) aa(f— ﬂn—l))

Using (7.31), we have

U5(t-1) — /gn—l —h .
- ﬂn_l T th,---,eg(aa(l)a Ty O (0=-2) /371—17 aa(ﬁ—l))

+ Gq,-n,q(aa(l)a Ty Og(0=2)y Oo(e=1)s /672—1)

g (t-1) — Bt

- Qg(t—1) — Bt + hGfl7"'761—27[61—1,~~~,ez](aa(l)a Tty O (0—2)5 Qg (0-1) s B 1) (757)

From this calculation, it is easy to get the formula (7.43) in the case of k = 1.

We can prove (7.43) in the case of £ > 1 by a similar calculation. Then we use the following
formula

ap_p —B—h
Yk T Qs b, Brarg, B— B B— (k= 1)h
cr_p — B+ kR Eo—kslee—kt1; ,z](al k-1, 3, g, B — I B ( )l)
1
+ EGel,"',Eg_k,[eg_k_‘_l,---,6@](al) o 7a£—k—17af—ka/6)a /B - hv U 7//3 - (k - l)h) (758>
1 oy —

= EmGﬂ,---,q_k_l,[q_k,---,q](ala MR &7/ S P & 7/ 5a 5 - ha T a/B - (k - 1)h)

instead of (7.57). This formula can be proved from (7.31) and (7.34). O

Lemma 7.5 Let P, be a polynomial satisfying the assumption in Proposition 7.2. Suppose
that J € Z(N-1ym,2mm salisfies J, # 0, (a = n—k+1,---,n) and J,_ = 0 for some
k, (0 < k<N —2). Fizs such that 1 <s < N —k —2. Then

RESiys 0 -+ 0 RES; (F[Wi]) = 0 (7.59)

if J, =0 for somea,(n—k—s<a<n—k—1).
If J,#0, (a=n—Fk—s,---,n — k—1), the following formula holds:

RESk+s oo RES; (Fy[Wi])
s k+s n—k—s

( *(Br—k—s—Bi)+

am,J

k+s 1 ) _ k+s — 1. k
% H F 6n k—s /jj‘l'(t ; )h_l_l)r(/jn—k—s /37+( -2|-

271
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l—k—s
X ( / daa) ¢(k+s)({aa}|{/8j}j<n—k—s—1|ﬁn—k—s)
C(k+s)

k.k+s . s o

x w +-)({Qh}|{ﬁE}j<n—k—s—l|5n—k—s)LL%k+ ) ({em}). (7.60)

Here o549 and W+t are given by (7.44) and (7.46), respectively. The function w) s
defined by

Wi ({aa}{B;} jcnmtim1|Bamrs) := Skew (93k’k/)({aa}|{5j}j<n—kf—1|5n—k')>

kK / —
gg )({aa}Hﬂj}jén—k'—lmn—k’) T gM{\{n—k’,---,n}({aa}|/31a T Hgn—k’—l) (7'61)
K E =2
X Gjl7"'je—k—17[jz—k7"‘,je](ala Ty O, 6n—k’ + §ha e aﬁn—k' - 92 h)

Remark. Asin Lemma 7.4, we see that the residue (7.60) is skew-symmetric with respect to

Jn—k—sa o 7']n-

Proof. Let us consider the case J,_p_; # 0 and calculate the residue for s = 1. From Lemma
7.4, it sufficies to calculate the residue at 3,_g11 = Froir — k%lh of the following integral:

O—k+41
( II /C . daa) 35D ({aaH{B; i<t Bumisr)

x WS ({0 B }ignot| Buore ) WH ({72 }). (7.62)

As in the proof of Lemma 7.4, we can replace W*) by
Hz_k(l — e_(aa_ﬁn—k))ﬁ(k)({e_aa})

a=1

Tt (H;L;lk(l — e~(aa=))(1 — e—(aa—ﬁn_k+1+’%dh))) '

(7.63)

a=1

Then the calculation of the residue is quite similar to that in the proof of Lemma 7.4. The
singularity of the integral at f,_r41 = fo_r — k%lh comes from the pinch of the contour by
the poles of the integrand at o, = 3,_; and o, = B,_r41 + k;‘—lh Since (7.63) is regular at
&y = Pk, (1 <a <l —k),only the contour for ay_j,; may be pinched.

