On the exact WKB analysis of operators
admitting infinitely many phases

Takashi AOKI *
Department of Mathematics and Physics

The School of Science and Engineering
Kinki University
Higashi-Osaka, 577-8502 Japan
Takahiro KAWAI T
Research Institute for Mathematical Sciences
Kyoto University
Kyoto, 606-8502 Japan
Tatsuya KOIKE *
Department of Mathematics
Graduate School of Science
Kyoto University
Kyoto, 606-8502 Japan
Yoshitsugu TAKEI $
Research Institute for Mathematical Sciences
Kyoto University
Kyoto, 606-8502 Japan

*Supported in part by JSPS Grant-in-Aid No. 11440042 and by No. 12640195.
tSupported in part by JSPS Grant-in-Aid No. 11440042.
tSupported in part by JSPS Grant-in-Aid No. 13740096.
$Supported in part by JSPS Grant-in-Aid No. 11440042 and by No. 11740087.

1



1 Introduction

The purpose of this article is to propose a reasonably wide class of operators
whose WKB solutions admit infinitely many phases and to show that exact
WKB analysis, i.e., WKB analysis based on the Borel resummation, for such
operators can be performed at least near their turning points. Intuitively
speaking, the operators to be studied in this article are appropriate infinite
sums of linear ordinary differential operators whose coefficients depend on a
large parameter 7. Their precise definition is given in Section 2; the definition
is designed so that the “wildness” of the differentiation is ameliorated by
the effect of the inverse of the large parameter. As the reader will find
in Section 2, microlocal analysis ([SKK]; see also [K3| for some elementary
exposition) of the Borel transform of the operators in question enables us
to describe the delicate balance between the differentiation and the effect
of the large parameter. We call such well-balanced operators “operators of
WKB type”, in order to distinguish them from linear differential operators
of infinite order, which are effectively used in microlocal analysis (cf., e.g.,
[SKK, Chap. IIJ).

Operators whose WKB solutions admit infinitely many phases cannot
be a linear ordinary differential operator of finite order, because the phase
function is then a solution of an algebraic equation; however, such operators
become necessary in fluid mechanics (cf., e.g., [BP], [BRS], [S] and [WSW]).
Still, there has been no mathematically serious attempt for WKB analysis
of such operators as far as we know. Hence we start our discussion with
the definition and construction of WKB solutions for operators of WKB
type (Sections 3 and 4). To make the reasoning systematic, we use the so-
called “exponential calculus of microdifferential operators” (cf., [Al], [A2]
and [A3]) to find out the Riccati-type equation associated with an operator
of WKB type. After defining the notion of a turning point and that of its
rank for an operator of WKB type, we prove a decomposition theorem for
such operators near a turning point (Section 5). In the proof, we employ
the idea of H. Cartan ([C]) in proving a precise version of the Spéth division
theorem. Using the decomposition theorem we find where and how a disrupt
change occurs in the Borel sum of WKB solutions, i.e., the location of a
Stokes curve near a simple turning point and the connection formula around
it. The method of the proof is essentially the same as that used in [AKT1];
that is, we use the decomposition theorem to reduce the problem to the case
of the second order operators (cf. [V], [DDP], [AKT2] and references cited



there).

Some computer-assisted study (that uses Mathematica) is given in Ap-
pendix to see what happens at points far away from turning points. As far
as we have examined, no substantially new phenomena seem to occur; the
notion of new turning points (cf., [AKT1], or that of virtual turning points
in our latest terminology in [AKT5]) seems to be still effective for operators
of WKB type. But no serious attempt has been made to find an algorithm
to describe the complete connection formula. Finding out such an algorithm
is one of the most important open problems in exact WKB analysis, even for
finite (2 2) order operators. We hope examples in Appendix will be helpful
for the reader to obtain a concrete picture of operators of WKB type.

In ending this Introduction, we call the attention of the reader to the fact
that, in general, an operator P(z,d/dz,n) of WKB type does not determine
an infinite order operator (in the sense of microlocal analysis) when the
parameter 7 is fixed to be some finite value however large it is. As a simple
example let us consider the following operator Ly:

Lo(z,n 'd/dx) = exp(n 'd/dx) -z
1 .. d.,
= Y = (%) - z. (1.1)

n!
n>0

If we fix 1 to be 7 the resulting operator is a translation operator: f(z) +—
f(z +ny"). Since an infinite order differential operator acts on the sheaf of
holomorphic functions as a sheaf homomorphism, Lg(x, 75 'd/dx) cannot be
an infinite order differential operator; one important lesson we learn from
this example is that the arbitrariness of the large parameter 7 is critically
important in ameliorating the wildness of differentiation. Needless to say,
there are operators of infinite order of WKB type that determine infinite
order differential operators when we fix the large parameter n at a finite
value 7. A typical simple example is given by the following operator L;:

Li(z,n*d/dx) = cosh(y/(in)'d/dz) — x
= Y o)) (1.2

= (2n)!

As is well-known, cosh(4/(i1m0) ~'d/dz) is an infinite order differential operator
for any ngy (# 0).



The operator L; (Example A.1), a variant of Ly (Example A.2), and L,
given by
Ly = exp(n2d?/dz?) — exp(—2?) (1.3)

(Example A.3) together with an operator related to a non-adiabatic level
crossing problem in quantum mechanics (Example A.4) are concretely ana-
lyzed in Appendix.

2 Differential operators of WKB type

Let U be an open set in C. We set X = U x C,. Let (z,y) be a coordinate
system in X. Here z (resp. y) is a coordinate in U (resp. C,). Let T*X
denote the cotangent bundle of X and let (z,y;&,7n) denote a coordinate
system in 7*X. We denote by €2 the open subset in T*X defined by

{(z,y;§,m) € T"X;n # 0}

We consider a subring of the ring £(2) of microdifferential operators defined
on Q (cf. [K3]):

Definition 2.1 The set of all microdifferential operators P of order 0 which
are defined on €2 and which satisfy

[P,d,) :== P&, — 8,P =0

is denoted by Ewkg(U). Here we set 0, = 0/0z, 0, = 0/0y. An element P
in Ewkg(U) is called a differential operator of WKB type defined on U.

