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Abstract

Based on an embedding formula of the CAR algebra into the Cuntz algebra Ogp,
properties of the CAR algebra are studied in detail by restricting those of the Cuntz
algebra. Various *-endomorphisms of the Cuntz algebra are explicitly constructed, and
transcribed into those of the CAR algebra. In particular, a set of x-endomorphisms of the
CAR algebra into its even subalgebra are constructed. According to branching formulae,
which are obtained by composing representations and x-endomorphisms, it is shown that
a KMS state of the CAR algebra is obtained through the above even-CAR endomorphisms
from the Fock representation. A U(2P) action on Og induces x-automorphisms of the CAR
algebra, which are given by nonlinear transformations expressed in terms of polynomials
in generators. It is shown that, among such *-automorphisms of the CAR algebra, there
exists a family of one-parameter groups of x-automorphisms describing time evolutions
of fermions, in which the particle number of the system changes by time while the Fock
vacuum is kept invariant.
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§1. Introduction

In our previous papers,? we have presented a recursive construction of the CAR
(canonical anticommutation relation) algebra® for fermions in terms of the Cuntz
algebra®) O, (p € N), and shown that it may provide us a useful tool to study properties
of fermion systems by using explicit expressions in terms of generators of the algebra. As
a concrete example of applications, we have constructed an infinite-dimensional (outer) -
automorphism group of the CAR algebra, in which the transformations are expressed in
terms of polynomials in creation/annihilation operators.?) The basic ingredient necessary
for this embedding is called a recursive fermion system and denoted by RFS,, where a
subscript p stands for Og. As a special example, the standard RFS,, which describes an
embedding of Oy onto its U(1)-invariant subalgebra (92U (1), has been introduced, and it
has been shown that a certain permutation representation®% of Qs reduces to the Fock
representation of the CAR algebra. We have also shown” that it is possible to gener-
alize this recursive construction to the algebra for the FP ghost fermions in string the-
ory by introducing a x-algebra called the pseudo Cuntz algebra suitable for actions on
an indefinite-metric state vector space. We have found that, according to embeddings of
the FP ghost algebra into the pseudo Cuntz algebra with a special attention to the zero-
mode operators, unitarily inequivalent representations for the FP ghost are obtained from
a single representation of the pseudo Cuntz algebra.

The purpose of this paper is to develop the study of the recursive fermion system and
to show concretely that it becomes to possible to manage some complicated properties of
the CAR algebra as follows:

(1) Systematic construction of proper (i.e., not surjective) s-endomorphisms which are
not necessarily expressed in terms of linear transformations: The existence of proper
x-endomorphisms is characteristic for the infinite dimensionality of the algebra.

(2) Description of branchings of representations induced by proper k-endomorphisms:
By using branchings, various reducible representations or mixed states for fermions
are obtained.

(3) Systematic construction of outer x-automorphisms which are not necessarily ex-
pressed in terms of Bogoliubov (linear) transformations: Nonlinearity of transfor-
mations in one-parameter groups of (outer) s-automorphisms corresponding to time
evolutions implies that the fermions under consideration are no longer (quasi-)free.

For this purpose, it is necessary to prepare beforehand some useful formulae for
representations,® embeddings, and x-endomorphisms® ') of the Cuntz algebra. As for em-
beddings, from a fundamental formula® for embedding of O3 into O, we can easily obtain
some basic formulae for embeddings among the Cuntz algebras. Then, using an important
relation between embeddings (of some Oy’s into Oy) and *-endomorphisms (of Oy), vari-
ous *-endomorphisms of the Cuntz algebra are explicitly constructed. Conversely, from a
set of given x-endomorphisms, we may also obtain new embeddings. By composing irre-
ducible permutation representations and x-endomorphisms, some branching formulae are
derived.'®) Based on these properties of the Cuntz algebra, we study the recursive fermion
systems in detail. First, by restricting the irreducible permutation representations of the
Cuntz algebra, the corresponding representations of the CAR algebra are obtained in the
form of direct sums of irreducible ones. On the other hand, it is also shown that, for a
certain type of irreducible permutation representation of O,, we can construct a RFS;
such that the restricted representation is irreducible. Such a RFS; gives, in general, an
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embedding of the CAR algebra onto a subalgebra of Oy which is not U(1)-invariant. Fur-
thermore, it is shown that a certain RFS; similar to the above one yields a direct sum of
an infinite number of irreducible representations of the CAR algebra from any irreducible
permutation representation of 0. Next, from some x-endomorphisms of Oy, we explic-
itly construct x-endomorphisms of the CAR algebra, especially, a set of those giving -
homomorphism to its even subalgebra.'’>?) It is shown that, by composing the Fock rep-
resentation and the above even-CAR endomorphisms, we may obtain a KMS state'®) of
the CAR algebra with respect to a one-parameter group of %-automorphisms describing
the time evolution of a (quasi-)free fermion system. In contrast with some KMS states
of the Cuntz algebra,'* 1% the inverse temperature is not unique since the KMS condi-
tion is satisfied only by the induced state of the CAR algebra, but not by that of the
Cuntz algebra. We also give some discussions on the relation to the Araki-Woods classifi-
cation of factors for the CAR algebra.'” Finally, we apply the induced s-automorphisms
of the CAR algebra? to construct one-parameter groups of *-automorphisms describing
nontrivial time evolutions of fermions. Since it is possible to describe nonlinear trans-
formations of the CAR algebra by these x-automorphisms, the time evolutions are not
restricted to those for (quasi-)free fermions. We explicitly construct some examples for
such one-parameter groups of x-automorphisms of the CAR algebra, in which the parti-
cle number changes by time with keeping the Fock vacuum invariant.

The present paper is organized as follows. In Sec. 2 and Sec. 3, we summarize various
properties of the Cuntz algebra and obtain some convenient formulae necessary for our
discussions. In Sec. 4, after reviewing the construction of the recursive fermion system, we
show the relation between RFS; and RFS, (p = 2). In Sec. 5, we study the restriction of
the permutation representations of the Cuntz algebra. In Sec. 6, various x-endomorphisms
of the CAR algebra are explicitly obtained from those of the Cuntz algebra. In Sec.7,
based on some formulae constructed in the previous sections, it is shown that a KMS
state is obtained from the Fock representation through a certain s-endomorphism. In
Sec.8, we summarize *-automorphisms of the CAR algebra induced by a U(2P) action
on Oy, and obtain one-parameter groups of *-automorphisms describing nontrivial time
evolutions for fermions. The final section is devoted to discussion.

82. Properties of Cuntz Algebra: Embedding and Endomorphism

In this section and the next, we summarize some properties of the Cuntz algebra®
necessary for our discussions in the succeeding sections.

