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Abstract

A timed process calculus TCCT is introduced, to model computing mechanisms
which deal with complicated time critical situations, where various events occur and
each event occurrence can be affected by when and what events occurred so far. We
often encounter this kind of phenomena, for which it seems significant to introduce a
formal computing model.

Considering the nature of the model, it is crucial at which time points and with
what time intervals event occur. In order to deal with such temporal information, it is
necessary to nicely control multiple time constraints on a single process. Therefore we
define the process calculus TCCT so that a multiple number of labelled timers can be
assigned to a single process and separately release each timer by referring to its label.

In most conventional process calculi, it is assumed that everything in question can
be described as processes, no matter how large the system is. There the main purpose of
discussion is usually to analyse the ways of communication between such processes. In
the real world, timed systems are very large and complicated, and, so are the processes
which model them. In this calculus, however, such systems are considered only as an
event generator, which is useful to simplify the situation and in the result to get simpler
processes. This perspective is also a contribution of the calculus.

In addition, in this paper we show that the practical feasibility of the calculus by
actually using TCCT to implement a certain recognising devices, besides discussing the
calculus merely as a formal computing model.

Finally with regard to a mathematical property of the calculus, it is demonstrated
that an equality based on the conventional bisimulation is preserved by all contexts for
a reasonable class of processes.

1 Introduction

We introduce a timed process calculus called TCCT (Timed Calculus with Controllable
Timers) which are computing mechanisms to deal with complicated time critical situations,
where various events occur and each event occurrence affects one another. In this model, it
is crucial at which time points and with what time intervals event occur, because occurrence
of each event can be affected by when and what event occurred so far. To cope with such
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circumstances, the calculus presented in this paper is designed to deal with time constraints
of event occurrences exquisitely. This model expresses quite a general phenomenon, for which
it seems significant to introduce a formal computing model.

By and large, in most conventional process calculi, it is assumed that everything in
question can be described as processes, no matter how large the system of an object is. There
the main purpose of discussion is usually to analyse the ways of communication between
such processes. Usually the reactive/real-time systems to be modelled are very large and
complicated and so the processes tend to be very large and complicated. Therefore we
consider the timed systems only as an event generator, which is useful to simplify the situation
and in the result to get simpler processes. This perspective is also a contribution of TCCT.

For the reason above, with a TCCT it is possible to nicely control multiple time con-
straints on a single process, which is enabled by a labelling mechanism to timers. We can
assign labelled timers to processes and separately release each timer by referring to its label.
A TCCT process waits more than one events which are output from the environment (or
the event generator) with a time limit for the arrival. If an event arrives within its time
limit, it performs some particular task corresponding to the event. Otherwise it goes to some
exceptional task. Also, all processes that are waiting for an event, not a non-deterministically
selected one, react parallelly to the event simultaneously. For simplicity, unlike conventional
timed process calculi, we do not include in TCCT the mechanism of inter-process communi-
cation, though it is not an essential restriction.

In TCCT, passage of time and execution of actions are separately treated. There, time
passage is modelled by a time progress transition, and execution of actions is supposed to be
instantaneous, which results in generating processes diverging without time progress. These
unrealistic processes are not particular to TCCT, but are common with most of the other
timed process calculi that deal with time passage in the same way as TCCT. In order to cope
with the problem, we restrict processes syntactically to exclude such unrealistic ones from
our consideration.

In addition, the syntax of TCCT, which introduces the mechanism of releasing a labelled
timer by referring to its label, generates uninterpretable processes, such as a process which
attempts to release a timer in spite of that the timer is not at all set on it. To get around,
we see that we treat only the class of reasonably interpretable processes, which we define as
‘admissible processes’. For admissible processes, we show that the equivalence relation, which
is given with the conventional notion of bisimulation, is preserved by all contexts, while it is
not, the case for all processes including such pathological ones.

In this paper, in addition to discussing TCCT as a formal computing model, we show
that the practical feasibility of the calculus with a concrete example of using a TCCT process
to implement a ‘timed event pattern matching recognizer’ [3].

