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Introduction

The Fourier and Radon hyperplane transforms are closely related, and one such
relation was established by Brylinski [4] in the framework of holonomic D-modules.
The integral kernel of the Radon hyperplane transform is associated with the hyper-
surface S C P x P* of pairs (z,y), where z is a point in the n-dimensional complex
projective space P belonging to the hyperplane y € P*. As it turns out, a useful
variant is obtained by considering the integral transform associated with the open
complement U of S in P x P*. In the first part of this paper we generalize Brylinski’s
result in order to encompass this variant of the Radon transform, and also to treat
arbitrary quasi-coherent D-modules, as well as (twisted) abelian sheaves. Our proof
is entirely geometrical, and consists in a reduction to the one-dimensional case by
the use of homogeneous coordinates.

The second part of this paper applies the above result to the quantization of the
Radon transform, in the sense of [7]. First we deal with line bundles. More precisely,
let P = P(V) be the projective space of lines in the vector space V, denote by (8)0R
the Radon transform associated with U C P x P*, and for m € Z set

*

m =-m-n— 1, D]p(m) =Dp ®(’) O]p(m),

where Op(m) is the —m-th tensor power of the tautological line bundle Op(-1). In [7]
it was shown that the natural morphism

Dp(—m*) 6 R @ det V. — Dps(=m)

is an isomorphism for m < 0. Using the Fourier transform we give a different proof
of this result in Theorem 3.1, as well as a description of the kernel and cokernel of
the above morphism for m > 0. Then we consider differential forms. More precisely,
denote by Sp¥ the Spencer complex. Recall that the Spencer and de Rham complexes
are interchanged by the solution functor, so that the shifted subcomplex IF>1’q[q]
describes the sheaf of closed ¢-forms. We establish in Theorem 3.3 the isomorphism

Ll O R < T, m—q. (%)
Consider the maps P < V \ {0} R Denoting by 6 the Euler vector field, the
sheaf 7~ !'Qf is identified with the subsheaf of j~'QY whose sections w satisfy
Low =0 1w =0,

where Ly denotes the Lie derivative, and _| the interior product. We obtain (x) by
first relating in Theorem 3.10 the Radon transform of the sheaf of ¢g-forms with the
subsheaf of j_IQQflfq whose sections ¢ satisfy the Fourier transform of the above
relations, namely

Lyo =do = 0.

Acknowledgements

The authors wish to thank Masaki Kashiwara for useful insights and discussions.



RADON AND FOURIER TRANSFORMS FOR D-MODULES 3

1. Radon and Fourier transforms for D-modules

Let V and W be mutually dual (n + 1)-dimensional real vector spaces, P and P* the
associated projective spaces, and = = (o, ..., %,) and y = (yo, - - -, Yn) dual systems
of homogeneous coordinates. Consider the Leray form on P given by

w(z) = Z(—l)jxjdxo A-ee d/:c\] s Ndzy,

J=0

and note that, setting T = tx, one has di = t"w(z)dt + t""'dz. Let u(t) be one
of the distributions 1, Y(t), 1/t, or 6(t), so that u(t) = 6(¢t), 1/t, Y(t), 1, respec-
tively. Let ¢(z) be a homogeneous function with homogeneity degree such that
o(x)u((z, y))w(z) descends to a relative density on P x P* (e.g. if u = 1, then u = §,
and ¢ must satisfy the homogeneity relation p(tz) = sgn(t) ™"t "p(z)). One then
has the following formal relation between the Radon and Fourier transforms, the
usual Radon hyperplane transform corresponding to the case u =1,

[e@itee) = [ ( [uweti) o
— [v@e #dE tor 6@ = ela)t "ult)

(It is quite delicate to make the above formula precise for functions, but [13] provides
a convenient framework.) The aim of this section is to establish the corresponding
relation for D-modules, thus generalizing a result of Brylinski [4].

1.1. Review on algebraic D-modules

For the reader’s convenience, we recall here the notions and results from the theory
of algebraic D-modules that we need. Refer e.g. to [3, 1] for details.

Let X be a smooth algebraic variety over a field k of characteristic zero, and let
Ox and Dy be its structure sheaf and the ring of differential operators, respectively.
Let Mod(Dx) be the abelian category of left Dx-modules, D®(Dx) its bounded
derived category, and D?_ ., (Dx) (resp. D2,y (Dx)) the full triangulated subcategory
of D°(Dyx) whose objects have quasi-coherent (resp. coherent) cohomologies. To
M € DP, (Dx) one associates its characteristic variety char(M), a closed involutive
subvariety of the cotangent bundle 7% X.

We use the following notations for the operations of external tensor product,

inverse image, and direct image for D-modules
5 : D’(Dx) x D*(Dy) — D*(Dy,y),

Df*: D°(Dy) — D°(Dyx),

Df.: D’(Dx) — D*(Dy),
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where f: X — Y is a map of smooth algebraic varieties. More precisely, denoting
by Dx—y and Dy« x the transfer bimodules, one has

Df*N = Dx_y ®F N,

f~1Dy
DfiM = Rf, (Dy«—x ®£X M).

Recall that these operations preserve quasi-coherency, and if g: ¥ — Z is another

map of smooth algebraic varieties, then there are natural isomorphisms Dg,D f, M ~

D(go f), M, and Df*Dg*P =~ D(go f)*P. Moreover, to any Cartesian square is
attached a canonical isomorphism as follows

XI L, YI
hll O hl Dh*Df*M ~ Df’*]D)h/*M, M c Dg—coh(DX)'

Xty

The internal tensor product
(% . Db(DX) X Db(DX) — Db(DXxX)

is defined by M; % My = Dé* (M, % My), where 6: X — X x X is the diagonal
embedding. Recall that M, ® My ~ M, ®5X My as Ox-modules, and D f*(M; ®

My) ~Df* M, ) D f*M,. Moreover, one has the projection formula

D (MEDFN) 2 DEMEN, M €D (Dx), N € Dy o (Dy)-
The duality functor
Dy : D’(Dx)? — D°(Dy)
is defined by Dx M = RHom_ (M, Dx oy Q% 1)iax], where dy denotes the di-
mension of X and 2x the sheaf of forms of maximal degree. Duality preserves
coherency, but it does not preserve quasi-coherency, in general. The functor

Df,: D*(Dx) — D(Dy)
is defined by DM = Dy Df,Dx M.
Consider the microlocal correspondence associated with f
T°X L X xy TV I 17y
One says that A € D2, (Dy) is non-characteristic for f if

coh
fH (T X) N 7 (char(N)) C X xy T}Y,

where T X denotes the zero-section of 7*.X. Recall the following results

Theorem 1.1. (i) The exterior tensor product X preserves coherency and com-
mutes with duality.
(i) If f is proper, then Df, preserves coherency and commutes with duality. In
particular, Df, M ~ DfiM for M € D2, (Dx).

coh
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(iii) If N € D2, (Dy) is non-characteristic for f, then Df*N is coherent and
DxDf*N ~ Df*DyN. In particular, if f is smooth then Df* preserves
coherency and commutes with duality.