Expand wgk_l) in (7.62) as follows:

=k mag—1 L
W= (o) ] (% 11 “<>——M> (7.64)

UESZ_k+1 a=1 aa(a) - /Bma ]=1 aa(a) - /8.7
n—k
x ! [ 2 =i =
aa(ﬂ—k+1) - Bn—k-}-l + k%lh =1 aa(a) - ﬂ]
k—1 k—3
X Gy Te i lengr i (Qa(1) 7 s Qo (emkt1)s Pnmkr + _72__hv"'75n_k+1'_ _75_‘h)

It is easy to see that the pinch of the contour for ay_k41 occurs only when o(¢ — k 4+ 1) =
¢ — k + 1. By calculating the residue of (7.64) at ay_r41 = [n_r and taking the limit as
Brkt1 — Baek — k%lh, we get (7.60) for s = 1.
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Repeating this calculation, we find (7.60) for s > 1. Note that, if J, = 0 for some
a,(n —k—3s < a <n—~k—1), the pinch of the contour does not occur in the limit
Bax1 = Pa — %h, and hence (7.59) holds. O

Now we set
FE By, -+, Buggr) == RES, 0 --- 0 RES, fp, . (7.65)
From Remarks in Lemma 7.4 and Lemma 7.5, we see that
Corollary 7.6
OBy Bucpgr) € (VINEC=R g B (k=2 ... N —1). (7.66)

Let us calculate the residue of fN=1 at 8,_ni2 = Ba_ngr — %h From (7.34) and (7.36),
we see that the point 3,_ni2 = funy1 — %h is a simple pole of fV=1 in the same way as
the proof of Proposition 3 in [NT]. Hence it sufficies to calculate the residue of

I—N+2
Fy W] = ( 1 / d““) 6N ({aa s ({a YWD ({e}),  (T67)
ae1 C(N—2)
where
*k=(N-=-2), if J,_o#0,(a=0,---,N—2),
x=(k,N—=2), if J_x=0andJ,#0,(1<a<N—2,a#k),
and
ey TIEVP (1 ommBuom) (| emloamiooaa=) POV
) - n— (g — —(@a—Pp_Ni2 N-=2
T2 (TEEN (1 = erton) (L — eoemnvist 5520
I—N+2

1 _ e—(aa_ﬁn—N+1_h)

PIN-D_ (7.68)

) 1:[1 [N+ (1 — em(eaB)) (1 — em(oa=baoneat 5520

Consider the decomposition

L . e . Sh(| _ —(—Np2—Bnn2H (T +5-1)R)y
WN-1) — Wo+ Wy, Ws:= e ‘ 1 5 >W(N_1)- (7.69)
— €

Set,

bi=do+ b, Os(Bry e Buenat|Buoia) == Y F5[Walvs. (7.70)
J

First let us calculate the residue of ;7)\0. The result is the following.
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Lemma 7.7 The residue of ;//)\0 is given by

~~
: ]
271-”685 N+2 =0Bn— N+1—E7i7’u0

( ) 1)(N 2) ( 27‘_7/)3 N+1am’N_1
n—

% H < % Br-N+1—55) (/Bn —N+1 — /37 —h + 1)F(6H—N+1 - ﬂ]))

—271 271

j=1

_ _(N=1)(2n—N
x d-'e 2

ﬁn—N+1 qlpm—l (617 T /Bn_N) ® v[ovlv"'vN_l]. (7'71)

Here Wp . is the solution of the qKZ equation defined by

—1

Pl
T [0 (1 = e teob) (7.72)

Proof. The singularity of F}‘[Wg] at the point f,_ny2 = Poong1 — %h comes from the
pinch of the contour C' by poles at a, = 5n—N+1 — (N = 1)h, BrNt1, Bu—nNt1 + h and a, =
Bz N+2—(— Dh, Bueny2+ 5 N, Ba N+2+( +1)h, respectively. On the other hand we can see
that the integrand ¢V - 2)’LUJWO is regular at o, = B ny1— (N =1, BNty Baeng1+ Ry (1 <
a < {—N+1), hence only the contour for ay_ny2 may be pinched. Moreover, the integrand is
regular at ay_ny12 = BaoNy2 — (% —1)h, BueNg2 + (% +1)h. Therefore the contour for ay—n 4o
may be pinched only by the poles at f,_ny41 and Su-nyo + %h In order to avoid this pinch,
we deform the contour C' by taking the residue at ay_ny2 = f,_ny1 in the same way as the
proof of Lemma 7.4.

e o/ J .—
Up . :=tw,_,, where W, _;:=

Then, after the similar calculation to that in the proof of Lemma 7.4, we get the following
integral:

27riresF}‘[/W70] = (a certain function of B, - -, fn_n41)

£=N+1 I—N+1 )
X ( H /Cd%) d({aat{Bitigign—N) H — (7.73)

a=1 a—1 Qg — /Bn—N+1

(k,N-1) Pm 1({6_%})
X 'LUJ ({ }|{/B]}j<n N|/Bn N+1)Hi ]1\7+1 (1 . (aa—ﬁj))'

By using (7.34) and (7.36), we get (7.71). O

Next we write down the formula for the residue of {Z)}.