One way of getting around the difficulty with time-critical systems, which we mentioned
at the beginning of this section, is merely to watch and find out when and how the system
changes into some specific states, instead of continuously watching the global state space. By
regarding reactive and real-time systems as timed event generators, instead of attempting to
model behaviour of such systems in terms of state transitions, it is often convenient to find
some of their crucial characteristics from the generated sequence of events together with their
time points. This is the paradigm called timed event pattern matching, for which TCCT is
found to be useful to write recognizing devices though, in [4], a state-base machine with a
dynamic number of states was used, instead of TCCT.

In Section 2 we describe the syntax and the operational semantics of TCCT. To show
what the calculus can do, as an example we actually implement a recognising device, using
a TCCT process in Section 2.4. An equivalence relation of TCCT based on bisimulation is
given and proved to be congruent in Section 3. In the final section we discuss the problem



of treating the notion of time in the calculus.

Related Work

Several versions of timed process calculi are presented [9], such as Temporal CCS [8], Timed
CCS [13], TPL [5], ATP [10], TCSP [12], and ACP, [1].

Timed process calculi with time-out operators are presented in ATDp [11], ATP, TPCCS
[2], and TCSP (not exclusive). TCSP is equipped with a mechanism to cancel timers, though
it appears that mechanism of timer labelling is not included in any other timed calculi than
TCCT.

For the timed event pattern matching, we refer to [3, 4].

2 Timed Calculus with Controllable Time-Out

Now we introduce the calculus TCCT (Timed Calculus with Controllable Time-Out) that is
a version of timed process calculi.
TCCT has the following features, compared with other timed calculi.

e Reacting to events: Processes wait and react to events and emit signals to the environ-
ment. If more than a single processes wait for a same event to come, all of them, not
a non-deterministically selected one, react simultaneously when the event arrives.

e Labelled timers: We can assign the labelled timers to a process. There is an operation
to release each timer by referring to its label, so that we can control multiple time
constraints exquisitely.

2.1 Syntax

We presuppose the time domain T'ime, which is the set of non-negative real numbers.

Let PC be the set of process constants, and TN be the infinite set of timer-names , EVin
be the set of events input from the environment, and EVoyr be the set of events output to
the environment.

Usually we use A, B,C over PC, S,T,U over TN , a,b,c,... over EVin, «, 3,7, ... over
EVour, and s,t over Time

Definition 1 The set P of TCCT processes is defined as follows.
P == 0|a|aP|of(T).P|PTHP|P|P|P+P|AT,....,T,)

In P71} we say that the timer-name T occurring in P is bound and @ is the exception
process. We write ft(P) for the set of all timer-names occurring free in P.
We also assume that for each process constant A there exists a defining equation of the

form A(Th,...,Ty) et Py, where Ty,..., T, are a list of ft(P4) (omitted when clear from
the context).

As usual, 0 is often omitted after an event, e.g. a.0 as a. If an exception process of a
timer is 0 (e.g. P{T*10), we may omit 0 (P{T:t}).

We informally read the above expressions (which are reasonably interpretable as we men-
tion below) as follows.

e a.P waits for the event a from the environment, and evolves into P on receiving a.



e « instantly outputs the event « to the environment.

e P{Tt}(Q) means that the timer T is set on the process P, and then turns to Q after ¢
time units.

e off(T) releases the timer T, namely (off(T).P){T*Q changes into P.

e The others are much the same as in CCS.

It might be noticed that the syntax rule above yields expressions to which reasonable
interpretation cannot be given, such as off(T").a and (of{(T).off(T).a){T*} (b.c). An alternative
complicated syntax rule could eliminate them, but we prefer simplicity for syntax, and along
with semantics consideration we will only deal with reasonably interpretable expressions. We
will discuss more on this issue later in this section.

Congruence on time constraints
We impose the following congruence relation on TCCT.
Definition 2 The congruence relation, = over P is defined as follows.