Let DP,(Dx) (resp. D2, .,(Dx)) be the full triangulated subcategory of D2, (Dx)
consisting of holonomic (resp. regular holonomic) objects. Holonomy is stable for
all of the above operations, and regular holonomy is stable under tensor product,
inverse image, and proper direct image.

1.2. Review on the Fourier-Laplace transform

Let V be the affine space associated with an (n+1)-dimensional vector space over k,
and let V* be the dual affine space. Denote by D(V) = I'(V; Dy) the Weyl algebra,
and recall that since V is affine the two functors

are quasi-inverse to each other. The formal relation
P(z,0,)e ¥ = Q(y, d,)e &

associates to each @ € D(V*) a unique P € D(V), called its Fourier transform.
Since P Pye= @Y = PiQoe~ @Y = Q,Pe= ¥ = Q,Q e~ ™Y this gives a k-algebra
isomorphism

D(V*) = D(V)°®.

(Note that, choosing dual systems of coordinates V = Spec(k|xy, ..., z,]) and V* =
Spec(k[yo, - . - ,Yn]), the above isomorphism is described by y; +— 0y, 0y, — —x;.)
Moreover, one has algebra isomorphisms

D(V)® ~ T'(V;Qy &, Dy ®, Q5")
~ detV*®@ D(V) @ det V,

where we used the identification Qy ~ Oy ® det V* induced by T*V =V x V*. It is
then possible to consider the functor associating to a quasi-coherent D(V)-module
M the quasi-coherent D(V*)-module M" = det V* ® M. Since this functor is exact,
it induces a functor

(1'1) /\ Dg—coh(DV) - Dl(;—COh(DV*)

called the Fourier-Laplace transform. The Fourier-Laplace transform is an equiva-
lence, it preserves coherency and holonomy, but it does not preserve regular holo-
nomy, in general. (For references see e.g. [2, 13].)
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1.3. Review on the Radon transform(s)

Let P = P(V) be the n-dimensional projective space associated with V, and P* =
P(V*) the dual projective space. Let us denote by S the smooth hypersurface of
P x P* defined by the homogeneous equation (z,y) = 0, and set U = (P x P*) \ S.
Identifying P* with the family of hyperplanes in P, the set S describes the incidence
relation “the point z € P belongs to the hyperplane y € P*”. Consider the smooth
maps

P<=os-Espr, P U-Tspr,

defined by restriction of the natural projections p and ¢ from P x P*. To these maps
are attached the pull-back—push-forward functors

(1.2) Dgs,Dps*, Dgy,Dpy*: D°_ .. (Dp) — DP_..,.(Dp-).

gq—coh q—coh

The first functor is the D-module analogue of the usual Radon transform, consisting
in “integrating along hyperplanes”. The second functor is a small variation®' on
the first one which has, amongst others, the advantage of giving an equivalence of
categories.

Note that since ps and ¢gs are smooth and proper, the first functor preserves
coherency. Even though gy is not proper, it follows e.g. from Lemma 1.3 below that
also Dqy,Dpy™* preserves coherency, as does the functor

(1.3) Dgy,Dpy*: D*(Dp) — DP(Dp-).

(For references see e.g. [7].)

1.4. Review on the blow-up transform(s)
Let V =V \ {0} and consider the natural projection and embedding
IF’<7F—VL>V.

They induce an embedding (7, j) of V as a locally closed subvariety of P x V. Let
Vo be the closure of V in P x V, a smooth subvariety, and consider the maps

PLWLV

obtained by restriction of the natural projections from P x V. Note that 7 is the
blow-up of the origin 0 in V, 7 is proper, and 7 is smooth. To these maps are
attached the functors

(1.4) Dj,Dr*, D7.D7*: D .. (Dp) — DP_....(Dy).

q—coh q—coh

lin the sense that there is a distinguished triangle Op. @ RT(P; Qp ®ém M) = Dqy, Dpy* M —
Dgs, Dps* M +—1>, as follows e.g. from (1.9) and Lemma 1.3 below.
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Using similar remarks as for the Radon transform one checks that these functors
preserve coherency, as does the functor

(1.5) DjiDr*: DP(Dg) — DP(Dy).

1.5. A first statement of the result

As a last piece of notation, let V* = V*\ {0} and consider the natural projection
and embedding

P* <W—V"(—j>V* ]

The next theorem generalizes a result of Brylinski [4, Théoreme 7.27], who ob-
tained the isomorphism (1.7) assuming M regular holonomic. In order to help the
reader in following the pull-back-push-forward procedures, let us summarize in the
next diagram the maps that we will use. The starting point is I, and the target is
V*.

v Aoy
Zh b
(1.6) Vo=V S \Z

Theorem 1.2. For M € D, (Dp) there are natural isomorphisms in D*(Dy,.)

coh
Dr* (Dgy, Dpy* M) ~ Dj* [(DiDa* M) "],
Dr* (Dgy,Dpy* M) =~ Dj* [(Dj.Dr*M)"].

For M € DY_.,(Dp) there is a natural isomorphism in D*(Dy;.)

(1.7) Dr* (Dgg, Dps* M) =~ Dj*[(D7.D7*M)"].

The statement may be visualized by the commutative diagram

Db (DV ) Fourier D b (Dv* )

ull-back

Blow-up Db (DV* )

pull-back

D®(Dp) D" (Dp-)

Radon

In order to prove this theorem we will first restate it, using the language of integral
kernels, as Theorem 1.4. This has the advantage of applying to quasi-coherent
modules, and gives a reason for the strange looking pattern of *’s and !’s in the
above formulae.
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1.6. Review on integral kernels
Let X and Y be smooth algebraic varieties, and consider the projections
X< X xy—1sv.
For K € DP(Dxxy) the functor
(8) 0 K: DP(Dyx) — D®(Dy)
M= MK = Dg,(Dp*M @ K)

is called integral transform with kernel K. More generally, if Z is another smooth
algebraic variety and £ € D°(Dy ), one sets

D
K 8 £ =Dgi3,(Dg12"K @ Dgos* L) € D*(Dxxz),
where g;; denotes the projections from X x Y x Z to the corresponding factors, so

that for example qi3(,y, 2z) = (z, z). The bifunctor o preserves quasi-coherency, is

associative in the sense that (M 6 K) 0 £ ~ M 6 (K 6 L), and the identity functor
corresponds to the regular holonomic kernel Bx|xxx = D6,Ox, where 6: X —
X x X is the diagonal embedding.