First, let us recall that the Cuntz algebra® Oy (d = 2) is a simple C*-algebra
generated by s1, So, ..., sq satisfying the following relations:

S? Sj = 5i,j1a (21)

d
D sisp=1, (2.2)
=1

*

where * is a x-involution (or an adjoint operation), I being the unit (or the identity

°Throughout this paper, we restrict ourself to consider the dense subset of the Cuntz algebra.
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operator). We often use brief descriptions as follows:

Si1yigyesim — Si1Sia " Sty (2?))
* —_ * * *
Sitsizseim — Sim " SiaSips (2.4)
— * *
Si s et = Sit " SimSG, 1 5y (2.5)

From the relation (2.1), O, is a linear space generated by monomials of the form
Sivim: oy With m 4+n 2 1.

From (2.1) and (2.2), it is obvious that there is a *-automorphism « on O, defined
by a U(d) action as follows:

d
Oéu(Si) = Z S5 Uj i, 1= 1, Ce ,d, u = (Ujﬂ') € U(d) (26)
j=1

Especially, we consider a U(1) action  defined by
Y(8i) =28, i=1,...,d; z€C, |z|=1. (2.7)

Then, the U(1) invariant subalgebra (’)3(1) of Oy is a linear subspace generated by mono-

mials of the form s;, ;.. with m = 1.

§82-1. Embedding

If there exists an injective unital x-homomorphism 1 from Oy to Oy, which is defined
by a mapping v : Ogp — Oy satisfying

V(X +0Y)=av(X)+ YY), a, f€C, X,Y €Oy, (2.8)
BXY) = 9(X)6(Y) XY €0y, (2.9)
PX) = P(X), X €0y (2.10)
(ly) = 1y, (2.11)

with Iy and I; being unit of Oy and that of Oy, respectively, we say that Oy is embedded
into Oy, and call ¥ an embedding of Oy into Oy. We also denote an embedding as
¥ : Oy — Oy. In this paper, we always assume the condition (2.11) for embeddings. To
define an embedding of Oy into Oy, it is sufficient and necessary to give a correspondence
of generators between these two Cuntz algebras because of the following reason. Let {s/ |
i=1,...,d} be generators of Oy. If Oy is embedded into Oy, define S; = Y(s;) € Oy
(t =1,...,d) by the above unital *-homomorphism . Then, it is straightforward to
show that {S; |7 =1, ..., d'} satisfy (2.1) and (2.2) by using (2.8)—(2.11). Conversely, if
there exists a set of elements {S; € Oy | i =1, ..., d'} satisfying (2.1) and (2.2), it is also
straightforward to construct the s-homomorphism ¢ : Oy — Oy by defining ¥(s}) = S;
(¢t =1,...,d) and by uniquely extending its domain to the whole Oy in such a way
that it satisfies (2.8)—(2.11). Therefore, we also denote an embedding by giving a set of
generators as {S1, ..., S} : Oy — O,.

In the following, we present some fundamental formulae for embeddings among the
Cuntz algebras.

undamental embedding by Cuntz: t 1s remarkable that O, with arbitrary
1) Fund 1 bedding by C It i kable that Oy with arbi d
(d 2 2) can be embedded into ;. For example, by setting®

Sl = 51, 52 = S§9571, Sg = (82)281, ey Sd—l = (Sg)d_Qsl, Sd = (Sg)d_l, (212)
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From (2.16), it is obvious that any monomial s;,

where s; and sy are the generators of O,, it is straightforward to show that S;’s
satisfy the relations (2.1) and (2.2). This is called Cuntz embedding.

Inductive construction: From any embedding {Si, ..., Sq} : Og — Os, we can
obtain an embedding of Oy into O, as follows:
{Sl, ey Sdfl, Sd S1, Sd 82} . Od+1 — 02. (213)

Generalized Cuntz embedding: It is straightforward to generalize (2.12) for em-
bedding of O(4—1)n+1 into Og with n > 1 as follows

S; = s; for 1<i<d-—1,
Sa—1kri = (sa)fs; for 1Sk<n-1,1Zi<d—1, (2.14)
S(d—l)n—H = (Sd)n,
where {s; | i=1,...,d} is the generators of O,.
Generalized inductive construction:  From any embedding {Si, ..., S@-1jn+1} :

Owd-1yn+1 = Og, we can obtain an embedding of O(4—1)(n+1)+1 into Oq4 as follows:
{51, -, Sa—1yns Sa—1n41515 -5 Sa—1nt+154} : O—1ym+1)+1 — Oq. (2.15)

Homogeneous embedding: For Og, we have its embedding into Oy in which all
generators of Oy are mapped homogeneously to elements of O, as follows:

WP . Odp —> Od?
p
Uy(s) = S = iy i 1= (ix— 1)d*! (2.16)

k=1
i=1,2,...,d% iy,00,...,0,=1,2,...,4d,
where the correspondence of i — 1 and (4, — 1, ..., i3 — 1) is the same as that of a

decimal number and its d-ary expression. The embedding ¥, (2.16) for Op — Oy
is constructed inductively with respect to p as follows:

S e =SP s fori=1,2....d j=12 .. d, (2.17)
or
S s = siS fori=1,2,...,d j=1,2 .. d (2.18)

i, € Oy is one of homogeneously

,,,,,

embedded generators {5, ..., SV : Oy < Oy Tt should be noted that, from (2.14)

and (2.15), there is also an embedding of O(4—1),+1 into Oq4 for any monomial s;, ;. € Oy
such that s;, ;. can be set on one of embedded generators {5y, ..., S(a—1)nt1}. Such an
example is given by the following:
(Sj for1§j§i1—1,
Sj+1 foriy = j=d-1,
S =4 S i for (d—1Dk+1Z<jS(d—Dk+i1—1, 1Sk<n—1, (2.19)
i for (d—Dk+ir1 =7 (d-1)(k+1), 1<k<n-1,
Sivoin1in forj=(d—1)n+1,
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where j = j — (d — 1)k.

