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Abstract

A proximity theorem is a statement that, given an optimization problem
and its relaxation, an optimal solution to the original problem exists in a
certain neighborhood of a solution to the relaxation. Proximity theorems
have been used successfully, for example, in designing efficient algorithms for
discrete resource allocation problems. After reviewing the recent results for
L-convex and M-convex functions, this paper establishes proximity theorems
for larger classes of discrete convex functions, Le-convex functions and M-
convex functions, that are relevant to the polymatroid intersection problem

and the submodular flow problem.
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1 Introduction

In the area of discrete optimization, nonlinear optimization problems have been
investigated as well as linear optimization problems. Submodular (set) functions
and separable convex functions are well-known examples of tractable nonlinear
functions, in that the submodular function minimization problem can be solved
in polynomial time (see [14, 15, 27]), and separable convex functions have been
treated successfully in many different discrete optimization problems (see [12]).

Recently, certain classes of “discrete convex functions” were proposed: integrally-
convex functions of Favati and Tardella [4] and {L,M,Ly,M,}-convex functions of
Murota [19, 20]. L-convex functions contain the class of submodular set functions.
M-convex functions possess structures of matroids and polymatroids. Separable
discrete convex functions can be characterized as functions with both L-convexity
and M-convexity (in their variants). Lo-convex functions and Ms-convex functions
constitute larger classes of discrete convex functions that are relevant to the poly-
matroid intersection problem, where an Ls-convex function is, by definition, the
infimal convolution of two L-convex functions and an Ms-convex function is the
sum of two M-convex functions. The Ms-convex function minimization problem is
equivalent to the M-convex submodular flow problem [21] which is an extension of
the submodular flow problem [3]. The class of integrally-convex functions contains
all of the above classes.

Those classes C' of discrete convex functions f possess the following features in

common:
Discreteness: f is defined on an integral lattice Z", i.e., f : Z" — R U {+oc},

where Z and R denote the sets of integers and reals, respectively.

Convex Extendibility: There exists a continuous convex function f such that
f(z) = f(z) for all z € Z".

Optimality Criterion: There exists a neighborhood N¢(z*) C Z™ with center
x* such that

f@*) < flz) Ve e Z") & [f(z") < f(z) (Vo € Ne(a7)).

Optimality criterion says that global minimality is implied by local minimality
defined in terms of the neighborhood Ng(z*). This is a significant feature inherited
from continuous convex functions.

Moreover, L-/M-convex functions have a “proximity property” described as

Proximity Property: Given a positive integer o and a point z¢ € Z", there

exists a function dc(n, «) such that

f(z%) < f(z) (Vo € N&(z%)) = Jz* €argmin f: ||z* — %] < de(n, @),
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where N&(z%) = {z* + a(z — 2%) | # € Ne(2z®)} and argmin f denotes the
set of all minimizers of f, i.e.,

argmin f = {x € Z" | f(z) < f(y) (Vy € Z™)}.

The proximity property says that a locally minimal solution z® of a “scaled”
function

f¥z) = f(=* + az) (xeZ")

is close to a minimizer z* of f in terms of d¢(n, ). For L-/M-convex functions,
de(n,a) = (n — 1)(a — 1) is a valid choice ([16] and [17], respectively). The
proximity property can be exploited in developing an efficient scaling algorithm
for minimizing f. In fact, the L-convex function minimization problem can be
solved in polynomial-time by combining submodular set function minimization al-
gorithms and the proximity property [13] (see also [23]). For the M-convex function
minimization, polynomial-time scaling algorithms based on the proximity property
and its generalization are known [28, 29]. Proximity theorems for separable dis-
crete convex functions are found in [9, 10, 18] in developing efficient algorithms
for resource allocation problems. Different types of theorems on proximity have
also been investigated: proximity between integral and real optimal solutions in
[1, 2, 8, 10, 11] and proximity for a number of resource allocation problems with
min-max type objective functions in [6].

This paper addresses proximity properties of Ly-/Ms-convex functions. Our

main results say:

e for an essentially bounded Lj-convex function f and a positive integer «, if

x® € dom f satisfies
f(a®) < f(@® + axs)

for all S C V, then there exists z* € argmin f such that

|l2* = 2%]o0 < 2(n=1)(a=1),

e for an Ms-convex function f represented as the sum of two M-convex func-
tions fi; and f5, and a positive integer «, if 2% € dom f satisfies

Z(fl(wa_aXui'i_O‘Xwi) - fl(wa)) + Z(fz(ﬂca—aXum‘f'ani) - fZ(xa)) > 0

=1 =1
for any ordered sets U={uy, ..., ux}, W={wy,...,wx} CV withUNW =0
where ug,1 = u1, then there exists z* € argmin f such that

2
« n
o = 2%l < (1),
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We also discuss a proximity property of integrally-convex functions and briefly sur-
vey proximity properties of discrete convex functions. Section 2 states definitions,
optimality criteria and proximity properties for several classes of discrete convex

functions, including our new results which are proven in Section 3.

2 Definitions, Optimality Criteria and Proxim-

ity Theorems

In this section, we introduce five classes of discrete convex functions, namely,
{L, M, Ly, My, integrally }-convex functions with respect to definitions, optimality
criteria and proximity theorems. While other variants of these classes, e.g., Li-/ Li-
convex functions due to [7] and M?-/Mi-convex functions due to [24], are known,
we concentrate on the above five classes because the results can be easily extended
to the variants.

Subsections 2.3 and 2.4 present new results, an optimality criterion (Theo-
rem 2.11) and a proximity property (Theorem 2.12) for Ls-convex functions, and
proximity properties (Theorems 2.17 and 2.18) for Ms-convex functions. Subsec-
tion 2.2 also gives a new proximity property (Theorem 2.7) for M-convex functions
in terms of ¢;-norm. Subsections 2.1 and 2.2 explain known results, optimality
criteria and proximity theorems for L-convexity and M-convexity, respectively.
Subsection 2.4 introduce optimality criteria for Ms-convexity, which are direct
consequences of results for the M-convex submodular flow problem.

We first introduce notations. Let V' be a nonempty finite set and put n = |V]|.
We denote by Z" the set of all integral vectors x = (z(v) : v € V) indexed by V/,
and by Z, | the set of all positive integers. Given a function f : ZV — RU {400},
the effective domain of f is defined by

dom f = {zx € Z" | f(z) # +o0}.

For each S C V', we denote by xg the characteristic vector of S defined by

o) = 1 (ves) ;
xs(v) {O(UQS) (veVv)

and write simply Y, instead of x ) for each u € V. We also denote by 0 and 1 the
vectors of all zeros and ones, respectively. For two vectors z,y € Z" with z < y,
[z, y]z denotes the set {z € ZV |z < 2z < y}.

2.1 L-convex Functions

For any =,y € ZV, the vectors z Ay and z V y in Z" are such that
(z Ay)(v) =min{z(v),y(v)}, (2Vy)(v) =max{z(v),y(v)} (veV).
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A function f : ZY¥ — RU{+o0} is said to be L-convez if dom f # 0 and it satisfies
the following two conditions:

(SBF) f is submodular, i.e.,
f@) +fy) = flany)+ fl@Vvy) (Yo,y€ZY),
(TRF) 3r € R such that f(z +1) = f(z)+r (VzeZV).
Global optimality of an L-convex function is characterized by local optimality.

Theorem 2.1 (L-optimality criterion, [23])
For an L-conver function f : ZV — R U {400} and z* € dom f, we have

@) < f@* +xs) (VS C V),
fla*+1) = f(a).

The above local optimality criterion can be checked in polynomial time because

fz*) < f(z) (VzeZV) <« {

the first condition can be verified by using submodular function minimization
algorithms and the second condition is easy.

We next introduce a proximity theorem of L-convex functions.