One says that K € D? | (Dxyy) and £ € D°, (Dy) are transversal if

(char(K) x T7Z) N (Tx X x char(L)) C Ty vz (X XY x Z).
In particular, M € D®, (Dx) is transversal to K if
(char(M) x TyY) N char(K) C T (X X Y).

In this case, assuming moreover that supp(K) is proper over Y, it follows from
Theorem 1.1 that M 6 K is coherent, and

(1.8) Dy (M 8 K) ~ Dy M 8 Dy, vy K.

1.7. Basic regular holonomic kernels

Let S be a smooth variety, let Z be a closed smooth subvariety of S of codimension
d, set U =S\ Z, and consider the embeddings

jZ:Z‘—>S, ]UU‘—>S
The simplest regular holonomic Dg-modules attached to the stratification S = ZUU
are
Os, Bzs =Djz.0z, Buys=Dju.Ov, DsByis=Djy,Ov.
As an alternative description, one has
Bzis = R4 Osd], Bys = Rl Os,
where Rz M ~ Djz, Djz* M[-d), and R[';mM ~ Djy, Djy* M. Recall that one
has a distinguished triangle

(1.9) ROgM — M — ROppM 5
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The basic model is the stratification AL = {0} U AL of the affine line Al =
Spec(k[t]), where one has the regular holonomic modules

Oy = Dy /{0) = Dy -1,
Boap = Da/(t) = Dp -6,
Dy Bigjar = Dap/(t0) = Du-Y.

(1.10)

Here we used the pattern
M = DA}{/<P> = Dy -u

to indicate that M is a cyclic DAllc—module with generator u and relation Pu = 0.
Let now S be a closed smooth subvariety of X x Y, and consider the embedding

1: 85— X XY,
and the maps
XpSqu Y, XpUUqU Y,

obtained by restriction of the natural projections p and ¢ from X x Y. Note that
D05 ~ Bs|xxy, DiuBzis ~ Bzixxy-

Lemma 1.3. For M € D?__,(Dx) there are natural isomorphisms in D*(Dy)

M g BS|X><Y =~ ]D)QS*DPS*M7
M g]D)'Iwle,ULS' = ]D)QU*DPU*Ma
M3 Oxyy ~ Oy @ DR(M),

where DR(M) = RI'(X;Qx ®1§X M). If moreover M is coherent and transversal
to D1, Bys, and S is proper over Y, then there is an isomorphism of functors from
D?oh(,DX) to D}:)oh(,DY)
M g Di*D56U|S >~ ]D)qU!]D)pU*M.
In order to check the transversality condition, note that
char(Di, Byjs) C T7(X x Y)UTg(X xY).

Proof. The first isomorphism is a particular case of the second one for Z7 = @,
S = U. To prove the second isomorphism, note that for M € Dgfcoh(DX) there is
the chain of isomorphisms

M 8 i, By)s ~ Dg, (Dp* M & Di,Djy,Op)

~ Dq.Di,Djy, (Djy " Di*Dp* M & Op)
~ Dqy Dpy* M.
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As for the third isomorphism, using the first one with S = X x Y we get

M Oxxy =~ Dg,Dp* M
>~ DQY*DCLX*M,
where ax: X — {pt} denotes the map to the variety reduced to a point. Finally,

for M € D®, (Dx), the last isomorphism follows from the second one by (1.8), as
follows

M 3 Di,DsBys ~ M 0 Dx .y DiBys
~ Dy ((DxM) 8 Di.Byys)
~ Dy Dqy, Dpy " Dx M
~ DyDgy Dy Dpy* M
= Dgy\Dpy* M.

1.8. Radon and Fourier transforms for D-modules
Consider the holonomic kernel (irregular at infinity)
(1.11) L = Dyyy- /T = wa*e—(x,y)’

where 7 is the left ideal of differential operators P € Dyyy+ such that, formally,
Pe @¥ = (. Then L is the kernel attached to the Fourier-Laplace transform, since
one has (see [15, §7.5])

MM~ MBL,  MeD . (Dy).

Concerning the Radon transform, it follows from Lemma 1.3 that the functors in
(1.2) and (1.3) are given by composition with the regular holonomic kernels attached
to the stratification P x P* = S U U. According to (1.10), let us give these kernels
the following names

(1.12)  Ri = Opxp+, Ry = Dpup-Bupxp+, Rij = Bupxpr, Rs = Bgpxps-

As for the blow-up, let E = V\B\V be its exceptional divisor, a smooth hypersurface
of Vo. Tt follows from Lemma 1.3 that the functors in (1.4) and (1.5) are given
by composition with the regular holonomic kernels attached to the stratification
@VO =EuUV. According to (1.10), let us give these kernels the following names

(113) S = O%, Sy = DVBV Ss = BEW;

0

|\V67 Sl/t = BV|%;

Summarizing, one has
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u= 1 Y 1/t 6
Ry = Opxp DpxpBupxps | Bupxpr Bs|pxp
(0) 3Ry =~ | Op ®DR(e) | DgyDpy* | Dgy,Dpy* | Dgs,Dps*
Su = 97, D7Byg, | Buw By,
() 0 D7, S, ~ D7, D7 Dj Dr* Dj.Dr* | By @ DR(e)

Consider the maps

—_~

Ve SPxV, P<"y—lsyr

Theorem 1.4. Let M € DY_,(Dp), and let u be one of the four generators in
(1.10), so that

w=1,Y, 1/t 6 u=2¢6, 1/t, Y, 1;
respectively. Then there is a natural isomorphism in D®(Dy.)
Dr*(M 6 Rg) ~ Dj*(M S D, S, 6 L).
As we already pointed out, this statement implies Theorem 1.2.

Proof. Consider the maps
P x P*<"—P x V*—>P x V*

induced by P* <& V* 7, ¥*. Denote by S” the hypersurface of P x V* defined by the
equation (z,y) =0, let U" = (P x V*) \ §”, and set

RY = Opxv+, Ry = Dpxy-Burpxvs, Ry, = Burpxvs, Ry = Berpxy=
One has
Dr* (Mo Rg) ~ M D" Ry ~ Mo Dj"" RE ~ Dj*(M S RY).
Then the statement is a corollary of the following proposition. O
Proposition 1.5. There is an isomorphism in D(Dpyy-)
RE ~ D, S, 0 L.