Lemma 7.8 The residue of 777)\1 is given by

-~
2mresﬁn_w+2=ﬁn—1\z+1 _ E;ﬁ/}l

= (=) 2wy T
n—N
. _ na1— B — N Boonss = Bi — (N = 1)
A Ba s =B =(N=1)R) (PN = B Ny Bt = B )
8 ]1:[1< ( —271 + DI 271 )
X R Nt1,0-N(Bn-Nt1 = BnN) * * RuonNg11(Ba-n41 — Br)
x e1=3)g=1¢ wwn—Nﬂ—(N—l)h)q;Pm_l(51’...’5n_N> @ Vo1, N-1]- (7.74)
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Proof. Note that -;//)\1 satisfies

777;1(' Cy M1y 52" e |/Bn—N+2) = Pi,i+1Ri,i+1(ﬁi - 6i+1)777;1(' te 752" ﬁi-{-la e |/8n—N+2)‘ (775)

Hence we have

7Zl(ﬂla e a/Bn—N+1|5n—N+2> = Rn—N+1,n—N(ﬂn—N+l - 5n—N) e Rn—N+1,1(ﬂn—N+1 - /61)
X PoonNg1n=n - Pagth1(Baens1, Bis - -+ BoeN|PBn-ngt2). (7.76)

The second line of the rhs above is given by

Poonsinen - Poathi(Buonats Biy-+ Bae| Baons2) (7.77)
= Z an—N-}-ln’l7"'7Jn—N7Jn—N+27"'7Jn[‘/1/1](6”—]\]4'17 Biye ey 6n—N|ﬂn—N+2)vJ1 @@ vg,.
M

Now set ﬂ;—N+1 := [u_n41+272 and consider the singularlity of F;n—N+17J17"'7Jn—N7Jn—N+27"'7Jn
at Bn-ny2 = Bl_np1 T+ %FL In the same way as the proof of Lemma 7.7, this singularity comes
from the pinch of the contour, and we see that only the contour for a,_n42 may be pinched
by the poles at ar_ny2 = B, _nyq + 7 and ay_nyo = Bany2 — (% — 1)h. In order to avoid
this pinch, we deform the contour by taking the residue at a,_ni12 = Bo_ni2 — (% —1)h
in the following way. We rewrite the integrand in FJ 7, in terms of

/617 T a/gn—Na 5711—N+1 and /67L—N+2 by USing

—N+1, 1INy Tn— N2,

B ... = da ! a_ﬁ;_N‘H_th
¢(a|/31’ 75n—Na/Bn—N+1)_¢( |/813 a/Bn—Naﬁn—N+1)a_ ;N+1 (N+1)h

(7.78)

Then the integrand qb(N‘Q)wj/Wl is given by

1-N+42 ,
- /8n—N+1 — Nh

6N ({0u B Y icnns Boogr |Baone2) Wi({e™ ) ] - — — (N + Dh

a=1 a 7L—N+1

X Z (Sgna)g}({aa(a)H/B;—N—}-l + Nha ﬁla ot aﬂn—N|/8n—N+2)- (779)

0ESe N2

In the case of J,_n42 > 0, we also change the integration variable a, (1) — a,(1) — 274 and set
T:=0-(1,2,--- ,{ — N +2) € Sy_ny2. Then we get the following integral:

N {aa B Yicnens Bronya |Brona2) Wi ({e77}) (7.80)
{—N+1 Q()—ﬁ nNa ﬁ—h
% (_1>£—N+1(ng_) (a n—N+1 — r(f=N+2) :
feszz_;ug £[1 = N1 — N+ 1k ]1:[1 r(t=N+2) — 3
Qr(0-N+2) — Pn-Nt2 — N ,
X ({a }|/Bn—N+1 +Nh7 //31"" 7/Bn—N|/Bn—N+2)-
Qr(4—-N+2) — Br-ny2 + ( )

Then we see that the pinch of the contour for a,_n;y occurs only when o({—N+2) = (— N+2
n(7.79),and 7= N+1)=(—N+2o0r7({—N+2)=(—N+2in (7.80). Hence it suffices
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to calculate the residue at ay_ny2 = Frony2 — (% — 1)h for such terms. In this calculation,
we use the following formula

a—f3 ;
ch leens1eetlee (@1, s N, B = (N = 1)h, B = hy- -+, 3 = (N = 2)}, a)
+(N - 1)G517"‘7EZ—N7[€@—N+17"‘7EZ—1]7€l(a17 oy apN, @, B —h,oo- B — (N —1)h) (7.81)

a—p+(N-=1)h
= o — 5 517"'7€Z—N7[€Z—N+17"'7E£—17€1{](a17 Ty OY-N, O ﬂ - ha Ty 6 - (N - l)h)

instead of (7.58). This formula can be obtained from (7.31), (7.34) and (7.35).
After this calculation, we get the following integral:

£—N+1 /—N+1 1
( H /Cdaa> ¢({%}|{5j}1<j<n_1v) H —_— (7.82)

a=1 o=t e Bn_N-l-l
i Pm_ {e—aa}
S ST TN (I PPN NP ) B Gl )

n—N (v — )
Ha:l Hj:l (1 — € (o BJ))

From (7.34) and (7.36), we get (7.74). O

Note that
n—N Bn-_n41—B; =Nk Br—N41=B;—(N-1)k n—N
F( N+_2m' + l)r( N+ 2mi ( ) ) _ H So(ﬂ N1 _5) (7 83)
ﬁn— l_ﬁj_h ﬁn— l_ﬁj - n— 7/ .
o ==+ h (=) e

Therefore we get

27riresﬁn—N+2:ﬁn—N+l_%h.¢
= (1) g,y (—2mi) N

n—N
% (e;(ﬁn—N+l_ﬁj)F(ﬁn_N+l _ /,Bj —h + 1)F(—5n_N+1,_ i ))

, —271 27

=1
" dT_nle_(N—l)(QQn—N)ﬁn_N-H

2ms ; N—1 . '

X (] + e_T+T(n_N)mSn_NH,n—N(ﬂn—NH - 5n—N) s 5n-N+1,1(5n—N+1 — 51))

X LI}Pm—l (61) e aﬂn—N) @ Vlo,1,-,N-1]- (784)

At last we write down the formula for resf(N-1. Note that, for any regular function

F(Bi,---,Bn), we have

2miresy omp_waa—n O RESy_p0---0 RES; (Fiw)

= F(ﬁla ot aﬁn—Naﬂn—N+175n—N+1 - ha e 7ﬁn—N+1 - (N - 1>h>
X 27riresﬁn_N+2:ﬁn_N+1_gh o RESy_3 0--- o RES;(¢w). (7.85)
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By using

N-1 N-2 . 2(s+1 2s -1
/ _ —iff+ =57 B+ T
[Tct+in=1] {n s >}

k=0 s=0
N=-2
(N 1)(N+1) B+ ( —s—l)h B+ sh
= I'( nr 7.86
s:o{ T - ) ( -2 ) ’ ( )
we get
27riresﬁn_N+2:ﬁn_N+l_ghf(N_l)
(N-1)(N—=2)  (N-1) N-1 N-1
=d;l(—i) 2 me 2 m(=2mi) VN o) WDNEN =D TT (sm)N=2 TT amp
s=1 k=1
£+L(n N)mi i v .
x (14 e FHTONmS o N (Baonir = Bacn)  Sucnina (Buowar — B1))
X me_1</81, Tt )57L—N) ® v[O,l,---,N—l]- (787)

Hence, if d,, is given by

(N— 1)(N 2) (N—l)m
e

d, = (—Z) m’(_Qﬂ_i)(N—l)(m—l)(27,‘_)(N—1)(N+1)(m—1)

xHCSTNSH T (7.88)
k=1
then (7.11) holds. This completes the proof of Proposition 7.2.

7.3 Deformed cycles associated with energy momentum tensor

Hereafter we use the following notation:

27

A, i=e™®, Bi:=eP and wi=e=en. (7.89)

) J

The n rank-1 particle form factor f,, of the energy momentum tensor 7}, was determined
in [S1]. In terms of our formula, it is given by

fuu(ﬂla'”aﬁn> = COfPMy(ﬂla""ﬁTL)a (7‘90)

where (Y is a constant independent of n, 4, v, and P,, is given by

P (Ar, -  Ag) = cp (iBj_l —(—I)MiB]) (7.91)

X ((_1)y+(N_1)2(N_2) W m(m ! HA A2_ 7"'7A£_1> —I_w(A?v"'aAf)) .
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Note that n = Nm and ¢ = (N — 1)m. Here

- — K ¢ a a—1
Cpy 1= w_wm H dj_l’ w(A% ... ’Ag) = H Aa+[N_1 , (792)

where [-] is Gauss’ symbol.
In this subsection, we prove that f,, satisfies (7.8), (7.10) and (7.11).
First we consider the case of m > 1. Fix m such that m > 1, and set

p- .= cm(_1>(N—1)2(N—2) m(m 1) HA A1_ - -,Ag_l), and (7.93)
Pt i=c,wt (A, -, Ay, (7.94)
where
N-1 '
wh(Ay, -+, A) == JJ (1 = B Apw(Ay, -+, Ay). (7.95)
j=0

From Corollary 6.5, we have fu+(4.)) = fu({4.}) and f(HaAa)”w—({Agl}) = f(HaAa)nw({Agl}).
Hence we have

fop = fru, Pl = (Z B! - Z B; ) )P~ + PY). (7.96)