§62-2. Endomorphism

An embedding of Oy into itself is a wunital *-endomorphism of Og4. A typical
x-endomorphism of Oy is the canonical endomorphism p defined by

d
p(X)=> siXs;, X €O, (2.20)
i=1
Indeed, from (2.1), p satisfies p(X)p(Y) = p(XY) for X, Y € O,. From (2.2), p is unital,
that is, p(I) = I, hence S; = p(s;) satisfy the relations (2.1) and (2.2).
Let U(k,O4) (k € N) be a set of all k£ x k unitary matrices in which each entry is
an element of @,;. Then, any unital *-endomorphism ¢ has a one-to-one correspondence
with a unitary u € U(1, O ) given by

o(s;) = us;, 1=1,...,d, (2.21)
d
u= Z o(s;) s;. (2.22)
i=1
Likewise, there is a one-to-one correspondence between any unital x-endomorphism ¢ and

a d x d unitary v = (v;;) € U(d, Oy) as follows:

d
p(si) = sjvje,  i=1....4d, (2.23)

1

<

Vji = s 90(32')7 Z?] = 17 cee 7d- (224)

J

It should be noted that, if it is possible to embed Oy into O, for certain d’ and d, then
any unitary u € U(1, Oy4) is expressed in the following form:®

d/
u=> 878", (2.25)
=1

where {SW, Ce ng]} (k =1, 2) are embeddings of Oy into Oy. Indeed, it is straight-
forward to show that u defined by (2.25) satisfies uu* = uw*u = [ by using that
{S{k], e ng}} satisfy (2.1) and (2.2) for each k = 1, 2. Conversely, for an arbitrary uni-
tary u and an arbitrary embedding {SEI], ey SC[;]} . Og — Oy, it is possible to obtain
another embedding {SF], ce Sc[l%}} : Op — Oy in (2.25) as follows

sP—ust i=1 .. d (2.26)

Using this formula, we obtain a new *-endomorphism from two known embeddings, and
conversely, a new embedding from a known x-endomorphism and a known embedding.

dWe always use the symbol p for the canonical endomorphism.

°The symbols Sl[k] and SZ-(k) should not be confused. The former is used just for distinguishing one
from some others, while the latter denotes the homogeneous embedding.
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For example, for d = 2, d = 3, ¢ = p, {SP = s, Sg} = So91, 5’:[31] = S99}, we obtain a
new embedding of O3 into O5 by

S?] = p(Sl), Séz] = 51,2, S:[))Q] = S2.2. (227)

Although (2.21)—(2.25) are general formulae, they are not convenient to construct
various *x-endomorphisms explicitly. Next, we present a more effective way to express
a generic x-endomorphism of O, in terms of some embeddings of Oy into Oy without
recourse to unitaries. For this purpose, we need the following d + 1 embeddings:

{SF, ceey SC[IZZ]} Odi r_>(9d7 7’:17 Tt d’ (228)

d
{S£d+”, . S,[SH”} : Op—04 D= Zdi’ (2.29)

=1

where d; = (d— 1)n; +1 (i =1,...,d) with {n,...,ny} being nonnegative integers. For
d; = d, a trivial embedding (i.e., SJU = s;) is used, while for d; = 1, we define Sy} =1.

d
It should be noted that we have D = (d — 1)( > n; + 1) + 1. Thus, for any {di,...,ds},
i=1

there exists an embedding of Op into O, from (_2.14). Given the above d+ 1 embeddings,
we can define a x-endomorphism ¢ of Oy as follows:

Zs[d“jﬂ sl Di=Y"d; (2.30)
j=1

Indeed, it is straightforward to show that {¢©(s1), ..., p(sq)} satisfy (2.1) and (2.2) by
using (2.28) and (2.29). Conversely, for an arbitrary #-endomorphism ¢ of O, and d

arbitrary embeddings {Sy], e ng} 20y, — Oy (i=1, ..., d), we obtain an embedding
{Spass=e(s)Si i=1,...,d; j=1,....di} : Op — Oy with D; = 3" d;, D = D,

j=1
which reproduces ¢(s;) itself when substituted into St D, + in (2.30). Therefore, any *-
endomorphism of Oy is expressed in the form of (2.30).

From a #-endomorphism ¢ in the form of (2.30), we obtain various *-endomorphisms
by using the U(D) action on Op given by (2.6) as follows:

d.
d+1]/ i) %
SOU(Si) ZS[:FWJSH !
= (2.31)
S =S sl k=1,...,D, ueU(D).
/=1

Especially, by using permutations given by SZ[dH] — S{[fd(;r)l} (0 € 6p C U(D)), we obtain
D! x-endomorphisms for a given set of d + 1 embeddings. In the case D = dP™! (p € N),
we may adopt the homogeneous embedding defined by (2.16) for the embedding of Op in

to Oy, SZ[dH] = (i=1,...,D; iy,...,ip41 = 1,...,d). Then, each permutation

L1yeeey Ip+1
of the indices i € {1,...,d?"'} induces a permutation of the multi indices (i1,...,ip41) €
{1,...,d}* according to the one-to-one correspondence between them given by (2.16).

For simplicity of description, we denote this induced permutation of the multi indices by
the same symbol o as for the single indices, that is, S([jd(j)” = So(i

—7-

. = S0 o .
..... ip+1) 311,...,1p+1



Hereafter, we assume that x-endomorphisms of O, are expressed in terms of a finite
sum of monomials. We, now, consider x-endomorphisms ¢ of O; which commute with
the U(1) action v defined by (2.7). Then, it satisfies the following:

12 (9(50) = @ (7:(50))
=zp(s), i=1,....d, z€C, |z]=1. (2.32)

Hence, from v.(Siy ivijmiis) = 27" Siv.ivjmirs €ach term in o(s;) (0 = 1,...,d)

is a monomial in the form of s; i . ... With 0 = n < p; (i = 1,...,d), where
P={p;|i=1,...,d} is a set of nonnegative integers. Let p be the maximum of P. By
using (2.2), we can rewrite (s;) (i = 1,...,d) into a homogeneous polynomial of degree
(p+ 1, p), that is, a finite sum of monomials in the form of St oiipi1; jprnjr - HIETE, ANy
monomial s;, . ; (or Sip,ip ,.) is one of the homogeneously embedded generators of Og»
(or Og+1) into Oy defined by (2.16), hence ¢ is written as

qr grtl
(31) = Z Z Ck,jsi S]E:erl)Sj(p)* (233)
j=1 k=1

with an appropriate set of coefficients ¢y, ;; € C. Since {¢(s;) | ¢ = 1,...,d} satisfies (2.1)
and (2.2), the relations among the coefficients ¢ j,;’s are obtained as follows:

qr+1 d dar
E Chojii Crriit = 0.0, E E Ch.jii Ck! jii = Okt (2.34)
—1 i=1 j=1

hence ugy = ¢y with £ = (j — 1)d + i is an element of U(dP*™!). Therefore, any *-
endomorphism ¢ of 0,4, which is expressed in terms of a finite sum of monomials, com-
muting with the U(1) action v is written as follows:

ZSM S =1,

(j—1)d+i

(2.35)

dp+1

Sy Zsp“) C=1,...,d"", u=(ugy) € U(d™).