Proof. Let us start by observing that @E is the quotient of Al x Vv xpﬁ by the
action of the multiplicative group G,, given by c(t,z) = (¢ 't,cx). Let us denote
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by [[t, ] the equivalence class of (¢, x). Consider the commutative diagram

AL L ALxV—T V&P xV

Tm Tpu O T q1 O q12
1 1l

AL x AL < Al x Vx V* Z> ¥, x V"> P x V x V*

lPQ 0O lms O l%’ \/* q23
i - A’» 7!

Ay, V x V* P x V* V x V*
where p;, g;, pij, and ¢;; are the natural projections,
t,z) =1, T(t,x) =[t.z], Y(z,y) = (z,9),

Ut z]) = (=], t2), J([t;2]) = te, 7 ([t,2]) = [2],

" =idp %7, and f' = f xidy~ for f = 7,%, 7,7, 7. There are natural isomorphisms

D7%.S, 8 £ ~ Dq3,(Dg15* D7, S, ® Dgy3* L)
~ Dy, (D7, Dgy" S, & Daag" L)
~ Dq3, D7, (Dg,* S, ® D7 Dga3* L)
~ D7 (Dg,*S, ® Dj"*L).
There are natural isomorphisms in D*(Dy,, . )
Dr'* D7 (Dgy*S, & D" L) ~ Dpys, D7 (Dgy*S, & Dj' L)
~ Dpgs, (D7 Dg,*S, ® D" D" L)
~ Dpos, (Dp12*D7*S, & D" D7 L)
~ Dpas,(Dpr2*Dt* (Dyy - u) © DY L1)
= Dpz:’,*(D“'/”*Dpl*(DA}( ‘) (% D" L)
= DP23*D7”*(DP1*(DA}( ‘) ® L1)
~ D (Dyy - u) 3 £1)
~ D(D,, - )
~ Dn"*RY,
where L1 = D1 p1 e~ is the one-dimensional Fourier-Laplace kernel, and Dpr-u
is the cyclic module defined in (1.10). Summarizing, we have an isomorphism
Dr'* (D7, S, 0 £) ~ D' RE.

One concludes by the following lemma. O
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Lemma 1.6. Let f: X — Y be a fibration with fiber AL = AL\ {0}. Then the
functor Df*: Modq—con(Dy) — Mody—con(Dx) is exact and fully faithful.

Proof. Since f is smooth, Df* is exact. Moreover, one has an isomorphism

(1.14) RHom,,_(Df*N;, Df*Ay) ~ RHom p, (A7, DA.DS*N;)[ 11
By the projection formula, Df,Df*N; ~ Df,Ox ® Ny, and one has
]D)f*OX = Rf* (OX m Qﬁ(/Y) ’

where Q3 ne the sheaf of relative one-forms, sits in degree zero. Hence, locally on
Y one has Df.Ox ~ Oy & Oy[1]. Taking zero-th cohomology, (1.14) gives

HOIIIDX (Df*Nl, Df*NQ) >~ HOIIIDY (Nl,/\/’z)

1.9. Twisted case

For k = C and A € C one can replace the ring Dp with the ring of twisted differential
operators (TDO-ring)

Dpx = Op() ®p Dp ®p Op(-),

whose sections, by definition, are locally of the form s ® P ® s*, where s is a
nowhere vanishing section of the tautological line bundle Op(-1), with the glueing
condition s7* ® P} ® s} = 5,7 @ P, @ 53 if and only if Py = (51/52) *Pi(51/52).
If A\ —p € Z, the functor Op(u—x) ®, () gives an equivalence of categories from
D®(Dp,\) to D*(Dp,,), so that classical D-modules correspond to the case A € Z.

We do not recall here the theory of TDO-modules, referring instead to [11, 2, 14].
We just point out that this allows one to consider for A € C \ Z the twisted Radon
kernel (see [14, 6])

Ryr: DP(Dpr-) — DP(Dp- )
where \* = —n — 1 — A, as well as a blow-up kernel
Sy-a-1: D’ (Dpy-) — DP(Dy).
The following analogue of Theorem 1.4 is then obtained by much the same proof.

Theorem 1.7. Let A € C\ Z and M € DZ_.,(Dpp+). Then there is a natural
isomorphism in DP(Dy.)

Dr* (M3 Rp) ~ Dj* (MO DZLS, 10 L).
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2. Radon and Fourier transforms for sheaves

2.1. Review on sheaves

Mainly to fix the notations, we recall here some definitions from the theory of
sheaves. Refer to [12] for details. In this section we will take k = C and work
in the analytic topology.

Let X be a locally compact topological space. Let kx be the constant sheaf with
fiber k = C, and for a locally closed subset A C X, let kyx be the sheaf on X
characterized by (kajx)|a = ka, (kajx)|x\a = 0. Denote by DP(kx) the bounded
derived category of sheaves of k-vector spaces on X, and by ®, f~!, fi, RHom, f.
and f' the usual six operations, where f: X — Y is a continuous map with finite
c-soft dimension. For F' € DP(ky), we set

D'y F = RHom (F, ky).

Let Y and Z be locally compact topological spaces, and let K € DP(kxxy), L €
D"(kyxz). As for D-modules, one sets

KoL=Rqs(q» K®¢5;3L).
In particular, the integral transform with kernel K is the functor
(e) o K: D°(kyx) — DP(ky)
F FoK = Rgy(q,'F ® K).
The operation o is associative, and the identity is associated with the kernel kx| x x x,
where X is diagonally embedded in X x X.
Assume that X is a real analytic manifold. To F € D"(ky) one associates its
micro-support SS(F'), a closed involutive submanifold of 7*X whose complement

describes the codirections along which F' propagates. One says that K and L are
transversal if

(SS(K) x T3 Z) N (T%X x SS(L)) C Txyyxz(X XY x Z).

2.2. Radon and Fourier transforms for sheaves

Let us use the same notations as in Section 1, summarized in (1.6). Note that here
we consider all spaces V, V*  P.... as well as the maps between them, in the category
of real analytic manifolds.