TC-rename PiT:t Q) (P[T’/T]){T’:t}Q

TC-comm.time (P{T#HQ){Sstp = (PSR T
TC-comm.par P | Q = Q|P
TC-comm.sum P+ Q = Q+P
TC-distri.par (P | Q)T R = PITUR| QTR
TC-distri.sum (P+ QTR = PITHR 4 QTR
TC-rec ATy, ..., Ty) = Py

where T' & ft(P), T # S, A(Ty,...,Ty) = P4, and P[T'/T) is derived from P by replacing
T occurring free in P, with T'.

TC-distri.par is necessary to control a time constraint separately over some different
processes.

2.2 Operational Semantics

In giving meaning to TCCT, we use the notion of a labelled transition system. The
transition rules of TCCT are given in Table 1.
Let us take a look at some rules in detail.

Time progress

These rules indicate how time passes to TCCT processes and when a timer starts working.

Weakly guarded [7] timers (such as the timer {T": ¢t} in a.(P{T*Q)) do not get affected
by time progress. So a.((P){T* Q) % a.(P)ITH Q) but a.(P){TQ) A a.(P)IT*1Q).

It is noticed that we do not have any time-progress transition of processes in the form of
a or off(T).P, so that such processes output the event or release the timer without any delay.
That is why the calculus satisfies a sort of what is called the mazimal progress assumption:
when a process is able to output events or to release some timers, it does not wait to do
unnecessarily.



Time progress
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Table 1: Transtion Rules of TCCT
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wait(0) = wait(a.P) = wait(of(T).P) = 0

wait(a.P) = {a}

wait(P | Q) = wait(P + Q) = wait(P) U wait(Q)
wait( PAT}) = wait(P)

wait( A(Th, - .., Ty)) = wait(Py)

(where A(T1,...,Ty) = Pa)

Table 2: Definition of wait

Event-in

All processes respond only to the environment, but they cannot communicate with each other.
Unlike CCS, therefore, all the processes in parallel react to an external event simultaneously.
Namely, we see that on receiving a, a.P | a.Q) has the only one possible transition: a.P |
a.Q % P|Q.

The function wait is of P — 2EV and wait(P) includes all the events that P is waiting
for. We define the function in Table 2, on the assumption that process constants are weakly
guarded, which is defined below. But for the assumption, it would be a rather harder work.

Event-out

These are almost the same as in the conventional ones.

Timer

When the deadline comes to a timer of a process, the working process is discarded and
replaced by the exceptional process.

As mentioned before, the time progress rules (i.e. i>) cannot be applied to a process
prefixed by off (e.g. (off(T).P){T:}), before releasing the timers. The timers, therefore, are
released with no time delay.

In order to achieve flexible control of multiple constraints, it is better to control the time
constraint {T" : t} in a process (P | Q){T*} independently , i.e., release of the timer by P
should not affect the time constraint of ). So we introduce the congruence relation = so
as to equate (P | Q)17 with P{T*} | Q{T*}, and we design the transition system so that
parallel processes having a common timer (e.g. (P | Q){T**}) cannot evolve unless the timer
is distributed to each process (e.g. P{T# | Q{Tt}),

In the following example, for events a1, as, ... and time durations t1,to, ..., (t1) - a1 - (t2) -
as - ... stands for a timed event sequence with obvious interpretation.
Example 1

Here is a simple example to illustrate how a TCCT process evolves. Given the process
a.(b.off(T).c0 | ¢.Q){T3}(d.0), and suppose the following sequence is input into the process
(1y-a-(2)-b-(2)-d----. Then we have the transitions as follows.



a.(b.of{(T).cr || e.Q)T*3}(d.0)

L a(bof(T).or | e.Q){T3(d.0) (1 sec. progress)

L (boff(T).r | e.Q)1T:3}(d.0) (Event a occurs.)

2 (boff(T).a || c.Q){T:1}(d.0) (2 sec. progress)

L (of(T).r | c.Q){T:1}(d.0) (Event b occurs.)