Theorem 2.2 (L-proximity theorem, [16])
Let f : ZV — R U {400} be an L-convex function with f(z +1) = f(z) (Vx €
ZV) and let « € Z, . If x* € dom f satisfies

f@®) < f(xz*+axs) (VS CV),
then argmin f # 0 and there exists * € arg min f with
z* <z <z*+(n—1)(a—1)1.

Remark 2.3 The bound (n—1)(a—1) in Theorem 2.2 is tight. Let V = {1,...,n}
and let V; ={1,...,i} fori=1,...,n. Assume o € Z, . We define a set X by

/LiE[0,0é—l]Z (’i=1,...,n—1)
fin € Z '

X = {Z i XV
i=1

Any z € X can be uniquely represented as
n
x:Z/‘LzXW (,UJZG[O,Oé—l]Z(Z:L,TL—l), ,U"nez)
i=1
By using the representation, we define a function f : Z¥ — R U {+oc0} by

{—zgwi@em

o (z ¢ X) (z e ZV).

fz) =

It is easy to show that
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e f is L-convex (linear on X),
o /(0) = f(al) =0,
e flaxs)=+oc0 (BCVSCV),
e argmin f = {((n—1)(a—1),(n—2)(a-1),...,(a—1),0)+ 31| B € Z}.
The assumption of Theorem 2.2 holds for z* = 0 and
z* = ((n—1)(a-1),(n—2)(a-1),...,(a=1),0)
is the unique minimizer satisfying the bound in Theorem 2.2.

Remark 2.4 Theorems 2.1 and 2.2 are extended to a more general class of “quasi”

L-convex functions [26].

2.2 M-convex Functions

We define the positive support and negative support of a vector x = (z(v) : v €
V) e ZV by

suppt(z) ={v €V |z(v) >0} and supp (z)={veV|z(v) <0}
A function f:ZY — R U {+o0} is called M-convez if dom f # @ and it satisfies

(M-EXC) for z,y € dom f and u € supp™(x — y), there exists v € supp (z — y)
such that

@)+ fy) > f(@ = xu+ Xo) + FU+ Xu = Xo)-
We note that (M-EXC) is also represented as: for z,y € dom f,
f(@)+ fly) > max min [ f(@ = Xu+Xo) + U+ Xu = X0) |,
u€supp™ (z—y) vEsupp~ (z—y)
where the maximum and the minimum over an empty set are —oo and 400,
respectively. From (M-EXC), the effective domain dom f lies on a hyperplane
{z € RV | (V) = constant}, where 2(V) = ¥,c 2(v). It is also known that
dom f is the set of integer points of the base polyhedron of an integral submodular
system (see [5] for submodular systems).

The minimizers of an M-convex function have a nice characterization which

can be checked efficiently.

Theorem 2.5 (M-optimality criterion, [19, 20])

For an M-convez function f:Z" — R U {+o0} and z* € dom f, we have

fl@) < fla) (VzeZ’) = [fl@)<fl@"—Xutx) (Vuvel).
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We next introduce a proximity theorem of M-convex functions.

Theorem 2.6 (M-proximity theorem, [17])
Let f : ZV — R U {+o0} be an M-convex function and let o € Z,. If
x® € dom f satisfies

f(@®) < f(® —axu + axy)  (Yu,v C V),
then argmin f # () and there exists x* € arg min f with
|z%(v) —z*(v)| < (n—1)(a—1) (Vv eV).

By slightly modifying the proof of [17], we also obtain the following proximity

theorem in terms of ¢;-norm.

Theorem 2.7 Let f : ZV — R U {+o00} be an M-convexr function and let
a€Z, . If x* € dom f satisfies

f(z®) < f(x® — axy +ax,) (Vu,v CV), (2.1)

then argmin f # 0 and there exists x* € arg min f with

2
* « n
le* = 2%l < S-(a —1). (2.2)

Remark 2.8 The bound (n—1)(a—1) in Theorem 2.6 is tight. Let V = {1,...,n}
and let o € Z, .. We define a set X by

X = {S ) e a1l (=20
i=2
and a function f: ZV — R U {+oco} by

) x(1) (zeX) . v
ﬂ@—{+m Ty e

It is easy to show that
e [ is M-convex (linear on X),
. £(0)=0,
o flaxy —axy) =400 (Vu,v € V,u#v),
e argmin f = {(—(n—1)(a-1),(a—1),...,(a=1))}.

The assumption of Theorem 2.6 holds for x* = 0 and the unique minimizer of f
shows the tightness of (n — 1)(a — 1).
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Remark 2.9 The bound %Q(a—l) in Theorem 2.7 is also tight. In the same way
as Remark 2.8, for a positive integer m and sets

f={1,..mTYy, Vo={1",...,m"}, V=Vtuv-,

the tightness of the bound can be shown by a function f : Z¥ — R U {400}

defined by
_Ja(V7) (weX) v

where

{ZZ/\” Xit+ —Xj- ‘/\ije[0,0z—l]z(i,jzl,...,m) }
i=1j=1
Remark 2.10 Theorems 2.5 and 2.6 are extended to a more general class of

“quasi” M-convex functions [26].

2.3 Ls-convex Functions

For any functions f1, fo : ZV — R U {400}, the infimal convolution of f; and f,
denoted by fiOfy : ZV — R U {+o0}, is defined by

(AO0f)(x) = nf{fi(x1) + falxs) |21+ 20 = 2, 21,7, € ZY} (z € ZV).

It is easy to show that if fi0Ofs > —oo then the effective domain of f;0f, coincides
with the Minkowski sum of the effective domains of f; and fs, that is,

dom (f10f;) = (dom f1) + (dom f5) = {x1 + x5 | 1 € dom f1, x5 € dom f>}.

It is known that the infimal convolution of two M-convex functions is also M-
convex, but the infimal convolution of two L-convex functions may not be L-convex
[19]. A function f: ZV — RU{+o0c} is said to be Ly-convez if dom f # () and f =
f10f, for some L-convex functions fi, fo : Z¥ — RU{+o00}. We say that an L-/L,-
convex function f is essentially bounded if dom fN{x € Z" | x(v) = 0} is bounded
for some v € V. If an Ls-convex function f = f;0f, is essentially bounded, then
f1 and f5 are also essentially bounded, because dom f = (dom f;)+ (dom f5) holds
for Ly-convex function f.

The following optimality criterion and the proximity theorem for Ls-convex
functions are new results. We emphasize that the optimality criterion is the same as
that for L-convex functions stated in Theorem 2.1 and that the proximity theorem

is almost the same as that stated in Theorem 2.2.



K. MUROTA and A. TAMURA: Proximity Theorems 9

Theorem 2.11 (Ly-optimality criterion)
For an Ly-convex function f : ZV — R U {+oc} and z* € dom f, we have

f@") < fla*+xs) (VSCV),

fz") < f(x) (VzxeZ') <+ {f(l‘*-i—l):f(:l?*)

Theorem 2.12 (L,-proximity theorem)
Let f : ZV — R U {+oc0} be an essentially bounded Ly-convex function with
flz+1)=f(z) Ve €Z") and let « € Zy. If z* € dom [ satisfies

fz®) < f(z®+axs) (VS CV),
then argmin f # 0 and there exists x* € arg min f with
z* <z" <a*+2n-1)(a-1)1.

Remark 2.13 The bound 2(n — 1)(aw — 1) in Theorem 2.12 is almost tight. We
can construct an example such that z* > 2% and ||z* — 2%||c = (2n —3)(—1) as
follows. We continue to use the notations in Remark 2.3 and assume that n > 2.
Let V! =V, U{n} for i =1,...,n—1. We consider two sets defined by

={Zn:#-><v e0a—1y (i=1,...,n—1) }
=1

n €Z

and

nl X €0,a—1 i=1,...,n—2
= Z)‘iXV.’ | b ) :
i=1 ¢ )\n_lEZ

Any z € X; can be uniquely represented as

n

x:Z/‘LzXVz (p’ie[O:a_l]Z(i:L---an_l)a ,U"nez)a

i=1
and any =z € X, can be uniquely represented as
n—1
.’L‘:Z)\ZXVZI ()\iE[0,0(—l]Z (i=1,...,n—2), )\n_1€Z).
i=1

By using these representations, we define L-convex functions fi, fy : Z¥ — R U

{+oo} by
ZZL L i (z € Xy) %
filz) = { too (¢ X)) (xeZ),
_ )‘z (.77 S Xg) v
fao(z) = { +oo (z & X) (x e Z).