Denote by D5 (ky) the full triangulated subcategory of D"(ky) whose objects have
conic cohomologies, i.e. cohomologies which are locally constant along the orbits of
the multiplicative group R* of positive real numbers. The Fourier-Sato transform
for sheaves is the equivalence of categories

(e) o L: Dy (ky) — Dg (kv-)
where L = kgvyv- for @ = {(z,y) € V x V*: Re(z,y) <0} (cf e.g. [12]).
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For the Radon and blow-up transforms, one considers the solution complexes of
the corresponding kernels for D-modules in (1.12) and (1.13), i.e. one considers

U= 1 Y 1/t 6
Ry, = kpyp= Dp, pkupxps | Kupxp- Kspxp+[-1]
()oR, ~ | kp« @ RI'(P;0) |  Rqu,pg" | Rqupy' Rgsps’
Su = k7, Dgky | kyw k-1
(o) o RS, ~ Ry7~! Rj m! Rjim' | koy @ RT(P; o)

where, as in the D-module case, one uses transversality in order to get the above
isomorphisms of functors. Consider the maps

Ve P xV, P<"y—loys
Theorem 2.1. Let F € D°(kp), and let u be one of the four generators in (1.10),
so that
u=1,Y, 1/t, 6; u=296, 1/t, Y, 1;
respectively. Then there is a natural isomorphism in D (ky.)

7' (FoRg) ~ i '(Fo RS, oL)u.

The proof is a line by line analogue of the one for D-modules, making use of the
isomorphisms
kioyic o L1 ~ kg, ke oLy >~ kg cl-2],
ke oLt = Dekeel-11,  Dekegye o Lt = kecl-1)-

Here, L1 = K{re(t,r)<0}/cxc is the kernel of the Fourier-Sato transform on C.

Remark 2.2. Let M be a coherent algebraic D-module on P, denote by M?" the
associated analytic D-module on P, considered as a complex analytic manifold, and
set Sol(M) = R?'IomD]%n(Man, O3"). Using the Riemann-Hilbert correspondence

and the compatibility between Fourier and the solution functor (see e.g [13]), one
can recover the isomorphism in Theorem 2.1 for F' = Sol(M) from the one in
Theorem 1.4.

Remark 2.3. As for D-modules and TDOs, one has a statement analogue to The-
orem 2.1 in the framework of twisted sheaves.

2.3. Link with the real blow-up

The Fourier-Sato kernel is related to the real analytic space structure underlying
the complex vector space V. We give here an alternative description of the blow-up
transform, using such a real structure.

Let Pr = Pr(V) be the real projective space of lines in the 2(n+1)-dimensional real
vector space underlying V. Note that Pgr is odd-dimensional and hence orientable,
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and recall that for n > 1 one has m(Pg) = Z/27Z. Thus, up to isomorphism, there
are only two locally constant sheaves of rank one on Pg. We denote them by kp, (<)
for € € Z/27Z, assuming that kp_ (0) is the constant sheaf. There is a natural fibration
with fiber P(C) ~ S*

IOIIPR—>I[D

associating to a real line Rz in V its complexification Cz. Recall that Rpkp, (1) = 0.
As in the complex case, the natural maps

IPR&V—]-)V

induce an embedding of V as a locally closed subset in P x V. We denote by @

the closure of V in Py x V, and set Eg = V§ \ V. These are, respectively, the real
blow-up of 0 in V, and its exceptional divisor. The natural projections from Pg x V
induce maps

Pkﬂ\fﬁo@LV.

Since 7 is a line bundle, one has 7(VY) = Z/2Z. For ¢ € Z/27Z we denote by

k@i(s) the two locally constant sheaves of rank one on V§. Note that the relative
0

orientation sheaf ory JE is non trivial, and hence or‘f/]vg o~ or@ e = Olgg SR is non

trivial. Consider the diagram

7 Er~ Pr

N

Vo <l—)]E’1 P
where p" = (p x idv)| -
0
Proposition 2.4. There are natural isomorphisms in D" (kg.)
v

D%;ak~|% ~ Rp”!k{ﬁg, kw% ~ Rp”!k{/ié(l)-

Proof. Note that ,0’”k\7v0 ~ p”!w%[_ dim® V] o Wi [ dim V] = ng(l)’ where wg- denotes

0
the dualizing complex. Hence, for F' € D"(k) one has
0
Dg-Rp"\F ~ RHom (Rp"\F, k)

~ Ry ,RHom/(F, p"'ks;.)
~ "oy ~
~ Rp *DWO«(F ® kV]gu)).
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The second isomorphism in the statement thus follows from the first one. To prove

the first isomorphism, note that
D' ka o~ D' Rp”'kva
~ Rp”!D'»v (k

~ "
Rp 'DVRkVWR

g © k)

Using the distinguished triangle

Dizk, ox = kgs — Dk, _

VE Eg|VE VE O V|VE
it is then enough to prove that Rp”, .D’ RkE vE = 0. Since Er is not relatively
orientable in V , one has D~ kER|VR ~ kIE v ® k (1)[ ], and hence
Rp”.DwkE 7 ~ Rp"\(ky_ e Okgza 1)1

~ Rp"!RlR!kERu)H]
~ RLRp kg, (1)[-1] =0

3. Applications

For the remainder of this paper we consider the case k = C, and we concentrate on
the Radon trasform R/ = Byjpxp+. From now on we thus simply set

R = Bypxp-, R = kypxp-,

so that
() 8 R = Dqy,Dpy*, () oR =~ Rayypy -

3.1. Radon transform of line bundles

For m € Z, let Op(m) denote the —m-th tensor power of the tautological line bundle
Op(-1). The Leray form on P is defined in homogeneous coordinates by
ig(dzg A -+ - Ndxy,) = Z(—l)ja:jd:)so A - d/x\] - ANdw, € I(P; Qp ®p Op(nt1)),
j=0
where 79 denotes the interior product with the Euler vector field. This form thus only
depends on the choice of a volume element in det V*. Removing this dependency,
we get a canonical section

w(z) € T(P; Qp ®, Opn+1) @ det V).
Set

*

Dp(m) = Dp &, Op(m), m'=—-m—-n-—1,
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and note that, using the identification

(31) Qp ~ O]p(—n—l) ®det V*
induced by w(x), we get an identification
(3.2) Dp(Dp(-m))[-n] =~ Dp(-m*) @ det V.

It was shown in [7] that for m < 0 the integral kernel
(z,y)"w(z) € T(P x P*; (Qp(-m*) R Op-(m)) @ mo,. R @ det V)
induces an isomorphism
(3.3) Dp(-m*) 6 R @ det V <= Dp.(-m).
The integral kernel
(z, )™ Y((z,y))w(y) € T(P x P*; (Opm*) K Qp(-m)) B, mo,. DexpR @ det V¥)
gives a morphism
Dp(—m*) 6 R @ det V — Dpx(—m)

which is an inverse to (3.3) for m < 0. The following statement describes its kernel

and cokernel for m > 0 (this should be compared with the topological results in [5]),

and recovers the case m < 0 by different methods, using the results from Section 1.
Let us denote by S™V the m-th symmetric tensor power of V.