= (of(T).a){TH(d.0) | (c.Q){T1}H(d.0) (T is distributed (TC-distri.par).)
S a| ()T (d.0) (The timer T of the left is released.)
L0 (c@){TH(d.0) (Event o occurs.)

L0 | (c.Q)T:%}(d.0) (1 sec. progress)

5 0] do (Time-out. Process c.Q is killed.)
<40 |0 (Event d occurs.)

Therefore we get the output sequence: (3) - - (1)----

Example 2

. . . . . d
With the mechanism of the time-out exception, we can get the following process Cl (éf

0{T:} (o | C1)) which outputs a signal « at intervals of ¢ time units.
ClL o™ a|cl) SalclSclL o™ a|Cl) S al|Ccl S el ..

The output sequence of Clis (t) -a- (t) -a----.

2.3 Admissible Processes

As already mentioned, the syntax rule unfortunately generates processes with no reasonable
interpretation.

First, as in most process calculi, non-weakly-guarded process constants are troublesome
because their behaviours are indefinite. Weakly guarded process constants are defined in
TCCT as follows:

Definition 3 An process constant A is weakly guarded in P if each occurrence of A is within
some subprocess of P which is prefixed some input event.

For instance, in a.(b | A) the process constant A is weakly guarded, while in (off(T).B)1T:t}
and off(T).(a | B) B is not weakly guarded because B is in a form of off(T).P but not in
a subprocess prefixed some input event. Note that we discuss in Section 4 the reason of
‘prefixed some input event’, not ‘prefixed some input event or some off(T)’ in the definition
above.

Following the conventional, we only treat process constants that are weakly guarded in
their defining equations.

Furthermore, due to labelled timers and the bounded operators, there are another kind
of syntactically odd processes. We must take a good care of those which contain occurrence
of free timer-names (such as, of{(T).P, (off(T).P)1%:*}) as well as those which are reducible
to such processes (such as, (off(T).off(S).P){T}, (of(T).of(T).P){T*} ). For instance, as
we see in the transition rules above, such a process cannot evolve at all, or eventually turns
into a process which cannot evolve at all.



There are many other ways to cope with this issue. As the result of our consideration, we
see that we treat only the following admissible processes. Almost all the processes we use in
application, are admissible. Furthermore, we have technical advantages to treating only the
admissible process; we show later in Section 3 that the “equality” of the admissible processes
is preserved by all contexts, while it is not the case for unadmissible ones.

Definition 4 P is an admissible process iff for any P’ such that P = P’, P’ contains no

occurrence of free timer-names, where — is the transitive reflexive closure of N
Admissible processes can be specified syntactically as follows.
Proposition 1 P is an admissible processes if P is in {P | Adm(P,0,0)}, where

Adm(O TN, PC) = True

Adm(a.P, TN, PC) = Adm(P,TN,PC)
Adm(Py + P, TN PC) Adm(P1, TN, PC) N Adm(Ps, TN, PC)

(off(T).P, TN, PC) Adm(P, TN\{T},PC) (if TeTN)
False (ift T € TN)
Adm(PT*Q, TN, PC) Adm(P, TN U{T},PC) A Adm(Q, TN ,PC)
Adm(A, TN, PC) = Adm(Pa, TN, PCU{A:TN})
(if {A: L} €PC)
= (TN DL) (if {A:L} ePC)

Adm

Here TN and L are sets of timer-names, and PC is a set whose elements are sets of timer-
names. Each element of PC is labelled by process constants.

Proof
It is straightforward by the definition of Adm.

2.4 Example: Exhaustive Timed Event Pattern Matching Recog-
nizer

We present an example to show how to use the calculus. It is the exhaustive matching
recognizer for EPG (Event Pattern Graph) patterns [3], which can be implemented using
TCCT processes. EPG patterns are a certain class of extended directed graphs with which
we can represent timed patterns of events. With the exhaustive matching, a signal is output
in real time whenever a matching for a given pattern is succeeded.