In the same way as in Remark 2.3, we can show that the assumption of Theo-
rem 2.12 holds for z* = 0 and that there is no minimizer x* of fiOfy such that
0<z*<(2n—-3)(a—-1)1.
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Remark 2.14 Let us call a function f: Z¥ — R U {+0c0} an Ly-convez function
if dom f # () and

k k
flz) = inf{Zfi(xi) 1> wi=a, 5, € ZV(i = 1,...,k)} (xeZ")
i=1 i=1
for some L-convex functions fi,...,fx : Z¥ — R U {+o00}. It is known that
an Li-convex function f with £ > 3 is not necessarily integrally-convex and the
convex full of dom f may include an integral point not belonging to dom f. The
optimality criterion for L-convex functions, however, is also valid for Lg-convex
functions with & > 3. Moreover, the proximity property with 2(n — 1)(a — 1)
replaced by k(n — 1)(a — 1) holds for Li-convex functions. We can show those by
slightly modifying our proofs of Theorems 2.11 and 2.12.

2.4 Mbs-convex Functions

It is known that the sum of two M-convex functions is not necessarily M-convex. A
function f: ZV — RU{+o0} is said to be My-conver if dom f # () and f = f,+ fo
for some M-convex functions fi, fo : Z¥ — R U {+o0}. It is easy to show that
dom f = (dom f;) N (dom f5). Obviously, if dom f; = dom f5 and f5 is identically
zero, then f = f; is M-convex, and hence, the class of My-convex functions in-
cludes that of M-convex functions. The Ms-convex function minimization problem
contains the polymatroid intersection problem as a special case. Thus, optimality
criteria for Ms-convexity below are extensions of known results for the matroid
intersection problem and the polymatroid intersection problem.

For a vector p € RV, let us define functions (p, z) and f[p|(z) by

(p,x) = p)z(v) and flpl(z) = f(z)+ (p.z) (z€ZY).

veEV

If f is M-convex, then f[p] is also M-convex.

Several results on optimality of My-convexity are known.

Theorem 2.15 (M-convex intersection theorem, [19])
For M-convex functions fi, fy : Z¥ — R U {400} and a point z* € dom f; N

dom f,, we have
fi(@) + fola®) < fi(2) + folz) (Vo€ ZY)

if and only if there exists p* € RY such that

IN

Al=p)(z)  (Yz € ZY),
fil+p (=) (V2 € ZY),

fil=p](=7)
fal+p"](«")

IN
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and furthermore, we have

argmin(fi + f») = arg min(f1[—p*]) N arg min(f2[+p"])
for such p*.

Optimality criteria of Ms-convex functions can be transformed from those of
the M-convex submodular flow problem in [20], because the Ms-convex function
minimization and the M-convex submodular flow problem are equivalent to each

other. The following theorem is a direct consequence of the results in [20].

Theorem 2.16 (M,-optimality criteria, see [20])
For M-convex functions fi, fy : ZV — R U {400} and a point z* € dom f; N

dom fy, three conditions below are equivalent:
(a) z* € argmin(f; + f2).

(b) For any ordered sets U={uy, ... ,u;}, W={w1,...,weg} CV withUNW =0,

k k

Z(fl(x*_Xu¢+Xw¢) - fl(‘r*)) + Z(fZ(x*_Xui+1+Xwi) - f2(m*)) > 0’

i=1 i=1

where U1 = Uz.
(©) (fi+f)() < (fit )@ —xv+xw) (UWCYV |Ul=[W].

The optimality for My-convexity can be checked in polynomial time by trans-
forming (b) of Theorem 2.16 to a network problem (see Remark 2.21), although
checking condition (c) of Theorem 2.16 seems to be a hard problem. In view of
polynomial time verifiability, we relax (b) of Theorem 2.16 to formulate a proximity

theorem of Ms-convex functions. This is the main result of this paper.

Theorem 2.17 (M,-proximity theorem)
Let fi,fy : ZV — R U {+o0} be M-convex functions and let o« € Z,,. If
x®* € dom f; Ndom fy satisfies

Z(fl(iba—axui—FOéxwi) - fl(xa)) + Z(fz(xa_axui+l+axwi) - fQ(xa)) Z 0

i=1 i=1

for any ordered sets U={uy, ..., ux}, W={w1,...,wp} CV withUNW = () where

Ugy1 = U1, then argmin(fy + fo) # 0 and there exists * € arg min(f; + fo) with
2

* (0% n
o = 2%l < % (= 1) (23)

The proof of Theorem 2.17 relies heavily on the following result.
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Theorem 2.18 Let fi,fo : Z¥V — R U {400} be M-convexr functions with
argmin(f, + fo) # 0. For a given point x € ZV with (V) = y(V) for any y €
dom f; Ndom fy, and for d € Z, if there exist ' € argmin f; and x? € argmin f,
such that

o' 2zl <d,  |l2* — 2|l < d, (2.4)

then there exists * € argmin(f; + fo) with

|l* — 2] < d.

Remark 2.19 The bound % (a 1) of Theorem 2.17 is tight in the sense that the
statement with % 5(a—1) replaced by (=2 2) (a — 1) — 1 is false. For any positive

integer m, we c0n81der three sets:
t={1t,...om*}, V ={1,....om}, V={0",0}uvtuv .

We define two functions fi, fo : Z¥ — R U {400} by

(V7)) (z e Xy) o) = z(V7) (z € Xy) . v
filz) = { +oo  (z & X)), f2(a) { +oo  (z & Xy) (=€ Z°),

Ao € [0,m*(a—1)]z

i=1j=1

{Z Z )\’L] Xit— + /\0(X0+ Xo- )

)\ij € [0,0(—l]z (27] = ]-7---7m) }

m m
= > Xt —x0-) + D vilXo+—X4-)
j=1

=1

i € 0,m(a=1)]z (i=1,...,m) }

Vi € [O,m(a—l)]z (] = 1, Ce ,m)

By using (M-EXC), we can easily show that f; and fy are M-convex; f; and f;
are linear on X; and X,, respectively. Let ¢ = 0. Obviously, 0 € X; N X, holds.
By the definition of X, if ay, — ax, € X; for u,v € V with u # v, then we have
v =0 and v = 0". On the other hand, axo+ — @xo- is not contained in X, by
its definition. Thus, the hypothesis of Theorem 2.17 holds for x* = 0. By the
definitions of f; and f5, Ms-convex function f; + fo has the unique minimizer z*
defined by

m(a—1) (ueV™)

() = -m(a—1) (weV™)
m*(a—1) (u=0")

-m*(a—1) (u=07).
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Remark 2.20 The bound of Theorem 2.18 is tight. Let V' = {1,2,3} and let
B € Z, . We define two functions fi, fo : Z¥ — R U {+o0} by

) y@) (yeXy) _ ) B (veXy) v
fl(y)—{ too (g X)), fa(y) {+OO (v & Xy) (yeZ"),

where

Xi={Aa—x3) | A €[0,28]z}, Xo={ulx2—x3)|nr€l0,20]z}.

Obviously, f; and fo are M-convex, and furthermore,

argmin f; = {z' =28(x1—x3)}, argmin fo = {2 = 26(xa—x3)}-

Since X; N Xy = {0}, we have
argmin(f; + f») = {z* = 0}.
By putting z = Bx1+8x2—20x3 and d = 23, we obtain
|z — 2|l = |]2* — ]|y = [|2" — 2|l = d.
Therefore, the bound of Theorem 2.18 is tight.