Theorem 3.1. For any m € Z there is a long exact sequence of Dp«-modules
0 — Op @S™V* — Dp(-m*) 6 R @ det V — Dpe(—m) — Op- @ S™V* — 0.

Before entering the proof, let us explicitely describe the morphisms entering the
above long exact sequence. The identification S™ V* ~ I'(IP, Op(m)) gives a canonical
monomorphism

kp ® S™"V* — Op(m),
which in turn corresponds to a surjective Dp-linear morphism
Dp(-m) — Op@S™V

(for m = 0 this is but the beginning of the Spencer resolution of Op). Consider its
kernel

Dp(-m) = ker (Dp(-m) — Op @ S™V),
and set
Dg'(-m) = Dp(Dp(-m))[-n].
Note that by (3.2) there is a distinguished triangle

Op[-n] @ S™ V* — Dp(-m*) @ det V — Dg'(-m) AN

Then the statement of Theorem 3.1 is equivalent to the isomorphism

(3.4) D (-m) 6 R =5 Dh. (—m).
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Proof. By Lemma 1.6 it suffices to prove that there is a distinguished triangle in
D>(Dy.)
D7*(Dp(-m*) 6 R) @ det V — Dr*Dpe(-m) — Dr*(Op» & Op+1]) ® S™ V* .
Consider the cyclic Dy-module
Dy(m) = Dy /{0 + m),

and note that Dn*Dp(m) ~ Dj*Dy(m). Since one also has Dr*Op ~ Dj*Oy, the
above distinguished triangle is equivalent to

D7*(Dp(-m*)0R) — Dj* Dy (—m)@det V¥ — Dj* Oy« & Oy 1) @S™ V* @det V* RANY
By Theorem 1.4, it is enough to prove that there is a distinguished triangle in
DP(Dy-)

'DP(—m*)gDFZV*D%BW%gE — DV*(—m)(X)det V" — (OV* S, OV* [1]) ®S™V*®det V* +—1> .

This is obtained by Fourier transform if we prove that there is a distinguished
triangle in DP(Dy)

Dp(-m*) 6 D7, Do~ By

o By, — Dvi=m) — (B & Bojvi) @ S™ V* @ det V* RNy

Since Dp(-m*) o D2.Dy, By, = DjiDr*De(-m*) =~ DjiDj*Dy(-m), this is exactly
what is claimed in Proposition 3.2 below. O

Recall that on a smooth variety X there is a natural isomorphism of left Dx @ Dx-
modules

Bx|xxx =~ Dx &y, Q5

where Dx acts on Bx|xxx via the first and second projections. Concerning By,
recall that Bojy @det V* has a generator oy and relations x; 6oy = 0 fori =0, ..., n.
One then has an identification of k-vector spaces Bojy @ det V* ~ @ k - 9360y or,
more intrinsically,

BO|V ~S*'V & det V.
Proposition 3.2. For any m € 7Z there is a distinguished triangle in D®(Dy)
]D)j!]D)j*Dv(—m*) — Dv(—m*) — (BO|V ©® B()|V[1]) ®S"V* ®det V* +—1> .

Proof. One has DjiDj*Dy(-m*) ~ DVRFMDVDV(—m*). Using the distinguished tri-
angle deduced from (1.9)

DyRI iy Dy Dy (-m*) — Dy(=m*) — DyRI gDy Dy(-m*)

it is then enough to prove the isomorphism

(35) DvRF[O]DV'Dv(—m*) ~ (Bo|v @ Bo|v[1]) ®S"V* ®det V*.
Consider the short exact sequence
(6—m*)

0 —» Dy ——— Dy — Dy(-m*) — 0.
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Using the identification Dy oy Q@‘l ~ Byyxv, we get a distinguished triangle

0—m*)2 1
DyDy(-m*) — Byyxvin+1] o, Byxvint1] ~—,

where (§ —m*); means that § —m* acts on Byjyyv via the second projection. Using
the identification RI'gByvxvin+1] ~ RI'[gqRIvOvxviztm+1)] = R Ovyxvi2(n+1)] >~
Bojvxv, we get a distinguished triangle

0—m*
(3.6) R oDy Dy(—m) — Bopysr 22 Bopyy - .

As we recalled before entering the proof, Byyxv ® det?V is generated as a k-vector
space by 8;‘8550|va. Using the commutation relation [0z, ;] = 1, one gets

0y 0205 bovsey = () %:05,) 0208 Bopyscy = (—n — 1 — | B]) 0205 bopy v

i=0
In particular, (# — m*), acts diagonally sending to zero only the base elements
8?8550|wa with |f] = —m* —n — 1 = m. We thus get an isomorphism of Dy-
modules

ker(6 — m™); ~ coker(f — m”*); ~ Boy ® S"V ® det V.
It follows from (3.6) that

By = { S OSTY ATV 1
Hence there is a distinguished triangle
By @ S™V @ det V — R gDy Dy(-m*) — Byy[-11©@S™V @ det V 15 .
Since HomDV(BOW[—l], Bo(1]) = 0, one has
RT [ Dy Dy(-m*) = (Boyy & Bopvl-1]) @ S™V @ det V,
and (3.5) follows by duality. O

3.2. Radon transform of closed forms

Let X be a smooth m-dimensional algebraic variety. Recall that if F and G are
locally free Ox-modules of finite rank there is a natural isomorphism

(3.7) Diff(F,G) :HomDX(DX ®Rp G*, Dx ®n F"),

where 7* = Hom (F,Op), and where Diff denotes the sheaf of differential homo-
morphisms. The de Rham complex

0 dn—l
S (Qg( d_X>Q§( _>..._>Q"X*1 =X Q’;{)
thus corresponds to a complex of Dx-modules, called the Spencer complex,

X ax_,
S = (@?ﬁ@fH---HSpf_lL&f),
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where we set Spg( = Dx @, N\ Ox, denoting by O x the sheaf of holomorphic vector
fields. Recall that the map P +— P1 gives a quasi-isomorphism
(3.8) Ox & X,

Moreover, one checks that
q

dX((P@ONNO) = (~1) PO RO A B;--- NG,

=1
+ > (VPR 0] A A BBy NG,

1<i<j<q

(See [10] for a detailed exposition.)
Let us denote by Spg, the subcomplex obtained from Spy* by replacing SpX with
0 when j < ¢g. Thus,

X X “aq X n—1 X qis X
Sqld = (0 — 8y — =Sy —— Spn> — coker d

is concentrated in degree zero, and for 0 < ¢ < n it has the sheaf of closed g-forms
as solutions. We similarly define §pZ . Note that SpZ g is isomorphic to Sp3, 1 [e+1],
up to flat connections, and that one has isomorphisms

Dx Sp)s(q = )Z(n—q'
Finally, note that SpZ, ¢ and SpZ g are microlocally free outside of the zero section.