For a differential operator P of WKB type, the total symbol o(P) of P
may be written in the following form of a formal power series:

o(P) = 0P, €/, (2.1)

Here each Pj(x,&/n) is a holomorphic function which is defined on Q and
homogeneous of degree 0 in (£,7). That is, the homogeneous part of degree
—j of Pis n7?Pj(x,&/n). Hence we can write

o(P) = P(z,§/n,n) = P(z,(,n)
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and

P = P(x,0,/0y,0y).

Here we set ( = £/n and we regard ¢ as an inhomogeneous coordinate in
2/(C —{0}). Following the traditional terminologies in microlocal analysis,
we call Py(z, ) the principal symbol of P. Each coefficient P;j(z, () of n™7 in
o(P) is an entire function of ¢ with holomorphic coefficients a;; defined on
U:

Pi(z,¢) =Y aji(z)¢", (2.2)
k=0
By the definition of microdifferential operators, P;(z,{) (j = 0,1,2,...)

satisfy the following estimates: For every compact set K in U x C¢, there
exists a positive constant C' so that

|Pj(=, Q) < C7Hj! (2.3)

holds for each (z,() € K and for j = 0,1,2,.... Conversely, if P;(z,() are
holomorphic on U x C and they satisfy (2.3), then the formal series

S0 B ¢/n) (24

defines a differential operator of WKB type.

It follows from the composition rule for microdifferential operators (cf.
[SKK, Chap. II]) that the total symbol o(R) of the composite operator R of
two differential operators P, ) of WKB type is written in the form

o(R) = > ' Ri(a, ) (2.5)

with 1
Ri(z,Q)= > — (0P, )07 Qu(,Q)), (26)
j+k+m=l )
where o
> nP(x,()
j=0
and

> Qu(, Q)
k=0
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are the total symbols of P and @, respectively. The composite symbol o(R) =
R(z,(,n) can be also written in the following form (cf. [A1], [A2]):

R(z,¢,n) = exp(n ' 8,0,)P(z,( +w,n)Q(z + z,, n)|w=z=o- (2.7)

Since a differential operator P of WKB type is independent of y, we identify
0, with its symbol 7 in what follows. Thus we often write P with the total
symbol (2.1) in the form

P =Y " n7P(x,0./n). (2.8)

=0

We regard n (or 0, ) as a large parameter. Then P can be considered to be
a formal ordinary differential operator of (finite or) infinite order with the
large parameter 7. This is the reason why we call P a differential operator
of WKB type.

The ring Ewkp(U) contains various types of operators which can be ana-
lyzed by using exact WKB analysis. We give some examples of operators in

Ewxs(C).

Example 2.1 7202 —z. (Airy operator with a large parameter.)
Example 2.2 7 %9 —3n7'9, + z. (Cf. [AKT1], [AKT3], [BNR].)
Example 2.3 exp(n~'9,) — z. (Cf. Introduction.)

Example 2.4 cosh(y/(in)710;) — z. (Cf. Introduction and Appendix.)

For the convenience of our later discussions, we further introduce an ex-
tension of the ring Ewkp(U): We denote by éWKB(U) the set of all formal
sums of the form (2.8), where P;j(z,() are holomorphic in U x C, without
any growth condition on P;. The product (composition of operators) in this
set is defined by (2.7). With this product and the sum as the formal power
series, the set <§WKB(U ) becomes a ring that contains Ewkp(U). An element
of Ewks(U) is called a formal differential operator of WKB type. If U is not
simply connected, we denote the universal covering of U by U. We will also
use the rings Ewks(U) and Ewxgs(U), where we admit multivalued analytic
functions as coefficients of powers of ¢ in P;.



3 WHKB solutions, turning points and Stokes
curves for operators of WKB type

Let -
P = Zn_jpj(% 0z/m)

§=0
be a differential operator of WKB type defined on U with the principal
symbol Py(z, (). We consider a differential equation

Py =0. (3.1)
To define a WKB solution of the equation, we introduce several notations.

Definition 3.1 (i) A formal WKB symbol is a formal series with an expo-
nential factor that has the form

f =exp(na(z Zn i~ fi(x (3.2)
7=0

where a(z), f;j(z) (j =0,1,2,...) are holomorphic functions in an open set
V in C and « is a real number.

(ii) A formal WKB symbol (3.2) is said to be Borel transformable if for every
compact set K in V, there exists a positive constant C' for which

sup | f;(z)| < j1C7T 5 =0,1,2,
rzeK

hold. If « is not contained in the set {0, —1,—2,...}, the Borel transform of
f is a (possibly multi-valued) analytic function fg(z,y) defined by the series

> 2y + afw)

‘= Tla+7)

which is locally uniformly convergent in
{(z,y)|z € Vand 0 < |y + a(z)| <7}

for some r > 0.



Remark 3.1 (i) The formal WKB symbol (3.2) is Borel transformable if
F=> "n7fix)
=0

belongs to Ewxr (V).
(ii) If a formal series S = Z n?S;(z) (a formal WKB symbol without

j=-—1
exponential factor) is Borel transformable, then we find exp( / Sdz) is also

Borel transformable by expanding

exp (2 n /w Sj(x)dx>

into a formal series in ! by brute force.
(iii) If « is a negative integer or 0, we consider (n~'/2f)p instead of fp (cf.