We call this type of x-endomorphism the (p + 1)-th order homogeneous endomorphism.
Here, one should note that if ug = dx e, (2.35) becomes the identity map ¢(s;) = s; from
(2.18) as follows:

Z S d+1 S(p

= sizs;w SPr =, i=1,...,d (2.36)

Especially, as for the second order homogeneous endomorphism, by setting

v 0 --- 0
0O v --- 0

u = , cU(d*), veU(d), (2.37)
00 - v



so that we have

] 1)d+z E :S(g 1)d+k Vkii

= Zsm Uk, v = (v;) € U(d), (2.38)
k=1

where use has been made of (2.18) for p = 1, the *-automorphism of O, by the U(d)
action (2.6) is reproduced as follows:

d d
:ZZSJ ]Ukz
7=1 k=1
d
Zkv’”’ i=1,....,d; v= (v, €U(d). (2.39)
=1

In the case that w in (2.35) is a permutation 0 € Gg1 C U(2PT), ¢ is called
the (p + 1)-th order permutation endomorphism®* of 0. Explicitly, the permutation
endomorphisms are written in the following:

(1) The second order permutation endomorphism:

d d
2) * *
0(50) = D Sotly sy = D So) 5 (2.40)
J=1 j=1
where o (i1,145) denotes a permutation of multi indices (iy,42) € {1,...,d}?* induced

from that of indices ¢ € {1,...,d?} by the one-to-one correspondence defined by
2
= (i — D)dF 4 1.
k=1

(2) The (p + 1)-th order permutation endomorphism:

d
p+1 p * *
Z S ] 1 d+Z - Z Sg(i1j17~'~7jp) Sjl“'jp’ (241>
Jlreendp=1
where o(i1,...,4,+1) denotes a permutation of multi indices (iy,...,0,41) €
{1,...,d}”™ induced from that of indices i € {1,...,d”™} by the one-to-one cor-
p+1
respondence defined by i = > (i, — 1)d*~1 + 1.
k=1

Let PEnd,1(0,) be a set of all (p+ 1)-th order permutation endomorphisms of Oj.
Then, we have

PEndQ(Od) C PEnd3(0d> c--- C PEndp+1((’)d) c - (2.42)

fAs far as the present authors know, the first nontrivial example of the permutation endomorphisms
other than the canonical endomorphism is the second order one in Oz presented by N. Nakanishi in
private communication. The discussions in this subsection are based on the generalization of his result.
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since a subset of PEnd,;1(0y) with Ggi1 O G4 3 o preserving j, in (2.41) (j7 = j,) is
nothing but PEnd,(O;) because of (2.2). The canonical endomorphism p given by (2.20)
is the special case of the second order permutation endomorphism (2.40) with 0 € Sz
being a product of d(d — 1)/2 transpositions (i,j) — (j,7) with ¢ # j. Likewise, pf is a
special case of the (p + 1)-th order permutation endomorphism with o : (i, ji,...,7,) —
(jh s ajmi)'

Of course, a generic *-endomorphism given by (2.30) does not necessarily commute
with the U(1) action 7. We call x-endomorphisms not commuting with  the inhomo-
geneous endomorphisms. A typical example of the inhomogeneous endomorphism in the
form of (2.30) is obtained by setting d; =1 (i=1,...,d—1)and dy = (d—1)(n—1)+1
(hence D = (d — 1)n+ 1) with n — 1 € N as follows:

o(si) =8 =1, d—1,
da (2.43)
d+1 d| * :
e(sa) = ) Sy S,
j=1

where {S][-d] | j=1,...,d4} and {S][dﬂ] | j =1,...,D} are embeddings of Oy, and Op
into Oy, respectively, in which the order of s;’s minus that of s;’s appearing in at least
one of S}dﬂ] (t=1,...,d—1) is not equal to 1.

In (2.43), we can assign an arbitrary n-th order monomial s; ;. (i1,...,iq =
1,...,d) to ¢(s1) by adjusting the embedding (2.19) of O(4_1)n41 into O4. This fact will

be applied later.

83. Properties of Cuntz Algebra: Representation and Branching

§83-1. Permutation representation

A permutation representation®® of @, on a countable infinite-dimensional Hilbert
space H is defined as follows. Let {e, | n € N} be a complete orthonormal basis of H. A
branching function system {u;}&_, on N is defined by

i; : N — N is injective, 1=1,2,...,d, (3.1)

wi(N) N p;(IN) =0 fori#j, 4,j=12,....d, (3.2)
d

Jm@N) =N. (3.3)
i=1

Given a branching function system {ju;}% , and a set of complex numbers {z;, € C |
|zin| =1, i=1,...,d; n € N}, the permutation representation 7 of Oy on H is defined by®

T(8i)en = ZimCus(nys t=1,...,d, n€N. (3.4)

By this definition, 7(s;) is defined on the whole H linearly as a bounded operator. Then,
the action of 7(s?) = 7(s;)* on e, is determined by the definition of the adjoint operation.

8The original definition of the permutation representation of the Cuntz algebra in Ref.5) is the case
of z;, =1(i=1,...,d, n € N). We have introduced a set of coefficients z; ,, according to Ref. 6).
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Since for any n € N there exists a pair {j, m} which satisfy p;(m) = n, we consider
m(8:)" On €y (m:
(m(si) e mlee) = (e, m|m(si)ee) = zip{ep;(mleue) = Zi60ij0m.e
= Zim0i;{emler), ¢ eN, (3.5)
hence we obtain
W(Si)*euj(m) = 5i,j§i,mem- (36)
Here, (-|-) denotes the inner product on H. It is, now, straightforward to show that

m(s;) and 7(s;)* defined by (3.4) and (3.6) satisfy the relation (2.1) and (2.2) on any e,,.
We can classify permutation representations into two types as follows:*6®)

(1) Permutation representation with a central cycle: There exists a monomial

7(Sig...i._,) having an eigenvalue z with z € C, |z| = 1. This representation
is denoted by Rep(ig,...,ix_1; 2) and a positive integer « is called the length of
the central cycle. For the special case z = 1, we denote Rep(ig,...,ik_1) =

Rep(ig, ..., ix—1; 1).

(2) Permutation representation with a chain: There is no eigenvector for any monomial

in s;’s and there exists a vector v € H satisfying ||z (s, ;. )vll = 1, (N € N)
for a certain sequence {ix}2, (ix = 1,...,d). This representation is denoted by
Rep({ix}).