The exhaustive matching recognizer for the epg (Figure 1) receives events a, b, ¢, d, ¢, . ..
which occur in the environment and it finds out all possible matchings with respect to the
pattern epg.

Intuitively, the parts of the epg read in the following manner:

e The edge @m 5 @m represents the pattern that a occurs and then c¢ occurs

within 5 seconds.

e The edge @m - @nS represents the pattern that a, and then ¢ occur without

occurrence of d in between.
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Figure 1: epg

For example, suppose that the following event sequence occurs:

@2 b-(1)c-(1)-a-(2-e- (a2 -e-(1)-b- (a2 -c-(1)-d-(1)-e---,

which matches the epg in two ways:
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where the event occurrences, which are detected in each matching, are underlined.
Here we are going to give a concrete design of the recognizer for the epg.
In order to implement the recognizer, we consider the following eight states:

0). The recognizer is in the state Sy when no events, which is contained in the
epg, has been detected.

1). S1 when the event a has been detected.

2). S2  when the event b has been detected.

3). S3  when the event ¢ and b have been detected.
7). S7  when all of the event a, b, ¢, and e have

been detected.

We examine the conditions for each of state turning into the next state, and we get the
TCCT process P; corresponding to S; for each ¢ = 0,1,...,7, but, here, for the time being,
we ignore the handling of the time constraint of each edge.

Py = a(Po| P1)+b.(Po| )
Pyo= b.(P1]| Ps)

Py = a(Py| Ps)+e (P2 | Py)+d
Py = c(Ps| Ps)te(Ps| Ps)+d
P7 = aepg

In the above Py waits for the event a or b, and has the form of a.P’+b.Q)’. Namely when,
for example, an event a occurs Py splits into Py and P;. Here the reason why Py does not
turn into only P; is to search for all possible matchings.

The output event a.py indicates that a matching is completed.



Now, recall that with the epg the time constraint 5 on the edge (ni,ns3) specifies that,
once an event a for the node n; is detected, so must be ¢ for ng within 5 time units. TCCT
can handle properly these time constraints by setting timers, say 71, to 5 on detecting a and
by releasing it on detecting c. In the state Sz, the recognizer must handle a time constraint
on each of the edges (ni,n3) and (n2,n4). For instance, if ¢ occurs, the recognizer should
release the constraint on (n1,n3), but not the other. If e occurs, it should do the other way
around. The timer mechanism of TCCT works in this way.

In order to handle time constraints, P;’s are modified:

Py = a.(Py | Pr(T0)1T%) 4+ 0.(Po | Pa(To)17>)

P(T) = b.(PU(T) | P5(T, Ty)™6})

Py(T) = a(Py(T') | P3(Ta, T")1T5}) + e (Py(T") | of(T”).Pa) +d
P3(T,T") = c(P3(T,T") | of(T1).Ps(T")) + e.(P5(T, T") | of{T").Ps(T)) + d
Py = a.(Py| Ps(Ty)1T5h) + 4

Ps(T') = e(P5(T") | ofT").Px)

Ps(T) = c(Ps(T) | of(T).Pr) +d

Pr = Qepg

where we can show that the process P outputs the signal a.p, each time when a matching
is completed.

Given the input sequence (2)-b-(3)-a-(1)-e-(3)-c-(1)-d-..., we get the output sequence
(9) - epg - (1) - ... as follows.

Py
2 p
L P P2(T2){T2 6}
3 Py | Po(Ty) (™
5 B Pl(Tl){T1 5} | (P2(T) | Ps(Ty, Tp){Te:oh) {723}
= Py | Py(Ty) T | Po(To) T3} || (Py(Ty, Ty ) 1700} ) (T2:3)
5 Py | Po(T) T | Py(Tp) T2 | (Py(Th, Tp) (i) (T2:2)
S Py | Pu(T) T | (Po(T) || off(Te).Py)(T22) |

(Ps(Ty, To) || off(T).Pe(Ty)) Tre4}){T2:2}
Py | Po(Ty) 4 | Py(To) 22 || (of(T2). Pa) T2 | (Pa(Ty, Tp) 1Te4h) (722} |
((off(T2).Po(Ty)){T2:2}) (T4}