VD)

Let V be an open set in U and V the universal covering of V. Let S
denote a formal power series of the form

S =S(,n) =) n78),

j=—1

where S;(z) (j = —1,0,1,2,...) are analytic functions defined on V. Let us
consider a formal WKB symbol ¢ defined by

b = exp ( / " S(a, n)dm) . (3.3)

Then 1, or more precisely, the multiplication operator by %, induces an
automorphism

Ps - éWKB(v) — éWKB(V)
defined by
¢s(P) = Pt
The right-hand side is well-defined as a quantized contact transform of P
(cf. [A4], [SKK]). Actually the geometric aspect of this quantized contact
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transformation is quite simple; it is a contact (=homogeneous symplectic)
transformation induced by a change of variables in y. In terms of symbols,
we may write

¢s(P) = P(x, (0 + S)/n,m)- (3.4)

The corresponding contact transformation is given by

r — z,

y — y—/ S_1(z)dz,
6 — €+TIS—1($):
no—

We consider a left ideal of Ewkg(V) generated by 9,
Ewks (V)0 = {Q 0 Q € Ewxn(V)}.
An operator P in Ewkr (V) belongs to Ewks(V)d; if and only if o(P)|,—o = 0.

Definition 3.2 A formal WKB symbol ¢ defined by (3.3) is said to be a
WKB solution of (3.1) if ¢s(P) belongs to Ewkg(V)0,.

The background idea of this definition is as follows: if we re-arrange the
order of the multiplication operator by exp( [ S(z,n)dz) and the differential
operator 0, by the application of the rule

T

o.ep( [ S(z,mds) = S(myexs( [ S(mide) + exo( [ S(a,n)da))o,
in the composite P of operators P and v so that the differential operator 0,
always stand to the right of the multiplication operators (the so-called normal
ordering), then the part which is free from 9, should coincide with the formal
WKB symbol obtained by letting P act on v regarded as a “function of z”,
not an operator, by the rule

O = S(z,n)Y,

due to the fact that v is free from 0,. Thus intuitively speaking, the require-
ment in Definition 3.2 amounts to saying that 1 regarded as a “function of
2" satisfies the differential equation Py = 0. Note that the left-hand side of



this equation is different from the composite P of operators P and 1. For
example, if P is a differential operator of the second order of the form

P = 777282 - Q(l‘)a
the requirement of Definition 3.2 reads as

dS
% + 52 - 772@('7") = 07

which is the traditional Riccati equation. In fact, we have

os(P) = 17 (8 = 17Q) ) + 170s 4250,
in this case. Since ¥ does not contain the differential operator d,, the normal
ordering of P can be immediately obtained by applying ¥ from the left to
the normally ordered ¢g(P).

We believe the employment of the quantized contact transformation ¢g(P)
is a neat way to formulate this intuitive picture in a mathematically rigorous
manner. In particular, the explicit form (3.4) of ¢g(P) clearly explains how
natural is our starting assumption that the symbol of a differential operator
of WKB type should be entire in { = £/n.

Next we define the notion of turning points for operators of WKB type.
Recall that Py(z,() denotes the principal symbol of P.

Definition 3.3 Suppose that the system of equations
Py(z,€) = 0 Py(,¢) = 0 (35)

has a solution (z, () = (2., () € U x C; and Py(x.,() does not vanish iden-
tically as a function of (. Then z, is called a turning point of P with a
characteristic value (,. The smallest positive integer m so that 82”P0(x*, Cx)
does not vanish is called the rank of the turning point z, with the character-
istic value (.

Note that there may exist ¢! which does not equal (, for which Py(x,,(l) =
OcP(z,,(.) = 0. (Cf. Examples A.1 and A.2.)

Let z, be a turning point of P of rank m with a characteristic value (,. By
using the Weierstrass preparation theorem, we see that the principal symbol
Py(z,¢) of P is uniquely decomposed into the following form:

Po(.T,C) = q(x,{)r(ac,(), (36)
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where 7(z, () is a Weierstrass polynomial of degree m in ¢ with the center
at (z., () and ¢(z,() is a holomorphic function defined on a neighborhood
Up X wy of (x4, () so that ¢(x., (,) # 0. By the definition, r has the following
form:

r(@,0) = (C—¢)™+ fil@)(C— &)™+ + fl(a),

where f;(z) vanishes at x =z, for j =1,...,m.

Definition 3.4 The Weierstrass polynomial r(z,() is called the vanishing
factor of P at (x4, (). There are m analytic solutions { = (i1(x), ..., Gu(2)
of the equation r(z,() = 0 satisfying (;(z.) = (. for j = 1,...,m. These
solutions are called characteristic roots passing through (z,, (,).

We introduce the notion of Stokes curves for turning points of rank 2.

Definition 3.5 Let z, be a turning point of P of rank 2 with a characteristic
value ¢, and let ¢, (z) and {_(z) be the characteristic roots of P passing
through (z,, (). A Stokes curve emanating from z, is a curve defined locally
by the following equation:

I [ "G (s) — C_(s))ds = 0. (3.7)

Definition 3.6 (i) A turning point z, of P of rank 2 with a characteristic
value (, is said to be simple if

0y Py (4, C,) # 0. (3.8)

(ii) A turning point z, of P of rank 2 with a characteristic value ¢, is said to
be double if
0pPy(z4, () =0 (3.9)

and
(050 Po(@x, () = 8§P0(x*, C*)agPO(x*a G)#0 (3.10)

hold.
Infinitesimal configuration of Stokes curves at a simple (resp. double) turning
point z, is the same as in the case of second order differential operators. That

is, they consist of three (resp. four) half-lines with starting point at x, and
the angle between any adjacent two rays is equal to 27/3 (resp. 7/2).
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Remark 3.2 If P is of third order with simple discriminant (cf. [AKT1]),
then all turning points are simple.

In the case of rank 2, we can define the notion of turning points with
higher multiplicity (cf. [P] for the second-order case). Since the main interest
of this paper is the case of simple or double turning points, we do not give
them here.