Proposition 7.9 Set P,, := P* and

Pr_ii=cpoqw(Ag, -+, Ay_ny1), for P, =Pt (7.97)
Py i= cpa(—1) 5ty
{—N+1
x ([T A" Nw(A7',--- Aly,,), for Pp=P. (7.98)

Then P,, and P,,_ satisfy the assumption in Proposition 7.2 for certain polynomials P®) and
P& (k=1,--- N —1).
Note that

N-1

> (@ Buoni)* = 0. (7.99)

J=0

Therefore Proposition 7.9 implies that fp,, satisfies (7.8), (7.10) and (7.11) for m > 1.
In the proof of Proposition 7.9, we use the following lemmas:
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Lemma 7.10 Sei

k J
Py(Ay,---, An|B) = Y w7 [ IT A A+ AN+ (7.100)

7=0 a=1 a=N-—j

fork=0,---,N —2. Here [];] is defined by

L 1 —w F(1 = E-D)... (1 = w-(k=i+1)
o Umer)—wr ) (1w ), (7.101)
J (1 —w (1 —w-UD). (1 —w™)
that is, the g-binomial coefficient with ¢ = w™'. Then
N-1
Skew (Py|p—wp) = Skew (H (1— B‘lAa)PkH) : (7.102)
a=1
where Skew is the skew-symmetrization with respect to Ay,---, An.

We can prove this lemma easily by using

[ﬂ:[f:”J“”_j[k;l]- (7.103)

It is also easy to see that the following lemma holds:
Lemma 7.11 Suppose that
clB_2w+c2B_1(1 +w)+e=0 (7.104)
for three constants ¢y,cy and c3. Then

Skew (c1 A2 A3 + ca AS A3 + c3 Ay A A3)
= SkeW ((1 — B_1A1>(1 — L{JB_lAl)(ClAzAg —|— C2A§Ag)> ; (7105)

where Skew is the skew-symmetrization with respect to Ay, Ay and As.
From Lemma 7.11 we find the following formula:
Lemma 7.12

Skew (Pn-o(A1,- -+, An|wB))

= Skew (Jﬁlu — BT'A)(1 —wB™ A, Po(Ay, - - - ,AN|B)> , (7.106)

a=1
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Proof. The lhs is given by

-2

N j—1 N-—
Prn—s(A1, -, Ax|wB) = Zw J“z”[ ] IT 42 T Actt- ay+.
=N-—

;-A

(7.107)
a=1 a J
It is easy to see that
N -2 - N -2 , : N —2
[ . ]w 4 oGt [ . ] (14 w) + W UH=-0+2) [ . ] =0, (7.108)
J J+1 J+2
for y =0,---, N — 4. Hence, from Lemma 7.11, we get
p N -2
~ H (1—B7'A,)(1 —wB™'A,) H Al <1+ [ ) ]B‘lAN_1> ANTL
a=1
Here we write f ~ ¢ if Skew(f —g¢) =0.
Note that
N =2
1+w™! [ ) ]B‘lAN_l =(1—-B"Ay_1)(1 —wB'Ax_;) —wB™?A%_,.  (7.110)
Therefore (7.106) holds. O
Set
—k—
Pl(Ay,---, AN|B) : H 1 —w/B™ A;)Py(1, Ay, - - -, Ax|B) (7.111)
for k =0,---, N — 2. Then we can also see that
N-1
Skew (P}|p—wB) = Skew (H (1— B‘lAa)PlgH) . and (7.112)
a=1
Skew (P]’V_2(A1, cee ,AN|wB))
N-1
= Skew (H(l — B7'A)(1 —wB™ A, Po(1, Ay, - - - ,ANIB)> . (7.113)
a=1
Proof of Proposition 7.9
First let us prove for P,, = P*. Note that
Pt =c, Py(Ay, -+, An_1, 1) (7.114)
m—2 { (s+1)(N=1) N
X H As ] Po(Asqvonyg1, 5 Ary(von), 1 H ATt
s=1 a=s(N-1)+1

a€N+2
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We set

n—k+1+j
PO =c, [ (@ Buck)" " Pi(Ar,- -, Anoy, 1|Bacs) (7.115)
7=0
m—2 [ (s+1)(N=1) N I—k+1
X H Aa Pk(As(N—1)+17 Tt A(s+1)(N—1)7 1|Bn—k) H AZ_£_1+Q7
s=1 a= s(N 1 a={—N+2
fork=1,---,N —2, and
PN-D .= ¢, H Boong1)" NHIDBy(Ay, -+, Any, 1) (7.116)

