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1 Introduction

Block and Nordsieck [1] showed in 1937 how to remove the infra-red diver-
gences from quantum electrodynamics: compute the low frequency classical
part to all orders in the fine structure constant, compute a probability, ex-
ploit a cancellation in the classical part when a probability is computed, and
use perturbation theory only on the surviving remainder. Many applications
were made, but in the period from 1965 to 1975 workers such as Kibble [2],
Chung [3], Storrow [4], and Zwanziger [5] showed that the momentum-space
applications of this method gave incorrect behaviors at large distances, or
equivalently in the singularity structure. In particular, the pole-factorization
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property associated with the large-distance fall-off of the propagator of a
charged stable particle was disrupted. This creates difficulties with the reduc-
tion formulas and with the interpretation of the theory, because the defining
characteristics of a physical particle are disrupted.

In a 1983 paper [6] the second-named author showed how this problem
could be overcome by going to a coordinate-space treatment. In coordinate
space one can center the emissions of the classically describable soft-photon
bremsstrahlung radiation associated with a deflection of a charged particle
on the coordinate-space vertex at which the deflection occurs. This improves
the accuracy of the classical part of the calculation. It also allows the photon
interaction to be separated into two parts, a classical part and a quantum
part, and allows all the contributions of “classical” photons, which are pho-
tons that interact only via the classical part of the interaction, to be gathered
into a single exactly definable unitary operator that effectively drops out of
computations of probabilities. The remainder is expected, by the Block-
Nordsieck argument, to be nicely convergent in the infra-red regime, because
the soft-photon classical part has been treated exactly.

One unexpected feature of this treatment pertains to the propagators
of the QQC photons, which are the photons that connect onto the charged-
particle lines by a quantum coupling at one end and a classical coupling at
the other: these photons are propagated by a retarded propagator, rather
than the usual Feynman propagator.

In 1995 we published a set of three papers [7] that examined in depth the
remainder terms involving the soft quantum couplings, and concluded that
they were all finite, and gave no contribution to the singularity structure that
was as strong as the leading pole contributions. However, in this treatment we
used, without explanation, the Feynman propagators for all lines. The reason
was that the second-named author had argued informally that we could go
back to an earlier form of the result in which only Feynman propagators
appeared. However, this author has recently re-examined that argument
and has concluded that the final form given in the 1983 paper [6] must be
used. The present paper addresses the resulting problem of incorporating
the retarded propagators.

A key causality property that was available before, namely that positive
energy flows always forward in time, is no longer available for QC photons,
and the earlier arguments now fail. We have not encountered any reason to
believe that the desired analyticity properties will actually fail, but have not
so far been able to construct, as we did before, a general proof that these



good properties will always hold. In the present paper we examine some
simple cases and find that the expected properties do hold. We also find,
and will report, some interesting mathematical properties of these functions
that emerge from the microlocal analysis.

The fact that retarded propagators should appear in an expression that
is the result of just summing and rearranging the usual Feynman series may
seem strange. The proof was given in the 1983 paper [6], and will not be
reconstructed here. But the reason is easily described.

Consider a Feynman diagram D consisting of one or more charged-particle
closed loops, plus a set of hard-photon external lines connected to the diagram
at a set of coordinate points x = (1,2, ..., Zys), plus a set of soft-photon
lines. [Diagrams with external charged-particle lines are treated by exploiting
the proved pole-factorization properties associated with the internal charged-
particle lines.] Let FODP (x) be the scattering operator in photon space that
corresponds to this coordinate-space diagram, but with no classical photons.
Then the result of adding to it the contribution associated with all numbers
of classical photons, both internal and external, is