Remark 2.21 Condition (b) of Theorem 2.16 can be checked in polynomial time.
Given two M-convex functions fi, fo : Z¥ — R U {400}, a point z € dom f; N
dom f, and a positive integer @« € Z,,, we construct a directed graph G¢ =
(V1 U Vs, A) and an arc length /2 € R as follows. Let V; and V5 be copies of V,
ie.,

Vi={wn|veV}, Vi={v|veV}

where v; and vy are the copies of v € V. Arc set A consists of three disjoint parts:
Ay = {(v1,v2) [veVEU{(vy,m) [veVE

Ay = {(u,v) |u,v €V, u#v, x — axy + ax, € dom fi}, (2.5)
A = {(’Ug,’u,g) | u,v € V: u 7£ V, T — QXqy T Xy € domfz}.

We define (¢ € R* by

0 (CL € Ab)
lr(a) =4 file —axu + axy) — filz) (o= (u1,v1) € A) (2.6)
fo(@ — axu + axe) — fa(z) (a = (v2,u2) € As).

Lemma 2.22 below guarantees that (b) of Theorem 2.16 can be checked in poly-
nomial time by applying shortest path algorithms.
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Lemma 2.22  For two M-convex functions fi, fo : Z¥ — R U {400}, a point

x € dom f; Ndom fy and o € Z, two conditions below are equivalent:

(a) There exists no negative cycle in G¢ with length (2.

(b) For any ordered sets U={uy,...,ux}, W={wy,...,wx} CV withUNW =0,
k

k
Z(ﬁ(iﬁ—OéXuff'OéXwi)—f1($))+Z(f2($—04Xui+1+04Xw¢)—fz(ﬁ)) > 07 (27)

=1 =1

where ugy1 = u.

2.5 Integrally-Convex Functions

For f: ZV — R U {400}, its conver closure f : RV — R U {£oc} is defined by

peRY, vyeR v
(py) +v < fly) (e Z) } (wery)

For € RV, we define a neighborhood N(z) of z by
N(z)={yeZ"||z] <y < [a]},

f(z) =Sup{<p,x> +

where |z| and [z] denote the vectors obtained from z by rounding down and up
the components of x, respectively. The local convez extension f~ of f is defined by

peRY, vyeR v
(p,y) +v < fy) (Vy € N(2)) } (e R,

A function f : Z¥ — RU{+o0} is said to be integrally-convez if f = f. It is known

that the class of integrally-convex functions contains all classes of {L,M,Ly,Ms}-

f(z) = Sup{(p,x> +7

convex functions [25].

Theorem 2.23 (Optimality criterion for integral-convexity, [4])
For an integrally-convez function f : ZV — R U {+o0} and z* € dom f, we
have

f@) < f(z) (Vz€Z") = [f@)<fl@"—xatxs) (VA,BCV).

Checking the above local optimality criterion is very hard because any function on
{0,1}V is integrally-convex.
From the optimality criterion, we may suppose that a proximity property for

integral-convexity employs the following form:

For an integrally-convex function f : Z¥ — R U {+o0}, a € Z,, and

xz® with f(z®) < f(z*—axa+ayxg) for all A, B C V| there exists z* €

arg min f such that ||z* — 2%|| < dc(n, @) for some d¢ : 22, — Z.
We can verify that dc(n, ) is bounded by n!(a—1), although its proof is not so
simple and the bound is not likely to be tight. A tighter bound for the above

proximity property for integral-convexity remains an open question.
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3 Proofs

In this section, we will give proofs of our new results.

3.1 Proof of Theorem 2.7

It is sufficient to show that for any v € R with v > inf f, there exists z* € dom f
satisfying f(z*) < 7 and (2.2). Assume that z* € dom f minimizes ||z* — z°||;
among all vectors satisfying f(z*) < 7. We fix v € supp™(z® — z*) and put
k = z*(v) — 2*(v). The following claims are shown in [17].

Claim 1: There exist wy,...,w; € supp (z* — z*) and yo(= %), y1, ..., Yk €
dom f such that y; = yi1 — Xo + Xuw, and f(y;) < f(yiz1) (i =1,...,k).

Claim 2: For any w € supp™ (z®—z*) with yx(w) > z%(w) and p € [0, yp(w) —

x%(w) — 1]z, we have f(z® — (L + 1)(Xo — Xw)) < f(2% — p(Xo — Xw))-
Claim 2 and (2.1) imply

f(xa_:u’w(Xv_Xw)) <o < f(xa_(Xv_Xw)) < f(xa) < f(xa_a(Xv_Xw))

for any w with p, = yg(w) — 2*(w) > 0. Therefore, yr(w) — z*(w) < a — 1 holds
for all w € supp™ (z* — z*). Then we obtain

a%(v) —2*(v) = 2%(v) —y(v) = Y. (w(w) —2%(w))
wesupp~ (z¥—x*)
< [supp(2® —2")| - (a — 1),
where the second equality is by z*(V) = yx(V'). Similarly, we can show
|2%(v) — 2" (v)| < [supp ™ (2* = 2")| - (@ — 1)

for v € supp (z® — z*). Hence, we have

2
* * — * n
[lo7 = 2%l < 2fsupp™ (2% —27)| - [supp (2% —2")| - (¢ = 1) < -(a = 1).

3.2 Proofs of Theorems 2.11 and 2.12

This subsection gives proofs of Theorems 2.11 and 2.12.

Proposition 3.1  Assume that f = f10Ofy for some functions fi and fy such
that fi(y+1) = fi(y) +7m1 and fa(y+1) = fo(y)+r for ally € ZV. If f(z+1) =
f(z) for some x € dom f, then r1 = ro = 0 holds, and furthermore, f(y+1) = f(y

for any y € dom f.
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Proof. By the definition of the infimal convolution, we have

fle+1) < inf{fi(z1+a1l)+ fo(z2+l) |21 +22 =2, a1 +ap =1}
= inf{fi(z1) + r0q + fo(xs) + roan | 1 + 29 = 2, a1 + @y = 1}
= f(x) +inf{rioq + reas | @1 + az = 1}
= f(x)+ry+inf{(r; —m)a | &y € R}.

This says that if f(x +1) = f(z) € R then 71 = 75 > 0 must hold. Analogously,

we have

flz) < inf{fi(z1+a1l)+ fo(za+a0l) |21+ 22 =20+1, a1+, = —1}
= f(l' + 1) — T9.

Since f(x + 1) = f(z) € R is satisfied, we obtain 75 < 0. Therefore, 1y =79 =0
holds. In the same as above, we can show that f(y+1) < f(y) and f(y) < f(y+1)
for any y € dom f. [ |

If there exist 1 € dom f; and x5 € dom f5 such that

f(@*) = fi(x1) + foze), 1+ 29 =1,

then Theorem 2.11 can be easily proven (see the proof of Theorem 2.12 below),

whereas the following proof works in the general case.

Proof of Theorem 2.11 Let f = fiOf5 for some L-convex functions f; and fs
with fi(z +1) = fi(z) +r; and fo(z +1) = fo(x) + 7y for x € ZV.

(=) Forany S CV, f(z*) < f(z* + xg) trivially holds. In the same way as
the proof of Proposition 3.1, we can show that 1 = 7y, f(z*+1) < f(2*)+re and
f(z* —1) < f(z*) —79. Since f(z*) < f(z* + 1), f(z* — 1) holds, we have ry =0
and f(z* +1) = f(z¥).

(«<) Since f(z* + 1) = f(z*) holds, Proposition 3.1 yields that

fly+1)=f(y) (Yy € dom f). (3.1)

Suppose to the contrary that there exists y* € dom f with f(y*) < f(z*). By
(3.1), we can assume that y* > z* and assume, in addition, that y* minimizes
||y* — z*||; among all points y € dom f with y > z* and f(y) < f(z*).