4 Construction of WKB solutions

Let us construct a WKB solution of (3.1). We assume that there is a solution
¢ = ((x) of the equation Py(z,() = 0. We suppose ((z) is analytic on an
open set U in U. Using (), we will construct a formal WKB symbol

v=ex ([ Stas).

for which ¢g(P) belongs to éWKB(Ul)ax. Here

S(z,m) =>_ n78;(x)

j=—1
is a formal series with analytic coefficients defined on Uj.

We set S := n~1S(z,n) = Z n~771S;(z) and T(z,n) = / S(x,n)dz.

j=—1
It then follows from the definition of ¢5 that the total symbol o(¢g(P)) has
the following form (cf. [A4]):

exp(n '0:0:)P(x,¢,n) exp(n(T(z + z,m) = T(x,m)))lz=0-  (4.1)

If this vanishes at ¢ = 0, then ¢ is a WKB solution of (3.1). To calculate
(4.1), we use the following lemma which is a special case of Sublemma of
Lemma 1.3 in [A3] (see also [M]).

Lemma 4.1 Let A(x,z,n) = Z;io Aj(z, 2)n™7 be a formal power series of
n~t, where Aj(z,z) (j =0,1,2,...) are holomorphic on Uy x {|z| < ¢} for
some constant ¢ > 0. Then the following relation of formal power series
holds:

exp(n10:0,)P(z,{,n) exp(nzA(z, z,m))|.=0
= exp(n~'0¢0,)P(z, ¢ + Az, 2,1),m)|:=0-  (4.2)
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We set,
T(x+z,n)—T(x,n)

Az, z,n) = .

and apply Lemma 4.1 to (4.1). Since we have
1 ~
A(z,z,m) = / S(x + zt,n)dt

o akS*

k:O

we arrive at the following

Proposition 4.1 The formal WKB symbol 1 = exp (77 I g(x,n)dx) is a
WKB solution of (3.1) if

ko okS
exp(n~'9.,0,) P (m C-I—Z kj—l'axk( 77)#7)

holds.

=0  (43)
2=(=0

Equation (4.3) is a counterpart of the Riccati equation in the second-order
case. To construct in a recursive manner S(z,n) satisfying (4.3), we need
some more reduction of the condition (4.3). For the sake of simplicity of
indices, we set Sy, = Sm—1 (m = 0,1,2,...). Recall that P(z,(,n) has the
form 3% n~"P,(r,¢). Substitute this and S = Y 7~™5,, into (4.3) and
expand it in the powers of n~!. Then we find that (4.3) is equivalent to

O Pu(@,S0) 9418, --- 05 S,

Z DD 1) (b + 1)

where the second summation is taken over all indices k, n, m; kq,...,k;;
mi,...,m; satisfying k >0,n>0,m>0,k+n+m=10;k +---+k; =k,
my+--4+mj=m, ki+m; >0 (G=1,...,7), 5 <k+m. Note that this is
a finite sum. The leading term of the relation is

=0, (4.4)

P()(I, S()) = 0. (45)
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Thus we take Sy = ¢(z). In the coefficient of n~! (I = 1,2,...) in (4.4),
S, appears in exactly one term which is corresponding to the set of indices
m=1I0,k=n=0,75=1, ki =0, m; =1 and which has the form

8<P0(3:, SO)SZ-

All other terms contain S and their derivatives for j < [. Hence, if S for
j < I are known, we can determlne S, uniquely so far as OcPy(z, SO) does not
vanish identically. Namely,

S, = . ZaZJrkPn(x’gO) 08 Sp,y "'afj‘gmj
YT 0Pz, S) 5! (b + D) (ky + 1)1

(4.6)

Here the sum is taken as in the second summation in (4.4) except for the
term correspondlng tom=10,k=n=0,5=1, ky =0, m; =1[. The series
S = > i n~7S; thus constructed clearly satlsﬁes (4.3). Therefore we have

Theorem 4.1 Suppose that 0. Py(,((z)) never vanishes in an open set V
in Uy. If we set So(x) = ((x) and define {S;(z)} (I1=1,2,...) by (4.6), then

a formal WKB symbol
P = exp (/ S(iv,n)div)

S(z,m) =nS=n>_n778(z)

=0

is a WKB solution of (3.1). Here S, (I > 1) are uniquely determined as
(possibly multi-valued) analytic functions defined on 'V once Sp(x) = ((z) is
fized.

defined by

Remark 4.1 The subleading term of S is given as follows:

N 1
$1@) = =5 B @)

Our construction of a WKB solution only requires that P to be a formal
differential operator of WKB type. If we assume that P is a differential
operator of WKB type, we have

(302t )¢ + P c(a)).
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Theorem 4.2 The WKB solution i constructed in Theorem 4.1 is Borel
transformable.

Proof It suffices to show that S is Borel transformable. Let V' be an open
set, satisfying V! CC V. There is a constant C)y > 0 so that

1
OcPo(x, go(x))

< Cy (4.7)

holds for each z € V'. Since P,(z,() is entire in ¢ for every fixed x € V", its
derivatives can be written in the form

: i !