Fop(z) = exp(a” - J(L(2))) ) exp(—(a - J (L(x))))
X exp(i®(L(x)) — (J*(L(z) - J(L(x))))
= U(L(2)) (),

opr

where U(L(x)) is the unitary operator formed by bringing together the three
exponential factors from the preceding lines, and the subscript “opr” signi-
fies that the Feynman propagators for QQC particles have been changed to
retarded propagators. The change in the propagator type is caused by the
fact that the creation and annihilation operators for photons are no longer
normal ordered; the factor exp(—a - J(L(z))) that annihilates classical (C-
type) photons has been moved to the left of the operator Folz that creates
quantum (Q-type) photons. This change introduces an extra mass-shell delta
function for negative-energy photons flowing from a C-type vertex to a -
type vertex. This changes the Feynman propagator to a retarded propagator,
for QC-type photons (cf. (2.3) below). We need the unitary operator U(L(x))
on the left so that it will effectively drop out when a probability is computed,
as explained in detail in the 1983 paper [6]. The problem is then to show
that the remaining factor has for the dominant analytic structure the same
structure found for theories of massive particles.

In our 1995 papers [7] we studied the simplest case with six external lines

3



and six internal lines, with the external momenta arranged so as to put three
of the internal particles far away from the mass shell, and the other three
close to the mass shell. We then need to verify that the dominant singularity
structure along the usual triangle diagram singularity surface is exactly the
one associated with the triangle diagram surface when all relevant particles
are massive. That singularity type is logarithmic. Our purpose here is to
show that this result continues to hold, at least for the simplest cases, when
retarded propagators, rather than Feynman propagators, are used for the

QC photons.

2 Characteristic features of the problem

In this section we explain some characteristic features of the problem that
we encounter by using the retarded propagator
1

(21) (ko + i0)2 — k2

instead of the Feynman propagator

1

2.2 S
(22) k2 +i0

where k is the momentum from the C-vertex to the Q-vertex, flowing always
from right to left. Note that they are related in the following manner:

1 1
(ko +1i0)2 — k2 k% +1i0

(2.3) + (2mi)6~ (K?),

where 6~ (k?) stands for 0(—ko)d(k?) (cf. e.g. [8]). Here, and throughout this
paper, we use the same symbols and notations used in our 1995 papers [7]. In
our formalism each right-hand end-point C' lies on one of the “hard” vertices
v1,v9 and vs. Hence our conclusion in [7, p.2510 ff.] concerning the right-
most vertex Vg is unaffected by the inclusion of C-vertices; each Vg must
coincides with some v;, ¢ € {1,2,3}. However, the arguments pertaining to
the left-most vertex V7, are disrupted. A typical example is shown in Figure 1.
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Figure 1. A diagram with Vg = v; and V, = Q). A starred
line stands for a pole factor in the sense of [7].

Diagrams of this sort raise the following question: what is the effect of
the singularities associated with the inside triangles formed by v, v, and Q7
An important point to note is that points where k; +ky = 0 with k2 = k2 = 0
may be relevant to the resulting singularities; such points are irrelevant if all
photon propagators are Feynman propagators, i.e., if only Q) photons are
considered. As we will show in Section 3, the study of such singularities is an
interesting new issue in microlocal analysis. The vanishing of k; + ko leads
to a singularity in the residue factor 1/po(k; + k2). To supply appropriate
+40’s to the denominators in the residue factors we need to decompose the
domain of integration according to the relative magnitudes of |k;|'s so that
|k1| = |ko| does not touch the boundary of each integral (considered in polar
coordinates). (Cf. [7, p.2497].) Since such a decomposition is not unique, we
have to consider all relevant terms simultaneously to assert that the net con-
tribution is not stronger than the logarithmic singularities along the Landau
surface associated with the triangle diagram. That is, we have to simulta-
neously consider diagrams in Figure 2 if we want to discuss the effect of the
diagram in Figure 1.

Figure 2. Diagrams accompanying the diagram in Fig. 1.

We note that we have to analyze each diagram in Figures 1 and 2 sepa-
rately making use of different techniques. (Cf. Section 3.)



3 Study of some basic examples

In this section we study some basic examples of QC' couplings and confirm
that the resulting singularities are not stronger than the ordinary triangle
diagram singularities, i.e., the logarithmic singularity. Actually we confirm
they are strictly weaker than the logarithmic singularity.

Let us first study the diagrams in Figures 1 and 2. For the sake of
uniformity the diagram in Figure 1 is labeled as (3.1.a) and diagrams (b)
and (c) in Figure 2 are respectively labeled as (3.1.b) and (3.1.c). In what
follows we often omit the dotted external lines for the sake of simplicity.