= B | PuT) T | Po(To) 22 | Py || (Pa(Th, To) T4 T2 | (T ) T4
2 Ry | PUT) T | Po(To) 720} | Py || (P3(T, To) 7020 (720} || (1) (T2}
= Py | Pu(Th) T2 | Py || Po(T) (T2

= Py (M) | Py | Po(Ty) (T

S By | PU(T) T | Py || (Ps(Th) | off(Th).Pr)Tt)

= By | P(T) T | Py | Po(To) T2 | (of{Ty). Pp) Tt

- By | AT | By P6(T1){T1 1 || Qlepg

B Py || Po(T) T | Py | Po(Ty) (T

= Py || PuTy) 0 | Py | Po(Ty) {70}

PPy

KA

T* . ol . T
where — is the transitive reflexive closure of —.
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3 Behavioural Equivalence

Based on the conventional notion of (strong) bisimulation, we build an equivalence relation
‘~" over TCCT processes.

We show that ‘~’ is a ‘congruence’ relation, in the sense that two bisimilar processes
without any free timer-names are substitutive under all the combinators. Therefore if P and
() are admissible and bisimilar, then they are interchangeable in any contexts.

Definition 5 (Bisimulation) A binary relation R over processes is a bisimulation, if (P, Q) €
R implies for all £ € EViny U EVoyr U Time U {1}

Whenever P -5 P’, for some @', Q 4 Q' and (P',Q") € R, and vice versa

Definition 6 P,Q € P are bisimilar, written P ~ Q, if (P,Q) € R for some bisimulation
R.

Theorem 1 (Congruence 1) Let P,Q be processes which contain no occurrence of free
timer-name and P ~ Q). Then

1. L.P ~{.QQ where ! € EViy U EVoyr.
2. P+R~Q+R.

3. P|R~Q]|R.

4. PITHR ~ QITHR.

5. RT:ttp ~ RIT:HQ,

Proof

All the proofs except the one of 4 and 5 are almost the same as usual.
By the assumption P ~ @Q, there exists a bisimulation Rg such that (P, Q) € Ry.

1. Let R Ro U {(£.P, 0.Q)}.

It is clear that R is a bisimulation and (¢.P, £.Q)) € R.

2. Let R Y RyU{(0,0) | 0 € PYUU{((P+R)~t, (Q+R)~t)}, where t € Time and P~
is the process into which P would evolve with only time progress L( ie. P5 Pt)

Clearly R is a bisimulation and (P + R, Q + R) € R.

3. Let RY {(P']0,Q"| 0)| (P',Q) € Ry, O € P}.

Clearly R is a bisimulation and (P | R,Q | R) € R.

4. Let R Y (AT YR, QUT'¥YR) | T' & £6(P") UF6(Q'), (P, Q') € Ro} U Id.

Here we show that R is a bisimulation.

If (PAT} T}y € R and PAT} £ R, then there are four cases for this transi-
tion as follows, according to which rule it stems from.

(a) (Time Progress)

11



P! 5’;}’ P
P/{T/:t'}R S:f, P//{ ':s'}R(: R/)

Then Q' = Q" and (P”,Q") € Ry because of (P, Q") € Ro, hence we have

QT IR = Q"{T"s"} R with the same rule above, and
(PAT=Y R Q"T ST R) € R as required.
(b) (Event-in, Event-out)

P/ _l> P//
P/{T’:t’}R i) P/l{T':t’}R(: R/)

Then @’ 4 Q" and (P”,Q") € Ry because of (P’,Q’) € Ry, hence we have

QUT' YR L T} R with the same rule above, and
(PAT R QMT I R) € R as required.

(c¢) (Timer 1)

P/{T’:U(:t')}R N R
This case is trivial.
(d) (Timer 2)

P’ N P
P/{T’:t’}R N P/l{T’:t’}R

This is almost the same as Event-in and Event-out.
Note that since ((of(T")P}){T "'} Q) ¢ R, the following case is excluded above.