Theorem 3.3. There are natural isomorphisms in D®(Dp)
Ll O R < T, m—q.

In fact, the more general statement obtained by replacing the Spencer complex
with a “BGG sequence” also holds, but we will discuss this matter elsewhere. Here,
we will obtain Theorem 3.3 as a corollary of Theorem 3.10 below, which computes
the Radon transforms of Sp} itself.

Note that for ¢ = n the above statement gives the isomorphism

OP[—n] o R & Op~.

For ¢ = 0 and ¢ = n — 1 one recovers the isomorphisms (3.4) for m = n + 1 and
m = 0, respectively. In fact, using the identification (3.1) one has an identification

SpF ~ Dp(nt1) ® det V.

The case ¢ = n — 1 is related to the so-called Andreotti-Norguet correspondence,
of which a D-module interpretation was given in [9]. Finally, note that taking
holomorphic solutions in the analytic category we get the isomorphisms in DP(kp-)

Q5% 0 R 5 Q219 y),

describing the Radon transform of the sheaf of closed g-forms.
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3.3. Euler complex

Denote by # the Euler vector field on the vector space V, which is the infinitesimal
generator of the action of the multiplicative group C*. As any vector field, 6 acts
on differential forms in two ways, by interior product and Lie derivative:

62/,1 =0 _Jeo: Q4 — Q4
hy = Lo: Q4 — Q4.
Recall that there is a long exact sequence
\% ey
0 — Q! SN —>Q%,—°>Qg,—>k{0}|v—>0,
and that ey, hfl/, and the exterior differential df, are related by the homotopy formula

(3.9) hy =€, odl + di o ey 1-

By (3.7), to e]_; and h; correspond Dy-linear morphisms
~1, gV \
e Spp — Sy
e & — S

and we consider the Euler complex defined by
eY ey
uy = (7 L5~ L LSl )
Recall that there is a quasi-isomorphism
(310) Su{,[nﬂ] ﬂ B{O}W-
Note also that on V there is a natural identification

(3.11) Sy = &l =Dy @y \| Ov =Dy \'V.

Remark 3.4. In the system of coordinates (zo,...,,) one has § = >0 x;0,;,
and using the identification (3.11) one checks the equalities

A (PR = PO, @0, NO%, (PRI = Pr;®d, A",
Jj=0 j=0
hi(P ®0%) = P(8 +q) ® 9%,
AN

Zan7

where we set @ = (v, ...,0) With 0 < a; <+ <y <n, 0% = 0,
and we used the notation

5 Ao — 0 if 7 # «; for any 1,
i (=)0, A0y, - AD if 7 = q;.

Toy 4 Tag
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From (3.9) it follows that A% induces endomorphisms of the complexes Sp! and
&uyy, and we can consider the complexes Sp)*Y and &uy o defined by the short exact
sequences

0 — Y 5 Y =0 =0,
0 — Euy 5, Euy —Euy g — 0.
Lemma 3.5. In D°(Dy) one has the isomorphisms Euyy g = Byoyvi-n © Boyvi-n-1]
and Spl? ~ Oy @ Oy[.
Proof. By (3.10) there is a distinguished triangle
Bioyw = Bloyy — Eulgin+t) 5,

where h is defined by the commutative diagram with exact rows

e" q
Spy —> Spy 1 — Bloyy —>0

lh{”, lhg“ lh
n

€ q
Spy —> Spy 1 —> Bioyy —> 0

Using the notations in Remark 3.4, for « = (0,1,...,n) one has h(¢g(P ® 9%)) =
(R (P ® 0%)) = q(P(Z?:O ;0 +n+1)®0%) = q(P(Z;-’:O Op;T5) ® 0%) =
q(ef (> 1y POy, ® 5; A 0%) = 0. So h =0, and the first isomorphism is proved.
The proof of the second isomorphism is like the one above, using (3.8) instead of

(3.10). 0
Consider the maps P < V ER By (3.11) one has identifications
q
(3.12) Spy’ = Eulyy = Dy ® \'V,
so that

- ” " q
Dj Sp}{ = Dj*&ud, ~ Dr*Dp(q) ®@ /\ V.
We can then consider the complexes

v v
St = <DP(0) & Dp1) @V «— .- & Dp(n+1) @ det V) )

—~ 60 ey
guI;, = <DP(0) BN 'D]]m(l) XV — - = D]pv(n—l—l) ® det V) y

whose differentials are induced, via Lemma 1.6, by those of SpY*Y and &uy g, Tespec-
tively.

Lemma 3.6. The complex Eﬂ]} 15 exact, and there is a distinguished triangle n
D"(Dp)

OpQ] — :9;11) — Op RN .
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Proof. By Lemma 3.5 one has the isomorphisms in D®(Dy))
D?T*gu];» ~ DJ*&/&, ~ ]D)j*(B{O}W[—n] Q) B{O}W[—n—l]) ~ 0,
hence &up is exact by Lemma 1.6. Again by Lemma 3.5, one has the isomorphisms
in D*(Dy)
Dr*SpF ~ Dj*SpY ~ Dj*(Oy & Oy) ~ Dr*(Op & Opn)).
It follows from Lemma 1.6 that
o~ for j -1
HI(SF) ~ 0 or]';«éO, ,
Op forj=0,-1,

and hence there is a distinguished triangle as stated. O
Recall that a form w € j'QY is the pull-back w = 7*« of a form « € QF if and
only if
\ .

h,w =0,

ef{_lw =0.
In other words, there is a quasi-isomorphism
(3.13) Spp & &usla),

and moreover the Spencer differentials dl}; correspond to the morphisms of complexes
dY: Eus " 1) Euilal
Note also that by Lemma 3.6 there is a quasi-isomorphism Eﬁ%q[q] s, /(é\’l;]%q—i_l[q—l—l].
Interchanging the role of Spencer and Euler, let us set the following definition.
Definition 3.7. For 0 < g < n set
Euf = HO(Spqu[qﬂ]),
and consider the complex

e et
Eup = (5u%—">5u]§—>--- —— Eupt

whose differentials are induced by the morphisms of complexes
ey: gfgqﬂ[qﬂ] — §§q+2[4+2]-
Note that by Lemma 3.6 there is a quasi-isomorphism
Eug, & %gqﬂ[ﬁlb
but one should beware that ,8};[(1] o fS‘Vng 41le+1]. Note also that, by definition
&uf = S
Lemma 3.8. For 0 < g < n there are isomorphisms in DP(Dp)

Euzla ~ L la.
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Proof. Denoting by s* and s, the simple complexes associated with a double com-
plex, one has

>q o [CP ey o P ey ev. G P
&/’]P’ ld = s (8p2q+1[‘1+1] — Sp2q+2[Q+2] — o T ‘§p2n+1["+1]> )
\4 d‘V

— Voo~ —
&pﬂgq[q] ~ S, (Su%qﬂ[qﬂ] L Su%q+2[q+2] L L Su%"“[nﬂ]) .