Using the power-counting result ([7, p.2496 ff.]) and assigning +i0 uni-
formly to each residue factor ([7, p.2507]) the integral F, associated with
the diagram (3.1.c), which is the simplest to analyze, is given in the polar
coordinate system for k;’s (cf. [7]) by (3.2) below. Here and in what follows
we use the following labeling and orientation of lines of triangle diagram:

q1

P3 Y41

(32) Fc(‘]l;QQ) :/d4p3 P
1

with

(33) G:/ d?"l/ dTg/d491(5(91§1 —1)
0 0
1

x| d*06(5 — 1
/ 20({a% )(p3—7“1(91+7“292))2—m2+i0
1 1 1

X .
2po (S + 728) + 10 Q4,0 +i0)2 — ﬁ% Q9,0 +10)2 — ﬁ%

~ —
where Q; = (Q;0,— ;) for Q; = (Qj,o,ﬁj), k > 0 and ¢ > 1. Here &
denotes a cut-off parameter, ¢ designates the domain of integration, and we
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have dropped small and unimportant terms in the denominators and ignored
numerator factors. By ignoring physically unimportant contribution from
r = Kk, we find

(3.4) G = (log(p3 — m” +i0)) x H,
where
(3.5) H= / drs / d* 06201 — 1) / d*56(2Q5 — 1)
0
o 1 1
2p2(Q1 + T‘QQQ) + 20 2p3(Ql + 7'292) — 10
1 1

X .
(Qu +10)2 — 2 (a0 + i0)2 — 12

We now verify that H is non-singular if we ignore the non-physical con-
tribution from ry = ¢. If H is non-singular, (3.4) immediately entails that F,
has the form
(3.6) Aglog(p +1i0) + B
with A and B being analytic near the Landau surface {¢ = 0}. As we show
below, microlocal analysis summarized in the form of Landau table is effective

in confirming the analyticity of H. The Landau table for the integral H is
as follows, if we ignore the contribution from ry = c.

dp, dps s dQ,
1]y 479y 0 y2) Top2
2 0 —( +798s) —p3  —Taps
3 0 0 0'191 0
4 0 0 0 O'QQQ
5 0 0 +Q; 0

Here o; = sign(};o. Note that the sixth row corresponding to 5(9252 -1)
has been omitted in the above table as in [7]; the closed loop condition for
the dry-column, which is also omitted in the above table, guarantees that the
row is irrelevant to the singularity of (3.5) (cf. [7, Appendix A]). Needless
to say, the closed loop condition for the dre-column originates from the ro-
integration in (3.5). On the other hand, the integral (3.5) does not contain
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ri-integration. Hence we have to include the fifth row in the above table.
Fortunately, however, there is no net contribution from the inclusion of the
fifth row. In fact, the closed loop conditions are:

(3.7) a1ps — aops + 3010 + B =0

(3-8) Q1T9P2 — QaT9P3 + 098l = 0

with «; non-negative and (5 real. Multiplying (3.7) by Q; and (3.8) by €,
respectively, and then summing them up we find

(3.9) Bl =0, ide, fBs=0

by noting that oy (resp., as) vanishes unless pa(€ + 72€2) (resp., p3(2 +
79€22)) vanishes. The relation (3.9) means that we may ignore the fifth row.

By the mass-shell constraint on p, and —p3, a1 py — aeps cannot be a light
cone vector unless (a1, o) = 0. Thus (3.7) and (3.8) imply o; = 0 (j =
1,2,3,4). This means that H is well-defined and non-singular. Therefore F,
has the form (3.6).

Next we study the integral associated with the diagram (3.1.b). In this
case the residue factors are non-singular when Q? = Q2 = 0. Hence nothing
peculiar to QC-couplings can occur; the analysis of the integral is basically
the same as that for non-separable diagrams in Q@ couplings ([7, p.2514-
p.2515]). For the convenience of the reader we briefly discuss how the com-
putation is done. Let us concentrate our attention to a point near r; = 0
and 7 = 1. Since the closed loop condition for d€2j-column (j = 1,2) in
the Landau table forces the Landau constant associated with Q? (j =1,2,
respectively) to vanish, it suffices for us to consider the following integral:

K 145!