OcPnl, ) = 27r;7/-—_1 ¢'—¢|=1/8 (gnix&)gjildc’ (48)
where ¢ is an arbitrary constant and 7 = 0,1, 2,.... Hence there is a constant
C1 = C1(0) for which

0P, (2, So(x))| < jlnlCTH &7 (4.9)
holds for z € V', j,n = 0,1,2,.... Let o be a point in V'. Let B(zo,p)

denote a closed disk of radius p > 0 with center at zy. Let py be a positive
number satisfying B(zq, pg) C V'. We shall show the following estimates for

S () by induction: There exist constants A > 0, Cy > 0 and M > 1 so that

1S ()] < m! ACH e~Mm (4.10)
holds for any sufficiently small ¢, x € BN(xo, po—¢e)and m=0,1,2,.... This
holds for m = 0 if we take A > sup |Sy(z)|. Suppose that (4.10) holds for

zeV'!

m=20,1,...,0l — 1. Then we have
0ES(2)| < (m+ k) ACT e~ M(mth) (4.11)

for x € B(wo, po —€), K =0,1,2,.... In fact, if the above estimate holds for
k, writing 0**1S,,(z) in the form

~ 1 %S, (2)
oS, (z) = L 4.12
(@) 21V =1 J i —a|=c/(h4m+1) (T — T)? (4.12)
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and using (4.11) for € to be (1 —1/(m + k + 1))e, we have

(m+k)
~ 1
k+1 - < (k MNAc™ (1 — —M(m+k)—1
10; 7 S ()] < (k+m+ 1)1 ACS ( m—|—k+1> 5
(4.13)

for x € B(xg, po — €)- Since we have

1 —M(m+k) 1 M(m+k) o
l1—-— 1+ — <
(i) =(vam) <

and we may assume ¢ is so small that eMe™~1 < 1, the right hand side of
(4.13) is dominated by

(m+k+ )yAcvm - m+k+1)

This implies (4.11) holds for £ + 1. Combining (4.6) with (4.7), (4.8) and
(4.11), we see that |S;(z)| is dominated by

]—i—k Vnl(ky +mg)!- (k +m]) 1 _
C § : CrHLgitk giome=Mk+m) (4 14
‘ Gk + ). (k4 1) (4.14)

in B(zg, po— e). Here and hereafter the summation is taken as in (4.6) unless
otherwise stated. Clearly (4.14) is less than

Cp 3 U RNt ma)l o (B ! gk igogreMiksm)_(4.15)

gkl k!
Since . K, |
( 1 + m]i‘z ]({: + m]-). (4.16)
3
can be rewritten in the form
ooy (25)
Oork)! 5 ( > (ki + m;) )
U_l(ki + m,)
and (Z) (Z) < (Zi;) holds, we see that
.

kl!.. k]

ky+e-tk;=k
mi+-+mj=m
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is not greater than

mal-emgt(k+m)!
> — 2, (4.19)

mi+--+mj=m

It is easy to see that the following inequality holds:

> mlml g

m)
mi+-tm;=m
Hence (4.15) is dominated by
CoCh Z a5\ " (CiEM\T
(864)7 (—) NeLe M, (4.20)
2 0<j<k+m,0<m<l & Cy
k+m+n=l

First we take 6 > 0 so that 8 A < 1. Next we choose Cy > 0 for which
45/02 < 1, ClgM/CQ < 1 and

M
C()Cl 46 + 016 <A

2C, 44 CieM\ —
1—-8A4)[1— — 1-—
(1-8 )< Cz) ( C >

hold. Then we have

1Si(z)| < IMACLe=M
for z € B(xg, po — €). This completes the proof of Theorem 4.2.

5 Local theory near a turning point

In this section we analyze WKB solutions of (3.1) near a turning point of
rank 2.

Theorem 5.1 Let P be a differential operator of WKB type defined on an
open set U in C. Suppose that x, € U is a turning point of rank 2 of P with
a characteristic value (.. Let r(x,() be the vanishing factor of P at (z., ().
Let Uy be a sufficiently small open disk with center at x,. Then there uniquely
exist differential operators QQ and R of WKB type defined on Uy which satisfy
the relation

P=QR (5.1)
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and the following conditions:
(i) The principal symbol Ry(z,() of R coincides with r(x, ().
(1) For each j > 0, the coefficient R;(x,() of n7 of the symbol of R is of
degree at most one in .
(755) The principal symbol Qo(x, () of Q does not vanish at (x., ().

Remark 5.1 The above conditions (7) and (i) imply that R is of second
order. Hence this theorem is a generalization of Theorem 1.4 of [AKT1].

Proof We set

Q = Q(z,0,/n,n) = Zn—j@- (, 8z /n), (5.2)
R = R(z,0:/n,m) = Zn’jRj (, 0 /7) (5.3)

and we will construct holomorphic functions Q;(z,(¢) and R;(z,¢) (j =
0,1,2,...) defined in Uy x C so that (5.1) holds. Taking total symbols,
we see that (5.1) is equivalent to the following relation of symbols:

o0 o0

SR =30 Y L@ @R ) (4
n=0 n=0 i+j+i=n
Comparing the coefficients of like powers of 77!, we have
Py(z,¢) = Qo(=, ¢) Ro(x, C) (5.5)
for the leading terms, and
Pue, )= 3 10w, Q) 0Ly () (56)
i+j+=n

forn=1,2,3,.... We take Ry(z,() = r(z, () and then,

QO(xa C) = PO(x’C)/T(iaC)

is holomorphic in Uy x C and Qq(z., () # 0. Suppose that Ry, Qo, - - ., Rk_1,
Qr—1 have been obtained so that they satisfy (5.6) for n =0,1,2,...,k —1
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and are holomorphic on Uy x C. To find holomorphic functions Ry and Q)
on Uy x C for which (5.6) holds for n = £, we set

Hi(w,0)= = Y 70w Q%R (.0 + P, Q) (1)

e
and Hy(z. 0)
- E\T,
Fk(xv C) - Qo(x’ <—) : (58)

Employing the idea of H. Cartan ([C, Appendix]) in proving a precise (i.e.,
global in () version of the Spéth division theorem, we have two holomorphic
functions G and Ry satisfying

Fk(x’C) :Gk(l',C)Ro(.T,C)-FRk(.??,C), (59)

where Ry, is a polynomial in ¢ of degree at most one. We know that G(z, ()
and Ry(z, () are written as follows:

_ 1 Fk(xacl) 1 !
Gk(x’C) - 271'\/—_1 ” RO(J;,CI) CI — Cdga (510)
1 Fy(z, ")