Let v be an arbitrary positive number. By the definition of the infimal convo-

lution, there exist z1,y; € dom f; and x4,y € dom fy such that

f@) +v 2> filw) + foxe), o1+ 20 =2, (3.2)
FW)+v> fily) + foly2), m+y2 =95, (3.3)
1 <Y1, Tz 2> Yo, (3.4)



K. MUROTA and A. TAMURA: Proximity Theorems 17

where (3.4) follows from (3.1).

Let f = max{y1(v) — z1(v) | v € supp™(y* — z*)} — 1. It follows from the
assumptions that ||y* — 2*||s > 2. By (3.4), there exists u € supp™(y* — z*) with
y1(u) — x1(u) > 2, and hence, 3 must be positive. We now consider points defined
by

2y =(x1+ B Vy, zh=(x3—0F1) Ay, 1z =2+,
v = (@1 + ) Ay, y=(2—-PF1) Ve, ¥ =yi+y.
We will show that
T <a <z+1, 42, Y >z, T+y=2+y". (3.5)

Obviously, ' +y' = z* + y* holds. By the definitions of x| and z7,, we have

z1(v)+ 6 >1p(v) = zi(v) =z1(v) + S,

n@) 4B <n) > 240) = n), 56
To(v) =B <wa(v) = 5(v) = 22(v) — 5,

z2(v) = B> 1a(v) = 25(v) = ya(v)

for each v € V. Let v be any element of V. If *(v) = y*(v) holds, we have

z1(v)+ 6> y1(v) = x(v) — B < ya(v),
r1(v) + B <y(v) = xa2(v) — B> ya(v)

by (3.3), and therefore, z'(v) = z*(v) is satisfied by (3.2) and (3.6). Suppose
that z*(v) < y*(v). If z1(v) + 8 > y1(v), then z3(v) — B < yo(v) must hold,
and hence, z'(v) = z*(v) is obtained. Assume that z;(v) + f < y1(v). In this
case, the definition of § states that z1(v) + f = y1(v) — 1. Moreover, we have
x2(v)— 3 < y2(v); since otherwise, we would obtain z1(v)+z2(v) > y1(v)+ys(v)—1
which contradicts the assumption z*(v) < y*(v). Thus, 2'(v) = y1(v) + x9(v) —
B = z1(v) + z2(v) + 1 = 2*(v) + 1 holds. From the above discussion, we obtain
z* <z’ <z*+1and y > z*. The definition of  guarantees that there exists
u € supp™ (y* — z*) with z;(u) + f < y1(u). Hence, 2’ # x*.

By (3.1), 1+ /41 and x5 — 31 also satisfy (3.2). Because f; and f, are L-convex,

we have

fi(zy) + fr(yn) + fawa) + falya) > fi(o)) + fi(y)) + fa(zy) + folys).  (3.7)

From (3.2), (3.3), (3.5) and (3.7), for any v > 0, there exists a nonempty subset
S, C V such that

f@)+f)+2y> f(a"+xs,) + Y —xs,), ¥ —Xxs, > 3" (3.8)
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Since 7 is an arbitrary positive number, (3.8) implies that there exists a nonempty
subset S C V such that

f@)+ fy") = fla" +xs) + (¥ —xs), y"—xs > 2" (3.9)
The hypothesis and (3.9) yield f(y*) > f(y* — xs) which contradicts the definition
of y*. Therefore, x* must be a minimizer of f. |

Proof of Theorem 2.12 Let f be defined by two L-convex functions f; and
fo- By Proposition 3.1, we have fi(z + 1) = fi(z) and fo(x + 1) = fo(z) for
all z € ZV. Since f is essentially bounded, there exist % z§ € Z" such that
f(z®) = fi(z$) + f2(2§) and z* = 2§ + z§. By the definition of the infimal

convolution, we have

f(@® + axs) < min {fi(z] + axs) + fo(zy), fi(z]) + fa(z§ +axs)}-

This inequality and the assumption that f(z%) = f1(z$) + fo(25) < f(z* + axs)
yield

fi(@?) < filef +axs),  fa(af) < fo(a§ + axs)
for any S C V. By Theorem 2.2, there exist ] € argmin f; and x5 € argmin fy
such that

¢ <z <zl + (n-1)(a—1)1, 2§ <zi<zy+ (n—1)(a—1)1.

The above inequalities guarantee that z* = z] + z} satisfies 2% < z* < 2% 4+
2(n—1)(a—1)1. Moreover, z* must be a minimizer of f because z] € argmin f;

and x5 € argmin f,. [

3.3 Proofs of Theorem 2.17

In this subsection, we prove Theorem 2.17 by using Theorem 2.18 and Lemma 2.22
which will be proven in the following subsections.

Since z® € dom f; N dom fy satisfies (b) of Lemma 2.22, graph G2 has no
negative cycle with length £%,. Thus, there exists a potential p € RV1YY2 satisfying

p(u) + a(u,v) > p(v) (V(u,v) € A). (3.10)
Definitions (2.5) and (2.6) say that (3.10) is equivalent to

p(v1) = p(v2) (Vv € V),
fil=pl(=®) < fi-pl(® — axu + axw)  (Vu,v €V),
fol+p](@?) < fo[+p](2® — axu + axe)  (Vu,v € V),
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where p is a vector in RV defined by p(v) = p(v;) for v € V.

Since fi[—p] and fs[+p] are also M-convex, Theorem 2.7 guarantees that

2

3" € argmin fi[~p] : ||z 2% < T(a 1),
n?

Jz? € argmin fo[+p] : |j2* — 2% < E(a - 1).

For a sufficiently large v > 0, let f be the function obtained from f1+f> = fi [—p]+

fo[+p] by restricting the effective domain to [z® — 1, 2%+ v1]z. It is easy to show

that f is also Ms-convex. Since dom f is bounded, it has a minimizer. Therefore,
n2

Theorem 2.18 implies that f has a minimizer z* with ||z* — %o < (o —1),

which is also a minimizer of f; + fa.

3.4 Proof of Theorem 2.18

We first introduce useful properties of M-convex functions. Let f : Z¥ — R U
{+00} be an M-convex function. For a pair (z,y) of integer points satisfying
x € dom f and ||z —y|| = 1, we consider a bipartite graph G(z,y) = (V,V; A)
with vertex sets V™ = supp™(z —y), V™~ = supp™ (z — y) and edge set

A={(u,v) |[ue V", veV , - xy+ Xo € dom f},

and associate c(u,v) = f(x — xu + Xo) — f(x) with arc (u,v) € A as its weight.
Let f(z,y) denote the minimum weight of a perfect matching in G(z,y), where

f(z,y) = 400 if no perfect matching exists. The following lemma is a reformula-

tion of “unique-max lemma” for valuated matroids (see [22]).

Lemma 3.2 (Unique-min lemma, see [22])

Let f: ZV — RU{+oo} be an M-convez function, assume x € dom f, y € Z"
and ||z — ylloo = 1. If graph G(z,y) has exactly one minimum weight perfect
matching with respect to ¢, then y € dom f and f(y) = f(z) + f(z,y).

For a function f : Z¥ — R U {+oc} and two points a,b € Z" with a < b, we
define a function fl*t by

abl (1) — f(z) (x € [a,b]z) . 1%
fladl( )—{ oo (2 ¢ [a,blg) (xeZV).

It is easy to show that if f is M-convex then ¢! is also M-convex.

Proposition 3.3  Let f : ZV — R U {+o00} be an M-convez function, assume
x € argmin f and y € dom f.
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(a) For any u € supp™ (x — y), there exists v € supp™ (z — y) such that

A

T =17 — Xy + Xy € argmin flany.avyl

(b) For any u € supp (z —y), there exists v € supp™(x — y) such that
=2 + Xu — Xo € arg min fEEVY]
Proof. We will prove (a) only; we can prove (b) similarly. Let v € V' be such
that
£= % — Xu+ o € BrMIN{F(z — 3 +X5) | § € sUPD(z — )}.