(3-10) Fb(Q2,Q3):/d7“1 / dry
0 1—x'

X / d491 / d492 log(go(qg — 117280, q3 — 7“191) + iO),

[21]=1 [22]=1

where k and k' are sufficiently small positive constants. Here we have used
the fact that the singularity of the integral associated with the diagram in



Figure 3 is a logarithmic one near the triangle diagram singularity surface
{¢ = 0}. Since it follows from the Landau equation that

oy op
3.11 — =—op, — =« ,
( ) X 1P1 g5 3P3

where «; is the Landau constant associated with p;, we find

3@((]2 — 1179809, q3 — T1Q1)

(3.12) -

= aypi7r2fds — a3psfly .
r = 0

If we consider the problem in a neighborhood of {r; = 0,Q? = Q% =
0,91/}, we can readily confirm that the right-hand side of (3.12) does
not vanish. (Cf. the remark at the end of this paragraph.) With this non-
vanishing property of dp/0r; we can easily compute the integral (3.10) to
find it has again the singularity of the form (3.6). Thus the singularity struc-
ture of F} is again described by (3.6). (The non-vanishing property of dy/0r;
can be verified as follows: if 2y = —€s and ro = 1, the right-hand side of
(3.12) is equal to

(3.13) (a1p1 + asps)Qds -

Using the closed loop condition for the ordinary triangle diagram we find it
is equal to

(3.14) —apofly .

Since we consider the problem at a point where ay 2 0, this is different
from 0. If Q; = Qy and ro = 1, then, as a;p; — asps is a massive vector,
(a1p1 — a3p3)€ cannot vanish either. Thus the right-hand side of (3.12) is
shown to be different from 0 at the point in question.)

Let us now study the integral F, associated with the diagram (3.1.a).
By the same computation done for F,, we find that the singularity of F is
again of the form (3.6) if the following integral H is well-defined and analytic



ignoring the non-physical contributions from r = 1 + k.

1+k

(315) ﬁ = /dTg / d491 / d4Q2
1-K [Q1|=1 |Q2]=1
1 1
X - .
2p2(Q1 + ’I"QQQ) + 10 2])1 (Ql + TQQQ) + 10
1 1
X

(o +0)2 — 02 (Qyg +i0)2 — 32

The trouble is, however, that the usual reasoning based on microlocal
analysis cannot guarantee the well-definedness of H; in the Landau table for
the integral H all columns may sum up to 0 with some non-zero Landau
constants. (The so-called u = 0 problem.) This means the product of sev-
eral factors in the integrand of (3.15) is not guaranteed to be well-defined
by the general theory of microlocal analysis [9]. If such a point “naturally”
appears, we usually find that the singularities of relevant factors are rather
tame and that the tameness (such as continuity) makes their product well-
defined. Fortunately we can find some “tameness” in this case, although the
“tameness” we encounter below is a quite novel one. To find the tameness we
have to compute the integral explicitly. To perform the explicit computation
we replace the propagator by ¢ (Qf) and use the frame where p, = (m, 0,0, 0).

%
Letting z; denote the component of (2 ; in the 71 direction, and normalizing
m = 1 for simplicity, we can then rewrite the integral (3.15) on a neighbor-

hood of {21 = —{2} in the following form up to a constant factor:
14k 1 1
(316) I = / dTQ/d.Il / diL'Q
17k 21 21
1 1

1—ry+i01—ax; —ra(1 — axg) — 40’

where @ is a non-zero and small positive analytic function of p;. Here the
—10 in the second factor is due to the fact that p;op2o < 0. The Landau
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table for (3.16) is as follows:

dro dzy dxs da
-1 0 0 0

1 —ax, a —ary  T1 — T9ks
0 *1(enq) 0 0
0 0 +1(enq) 0

Here 1(enqg) indicates that the component survives only at the end point z; =
+1 or —1. It is evident that u = 0 points appear when z; = zo = +1 and
ro = 1. However a straightforward computation shows