Any of other permutation representations is expressed as a direct sum and a direct integral
of (1) and (2) with multiplicity. For Rep(io, ..., i._1; 2), a label (ig, ..., i,._1) is called to be
periodic, if iy, = iy (K =0,1,..., k—1) is satisfied for a certain positive integer M (< k)
under understanding that the subscripts of i;’s take values in Z,. The integer M (if there
are more than one, the minimum of such M’s) is called the period of the label (ig, ..., i._1).
By definition, M is a divisor of x smaller than . If w(s;, ;. ,) has an eigenvalue z, so does
any of its cyclic permutations 7(sy ). Hence all of k Rep(ig, . ..,;_;; 2)’s obtained
by cyclic permutations of a label (ig,...,7,_1) are identified. Likewise for Rep({ix}),
a label {ix}32, is called to be eventually periodic if there exist a positive integer M
satisfying ixin = i for k 2 N with a nonnegative integer N. Rep({ix}) and Rep({jx})
are called to be tail equivalent if there exist nonnegative integers M and M’ such that
ikem = Jremr (K € N). Two tail equivalent permutation representations with chains are
unitarily equivalent to each other.®) It is known®% that a permutation representation of
O, is irreducible if and only if it is cyclic and its label is not (eventually) periodic.

In the following, we give explicit realizations of permutation representations. Ac-
cording to each type, it is convenient to rearrange the basis of H in an appropriate form.

Rep(ig, . .., ix—1; 2) of Og4: The complete orthonormal basis of H is denoted by {ex, , |
A € Z,, m € N}. The previous basis {e,}°°, is recovered by such an identification as
Cr(m-1)42+1 = €x,m- We define the action of 7(s;) on ‘H by

er—1,i+1 for 1 £d =iy — 1,

W(Si) Ex1 = 2,’1/'i €x—-1,1 for ¢ = Z')\,l, (37)
€x—1,i for i)\_1+1 §Z§d,

T(S:) €x,m = €x—1,d(m—1)+i for m = 2. (3.8)
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Then, ey 1’s become eigenvectors of operators {m(S;, _i. 1.io...ix_s) | A € Zy} as follows:
T (Siy,ointsioroin_1) X1 = 2€01, A€ Ly, (3.9)

The set of eigenvectors {ey 1 | A € Z,} is called the central cycle of Rep(io, ..., ix—1; 2).
Here, one should note that the subspace spanned by {ey ,,}>°_, for a fixed X is generated
by the action of nx-th monomials {s;, .. |7 2 0;J1,...,0m = 1,...,d} on ey 1. The
special case Rep(1) =Rep(1; 1) is called the standard representation and denoted by
in Ref. 1):

T5(8:) €n = €d(n—1)+i» 1=1,2,...,d; n€N, (3.10)
where e, = eg . From (3.10), it is straightforward to obtain the following formula:

71—8(3%'1 ----- Zk) €n = EN(iy,....ik;n)>

k
N(ir,..yigsn) = (n—1)d* + > (i, — D&~ +1, (3.11)
7=1

for i1,--- iy =1,...,d; n € N.
Rep({ix}) of O4: The complete orthonormal basis of H is denoted by {ex n | A €
Z, m € N}. We define the action of 7(s;) on H by

ex—1,i41 for 1 i<y —1,

T(Si)ex1 =4 ex_1.1 for i = iy_q, for A 2 1, (3.12)
ex-1,i forix 1 +1=4i=d,

T(S:) €x,m = €x—1,d(m—1)+i for A\ S0 or m=2. (3.13)
Then, we obtain
in) €0,1 = EN11,1 N eN. (3.14)

The set of vectors {ey 1 | A € Z} is called the chain of Rep({ir}). The subspace spanned

by {ex,m}oo_; for a fixed A is generated by the action of 05(1) on ey 1. It should be noted
that from an equality

(7, in) EM,1 = ENt1,1, 0= M <N, (3.15)

it is obvious that Rep({jx}) with {jx = ixram}32,, which is tail equivalent with {iy},
is obtained from Rep({ix}) by rearranging the basis of H, hence Rep({jx}) is unitarily
equivalent with Rep({ix}).

In concluding this subsection, we remark on an important property of the standard
representation. By using the homogeneous embedding ¥, of Ou (¢ 2 2) into O, defined

by (2.16), the standard representation 7 of Oy is obtained from 7" of O, as follows:
@ =gV oy,. (3.16)
Indeed, from (2.16), (3.10) and (3.11), we obtain

(71'(1) oW,)(s;)e, = ng)(sil iy)en 7= (i — 1)dk_1 +1

s T Fq/\7i/tn T s\

= €(n—1)da+i

= qu)(s;)en, (3.17)
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where {s], ..., s} and {s1, ..., sq} are the generators of Oy and Oy, respectively. On
the other hand, as for other permutation representations with central cycles of length 1
and eigenvalue 1, we have

di—1
(io—1)+1, ig=2,....d, (3.18)

(1) ~ (@) pgp—
iy qu:W{O, 190 = 71

where 7ri(01) and qu) stand for Rep(ig) of Oy and Rep(ig) of O, respectively, and we have

used the symbol “o7 6 denote the unitary equivalence with taking into account that re-
alizations of the representations are different from those given by (3.7). Here, it should
be noted that Ll'/q(sgo) = (s4,)%, and (3.18) is obvious since there are no other monomials
in s;’s having eigenvector except for those only in s;,. Generally, for an irreducible per-

mutation representation with a label L = (ig,...,i,—1) (2 < Kk < 00), we obtain
Kq/T
) ow, = (Pr?, (3.19)
J
j=1

where 7 is the least common multiple of x and ¢, and {Ej };i/f is a certain set of nonperiodic
labels with length r/q in Og¢ determined by L and q.

883-2. Branching of permutation representations

Let A and B be algebras on C. From a representation 7 of A and a homomorphism
¢ : B — A, we have a representation m o ¢ of B by composing 7 and . Even if 7 is
irreducible (or indecomposable), 7 o ¢ is not necessarily so. If it is possible to decompose
7o into a direct sum of a family {7y} ca of representations of B, which are representatives
of the unitary equivalence class of representations of B, we write

Top X @7‘(’,\, (3.20)

and call it the branching of m by . It should be noted that the symbol “=” denotes unitary
equivalence. Likewise, for an endomorphism ¢ : A— A, we have a similar branching.

In general, for a given irreducible permutation representation 7 of the Cuntz algebra,
a branching of 7 by a kind of *-endomorphism ¢ is given by!®)

rop=Pm, (3.21)
LeS

where S denotes a certain set of irreducible permutation representations determined by
m and ¢. Here, we give a few examples in Oy necessary in later discussions. For more
examples and detailed discussions, see Ref. 10).