One concludes by noticing that the first double complex coincides with the second
one after interchanging the roles of rows and columns. O

In particular, for ¢ = 0 we get a quasi-isomorphism
Op = Eup.
Moreover, using the distinguished triangle

>q+1 >q q +1

one gets short exact sequences

(3.14) 0 — cokerd, — Euf — cokerdy,; — 0
which should be compared with the usual

(3.15) 0 — coker d]f;rl — Sp];D — coker d]g — 0.

To end this section, let us prove that the distinguished triangle in Lemma 3.6
does not split.

Proposition 3.9. The morphism «: Op — Opl2] induced by the distinguished tri-
angle in Lemma 3.6 is not zero.

Proof. From the distinguished triangle

SpPd Spd SPp 41
Spy _“9?7._’8]721_)

Y

and the distinguished triangle in Lemma 3.6, we get the long exact cohomology
sequence

O—>OP—><€U](]):7£>DP—>OP—>O,

which describes « as a Yoneda extension. Since im d¥ = Dp©Op C Dp, this sequence
decomposes into the short exact sequences

0—>0P—>S?LI?»—>DP®P—>O,
(3.16) 0— D[p@]]m — D[pv — O]p — 0,
which are but (3.14) and (3.15) for ¢ = 0. These sequences describe, as Yoneda

extensions, the morphisms (: DpOp — Op[1] and v: Op — DpOp1], respectively,
and one has o = 1) o 7. Note that 3 and ~ are essentially unique, since

Hom ;, (DpOp, Opl1]) ~ k =~ Hom ;,_(Op, DpOp1)),
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as follows by applying the functors RHom ;, (e, Op[1]) and RHom , (Op, e[1]) to the
exact sequence (3.16). Note also that 3 # 0 # v since

HomDP(Su]%, Op)=0= HomDP(Op, Dp),
where the second equality is obvious, and the first one follows from the exact se-
quence 0 — HomDP(Suﬁl, Op) — T'(P; Op(-1)) ® V* = 0 obtained by applying the

functor Hom , (e, Op) to the exact sequence Dp(1) @ V — &ud — 0. To conclude,
consider the morphism of distinguished triangles

Dp Op —> DpOpi1] ——>
lo la iﬁ[l]
0 —> Opfzl —“> Oppz) —
If & were zero, then (3 also would be zero, which is a contradiction O

3.4. Radon transform of differential forms
Theorem 3.10. There are natural i.somorphisms
3p5 OR & Eup. 1.

Taking holomorphic solutions one get a description of the Radon transform of the
sheaf of differential forms which, using (3.14), should be compared with the results
in [8].

Proof. First, note that using the identification (3.12) one has
(3.17) €ty y 8 L = Dyr(uri—g @det VF @ \'V = Syt

Since dV" and ey are interchanged by Fourier, one gets the following isomorphisms

(3.18) uy! Y0a) 8 L ~ 8p>n+1 Jn+1-al.

One has the chain of isomorphlsms

Dr*(SpF 8 R) ~ Dj* [(D]|D7T ) 85]
~ Dj* [(D]|D]*gu ) 25]

~ D) (& £)

~ D" SpL Y nt1-g

~ D&Y,

where the first isomorphism follows from Theorem 1.4, the second by (3.13), the
fourth by (3.18), and the last by the definition of &up ?. The third isomorphism
follows from Proposition 3.2, using the identification (3.12). O
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Proof of Theorem 3.3. The proof goes as the one above, considering the chain of
isomorphsims

D" (SpZy0 8 R) = Dj* | (DiiDn*SpL ) 8 £

= Dj | (DiDj*s. (Euhio <& -+ < Eufhia) ) 3 £]
av

~ Dj* [s, (Sué,,%m L..L Sué%[q]) la] © E]

ev*

~ Dj*s, (SPZI;L[HH S S Sl - q]) i

v*
~ Dj* (&ﬁ”” iy 2 4D g q[n+1—q]> i

*

~ Dj*sq (Suélt [n—q] & & gu oln ])

~ Dr* ST, -,

where the sixth isomorphism is due to Lemma 3.5, and the fifth uses the same
argument as in Lemma 3.8. g
3.5. Quantization of the Radon transform for differential forms
According to [7], the integral kernel of the morphism
H;*n qn—dl _>8p<q‘1]OR

in Theorem 3.3 is given by a section

D k.

Sn—q(l‘a y) e HomDPXp* (‘%H;n—q[nfq] @ ‘i’)ﬂgn—q[nfq]’ BUHP’XP*)'
Similarly, the integral kernel of the morphism
Eup ! — Spy O R

in Theorem 3.10 is given by a section

D —

tn*‘l(l‘a y) € HomDPX]P* ( E—q X &L;* q’ B[UUP’XIP’*)-

Let us describe them.
The canonical map C — A?V* ® A?V induces a monomorphism

Oyyy — Qq [Z QV*a
and we denote by o,(x,y) the image of 1. Equivalently, consider the maps
O q O
QL RQL. — 02, 25 0% B0l R,

where p is the projector to the (g, q) component. Then o, is the symplectic form of
V x V*, and o, coincides, suitably normalized, with p(A? o).
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Setting
O-Q(xv y)
UL, Y) = 7
A0 =
one checks that
hvuq(x,y) = hv*uq(x, y) =0,
dy~ equ(a:, y) = dvev*uq(x, y) =0,
eV eVugi1(z,y) = dvdy-ug_1(x,y).

Then, one has
tnfq(l‘, y) = evun—klfq(x, y):
Snq(@,y) =€ e Uuni1 o(2,7)-
Using homogeneous coordinates,

n—q q

A

-~

Sn_q(,y) = (z,y) et [ y,dy,...,dy,0s,...,0, | Jw(z),

where _| denotes the interior product, and w the Leray form. In particular, one has

(y, dx)
si(x,y) = —dydy~log(z,y) = —dy+ ,
1(z,y) vdy= log{z,y) "o
e (z) Aw(y)
_w(z) Awly
Sn(xa y) - <:L', y>n+1
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