We note that & is well-defined since supp™(z — y) # 0 by (M-EXC). Let z be any
point in [Z Ay, & V y]z Ndom f. We have u € supp™(z — z) because y(u) < z(u),
#(u) = z(u) — 1 and 2z(u) < max{Z(u),y(u)}. By (M-EXC) for z, z and u €
supp™ (x — z), there exists j € supp™(z — z) C supp~ (x — y) such that

f(x)+f(z)Zf(x_Xu+Xj)+f(Z+Xu_Xj)-

We have f(z) < f(z+ xu— X;) because z € argmin f. The above two inequalities
yield
f(2) 2 f(z = xu+x5) > f(2).

Therefore we obtain & € arg min fEA%2VY], |

We start a discussion about Theorem 2.18. For the specified point z € ZY, we
fix z* € arg min(f; + f2) such that ||z* —z||; is minimized among all minimizers of
(f1+ f2), in the rest of the subsection. We will show that x* satisfies the assertion
of Theorem 2.18, i.e., |[|z* — z|| < d. Given two minimizers z! € arg min f; and
z? € argmin f,, we consider the following partition of V' (since z' and z? will be

modified in the sequel, we attach arguments z', z? to each part):

Vo(z'a’) = {veV|a"(v) =a'(v) = 2’(v)},
G mase (). 20) < 27 (0) < o) or
Ve, @) { z(v) < z*(v) < min{z'(v), z%(v)} }’
1Y) = | minfz!(v), 2%(0)} < 27 (v) < max{z’(v),2*(0)},
) { s }
Vi(zh,z*) = {veV|z*(v) < min{z'(v), x2(v),x(v)}},

{
Vo(z',2?) = {veV| max{w (v),2*(v), 2(v)} < 2" (v) }.

Proposition 3.4  Suppose that x' € argmin f; and x? € argmin fy for two
M-convez functions fi and fo. If Vi(z!,2?) U Vy(zt, 2?) = 0 then z' = 2* = z*
holds.
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Proof. It is sufficient to show that V. (2!, z?) = V_(z',2%) = 0. Suppose to the
contrary that V, (z!,2?) U V_(z!, 2?) # 0. It follows from (V) = z*(V) = z*(V)
that both Vi (z!,2?) and V_(z!,2?) are nonempty. By the hypothesis, we also

have
Vi (z', 2%) = supp™ (¢! — z*) = supp*(z® — z*),

V_(z!, 2?) = supp™ (2! — 2*) = supp~(2? — z*).

Since x* € arg min(f; + fo) holds, there exists p € RY such that
z* € (argmin fi[—p]) N (arg min fy[+p]), (3.11)

(see, Theorem 2.15). We consider a bipartite digraph G = (V;,V_; A) with vertex
set Vy =V, (2!, 2?), V_ = V_(2}, %) and arc set

A = {(u,v) |ueVy, ve V., £"+xu—X» € dom f1}
U{(v,u) |u€eVy, veV_, 2%+xy—Xo € dom fo},

and arc weight ¢ € R4 defined by

¢(a) = { fil=pl(x*+xu—X0) — fi]-p|(z*) (a = (u,v), ueV,, veEV)
P40l (@ +xu—Xo) — fo|+p](z*) (a= (v,u), ue Vi, ve V).

By (M-EXC), for any v € V, = supp™(z' — z*), there exists j € V. =
supp” (z! — z*) such that

Fi@h) + fi(@) > fi(@"=xatxg) + fi(@"+xa—x5)-
It follows from ! € argmin f; that
fi@?) < file =xutxs)-
By the above two inequalities,
fi(z®) > fi(@"+Xu—X5)
holds, and hence, arc (u, j) € A satisfies
c(u, 7) = fi(@"+xu=x;) — f1(@") = p(w) + p(j) < —p(u) + p(j)- (3.12)
Analogously, for any v € V_, there exists ¢ € V. such that (v,i) € A and
c(v,9) = fal&"+Xi—Xv) — fo(2¥) + p(2) — p(v) < p(i) — p(v). (3.13)

By the above discussion, every vertex of V; UV_ has an arc satisfying either (3.12)
or (3.13). Thus, G has a directed cycle C consisting of these arcs. By (3.12) and

(3.13), the amount of weights of all arcs in C' must be less than or equal to zero.
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On the other hand, (3.11) guarantees that each arc of G has nonnegative weight.
Hence, C' consists of arcs of weight zero.

Let @ be a shortest cycle, with respect to the number of arcs, consisting of
arcs of weight zero, and let Q. =V, NV(Q) and Q- =V_NV(Q), where V(Q)
denotes the set of vertices of ). Because @ is a shortest cycle, the subgraph G[Q)]
of G induced by )+ U @_ has no arc of weight zero other than those of (). This
says that the subgraph of G[Q] induced by the arcs from @, to @_ has exactly
one minimum weight perfect matching of weight zero. By Lemma 3.2, we have
t*—xqg_+xq, € dom fi[—p] and f[-pl(z*—xqg_+x¢q,) = f[—pl(z*). This says
that 2*—xq_+Xxg, € argmin f;[—p|. Similarly, it can be shown that +*—xg_+xq.,
is also a minimizer of fo[+p]. By Theorem 2.15, we obtain z*—xqg_+xgq, €
argmin(f1 + f;), and furthermore, ||(z*—xq_+x0,) — |1 < ||z* — z||;. This,
however, contradicts the definition of z*. Hence, V. (z',z?) and V_(z',z?) must

be empty, that is, 2! = z? = z*. |

We can easily show |z*(v) — z(v)| < ¢ for any v € V.(z', 2%) U (2!, 22).
Proposition 3.5  For v € Vi(z!,2?) U Vj(a!,2?), |z*(v) — z(v)| < ¢ holds.
Proof.  For any v € V (2!, z%) U Vj(z!, 2%), we have

2" (v) — 2(v)] < max{|z(v) - z(v)], |2*(v) — z(v)[}.

It follows from z' (V) = 2%(V) = z(V) that |z'(v) —z(v)| < ¢ and |z*(v) —z(v)| <

4. Therefore, |z*(v) — z(v)| < ¢ is obtained. |

In the rest of the subsection, we will show |z*(v)—z(v)| < d for any v € V. (z!, 2?)U
V_(z!,2?%). For each v € V and ¢ € {1,2}, we have

2% (v) — 2 (v)] < |a”(v) — 2“(v)] + |2*(v) — 2(v)| < |2"(v) — ()| + ;l,

where the second inequality follows from z¢(V') = z(V). We estimate the distance
between z* and z¢ with aid of the following algorithm that transforms z' and z? to
x* by generating a pair of sequences starting from the given z! and z? and reaching
z*. We note that TRANSFORMATION below modifies M-convex functions f;, fo as

2

well as z!, £2 maintaining ' € argmin f;, 2 € argmin f, and z* € arg min(f1+f5)

at each iteration.

algorithm TRANSFORMATION

while V (21, 2%) U Vy(2!,2?) # 0 do {
take u from V (z!, %) U Vy(z!, 2?) ;
for ¢ € {1,2} do{
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while z2(u) # z*(u) do {
if z°(u) > z*(u) then
take v € supp~ (z¢ — 2*) with & = 2f—xu+xe € argmin fi77 V7T
if 2¢(u) < z*(u) then
take v € supp* (z¢ — *) with 2 = 24y, —X, € argmin f}i/\x*’ivw*] :
ot — % ;
fo o flnenava]
(%) (to be added later for the analysis of the algorithm)
} (end of while)
} (end of for)

}. (end of while)

We first verify the correctness of algorithm TRANSFORMATION.
Proposition 3.6 TRANSFORMATION transforms both x' and z* to z*.