(3:17) /dxl/dle —ar, — 7’2(11 —azy) — 10
_ aQer[(l +a)(1 = r5) log{(1+ a)(1 = r3) — i0}

—(1—=a)(1 —r9)log{(1 —a)(l—ry)—i0}
+49],

where
(3.18) g =(2ary + (1 +a)(1 —r9))log{2ary + (1 + a)(1 — ry) — i0}
+ (—2ary + (1 — a)(1 — r9)) log{—2ars + (1 — a)(1 — ry) — 10}

is non-singular near ro = 1 (as a is small and non-zero). Thus we have clearly
found the origin of the u = 0 problem, and at the same time, understood
why it is not a real problem. First the first two terms in the right-hand side
of (3.17) respectively come from z; = o = —1 and ; = x5 = 1, and they
are boundary values taken from the domain {Im(1 — r3) < 0}, while the
integrand of I contains a factor (1 —ry,+10) . Fortunately the singular part
of (3.17) contains a factor that kills this singularity (1 — ry +70)"!. Thus the
integrand of I is well-defined in spite of the existence of a v = 0 problem.
Then it is clear that the resulting function is analytic in a. Therefore H
is well-defined and analytic; hence the singularity of F, associated with the
diagram (3.1.a) is again of the form (3.6).

Remark. The argument given above shows that, if we assign —i0 instead of
+i0 to each residue factor in diagrams (3.1.a), (3.1.b) and (3.1.c), then a
u = 0 problem appears in the diagram (3.1.c) and the computation of F,
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becomes simple. It is also worth mentioning that the resulting singularities
of Fy, F, and F, are all of the form (3.6), which is much weaker than the
ordinary triangle diagram singularity.

To see what occurs in more complicated diagrams let us examine the
following diagrams given in Figure 4; each of them contains two QQC photon
lines and one Q@) photon line.

As we will see below, we can analyze the functions associated with these
diagrams by the same method as that used to analyze integrals associated
with diagrams (3.1.a), (3.1.b) or (3.1.c); the difference is just a combinatorial
complexity.

+i0 ) +i0 ) +10
Figure 4. Diagrams with two QC photon lines and one Q) photon line.

The reason we treat these 9 diagrams in Figure 4 at the same time is that
the uniform assignment of 70 to the residue factors on the bottom segment
(i.e. +10) and those on the right slope (i.e., —i0) forces us to use several
different techniques to analyze each diagram. For the sake of simplicity
we discuss the problem in the region where |k;| (j = 1,2,3) are of the same
magnitude, i.e. 79 # 0, 73 # 0 with 7; > 0 so that both (p; (2 —73Q3) —10)~!
and (p2(Q1 + r2Q2) + i0)~" may become singular.

Let us now study the singularity structure of the function associated with
each diagram in Figure 4. In what follows we freely use the power-counting
result obtained in [7, p.2496 ff.] in rewriting the integration over k-variables
to that over the (r, 2)-variables.



Case(a): Let us study the integral associated with the diagram given in
Figure 4(a). The Landau table is:

dQl dQQ dQ3 dp
1| rip1+r1(Q1+raraQs)) 0 rirers(pr4ri(Qu+raraQs))  pr4ri(Qi+rarsQs)
2 0 —P1 T3P1 —Qa+41r3Qs
3| ri(pa+ri(4raQ2))  rira(pa+ri(Q1+7202)) 0 pa+7r1(Q1+7202)
4 P2 Top2 0 Q1+r2Q2
) 0 0 0 D3
6 o 0 0 0
7 0 Q9 0 0
8 0 0 (3 0

Here p denotes a loop momentum of the triangle diagram and we omitted
the rows corresponding to non-singular residue factors such as (p;Qp —10)~*
etc. The symbol o indicates the line 1 is with a retarded propagator, as
usual. The symbol 03{23 may be used, but for simplicity we omitted o3.
Since agp; + aurepe (ag, a4 > 0) cannot be a light-cone vector unless it
vanishes, the closed loop condition for the d{2; column implies ay = ay = 0.
Hence we may detour the singularity at p;(Qy — r3Q23) = 0 and that at
po(21 + 72Q9) = 0. Hence by integrating over the triangle loop momentum p
first, we are to calculate the following integral:

(319) Fa = /// d491d492d493/ d’l“l/ dTQ/ d’f’g
0 rorsl ra3adl

|1 ]=]Q2=|025]=1

X fa(ga — mrar3Qs + 11198, g3 — 112 — T17r98)s),

where fa denotes an analytic function multiple of the triangle singularity,
i.e., log(¢(g2, g3) + i0). Here we have used the power-counting result for Q-
couplings to rewrite d*k to drd$) without extra divergent factor like r;*. We
now calculate

0
(3.20) aTSO(qg — 11rar3Qds + 11728d2, g3 — 18 — 11728d2) |y o
1
0 0
:a—qi(—TQTgQg + TQQQ) — 8—;(91 + TQQQ)

=a1p1 (rars€ls — 1282) — azps (21 + 1202),

where a; denotes the Landau constant associated with (p7 —m?4i0)~" in the
triangle singularity. By choosing the detours so that Im p; (o€ — rorsQ3)
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may become much bigger than Imp3(Q; + 75€s) we find g—mmzo does not
vanish. Hence the integral (3.19) can be readily computed to produce the
singularity of the form (3.6).

Case(b): In studying the integral associated with the diagram in Figure
4(b), it is easier to analyze the associated integral by choosing a new loop
momentum p3 + k; = p as the integration variable. Then the Landau table
is as follows:

d$y d$2s dS23 dp
1 0 rira(Pr+rire(Qa+r3Q3))  rirers(Pr4+rira(Q24r303))  pr+rire(Qa+ra3Qs)
2 0 rira(Pat+rirals) 0 Potrirals
3 ﬁg 7“2}52 0 Q1471202
4| —rips 0 0 Pa—r101
5| of)y 0 0 0
6 0 Q9 0 0
7| 0 0 (3 0

Here p; denotes p; + k1. Since asps — aurip3 cannot be a light cone vector
unless it vanishes, the closed loop condition for the d2;-column implies a3 =
0. Hence we can detour the singularity po(€2; 4+ 79€) = 0. This time the
integral Fj, that corresponds to Fj, is obtained by replacing the integrand of
F, by

(3.21) falge — rirersQs, g3 — 11 (21 + 7282)).
On the other hand we find
0
(3.22) a7(‘0(612 — 11191303, g3 — 1 (21 + 12Q2)) [ =0
1

=a1p1797382s — azps (21 + 7289).

Hence by choosing the detour so that Im p3(£2; + 75€2;) is much greater than
Im p;Q3 we find the same result as for the diagram in Fig. 4(a).

Case (c): To study the integral associated with the diagram in Fig. 4(c),
we use a method different from that used for analyzing the integral associated
with the diagram in Fig. 4(b) (although the same method may be employed).
Choosing ps + k1 + ko = p3 as a new variable, we integrate (p3 — m? + 10 —
271 (P3(Q + r9€) — 40)) ! over dry. The contribution from r; = 0 is then

(3.23)

1
log (72 — m? + i .
[log(P; —m” +i0)] (2;53(91 ¥ roQ) — iO)
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Then the “Landau table” for the product

(324) (ﬁl (QQ — 7‘393) - ’iO)_l(ﬁQ(Ql + 7“292) + ’iO)_l(ﬁg(Ql + 7“292) - iO)_l
X ((Qu0 +10)* — 05) 7 (3 +0) ™ (0 + i0)> — O)

is given as follows:

d€ty  dQy  dQ dp, dp; dps
1 0 _ﬁl 7'3151 —QQ + 7'3Q3 0 0
2] po ToP2 0 0 Q1 + 1982 0
3 —}53 —7'2]33 0 0 0 —(Ql =+ ’I"QQQ)
4 0'191 0 0 0 0 0
o1 0 Qy 0 0 0 0
6| 0 0 033 0 0 0