We consider a family of particular (p + 1)-th order permutation endomorphisms
{¥0, }p=1 defined by (2.41) with ¢, € Go+1 being the transposition o,(1, ji,...,Jj,) =

(17j17 CI ajp)v Op(27j17 s 7jp—17jp) = (27.j1’ s 7jp—17jp)’ jp =3 _jp:

pat) = R (3.22)
Qo,(52) = 820" (J), J=s1+s120=J"=J",
where p is the canonical endomorphism of Oy and p(X) = X. Then, it is shown that
Pop © Pog = Pog © Paypy Py 4 S N> (323)
(©0,)* = Posy peN. (3.24)
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Indeed, from the equality
Jp(X) =p(X)J, X € Oy, (3.25)
we have
o)) = () PH(T),  m+1EN. (3.26)

Hence we obtain

(‘pap o Soaq)(sl) = 51

= (¢o, © Y0, )(51), (3.27)
(90, © P, ) (52) = 52 PP (J) pT=H(T) PPTI7H(T)
= (P, © Pa,)(52)- (3.28)

Now, we consider eigenvectors of operators in the range of 7 0, . First, one should
note that (3.22) is rewritten as follows:

WU,D(Si) = 8§; Uy, L= 17 27

op—1

* 3.29

w=1 U= Z(Sg(‘i)zpfl Sy(py)np D =up =y (329)
j=1

where {5 (v) | j=1,2,...,2} denote the homogeneously embedded generators of Oy into

O, deﬁned by (2.16). By using equalities

S o1 for1 <5 <2r7t
upy S = I (3.30)

TS for 2 r1S S
Ujy Sjoyipsl = Sjoyeipyit Jiyeeo 7jp =1,2 (3-31)
and m4(s1) e; = eg, we obtain
7 (0, (S ) SJ7) €1 = 7o (un, 5, -+ uny i, 850, ,) €1

_ *
= Oy ja s (Uny STy * gy S, jp1) €1

_— . * Y * . . .
- 61€17J17T5(uk‘p8kp Uky Sy Sha,..., ]pa]l) €1

= Opy gy 5kp Jp7T5<S]1 ----- Jp )e1
= 0pm (S e, Gk=1,2,...,2" (3.32)

Making Ws(gogp(S,gp))) act on (3.32) and summing up with respect to k = 1,...,2P we
obtain

s (00, (SP) S e = (S ey, j=1,2,...,27, (3.33)

hence WS(SJ(.p)) ey is the eigenvector of (Wsogpgp)(SJ(.p)). Furthermore, from (3.30) and (3.31),
for any set of indices ji, ..., jmp+rx = 1,2 with m € N and 1 £ k < p, we can show that
there is a unique set of indices 1 (= j1), j5, - - - ,j(m npik = L, 2and j =1,...,27 such that

SP . meEN, k=1,....p (3.34)

Si1,d2s s dmptk :%p(sa‘g,jg ..... j(m,l)w) i
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As for s,

k
=m(S) e, 5= G- 127+ 1. (3.35)
/=1

Therefore, any of the basis {e, }7°,, which satisfies (3.11) with d = 2 and n = 1, is given

by an action of (75094, )(55,,...jm) (J15---,Jm = 1,2, m € N) on one of the 2 eigenvectors
in (3.33) .
For any divisor s of p, we can rewrite us as
21171
us = g5 (30 (S5 + 500, (3.36)
i=1
2K/
PRX) =D S X ST = pN(X), X €0, (3.37)
k=1

where {Si('i) | i = 1,2,...,2%} denote the homogeneously embedded generators of Oa«
into Oy. Then, in the same way as above, it is shown that

7o (2o, (S (SI)E) €1 = mo((SI)F) er, i =1,2,...,2%. (3.38)

From (2.16), we have

(SiE =8P, i=

Z =D+ =12 (3.39)

hence some eigenvectors in (3.33) are reduced to those in (3.38). By writing Si(“) (1 =
1,...,2%) explicitly as

S = Sigins i= 3 (i — 12841 (3.40)
k=1
with g, ...,7._1 = 1,2, we obtain
Tg (Socrp(sim—l) (SZ(H))E) €1 = 7_‘_8((51.(/“));) €1, Si(’ﬁ) = Sire—1,i0ynyin—2" (341>
Therefore, if the set of indices (ig, . .., ix_1) is not periodic in the sense stated in Sec. 3-1,

we can see that (s 0 ¢, )(s;) (i = 1,2) act on a set of x vectors

{ws((% ,,,,, ) Yei, ..., ws((sm,io,...,in,z)%)el} (3.42)

in such way that they constitute a central cycle of length x of the irreducible permutation
representation Rep(ig, iy, ...,4x—1) of Os.

From the above discussions, we can, now, show the branching formula of the standard
representation 7, by ¢, as follows:

s
Bl

) €1, Ts ((Sil,.A.,infl,io)

T00,, 2 P L, (3.43)

LEIPR,
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where IPR, denotes a set of all irreducible permutation representations with central cycles
and with eigenvalue 1, in which each length x of central cycles is a divisor of p. Here, k
eigenvectors in Rep(L) with a nonperiodic label L = (ig, ..., ix-1) (1 < k < p) is given by

(75 © Vo) (Sin,omsintsiosmsin.1) EN(LA) = EN(LN)> A € Ly, (3.44)
2 -1, 01
N(L, )\) = or 1 (Z>\+g_1 - 1)2 + 1, (345)
=1

For better understanding, we explicitly write (3.43) for p = 1,2, 3,4 as follows:

Y
s O Pg; = Ts @727
~
Tg O (pog = T EB Uy’ EB 7Tl,27
Y
Mg O Pgy = Mg B Ty D M1 12D T129,

I
Mg O Pgy =T BTy DM 2D M1 112D T1,122 D T1222,

IRt ] s Ly&y

where m;, ;. (k = 1,2,3,4) denotes Rep(ip,...,%,—1). Since it is easy to reconfirm
(3.46), we show it concretely in the following.
From 74(s;)e; = e; (i = 1,2), which is obtained from (3.10) with d = 2, and

Jsj=s; j=3—j, j=12, (3.50)

we have
(75 0 oy )(51) €1 = €1, (3.51)
(s © o, )(52) €2 = €2. (3.52)

Furthermore, from (3.50) and uy = J, we obtain

Sj17j27---7jk+1 = Poy (S]iyjé,,];g) Sj;CJrl? jhj?a e ajk-‘rl = 17 2a (353)
s, for j,_, =1,

S = Sjp, Sjy = uj,  Sj, = { } (=2,....k+1, (3.54)
sz, for g, =2,

hence we have

(=1t = (=1)fe Y (=1)ent ) =2 k41, (3.55)
k1
(—1)at = =1, (3.56)
=1
that is, we have j,,, = 1 if the number of 2 in {ji,..., jr41} is even, and j;,, = 2 other-

wise. Therefore, any of {e,}°2,, which is expressed as m5(s;,,...4,.,) €1 With i1, ... iy =
1,2, is uniquely given by an action of (750 s, )(Sj,,..;.) on either e; or ey with an appro-
priate set of indices {ji,...,jr = 1, 2}. Thus, we obtain (3.46).