m—2 [ (s+1)(N=1) sN

X H A, PO(AS(N—1)+17 cy Ay vor)s | )AGZ ]]\thl

We define P*) from P*) by (7.23). Then we can check that P®) and p(m), (k=1,---,N—1)

satisfy the assumption in Proposition 7.2 by using Lemma 7.10, Lemma 7.12 and
Pi(Ay, -, AN|B) = A1 Pi(1, Ag, -, AN|B) = Py(Ay,---, An_y, 1|BYANTY.  (7.117)
We can prove the case of P,, = P~ in a similar way by using
Skew (Py(A7', -+, Ay'|lw™'B™Y)
N-1
= Skew (H(—BA;l)u — B'A,) - Pk+1) : (7.118)
a=1

and
Skew (PN_Z(AI_I, e AJ_\,1|w_lB_1)) (7.119)
N-1
= Skew (H (W' B*A7*)(1 — B7'A,)(1 —wB™"A,) - Po(A7Y, - - ’A]‘\,1|B_1)>
a=1
instead of (7.102) and (7.106), respectively. O

At last we show that f,, satisfies (7.8), (7.10) and (7.11) in the case of m = 1. In this
case, we set

ﬁ(k) = P]i(Al, e ,AN_k.,(.dBN_k, .. ,wk_lBN_k, 1|BN—I<:> (7120)

for k =1,---, N — 2. Then the assumption in Proposition 7.2 is satisfied for P, = PT except
(7.24) and (7.25). Similarly, we can see that the assumption except (7.24) and (7.25) holds
for P, = P~. Hence in the same way as the proofs of Lemma 7.4 and Lemma 7.5 we can
calculate the residue

RESy_y0 -0 RES, fps, (7.121)
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where

P¥ = (i Byt — (=1)* Xn:B]) PE. (7.122)

Then we see that the residue of (7.121) at 3, = 3 4+ 7t equals zero because of (7.99).
Therefore, the form factor fp,, satisfies (7.8), (7.10) and (7.11) for all m > 0.

8 Supplements and proofs

8.1 Properties of Smirnov’s basis

First we extend the definition of we ..., (81, -, B,) in Section 6.1 as follows. For e =
(€1, 1€n) € 2wy, We set
Ve 1= Ve, @0+ @ 0, (8.1)
Define a partial order in Z,,, .., ,:
(€1, 6) < (€, ,€)) if and only if Z € < Z e. forall r. (8.2)
=1 =1
We define two elements €™2* and e™™ of Zyevn_y DY
€ = (N — 1, N —1,--+,1,--+,1,0,--,0), (8.3)
———— N —
VN—1 v1i—v2 n—u
€™ = (0,--+,0, 1,1, -+ N—=1,---, N —1). (8.4)
—— N —
n—u v1—u2 VN-1

We define {we, e, (B1s -+ 3 Bu) Her,en)€20, .y, PY the conditions (6.1) and wemin 1= vemin,
Then we see that
H ﬁa - /6)b
55

(ea>ep)

Weyomen(P1y -+ Br) = Vey e + (lower term). (8.5)

Lemma 8.1 For (¢,---,¢,) € Z the following formula holds:

Viy VN —-17
3, — B, — h
b a
Ekwq,m,en = Z H WMEU“’EQ_LW’E"’ (k = 1, - N — 1) (86)
(ea=k) (eb=lf,b;£a)

Proof. The proof in the case of N =2 is given in [S1]. Here let us prove the case of N > 2.

Note that the action of Ej commutes with that of R; ;4 for all 2. Hence we see that both
sides satisfy (6.1). Moreover, it can be checked that (8.6) holds for (e, -+, €) = €™ by using
(8.6) in the case of N = 2. Therefore, (8.6) holds for all (¢,---,¢€,). O

In the rest of this subsection, we use the following simple lemma.

41



Lemma 8.2 Suppose that a (Vy)®"-valued function
F(':Ula"'ax’ﬂ) = Z F617"'75n($17...’$n)vﬁl @ - @ Ve, (8'7)
(517"',5n)ezy1,-~,uN_1
satisfies
F(oswjpmye) = P Ry j(w; — 200 F (- g, w4, ). (8.8)

and F, =0 for some (€1, -,€,). Then F =0.

€1, €n

By using {we, ..., }, we can get another formula for the special solution at level one (4.19),
and prove the highest weight condition as follows.

Proposition 8.3

Z Heperlar, -y au)ve, @+ @ v,

(El 7"'7EZ)EZ(N—2)m,~»,2m,m

= Z H Q, i abwﬁlﬂ---,ee(ala ey ap), (8.9)

(51 7""EZ)EZ(N—2)m,~»,2m,m (eaaébeb)

where { = (N — 1)m. The function (8.9) satisfies the highest weight condition.