Since —a P1 + qoroPs — asreps cannot be a light-cone vector, the closed
loop condition for the df2s-column implies a; 0y a3 = 0 (as ry #
0); then we also find oy = a5 = ag = 0. This means that the product
(3.24) is well-defined and its integration over d*Q;d*Q,d* Q23 gives an analytic
function. (Strictly speaking we have to take into account of §(€;Q; — 1) as
r1-integration has been done to get the factor (2p3(2; + 7o) —i0)~!. But,
the argument is exactly the same as that for the integral H given by (3.5)
and we do not give the detailed argument here. This remark applies also to
the discussion in Case (g) and Case (h) below.) Thus, by combining (3.23)
with other two poles and integrating them over p;, we find the function
associated with Fig. 4(c) is again of the form (3.6).

Case(d): The Landau table for the integral associated with the diagram
in Fig. 4(d) is as follows:

dQl dQQ ng dp
1 r1(p1+r1(Q1+r2r3Q3)) 0 rirar3(p1+ri(Qi+rer3z))  pr+ri(Qi+rarzQs)
2 0 4 T3P1 —Qy + 13823
3 Tl(p2+7'191) 0 0 P2 +T‘1Q1
4 0 0 0 Ps
5 0'191 0 0 0
6 0 Qo 0 0
7 0 0 0'393 0

We then obtain ay = 0 by the closed loop condition for the d{2;-column.
Hence we can find a distortion avoiding p;(Qy — r3Q3) = 0. The integral
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corresponding to (3.19) is obtained by replacing the integrand by fa(g, —
r17r973823, g3 — 71$1). Since

0

2
8—7“1((]2 — 117973803, 3 — TIQI)‘n:O

=(a1p1)(rorsQs) — (asps)€2;.

(3.25)

Thus by choosing a detour so that Im p;{23 is much bigger than Im p3{2;, we
find 0p/0r:|,,—o does not vanish, and hence the integral in question has the
form (3.6).

Case (e): The residue factors in the integrand of the integral associated
with the diagram in Fig. 4(e) are all non-singular. Hence it suffices to confirm

gT“i(qz —117r9(Q2 +7383), g3 — 1821 |r,—0 is different from 0. In fact
Oy
(3.26) 8—ﬁ(qQ — r172(Q2 4 73823), g3 — 118 [11=0
=a,7o73p1 (o + 13823) — azpss.
Since we are considering the problem near {Q; = —Qy = —Q3}, this is close

to (a1p1 + asp3)w — a;p1w = azpsw (w = ). Thus, reflecting the fact that
no residue factor is singular in this case, the condition d¢/0r|,,—¢ # 0 is
automatically satisfied. Hence the resulting singularity is again of the form
(3.6).

Case (f): The Landau table for the integral associated with the diagram
in Fig. 4(f) is as follows:

dQl dQQ ng dp
1 r1(p1+r1(Q1+r2022))  rira(pi+ri1(Q1+72Q2)) 0 p1+71(Q1+7202)
2 0 —P1 T3P1 —Q2+r303
3 r1(p2+r19Q1) 0 0 pa+r1
4 0 0 0 P
5 g1 Ql 0 0 0
6 0 Q9 0 0
7 0 0 O3 Qg 0

The closed loop condition for the d€3-column then implies ay = 0. (Note
that, if r3 = 0, the residue factor corresponding to the second row is non-
singular and hence ap = 0.) Hence we can detour p; (€ — r3Q3) = 0. In this
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case the integral that corresponds to (3.19) has fa(ge — 7172820, g3 — 71821) as
its integrand. Since
Iy

8—7"1((12 — 117282, g3 — 7121)|ry =0

=a172p1822 — aspsfly,

(3.27)

at the point in question this is close to a;piw + azpsw = —agpow (W =
). In this case again 0¢/0r|,,—o does not vanish (without the help of the
distortion). Thus we conclude again the singularity structure (3.6).

Case (g): To analyze the integral associated with the diagram in Fig.
4(g), we use the same technique as for Fig. 4(c). Then we need to consider
the product
(328) (p1 (Q1 + 7'27‘3Q3) + iO)_l(pl (QQ - 7‘393) — ’iO)_l
X (p2(Ql + 7'292) + 2'0)71((91’0 + ZO)2 — Q’%)il
X (02 4 i0) 7 ((Qs0 + 0)? — Q2) 1.