Next, we consider the branching number B, of m, by ¢,,, which is defined by the
number of irreducible permutation representations appearing in the rhs of (3.43). We can
obtain B, in the following way. First, let C,, be the number of irreducible permutation
representations Rep(io, ...,i,—1). One should note the following: (1) Rep(ig,...,0n—1)
is defined up to cyclic permutations of the label; (2) if Rep(io,...,4,-1) is periodic, its
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periodicity is a divisor of n except for n itself; (3) the total number of Rep(ig, ..., 4,-1)’s
involving reducible or redundant ones is given by 2”. Then, the recurrence formula for
C,, is given by

C1 =2,
Z kO = 2n (3.57)
keDy,

with D,, being the whole set of divisors of n. In terms of C,,, B, is given by

B,=)Y_ C, (3.58)

neDy

with D, being the whole set of divisors of p. Since it is an elementary problem to solve
(3.57), we give here its solution without proof. Let n = n{™ ---n" be the factorization
of n in prime numbers. Then, C,, (n = 2) is given by

1 '
Cp==[2+> (-1)F > on/twmw) ) (3.59)
n (=1 ky<--<kg

In particular, for a prime number n(2 2), we have

on 2
C, = . (3.60)

n

In concluding this subsection, we show that, for any irreducible permutation repre-
sentation with a central cycle, my, we can explicitly construct a *-endomorphism ¢ so
that it yields only the standard representation 7 as follows:

T 0 = m,. (3.61)
For example, in O, (3.61) for L = (1,2) is satisfied by the *-endomorphism ¢ as follows:

QO(Sl) = 51,2, 90(82) = 52;1 + 51,1;2, (362)

which is one of the inhomogeneous endomorphisms defined by (2.43). Indeed, it is straight-
forward to show that ¢(s;, ;) for any index (iy,...,%,) involves none of monomials
in the form of {(s21)™, 8]'17”.7jk(3271)m_15;17_”7jk, Sjlw.’jk(5172)m_18;17m7jk} with ji,..., 5k =
1,2; k=2 1, and m 2 1, hence there is no eigenvector except for (m 20 ¢)(s1). On the

other hand, from (3.62), we have

2m—1 m—1 _* m+1 *
S = $9(s s;+ (s S5,
90(( 2)2m ) 2( ;) * 1 W(Hrll) * 2 m>1, (3.63)
90((52) ) = $9(s1)™s5 + (s1) 51,
hence we obtain
2m+1 m
] S1) = So(s1)™s9,
‘:0(( 2) 1) 2(51)™s9 >0 (3.64)

90((82)2m51) = (51)"s12, -

Since any monomial s;, ;19 is uniquely written as a product of the monomials appearing

in the rhs of (3.64), it is rewritten into ¢(s; ;) with an appropriate set of indices
1e5dg

{j1,---,Jy = 1,2}. Therefore, any of the basis of Rep(1,2), {exm | A = 0,1; m €

N}, which is expressed as m12(S,...5.) €0,1 = T1.2(Sj,...j,.1.2) €0, 1, 1S rewritten into (75 o
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Besides (3.62), (3.61) is satisfied also by ¢'(s1) = s2.1 and ¢'(s2) = s2,2.1 +51,2. However, it
should be noted that the x-endomorphism defined by ¢"(s1) = s19 and ¢”(s2) = s1.1.1+52.2
(or ¢"(s1) = s2.1 and " (s3) = 51,1 + S2.2,2) does not satisfy (3.61), that is, m; 2 0 " yields
a direct sum of 7w, and an infinite number of 5.

In general, in Oy, for any 77, with a nonperiodic label L = (ig,...,i,_1; 2), (3.61) is
satisfied by the x-endomorphism ¢ defined by

o(51) = St p(s2) =) STy, (3.65)
j=1
Sl = S{O,
Sj = Sio’m,ij_%{j_la 2 é] é Ra (366>
SK+1 =z Si0yeyire—2,irk_11
T = Sig,
7} = S{O,...,ij—Q,ij—l’ 2 é j g k= 1 <367>
T’f = §0yeeesir—35tr—2

with i = 3 — i, where {S1,...,Sks1} and {T},...,T,} are specific generators of O, and
O, embedded into Oy, respectively.

It is possible to obtain such a #-endomorphism also for Oy (d = 3), but it is rather
complicated to construct a general formula similar to (3.65)—(3.67). We give here an
example in Os: (3.61) for 7, with L = (1,2,1,3) is satisfied by the s-endomorphism ¢
defined by

90(51) = 51,2,1,3;
P(s2) = 52, (3.68)

©(s3) = S3.1+ S1,3.22 + S1.1:32 + S122.12 + 512323 + S121.1:33 + S1.21.2:1,3-

84. Recursive Fermion System

In this section, we summarize the construction of the recursive fermion system
(RFS,)," which gives embeddings of the CAR algebra into Qg (p € N). We denote the
generators of the CAR algebra by {a, | n € N} which satisfy

{am, an} =0, {am, a,} =0nnl, m,neN. (4.1)

§84-1. Definition of RFS, in Oy

Let a1, az, ..., a, € Ow, ¢, : O — O be a linear mapping, and ¢, a unital
s-endomorphism of Oq, respectively. A set R, = (a1, as, ..., ap; (p, @p) is called a
recursive fermion system of order p (RFS,) in Oqp, if it satisfies the following conditions

(i) seed condition: {a;, a;,} =0, {a;, a;}=06;,1, Jk=1,...,p, (4.2)
(ii) recursive condition: {a;, (,(X)}=0, GX)"=(X"), X € Ow, (4.3)
(ili) normalization condition: (,(X)G,(Y) = p,(XY), X, Y eOp (44)

~ 18 —



and none of {a1, ..., a,} is expressed as (,(X) with X € Op. Wecall a; (j =1,...,p)
and (, the seeds and the recursive map of RF'S,, respectively. The embedding ®p, of the
CAR algebra into Oy associated with R, is defined by

¢Rp : CAR — OQp,
) ' (4.5)
P, (apm-145) =C (a;) j=1,...,p; meN.