(Timer 3)

(off(T") PO R 2

5. Let R Ry U IdU {(RAT'#} p, RAT '} Q).
Clearly R is a bisimulation and (R{T**} P, RIT:}Q) € R.
The following definitions and lemmas are employed in the proof of Theorem 2.

Definition 7 R C P x P is a bisimulation up to ~, if (P,Q) € R implies for all { €
EViny U EVoyr UTime U {T},

Whenever P 5 P’, for some Q’, Q 4 Q' and (P',Q") €~ R ~, and vice versa
Lemma 1 If R is a bisimulation up to ~, then ~ R ~ is a bisimulation.
Definition 8 P~TQiff T i=1,...,n, Vt;,VRi(i=1,...,n),

(--- (PITtal g ){T2ted Ry L ) {Twitnd g

and

ax ((Q{Tlrtl}Rl){Tz:tz}RZ) .. .){Tn:tn}Rn

are admissible and bisimilar.
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Lemma 2 If P ~7 Q, then for any {T : t} and R, PATY R ~T QIT'1} R,

Theorem 2 (Congruence 2) Let Pa,Qp be admissible and A def Ps, B = QpB. Sup-

pose that P4[R/A] ~ Qp[R/B] for any admissible process R, where P4[R/A] is the process
obtained by replacing each occurrence of A in Pao with R. Then A ~ B.

Proof Let Rg = {(G[A/C],G[B/C])| G contains at most one process constant C, and
(--- (Tt g ) (T2t Ry . ) {Twite} B is admissible for some ({T1 : t1}, R1), ({T% : t2}, R2),
.o, and({T, : tp}, Rn)}-
We show the following lemma:
Lemma 3 If G[A/C] 5 P/, for some Q' and Q", G[B/C] 5 Q" ~T Q' and (P, Q') € Re.
Let R “ Ry N {(G[A/C], G[B/C)) | G is admissible}. Then R is bisimulation up to ~.
For then, when G = C, (A, B) € R, and hence A ~ B.
Now let us give the proof of Lemma 3.

We prove it by induction on the depth of the inference by which G[A/C] L P'is inferred.
We discuss it by cases on the form of G as follows.
o G=C.
G[A/C]=Aand A Lp. By the transition rules, A £ P must be inferred from Py -5
P'. By induction, Pa[B/A] 5 Q" ~T Q" and (P',Q') € Ro. By Pa[R/A] ~ Qs|R/B]
for any process R, i.e. Pa[R/A] ~T Qp[R/B], Qg|B/B] L@~ (=~T) Q" ~T Q.
Since B = Qg(= Qp[B/B]), B> Q" ~T Q' and (P',Q’) € R.
e G =(.G" where £ € Eviy U EVppur.
Then G[A/C| = £.G'[A/C]. Hence P’ = G'[|A/C] (Event-in, Event-out), or {.G'[A/C]
(Time progress). We have also G[B/C] = (.G'|B/C] 4 G'[B/C), L.G'|B/C] &
0.G'[B/C], and (G'[A/C],G'|B/C)), (L.G'[A/C],£.G'|B/C]) € Ry.
e G=Gy+Gs.
Then G[A/C]| = G1]A/C]+ G2[A/C], so G[A/C] £ P’ must be inferred by either the
following two inferences.
GilA/c) L P
G1[A/C] + Go[A)C] S P!
By induction, G;[B/C] 4 Q" ~T @', (P',Q") € Ry. Hence we have the inference

1.

Gi[B/C] = Q"
G1[B/C| + G2|B/C] 5 Q"
N Gila/c) L P
G1[A/C]+ Go[A)C) 5 Pl + P}
By induction, G;[B/C] > Q! ~T @}, (P!,Q}) € Ro. Hence we have the inference

G;[B/C] 5 QY
G1[B/C] + G2[B/C] 5 QY + QY

13



Clearly (P} + P3, Q" + QY) € Ro.
° G = Gl ” GQ.
Almost the same as above, and we omit the proof.
e (G = G/{T:t}-

There are five cases for the transition G/{T*}[A/C] = G'[A/C]{T} L P’ as follows,
according to which rule it stems from.