Proof.  From (4.2) and (6.1), it is easy to see that both sides satisfy (8.8).
Now we consider the coefficients of vmax of both sides. From (8.5), we can calculate the
coefficient of the rhs easily, and see that it suffices to prove that

Heox =[] o (8.10)

" o, —oap+h

(d‘{jax <€1t;nax )

First consider the case of N = 3. Then we can calculate Hmax explicitly from (4.3) and (4.4),
and get (8.10). In the case of N > 3, we have the following from (8.10) for N = 3:

1 1
Hl,--~,1,0,--~,0,2,---,2,-~~,N—2,--~,N—2 == H — 5 H —_—. (811)

" a, —op+ h " a, —ap—h
(eq=0,ep=1) (ea<ep,2m<b)

Repeating this calculation, we get (8.10) for N > 3. In this way we find (8.9) from Lemma
8.2.
Let us prove the highest weight condition for the rhs of (8.9). From (8.1), we have

Ey(the rhs of (8.9)) = Z We H !

O, — Oy
€€EZ(N_2)m, - (N—k—1)m—1,,m

a,b
(ea<ep.(ea,ep)#(k,k+1))

<> I — 1 Sl | O CREY

. f J b Q; — Qp a; — O,
(ea=k—1) (ej=k'—1,j.-r‘a) (6J=k—1,j:,£a,€b=k—1) (ej=k)

The second line above eqauls zero from the following lemma. O
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Lemma 8.4 For zy, -, 2,41 and yy,---,y,._1, the following equality holds:

giH r—1 1 ﬁyt—ws—h_o (813)
T; — T j = — Xy - .

s=1 j#s

This lemma is easy to prove by induction on 7.

Proof of Proposition 6.1

The case of N = 2 is proved in [NPT].

From (3.23) for wys and (6.1), we see that both sides of (6.6) satisfy (8.8). Hence it suffices
to check the coefficients of v.max of both sides are equal, that is

N-1
wcmz(—m“@{”g 1:[b (B = B _ﬁh)—(ﬁﬁb o= h) . (8.14)

(ca=r=cp)

This equality can be proved by using (8.14) with N =2. O

8.2 Proofs of equalities of rational functions

Proof of Lemma 3.2

Here we set ry,, := ri{m_l, (2 < m < 1) and ro,, = rim, (1 < m < ry). We set
ra=0=rypand ri 41 =n+1=ry,,41.

Define functions f,, (1 < a < n) as follows.

For ry; < a < ry441 such that ry , < a <1y 444, we set

fa = (_1>t_lg]\/flju{a}(a27"' Aty Oy Ogpq, 77, amHﬂg})
Te —a1 — R
X garg ({ym 3z, -, ) H — (8.15)
imgin R 1

Note that Skew f, = wjl). Jut1,

For a = ry; such that r, , < 7“1,15 < Tr9g41, set

L
f"'l,t = (_1>tg]\/llj(a27'"’al/1|{6j})g]\/[21({7m}|a27 . al/1 H

Ve —

k=q+1
Qq — /g—h al_/BTlt_h
% H ap — {(al o ) * a1 — /67"1,t (at o )
<1t
X H(ab —ay = h) I (01— —h). (8.16)
b=2 b=t+1

Note that f,, , is symmetric with respect to oy and a.
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For a = ry, = ry;, we set

frzq = ( ) gMJ(a27 e ’aul|{/8j})gM2f({7m}|a27' e aam)

T 2 - f

Ye — 01

k=q+1 1<r2,q b=2 b=t41
— oy —h — B, —h
x {(al — oy — By P R h)} . (8.17)
’YQ — a1 — /3’7'2,(1

Note that f,, , is symmetric with respect to oy and a.
It is easy to check that

Y fo = gy ({aatococn {8 D 9ay ({vm Y { @} acacn) (8.18)

x(Hml—aa H”’“ o —H“lalﬂf‘hﬂml—aﬁm)-

a=2 a=2

By skew-symetrizing both sides above, we have (3.28). O

Proof of Lemma 5.3

The proof is quite similar to that of Lemma 3.2.

We set My = {my, -+, my}, ma < ---my, my =0,myps =n+1and e :=J,_4, (2<r <
0).

Define functions f,, (1 < a < n) as follows.

For m, < a < m,;1, we set

fa = (_l)r_lngju{a}(a% ERRER A TR PRATHT Pl ’aéH/Bj})
X H.,

27"'7€r70757‘+17"'7513(@2’ e 7aT’ Ofl’ a?"-l-l) ST, af) (8‘19)

Note that Skew f, = wy, ... 7,410, -
For a = m,., we set

r—1 4
. oy — B, —h
S, = (=1) 29A411(0¢2,"',01£|{5j}) H ﬁ H(ab —a; — ) H (an —ap—h)
j<my 1 7 p=2 b=r+1
X {(al — 0 = R)Hey ooy 0,6y mes(Qay sty g, Oy Oy oo ) (8.20)
a1 — P, — h
+ (O[T — Q1 — h)IL—ﬁHeg,---,cT,O,eT_H,---,eg(a% Oy O, Qpgq,t 7, O[g)}.