Proof. Proposition 3.3 guarantees that & exists, and that the current ! and
z? are minimizers of the current f; and f,, respectively. Since either ||z' — z*||;
or ||z? — z*||; is strictly decreased at each iteration, the algorithm must terminate
in finite steps. Since x* minimizes || z* — z ||; among all minimizers of f; + f5 for

the current f; and f5y, the assertion follows from Proposition 3.4. [ |

We note that for each v € V the following transitions are possible during
TRANSFORMATION:

Vi(zt, 22)—Vy(at, 22)—Vo(2t, 2?)
V_(z!, 2?) 4 Ve(zt, 2?) 4
To analyze TRANSFORMATION, we utilize a diagram as in Figure 1. The hori-

zontal axis labeled “level of 2*” is indexed by a pair (v,¢) € V x {1, 2}, and each
pair (v,¢) is called a column. For each column, we consider “positions” which are
vertically assigned at regular intervals, and call the distance from the level of x* to
a position P the height of P (the height may be negative). Each position has one
of four states: null, with a box (without a stone), with a stone (without a box), or
with both a box and a stone; in Figure 1 a stone is depicted by a solid circle. For
each v € V and £ € {1, 2}, we initially stack |z(v) — z*(v)| boxes at column (v, £)
upward if z°(v) > z*(v); downward if z°(v) < z*(v), from the level of z*. That
is, the number of boxes at column (v,£) denotes the difference between z‘(v) and
z*(v). For each £ € {1,2}, let £ be defined by
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.‘i‘. %%@i‘ | | | level of *
o [o

VeV VeV

(1}1,1) (0271) (1}371) (’1)4,1) (U571) (vﬁ'yl) (0771) (USJ]‘)
(Ub 2) (1)27 2) (’U3, 2) (1)47 2) (’U5, 2) (U67 2) (1)77 2) (’Ug, 2)

Figure 1: An initial state: z' —z* = (2,-1,2,-1,4,2,—4,—4) and z* — z* =
(1,-2,-2,1,5,2, -3, -2).

We say that two positions of the same height at columns (v,?) and (v,/) are
adjacent to each other. For two boxes (or positions) b; and by at the same column,
we simply say that by is farther/nearer than by, if by is farther/nearer than by
from/to the level of z*. The farthest/nearest box is defined accordingly.

Before starting TRANSFORMATION, we put stones into boxes according to the

following rules (see Figure 1):

e For v € V (2!, 2%) U Vy(z!, 2%) and £ € {1,2}, we put one stone into every

box at column (v, ¢).

e For v € V,(z',2%) UV_(z!,2?) and ¢ € {1,2} with zf(v) > zf(v), we put
one stone into each of (zf(v)—z*(v)) boxes from the farthest one at column

(v,0).

At the place (x) in TRANSFORMATION, we modify the arrangement of boxes and
stones as follows. We emphasize that u, v and ¢ are fixed at (x), and that b,
always contains a stone and the position adjacent to b, has an empty box if b,
is empty, which will be shown later in Proposition 3.8, where b, and b, are the

farthest boxes at (u, ¢) and (v, £), respectively.

at (x) in TRANSFORMATION

let b, be the farthest box at column (u, /) ;
let b, be the farthest box at column (v, /) ;

if b, contains a stone then
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| | | level of z*

o o
oo
R A Vi L e

(1}1,1) (0271) (1}371) (’1)4,1) (U571) (vﬁ'yl) (0771) (USJ]‘)
(Ub 2) (1)27 2) (’U3, 2) (1)47 2) (’U5, 2) (U67 2) (1)77 2) (’Ug, 2)

Figure 2: After modifications for (v, 1, v7), (v1, 1, v7), (v1,2, v9).

eliminate the boxes b, and b, leaving the stones in the same positions ;
else (b, is empty) {

move the stone in b, into the box adjacent to b, ;

eliminate the boxes b, and b, ;

shift each stone at column (v, £) to its adjacent position ;

b
For example, after three iterations for (u, ¢,v) = (v1,1,v7), (v1,1,v7), (v1,2, v2),
vzt =(2,-1,2,-1,4,2,—4,—4), 2’—z*=(1,-2,-2,1,5,2,-3,-2)
are transformed to
2" =(0,-1,2,-1,4,2,-2,—4), 2’—z*=(0,-1,-2,1,5,2, -3, —2)

which are represented by boxes in diagrams, v; is moved into Vy(z',z*) and the
arrangement of boxes and stones in Figure 1 is modified as Figure 2.
Let 2) and z2 denote the initial 2! and z?, respectively. We can estimate the

distance between z* and x§ in terms of the number of stones.

Proposition 3.7  For u € Vi (z},z3) UV_(z},z%) and € € {1,2}, let s, denote
the number of stones at column (u, ) at the time when u is taken at an outer while

iteration. Then we have:

max{si, 5o} = max{|zj(u)—z*(u)], |v3(u)—z*(u)|}. (3.14)
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Proof.  Suppose that |z§(u)—2*(u)| > |23 (u)—2*(u)| without loss of generality.
If |z§(u) — z*(u)| > |z3(u) — z*(u)| then at the initial state, the farthest box
at column (u, 1) contains a stone. Till the algorithm reaches this point, the stone
is located at either (u, 1) or (u,2) and does not change its height. Therefore, (b),
(e) and (f) of Proposition 3.8 below shows that max{si, s} = |z}(u) — z*(u)].
Suppose that |zf(u) — 2*(u)| = |z3(u) — z*(u)|. At the initial state, none of
the boxes at (u, 1) or at (u,2) have a stone. At the first time when a box at (u, ¢)
(with £ = 1 or 2) is eliminated, a stone is put into the farthest box at (u, f). The

argument thereafter is similar to the above case. |

The following proposition analyzes the movement of stones and show properties
of the modification at (x).

Proposition 3.8 At the beginning of each inner while iteration of TRANSFOR-
MATION, the following statements hold, where €' € {1,2}:

(a) The total number of stones remains the same as that at the initial state. For
any column (v, 0, boxes are located in consecutive positions from the level

of x*.
(b) Each position has at most one stone.
(¢) Any empty box is adjacent to an empty bo.

(d) For column (v, 0') withv' € V. (z',z?) UV _(z',2?), any stone is adjacent to

a null position.

(e) For column (v',€0") with v' € V' \ (Vo(z',2%) U {u}), (el) stones are put in
consecutive positions, (€2) no farther position than a position P with a stone

has an empty box, and (e3) all nearer positions than P are nonnull.

Moreover, at the beginning of each outer while iteration, the following statement
holds:

(f)  For column (v, ¢') with v' € V (2!, z?) U Vy(x', 2%), any box contains a stone.

Proof.  (a) is obviously satisfied by the above modification at (x). Statements
from (b) to (f) are initially satisfied.

We first show (b) to (e) according to the two cases in the modification at (x).
Suppose that conditions (b) to (f) hold at the beginning of an iteration.

Assume that b, contains a stone. By the hypotheses, both b, and b, contain
exactly one stone. In this case, statements (b) to (e) trivially hold because no

stone is moved and no empty box is eliminated.
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Assume that b, is empty. We first consider the time just after the elimination
of b, and b,. By (f) and (c), b, contained exactly one stone s and the position
adjacent to b, had an empty box b. Since the stone s was moved into b, (b) is
preserved. Although empty box b, was eliminated, (c) is satisfied because the
stone s is located in b, and furthermore, the position adjacent to b is null, i.e., (d)
is not violated. We now verify (e). This is obviously true for (v,#') with v' # v.
We will focus on (e) for (v, £), where we note that (e) for (v,£) may not true at
this moment. By (a) and (d), any nearer position than b has an empty box, and
hence (e3). Since b, was the farthest box at (v, £), no farther position than b has
an empty box by (c), which shows (e2). By (e), if there existed stones at (v, )
before the modification then these were consecutively located from the position
farther than b by one. Hence, (el) is satisfied.