1. (Time Progress)
G'lA/C) = P
G/[A/C]{Tt}R S;t PII{T:S}R(: P/)

By induction, G'[B/C] = Q" ~T ", (P", Q") € Ro.
By Lemma 2, Q///{T:t}R T Q”{T:t}R.
Therefore Q///{T:t}R T Q//{T:t}R and (P//{T:t}R, QII{T:t}R) € Ro. and
G'[B/C] st Q"
G/[B/C]{T:t}R st Q///{T:s}R

as required.
2. (Event-in, Event-out)
a'la/c) L pr
G/[A/C]{Tt}R _l> P//{T:t}R(: Pl)

By induction, G'[B/C] 5 Q" ~T Q",(P",Q") € Ro.
By Lemma 2, Q///{T:t}R T Q//{T:t}R.
Therefore Q///{T:t}R T Q//{T:t}R and (P//{T:t}R, Q/l{T:t}R) € Ro. and
G'|B/C) KN Q"
G/[B/C}{T:t}R _l> Q///{T:t}R

as required.
3. (Timer 1)

G'[A/)C)iTO'R T R(= P)
It is trivial.
4. (Timer 2)

(ofT).G"[A/C])T R = G"[A/C)(= P")

Then (offT).G"[B/C)IT* 'R = G"[B/C], and (G"[A/C],G"[B/C]) € Rq as
required.

5. (Timer 3)

14



a'1a/c) = P
G/[A/C]{T:t}R N P//{T:t}R(: P’)

By induction, G'[B/C] = Q" ~T Q",(P",Q") € Ro.
By Lemma, 2, QIII{T:t}R ~T Q/l{T:t}R_
Therefore Q///{T:t}R ~T Q//{T:t}R and (P”{T:t}R, Q//{T:t}R) € Ro, and
G/[B/C] l} Q///
G/[B/C}{T:t}R 7, Q///{T:t}R

as required.

4 Discussion: Separation of time and actions

With TCCT, passage of time is modeled by time progress transition, and execution of actions
is supposed to be instantaneous. As discussed in [9], this separation of time and actions makes
the theoretical treatment simpler and less stressful, while it introduces eccentric processes
which diverge without time progress or are stuck without applicable rules.

. . d .
Suppose that a process constant B has the defining equation B ef (of(T).B)ITt), 1t
infinitely repeats internal actions of set and release of the timer 7', which does not consume

time at all:
B(= (of(T).B)\T) L BL BT ...

This kind of divergency generally arises in timed calculi that separate time from actions. In
Timed CCS, for instance, the following agent (or process in TCCT) infinitely and instanta-
neously repeats inter-process communication: (recX.«a@t.X) | (recX.a@t.X) | e(d).P.

One possible solution to avoid such unrealistic transition is to model actions with time
progress. A timed process algebra ACSR [6] has synchronous timed actions, each of which
represents the usage of some ‘resource’ for a single time unit. As the same way, we could
obtain another TCCT where it takes time to execute actions.

Another solution, which we adopt for TCCT, is to keep the separation of time and actions
and cope with the problem by treating only ‘weakly-guarded’ constants. The constant B
above, for example, is not weakly-guarded, because the constant B is not prefixed by any
input event (but by off(T')) in its defining equation. Note that, if we weaken Def. 5 of weakly-
guardedness by changing ‘prefixed by some input event’ to ‘prefixed by some input event or
off{)’, B becomes no longer weakly-guarded. This is why we adopt the current definition for
weakly-guardedness.

The problem above is not particular to TCCT but is common with other timed process
calculi. The phenomena are essentially derived from that time passage is represented by a
transition. In TCCT we exclude such pathological processes with ‘admissibility’ and ‘weakly-
guardedness’. There may be better solutions.
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