The “Landau table” for this product is:

dQl dQQ ng dpl dpg
1 P1 0 ToTr3p1 Ql + 7"27’393 0
2 0 —pP1 r3pP1 —QQ + 7‘393 0
3| p2  Top2 0 0 Qp + 198
4 0'191 0 0 0 0
51 0 Qy 0 0 0
6 0 0 0'393 0 0

It is now clear that the product is well-defined and the final integral is again
of the form (3.6).

Case (h): To analyze the integral associated with the diagram in Fig.
4(h), we use the same technique as that used in Case (g). This time the
product to be considered after performing the integration

/ drl(p% — m2 + 20 + 27‘1(p1(91 + T'QQQ + 7’27’393) + ZO))_l
0

is
(329) (pl (Ql + T‘QQQ + TQTgQg) + 7;0)_1

X (2 (S + 729) +i0) 7} (0 +i0)* — ) !
X (95 +0) 71 (R0 +i0)” — )7,
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and the associated “Landau table” is

dQl dQQ ng dpl dp2
1| p1 ropr rarspr 4+ 1afdy + rorsfls 0
2| p2  Tap2 0 0 Q1 + 728
3 0'191 0 0 0 0
4 0 Qo 0 0 0
5 0 0 03Q3 0 0

Since we are considering the problem in a region where ry, 73 & 1, it is clear
that no u = 0 problem arises, and thus the resulting integral is of the form
(3.6). If we allow r3 = 0, then a v = 0 problem arises. Inclusion of the point
r3 = 0 would result in p(log(p + i0))?-singularity, instead of (3.6).

Case (i): To analyze the integral associated with the diagram in Fig. 4(i),
again we perform the integration

/ dT1(p% —m® +i0 + 2r1(p1 (1 + r28ds) + 2-0))—1
0

first and pick up the contribution from r; = 0. Then the product to be
considered is

(3.30) (p1(Q + o) +140)~"
X (p1(Q — 7383) — 10) " (p2(Q1 + 72€) +40) "

X ((Qu +10)* — 0) (5 +10) (s +10)> — 05) .
Writing down the Landau table for the product (3.30), one can readily see
that it admits a v = 0 point just as in the case of the integral associated
with the diagram (3.1.a). To analyze this troublesome product we first con-

sider the (r3, Q23)-dependent factor and integrate it over drsd*Qs, i.e., we first
consider the following integral:

1+
(3.31) / drs / 440 (91 (g — ra92s) — 0) ™ (0 + i0)” — 321
1—-k |Q3]=1

The associated “Landau table” is as follows.

dQ3 dpl dQQ
r3p1 —$o + 71383 —p
0'393 0 0
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Since the closed loop condition for the d23-column implies o; = a5 = 0 near
rs = 1, (3.31) is well-defined and analytic in (p;,€2). The part of (3.30)
which is irrelevant to (rs,€)3) is, i.e.,

(332) (p1 (Q1 —+ T'QQQ) + iO)_l(pg(Ql —+ T'QQQ) + iO)_l

X((Qu0 +10)* = 1) (95 +10) Y,
is the integrand we encounted in (3.14). (The difference between (022 + :0)~!
and ((Q2,0 +i0)? — Q2)~" is not important.) Since the u = 0 problem for the
integral (3.14) has been resolved, we can perform the integration of (3.30)
over (r9,73,81,82,€3) near 7 = r3 = 1, and we then obtain an analytic

function of (p;,p2). Thus the integral associated with the diagram in Fig.
4(i) is again of the form (3.6).

The study done in this section indicates that the effect of the QC problem
discussed in Section 2 should be strictly weaker than the ordinary triangle
diagram singularity, although we have not yet proved the fact in general;
since the infra-red finiteness has been confirmed in general ([7, p.2496 ff. |),
the problem of confirming the weakness of the resulting integrals should be
an interesting mathematical problem.
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