Ry(z,¢) = (€ + ¢ = (C(@) + ¢ (2))d¢’. (5.11)

2my/—1 v Ro(z, (")
Here (4 (z) denote the characteristic roots passing through (z., (.), Yo (resp.
v1) is a contour which encircles ¢ and (4 (z) (resp. (+(x)) counterclockwise
and which does not contain any other zeros of Py(z,() in (. It is clear that
Ry, is holomorphic on Uy x C. Since Fj, is holomorphic outside the set of
zeros of @)y, so is Gx. We now set

Qk(x’g) = Gk(x’C)QO(x’C) (5'12)

Multiplying the both sides of (5.9) by Qo(z, (), we have

Fiy(z,{)Qo(z, ¢) = Gi(z, ()Qo(, Q) Ro(x, €) + Qo(z, ¢) Ri(z, (),

namely,

Hk(xa C) = Qk(x’C)RO(x’C) + QO('T’C)R/C(Q;’C)
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Thus Qy and Ry satisfy (5.6) for n = k. By the definition of Gy, we have
1 Hi(z,¢") Qo(z,¢) 1
21/ =1 Jo Bo(z,¢") Qo(,{") (' = ¢
The right-hand side of (5.13) can be decomposed into the sum of
1 Hi(z,¢") 1
21mv/=1 J,, Ro(z. (") ' —¢

Qr(z,¢) =

dc'. (5.13)

d¢’ (5.14)

and

1 [ HEO 1 Qo) - Q0
2nv=T |y Bol,¢) Qo@ () ¢~

Since the integrand of the integral (5.14) is holomorphic at the set of zeros
of o, (5.14) can be holomorphically continued to C in . The integrand of
(5.15) is holomorphic at ¢ = ¢’. Hence Q(z,¢) can be also continued to
the whole C in ¢. Hence we have () and R satisfying (5.1) and (i)-(#i) in
Ewicn (V).

Next we prove that Qg(x,() and Ry(z,() satisfy the growth conditions
required for WKB type operators. Let xy be a point in Uy and p a positive
number satisfying

dc'. (5.15)

{.’L‘ € Uo, ‘IL'—.’L'()‘ < p} C U().
Let L be a positive number and let K, denote the compact set

Then there is a positive constant C' so that

|Pj(x, )| < jlC7* (5.16)
holds for all (z,() € K,. We can take a positive number A, for which
1Qolz, O] < Ao (5.17)
and
|Ro(, Q)] < Ag (5.18)

hold for all (z,{) € K. Note that, by the construction of Q(z,¢) and
Ry (z, (), there exists a positive constant C; that is independent of the choice
of 79 and ~; for which

Qi(z, Q)| <C1 sup  |Hg(a', ") (5.19)

(mlacl)eKO
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and
|Ri(z, Q)| < Cy sup [Hg(a', ()] (5.20)

(wlygl)EKO

hold for all (z,() € K.
Let ¢ be a positive number. Let M and N be real numbers satisfying
1< N<M/2.

Lemma 5.1 Let {A;} (k = 0,1,2,...) be a sequence of positive numbers
defined by the following recurrence formula:

Ae=Ci( ) A4+ (EMOYFC), k>0 (5.21)
Hi<h

Then the formal power series f(t) defined by
Ft) =Y Agth (5.22)
k=0

s a convergent power series of t.

Proof of Lemma 5.1 The formal power series f(t) satisfies the following
quadratic equation:

€M02t 9 AO

- = 2ot 2
1—8M0t 0 01 (5 3)

07 = (g +2) 10

Since the discriminant of (5.23) does not vanish at ¢ = 0, (5.23) has a unique
analytic solution f(t) which satisfies f(0) = Ay. This proves the lemma.

Let D(g) denote the compact set
{(,Qslz —m| < p—e (| <L —e}
We shall prove the following estimates by induction:
|Qj(x, Q)| < jle M A, (5.24)

and '
R;(z, Q)| < jle™™ 4 (5.25)

hold for all (z,{) € D(¢), j =0,1,2,....
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Suppose that (5.24) and (5.25) hold for j = 0,1,2,...,k — 1. A similar
argument as in the proof of (4.11) shows the following: we may assume ¢ is
so small that eNMeV~! < 1, and then

0¢Q;(z,¢)| < (j + )le =N 4, (5.26)

and '
0L R;(z, Q)| < (4 + 1)l MM 4, (5.27)

hold for all (z,¢) € D(¢), j =0,1,2,...,k —1 and for all [ = 0,1,2,....
Then, by the definition of Hy, we see that |Hg(z, ()| is dominated in D(e) by

DG D! s
3 %E—Mwﬁlmﬂﬁmck“. (5.28)
i +i=k ’

1,j<k

Since we have (i
i+ D)I(F+1)! <1
k! -
for k =i+ j + [, we see that (5.28) is not greater than

Kle ™ k(Y A4 + (£ 0)kO).
i+j<k
irj<k
Thus, by the definition of Ay, |Hy(z,¢)| is dominated by kle=™*A4,/C; in
D(e). Combining this with the preceding remark, we see that (5.24) and
(5.25) hold for j = k. By Lemma 5.1, there exist a constant Cy > 0 so that

A, < ChH

holds for £ = 0,1,2,.... Hence ) and R are differential operators of WKB
type. The uniqueness follows from the uniqueness of Cartan-Spath division
theorem. This completes the proof.

This theorem can be easily generalized to the case where the rank of a
turning point is larger than 2:

Theorem 5.2 Let P be a differential operator of WKB type defined on an
open set U in C. Suppose that x, € U s a turning point of rank m of P with
a characteristic value (.. Let r(x,() be the vanishing factor of P at (z, ().
Let Uy be a sufficiently small open disk with center at x,. Then there uniquely
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exist differential operators QQ and R of WKB type defined in Uy which satisfy
the relation
P=QR

and the following conditions:
(i) The principal symbol Ry(x,() of R coincides with r(z, ().
(i) For each j > 0, the coefficient R;j(z,() of n7 of the symbol of R is of
degree at most m — 1 in (. Hence R is of order m.
(#i3) The principal symbol Qo(x, () of Q does not vanish at (x.,(,).