We next consider the time just after shifting stones in the case of empty b,.
By (e), the stones at column (v,/), if any, were consecutively located from the
position which is farther than b, by one. By (d), these stones were adjacent to
a null position. Hence, shifting these stones preserves (b), (c¢) and (d). Since
these stones and the stone s are located consecutively, (e) remains to be true for
(v, 0) # (v, £). Moreover, (e) for (v,£) is also satisfied because column (v,¢) has
no stone.

We finally consider (f). Since (f) holds initially, we deal with the case where
v' € V(x',2?) was moved into V,(z', z?), without loss of generality. This means
that either z'(v') = z*(v') or z%(v') = z*(v'). Here we assume z?(v') = z*(v').
Suppose to the contrary that there is an empty box at column (v',1). By (e), the
nearest box b, 1) at (v/,1) is empty. Let us consider the time when the box b, )
adjacent to b(, 1) was eliminated. By (c), by 2) had to be empty. However, a stone

was put in b, 1), a contradiction. Hence, any box at column (v',1) has a stone. B

By Proposition 3.7, || * — z§ || is bounded by the number of stones. We next
estimate the left-hand side of (3.14) more precisely. Let us call a stone in a box
to be black and a stone not in a box white, and classify stones into six categories
(where ¢ € {1,2}):

Bal : the set of black stones located above the level of z* at column (v,£) for

some v,

Bbl :  the set of black stones located below the level of z* at column (v, ) for

some v,
Wa : the set of white stones located above the level of z*,

Wb : the set of white stones located below the level of z*.
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The partition dynamically changes during TRANSFORMATION under the following

restrictions.

Proposition 3.9  If a stone changes its category, then this is one of the follow-

g transitions:

Bal — Bb2 U Wa, Bb2 — Bal U Wb,
Ba2 — Bbl U Wa, Bbl — Ba2 U Wb.

Therefore, no stone in Wa U Wb changes its category.

Proof. The modification at (x) contains three alterations of states of stones:
color change of black stones in boxes b, and b,, movement of the black stone in b,
and shift of white stones at (v, £). Let £ denote 1 or 2. The first alteration is either
Bal — Wa or Bbl — Wb. The second one is either Bal — Bbl or Bbl — Bal.
The third one means that white stones do not change the category. [

Proposition 3.10 At the beginning of each inner while iteration, we have

|Bal| + |Bb2| = |Ba2|+ |Bbl|, (3.15)
Wa| = Wb, (3.16)

and therefore, for any u € Vi (xg, z3) U V_(x}, 22),

max{|zg(u) =" (u)], |zg(w)—" (W)} < 7, (3.17)

NNV

where s denotes the total number of stones.

Proof. We first consider the initial state. Since z§(V) = z2(V) = z*(V), we

have

Y (@m)-z@) + > (@) —z(v))

vesupp™t (z}—z*) vesupp~ (z2—z*)
= Y @) -w) + X @) —zpv). (3.18)
vesupp™ (z2—z*) vEsupp~ (z§—z*)

The left-hand side of (3.18) minus the number of relevant empty boxes is equal
to |Bal| + |Bb2|, and a similar relation between the right-hand side of (3.18) and
|Ba2| + | Bb1] also holds. On the other hand, for v € V. (z§,z3) UV _(z, x3), the
number of empty boxes at (v,1) is equal to that at (v,2). Therefore, |Bal| +
|Bb2| = |Ba2| + |Bbl| and |Wa| = |WWb| = 0 are satisfied at the initial state.
Color change of black stones in the modification at (x) decreases the cardinali-
ties of BalUBb2 and Ba2U Bbl exactly by one, and increases those of Wa and Wb
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exactly by one. Thus, Proposition 3.9 guarantees that |Bal|+|Bb2| = |Ba2|+|Bbl|
and |Wa| = |Wb| are preserved during TRANSFORMATION.

Let s; and sy be the numbers defined in Proposition 3.7. By (3.15) and (3.16),
s1 and s, are bounded by 3. Hence, (3.17) is obtained from (3.14). |

Proof of Theorem 2.18 We already proved that

. d
[#°(0) — 2(0)] < 5

holds for any v € V (x}, x3) U Vy(z4, 3) in Proposition 3.5. Here we prove that

|z%(v) —a(v)| < d

holds for any v € V (z},z3) UV _(z},z2). Without loss of generality, we assume
that v € Vi (x}, 23) and z§(v) > 2

(v
z(v) < xg(v) = z(v) —2*(v) < 2g(v) — 2% (v),
) = (0

). Obviously, we have

.%‘(U) > CE(I)(U) = IE(U) ( T (v) ( )) + (IE(’U) _ .%‘(l)(v)) (3.19)
Let s denote the total number of stones. (3.17) says
zh(v) = 7°(v) < 3. (3.20)

We finally estimate s. Here we abbreviate V. (zg, x3) to Vi, Vi(z}, z2) to V4, and so
on. The number s is bounded as

s = S Yl -2 @) + Y |ak()—zi()]

te{1,2} i€Ve iEVRUVLUV.

> > las()—z(0)] + (m(v)—w5(v))

Le{1,2} iev\{v}

lzg—2lly + llzg—2|l — |zo(v)—2(v)| — |25 (v)—2(v)| + (zo(v) —z5(v))
< 2d = |ag(v) =z (v)| = |2g(v)—2(v)] + (zg(v)—5(v))

2(d — (z(v)—2g(v))) (z(v) > z;(v))

)

IN

= 2d (z3(v) < z(v) < z3(v)) (3.21)
2(d — (z5(v)—x(v))) (2(v) <x5(v)).
By (3.19), (3.20) and (3.21), we obtain z(v) — z*(v) < d. |

3.5 Proof of Lemma 2.22

We use notations defined in Remark 2.21.

[(a) = (b)] Given ordered sets U,WW C V, if the left-hand side of (2.7)
is finite, then it is equal to the length of some cycle in G¢ with respect to /5.
Assumption (a) says that it must be nonnegative, that is, (b) holds.
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[(b) = (a)] We prove that if there exists a negative cycle C'in G then (2.7)
does not hold for some U, W C V. Without loss of generality, we assume that C'
is simple, and that C' is denoted by a sequence of arcs. Assume that consecutive
two arcs (u,v), (v, w) (u # w) of C belong to A; (the case where these belong to
A, can be dealt with, similarly). We first show that

0 (u,v) + 05 (v, w) > 05 (u,w). (3.22)

It follows from (v,w) € A; that x — fx, + OXw is contained in dom f; for any
B € [0, alz. By applying (M-EXC), we have the following inequalities:

Ji(z = xo + Xw) + f1(z — axy + axy)

> fl(w) + fl( — Xy t+ (a_l)Xv + Xw)
f1(@ = 2x0 + 2Xw) + fi(r — axu + (a=1)xu + Xw)

> fi(@ = Xo + Xw) + 17 — axu + (@=2)Xy + 2Xw)
fi(@ = 3x0 + 3Xw) + fr(z — axu + (@=2) Xy + 2Xw)

> fi(® = 2Xy + 2Xw) + f1(z — axu + (@=3)xu + 3Xw)

fi(r — axy + axw) + iz — axu + Xo + (@—1)Xw)
> filz = (a=1)xv + (a=1)Xw) + f1(T — aXu + aXw)-

By summing up both sides of the above inequalities, we obtain

fi(@ — axy + axy) + fi(z — axe + axw) > fi(z) + filz — axy + axw),

which is equivalent to (3.22).

Inequality (3.22) guarantees that C'\ {(u,v), (v, w)}U{(u, w)} is also a negative
cycle. While there are consecutive two arcs of C' as above, we replace these by the
shortcut arc. After the process, we obtain either a negative cycle C' in which arcs
of A; U A, and A, appear alternately, or a negative cycle of length two contained
in one of A;, A, and A, because of the structure of GS. The second case, however,
cannot occur because the length of the cycle is not negative. Since £2(a) = 0 holds
for any a € A,, the length of C is expressed as the left-hand side of (2.7) for some
ordered sets U and W with U N W = (), and furthermore, it must be negative.
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