From (4.2), it can be checked that f,,, is symmetric with respect to oy and «,.
We can see that

Y fa = gy ({aahocacs {B5}) X
a=1
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-1

X {H(al - aa - h)H07€27"'7E£(a1’ a2’ e ’a£>

a=2
I4 n

oy — P — h
+ (—1>£ H(aa — 0 — h) H ﬁ}]@’...’q’o(ag, e, O,y al)}(821)

a=2 7=1

By using (4.3) and skew-symmetrizing both sides above, we have (5.21). O

Lemma 8.5 Let I,,(s = 0,---,7) be sets of indices such that #1; = m for all s. Then the
following equality holds:

- - r—y;—h Hjefo(yk_yj — sh)
s=1 jel, J =sttjer, U Y1 kel (= yx = h)(= — ) HJJ@I; (e — y;)

. r—vy. —h
Hi_EIIoquI(I > ijyj) ) _ [T —v=(r+ ). (8.22)

+

This lemma can be proved by induction on r.

Proof of Proposition 6.2.

Note that both sides of (6.10) are rational functions of a with at most simple poles at
points 3;,(j € K,,r > 0), and have the same growth O(a™~?) as a — ooc.

We can see that hoth sides have the same residue at points a = 3, (b € K/, r > 0) from
Lemma 8.5 with

r=/3, L,=K] and y;=4;. (8.23)

Moreover, it can be checked that both sides have the same value at points @ = /3, + h, (b €
K,,q > 0) from Lemma 8.5 with

x=0+h Iy= (6], Is:]((}]+s,(8>0), r=N-—-1,

y;=B8;+rh, (j € KJ) and y; =8, (j € K],s>q). (8.24)

Hence (6.10) holds. O

Lemma 8.6 Let I;,(s =0,---,d) be sets of indices such that #1; = m for all s. For a € Iy,
the following equality holds:

d [Toer (va =95 = B) ITicn (92 = v5)
I iy | gy g

s=0 j€l,
1 x—y; —h x—vy;, —h
= [T we—vi =B ] (va — ;) 1T : — +
FIS ) JE€IL = Ya JE€Ip Ya = Y5 = h JETL =Y
J#a t>0 J#a t>0
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h

M NN ey e |

a=1 kely €T3 Ye = Yj serg JE T Y jen —Yi

XZH(yk—yj—(q—S)h)

[Toen (92 =5 = B) [Toen (92 — 9))
s=0 jel, (yk—yj_(q_S—l)h)(yk—yj —(q—s))

(8.25)

Proof. Let us prove (8.25) by induction on d.

It is easy to see that (8.25) holds in the case of d = 0.

Suppose that (8.25) holds for 0,1,---,d — 1. First note that the the singularity of the lhs
is only the simple pole at © = y,. Hence both sides are rational functions of = with simple
poles at points y, and y;, (j € I,,u > 0), and have the same growth O(z™~?) as  — oo. It
is easy to see that residues of both sides at © = y, are equal. We can check that both sides
have the same residue also at @ = y;, (j € I,,u > 0) from (8.25) with d = v — 1. Moreover,
both sides have the same value at « = y; + I, (7 € I,). Therefore (8.25) holds also for d. O

Proof of Proposition 6.3.
Consider the following function f(«,y):

N-1 () (s)
Uy (o) = Uj" (y — sh)
=Y LY (a+sh) T 2 z 8.26
f(a,y) sz:; J(Q‘|‘S) h( a—y—l—sh ) ( )
where T} is the difference operator Ty with respect to «, and
s—1 N-1
=T[LP+-1n) J] LV (a+ sh). (8.27)
k=0 k=s+1
For a € K/, we have
fa, B+ Nb) = D( (e = 8 - N1)) (8.28)
J7a
- s k - k
S [ico L6 (B + (¥ = DB T2 97 (3 + N )

R DR G s wy poy 731 P i gy I

We find that the sum in the rhs of (8.28) equals the rhs of (6.20) by using Lemma 8.6 with

I,= K’

ey d=N—-r—1, z=a and y; =p;. (8.29)

On the other hand, we have

U‘(]s)(a) U( ) (y — sh) Nim

k=1 8.30
a—1y+ sh 4 ( )

oz—}—sh

k=1



Hence we get

(N=-1)m
fla,Bu+ N = > (B + NE'QP (). (8.31)
k=1

This completes the proof. [
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