It is evident that Theorems 5.1 and 5.2 enable us to reduce the WKB
analysis of the operator P to that of a finite order differential operator R,
at least near the turning point in question. In ending this paper, we show,
as a typical example of such a reduction, how to analyze the connection
phenomena of Borel transformed WKB solutions near a simple turning point;
the reasoning is essentially the same as that in [AKT1], where the exact
WKB analysis for the third order differential operator is discussed through
the reduction to that of the second order differential operator.

Let z, be a simple turning point of P. Then the differential operator R
constructed in Theorem 5.1 near x, has the form

R= n_28§ + A(z,n)n"'0, + B(x,n), (5.29)

where A and B are formal series of n~! with holomorphic coefficients defined
on a neighborhood of z, and the leading terms of A and B are —({;+(_) and
(4, respectively. Hence z, is a simple turning point of the second-order
operator R. Let 1. and ¢4 respectively denote WKB solutions of Py = 0
and R¢ = 0 of the form

L = exp ( / ' Si(x,n)da:) and s = exp ( / ' Ti(x,n)dx)  (5.30)

where Si(z,n) = 372 n77S;(x), Te(w,n) = 372 07Ty (z), and
Sy _1(x) =Ty 1(z) = Cs(z). It follows from Theorem 5.1 that

Por =QRosL =0.

Hence Sy and Ty must coincide since both ¢4 and ¢ are solutions of Py = 0
and their leading terms Sy () and Ty _(z) are the same. In other words,
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14 also satisfies the second-order equation R¢ = 0. For a second-order
equation we have a “good” normalization of WKB solutions near a simple
turning point (cf. [AKT1]). That is, letting Sogq and Seyen respectively denote

1 1
Soad = §(S+ —S5_) and  Seven = §(S+ +5-), (5.31)
we have 1 89 1
odd
even — — 5nA(z,n). 32
5 6o Bx 2@ (5:32)

Then the following gives well-normalized WKB solutions near x,:

Qﬁi(% 77) = \/Sl—dd €xp </ (:l:Sodd - %HA)d-T) . (533)

By using the same reasoning as in [AKT1, Theorem 1.8], we can then find a
formal coordinate transformation which brings R¢ = 0 to the Airy equation

(n%0; — %) =0

near z, (cf. [AY]), and consequently obtain the following connection formula
for (5.33).

Theorem 5.3 Let P be the operator considered in Theorem 5.1. Assume
that x, is a simple turning point with a characteristic value (.. Let (4(x)
denote the characteristic roots passing through (z.,(.). Let ¥y (x,n) be the
WKB solutions of Equation (3.1) normalized as (5.33) with S_; being (4(x).
Let 4 g(z,y) denote their Borel transforms. Then on a sufficiently small
neighborhood of the origin of C, x C, ¢y g(z,y) have their singularities only
along 'y UL, where

Iy ={(z,y);y+ /x C+(z)dz = 0}.

Furthermore the singular part of V4 g(z,y) (resp., ¥_ g(x,y)) alongT_ (resp.,
I'y) coincides with iy_ g(x,y) (resp., —ithy p(x,y)).

A Appendix

In this appendix, to see what happens at points far away from turning points,
we present the global Stokes geometry for some concrete operators of WKB
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type which admit infinitely many phases; the Stokes geometry is described
with the help of a computer. Throughout this appendix all operators are
considered on C (i.e., all operators belong to Ewkg(C)).

Example A.1
d 1d
p 1) = h(y/——) — Al
(@ ') = cosh(y/ 7o) —a (A1)
= 1 <1 d>”
= g — | —=z (A.2)
“— (2n)! \indz

A straightforward calculation shows that solutions of equations P(z,({) =
(0P/0¢)(x,¢) = 0 are given by

(z,¢) = (1, —4n?in?), (-1, —(2n + 1)%7?) (n € 7). (A.3)

Hence turning points are located at z = 1 and x = —1. These turning points

are shown to be simple in the sense of Definition 3.6. We can also verify that

characteristic roots of P passing through (1, —4n?i7w?) are given by f, and

f_n for each n € Z, where

2

folz) =1 <2n7ri + log(z + Va2 — 1)) . (A.4)

Here, to specify the branch of f,,, we place cuts along the intervals [1, c0) and

(—o00, —1] in z-plane and choose the branch so that the following relations
hold:

z?2—1

=14 and log(z + V22 — 1)‘ =im/2. (A.5)

z=0 =0
Hence we find that Stokes curves (cf. Definition 3.5) emanating from z = 1
are given by

Im /1 (@) = fonla))dz = 0. (A.6)

Note that (A.6) is equivalent to the following form, which does not depend
on n:

Im /w log(z + Va2 — 1)dz = 0. (A7)

Hence all Stokes curves emanating from x = 1 sit on the same curve. Sim-
ilarly, since characteristic roots of P passing through (=1, —(2n + 1)%nr?)
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Zo

Figure 1 Figure 2

(n € Z) are given by f, and f_, 1, we find that Stokes curves emanating
from x = —1 are given by

Im / i(fn(w)  fua(@))dz = 0, (A.8)

which is equivalent to

Z

Im (log(m + V22— 1) — m) dz = 0. (A.9)
-1
Thus (A.8) is also independent of n, like (A.6). Stokes curves defined by
(A.6) and (A.8) are shown in Fig. 1.

Since Stokes curves in Fig. 1 have crossing points, we need to introduce
virtual turning points and new Stokes curves. (See [AKKT] for the details.
See also [BNR], [AKT?2].) For the operator (A.1) virtual turning points are
given by r = 4 cosw, where w is a nonzero solution of w = tanw. New
Stokes curves which should be added to Fig. 1 are given by

Im /z(fn(x) — fm(x))dz =0, (A.10)
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where xy is a crossing point in the upper half plane, and n, m are integers
satisfying n # —m, n # —m — 1. (Each of new Stokes curves passes through
one of virtual turning points.) Eq. (A.10) is equivalent to

Im / (tkm + log(z + Va? — 1))dx = 0, (A.11)

where £ = m + n. We show in Fig. 2 these new Stokes curves for k =
-3,-2,1,2.

Example A.2

d 1d
P(m,n_la) = COSh(ﬁ%) — . (A.12)

This is a variant of the operator Ly discussed in Introduction. Since solutions
of equations P(z, () = (0P/9()(z,() = 0 are

(z,¢) = (1,2in7), (=1, (2n+ 1)iw) (n € Z), (A.13)

turning points for (A.12) are x = 1 and = —1. These turning points are
simple. Characteristic roots of P passing through (1, 2inn) are given by f7(,+)
and f{~ (n € Z), where

fHNz) = log(x + Va2 — 1) + 2inm, (A.14)
@) = —log(z 4+ Va2 —1) + 2inm. (A.15)

Here we choose the branch of fy(bi) in a similar way as in Example A.1. We
also find that the characteristic roots of P passing through (-1, (2n + 1)in)
are given by f,(f) and f,(L:L)l Hence Stokes curves emanating from z = 1 are
given by

Im / (FP (@) — £ (@))dz =0, (A.16)
1
and Stokes curves emanating from z = —1 are given by
Im / (fP (@) — £ (@))dz = 0. (A.17)
—1

We can show that (A.16) and (A.17) are equivalent to (A.7) and (A.9),
respectively. Hence Fig. 1 also shows the configuration of Stokes curves
defined by (A.16) and (A.17).
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We should introduce virtual turning points and new Stokes curves to find
a complete Stokes geometry, just in the same manner as in Example A. 1;
virtual turning points are given by x = 0 and £ = 4 cosw, where w is a
nonzero solution of w = tan w, and new Stokes curves are defined by

m / — D (@))dz =0 (n £ m), (A.18)
tn [ (0@ = 1) @)dz =0 (07 m). (A.19)
Im / S @))dz =0 (n#m,m—1). (A.20)

We can show that (A.18) and (A.19) become the imaginary axis, and (A.20)
is equivalent to (A 11). These new Stokes curves (A.18), (A.19) and (A.20)

are shown in Fig. 3.

Figure 3

Example A.3
d
P(z, 77_1%) = exp(n~2d’/dz?) — exp(—2?). (A.21)

For (A.21) we find that a double turning point is located at z = 0, and simple
turning points are located at * = a, and x = —a,,, where

[ &4 2nT (n > 0),
tn = { e/t /=2nm (n <0). (4.22)
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We define functions g5 (z) (n € Z) by

(+)

g7 (@) =iz, P (x) =V-22+ 2inw (n #0), (A.23)

and gﬁl géﬂ Then Stokes curves emanating from x = 0 are given by

Im / (+) )(x))da: = 0. (A.24)

We also find that Stokes curves emanating from z = a, and x = —a,, are
given by

Im / — ¢ (z))dz =0 and Im / H(z) — ¢\ (x))dz =0,

(A.25)
respectively. Stokes curves defined by (A.24) and (A.25) are shown in Fig.
4.

Figure 4

An important observation is that none of the crossing points of Stokes curves
in Fig. 4 are ordered (in the sense of [BNR]); thus there is no need to add
new Stokes curves to obtain a complete Stokes geometry.

Example A.4
P=Py+n P, (A.26)
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where

Py(e.C) = (i — ) [ (1 - ﬁ) , (A.27)

Pi(z,0)(=P(Q) =) ‘%Q 11 (1 - ;—§> (c; €C). (A.28)
n=1 p>1,p#n

Here we assume that 2% |¢;[* should converge. One can readily confirm
that, for each fixed n(# 0), both Py(z,n *d/dx) and P,(n 'd/dz) determine
differential operators of infinite order in the sense of [SKK].

This operator is related to a level crossing problem in quantum mechanics
in an non-adiabatic approximation; consider the following system of equa-
tions, which is a generalization of the n-level model discussed in [BE]:

. d _
i) ld,_f = (Ho+1"""Hyp) ¥, (4.29)
where
(ll} = t(¢07w15"')’ (A30)
H, = diag(z,1,4,9,...), (A.31)
0 C1 Co
c1
Hyy = | 5 0 . (A.32)

Then a straightforward computation shows that 1, satisfies Py = 0.

We find that turning points are located at + = «,, forn = 1,2, ..., where
o, = n?. These turning points {a,} are shown to be double. Stokes curves
emanating from z = «,, are given by

Tm / (x_li_an)dx — 0, (A.33)

or, equivalently,
Re / (x — a)dz = 0. (A.34)

These Stokes curves are given in Fig. 5.
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Figure 5

Stokes curves drawn in Fig. 5 have crossing points, and all of them are
ordered crossing points. To detect virtual turning points needed to find a
complete Stokes geometry, we use the method given in [AKT5], which is
based on the notion of bicharacteristic diagrams (cf. [AKT5, Section 3]). We
then find that needed virtual turning points ap m (n,m =0,1,2,..., n # m)

are given by
/ , and:ﬁ:/ xdx—!—/ , ay d. (A.35)

m

By solving (A.35) we obtain o, ,m = (n + 4,)/2. New Stokes curves which
should be added to Fig. 6 are given by

Re/ (an —ap)dz =0 (n,m=0,1,2,..., n#m). (A.36)

Fig. 6 shows the resulting Stokes geometry of (A.26).
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