We denote Ag, = Pr,(CAR) and call it the CAR subalgebra of O associated with R,
The simplest example of RFS, is given by the standard RFS, SR, =
(a1, ..., ap; C, ©p), which is defined by

op—3j 2i—1 jil [%]
a; = Z Z(-l)mzl 2 Szj(k_1)+[3;j—1(2k_1)+ga J=1...,p, (46)
k=1 ¢=1
% > [5]
GX) = (~1)=" s Xy, X € O, (4.7)
i=1
2P
Pp(X) = p0(X) =) 5 Xs], X €Oy, (4.8)
=1

where [z] denotes the largest integer not greater than x, and ps» being the canonical
endomorphism (2.20) of Og. It is shown that Agg, = (’)g,,“) by mathematical induction,
that is, any s;, i je.j1 € ng(l) is expressed in terms of a, (n < kp).

Especially, SR, for p =1, 2, 3, 4 are given by

;

a; = Sy;2,
SR, G(X) =51 XsT —52Xs5, X € O, (4.9)
AX) = p(X) = Y siXsi, X €O,
L i=
(a, = 51,2 1+ S3.4,
Ay = S1;3 — S24,
SRy G(X) = 51Xt — 59 Xah — 53X 85+ s, X85, X €Oy, (4.10)

4
QOQ(X) = p4(X) = Z SiXS;F, X e 04.
i=1

\

( a1 = S1;2 + S3.4 + S5.6 + S7:8,

Qa2 = 51,3 — S2;4 + S5:7 — Se;8;

a3 = S1;5 — S2;6 — S3;7 1+ S4;8,

SRs G(X) = 51X 5T — soXah — 53X 85 + 54X s (4.11)
— 55X st + s¢Xag+ 57 Xsh —ss Xsi, X € O,

8
@3(X) = ps(X) = > s Xs], X € Os.
i=1

\
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a1 = S1;2 + 834+ S5i6 + S7i8 1+ Soj10 + S11;12 + S13;14 + Si5516,
Q2 = 51,3 — S2;4 1+ S5;7 — Se;8 1+ S9;11 — S10;12 T S13;15 — 514165
A3 = S1;5 — S2;6 — S3;7 T S48 T S9;13 — S10;14 — S11;15 T 512165
Ay = S1;9 — S210 — S3;11 T S412 — S5;13 + Se;14 T+ S7i15 — Sgi16,
SR, G(X) = 51X s — so X — 53X 8% + 54X (4.12)
— 55X 55 + s¢ Xag + 57.X 55 — 53X 55

— 59X 85 + 510X + 511X 5] — 512X 875

* * * *
+ 813X813 — 814XZE14 — 815X815 + 816X816, X € 0167

16
Q03(X> = plG(X) = Z SiXS;k, X € 08'
i=1

As for the standard RFSy, it is easy to write down s;, ;.. j...;1 € (’)g(l), k=1,in
terms of Pgg, (a,) (n < k) explicitly as follows:

k—1
> (Jm—1)Nm
Syt Jyeendl — (_1)m:1 AlAQ te Ak> (4.13)
( . .
Dsp, (am)Psr, (am)*  for (iy, jm) = (1, 1),
Dspr, (ap, for (i, jm) = (1, 2),
A, = () ( )= L2 m=12 .. k (4.14)
Dsp, ()" for (i, jm) = (2, 1),
\¢531<am>*@3R1 (am)  for (im, jm) = (2, 2),
k
No= ) (ie+je—2):ti{i€ {imi1s -y dmtts o Jr) )z‘z?}. (4.15)
l=m+1

Besides the above standard RFS SR, satisfying Asg, = OQUp(l), we can construct a

RFS R, so as to obtain Ag, ¢ Og,(l). Let ¢ be an arbitrary inhomogeneous endomorphism
of Oy in the form of (2.43), and define a RFS, by R, = (a1,...,ap; (, ¢p) which is
obtained from (4.6)—(4.8) by replacing s; by ¢(s;) (i = 1,...,2P). Then, the embedding
&, of the CAR algebra into Oy associated with R, is given by

Pr, = o Dgp,. (4.16)

Since ¢ does not commute with the U(1) action + defined by (2.7), we have indeed
Pr,(CAR) = (p o Psp,)(CAR) = o(OYy ¢ OYM " For later use, we give two such
examples in the case of p=1:

(80(81) = S1.2, ©(s2) = So,1+ S1.1,2,

a; = S121.2 1+ S122:1,1, (4.17)
. G(X) = 81,2XST,2 — (S9,1 + 51,1,2) X (12 + S2.11),

'90(81) = S1;1 + S2.1;92, ©(s2) = 52,2,

a; = S1;1.22 1+ 521,2,2,2, (4.18)

[ G(X) = (5151 + 82,1,2) X (51,1 + 82;1,2) — 52,2X85 5.
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Here, the *-endomorphism ¢ in (4.17) is the same as (3.62).

§84-2. Reduction of the standard RFS, (p = 2) to the standard RFS;

Using the homogeneous embedding ¥, of Ox» (p = 2) into Oy defined by (2.16)
with d = 2, it is shown that the standard RFS, reduces to the standard RFS;. In this

subsection, we denote the seeds of the standard RFS, (p 2 1) in Oq» by a§-p) (j=1,...,p).
First, we show that the following equality is satisfied:

v(a) = (@), =12 ...p (4.19)

Indeed, from (4.6) and (2.18) with d = 2, we have

op— 1 2p— 1
Z SQk 1 Qk Z 515y, v I)S(p Y “sy = S1;2 = agl)’ (4.20)
op—j 2i—1 jil[ -1 }
Py _ ~ Lam=T] «(p) (p) *
lpp(a‘jp )= Z Z(—l)’"*l ’ S2§(k—1)+és2§?*1(2k—1)+£
k=1 =1
op—3j 9j—2 J ’
= 54 o) ()
= Z [(—1)’”:1 ’ S2§(k—1)+2€’—152?4(%—1)4-26’—1
k=1 ¢'=1
j—1 /
= 5 o) )
+ (==t 52§(k—1)+2€/52§]—1(2k71)+2£’]
op—3j 25—2 i=2r
E: %%:% 1 1) = *
= Z(—l)m 1[2 ][ Séf 1)k 1 M,ng 2)2k 1)+051
k=1 0'=1
(p—1) =
- 32321 1 )H/S; 2(2k— 1)+z'52}
~1 j—1 j+1
= Q(Ta(af) = - = ¢ (B (0 ))
=d @Y, =23, p (4.21)

where (2.2) for Og-1 is used, and ¥; should be understood as the identity map on Os.
Likewise, for the recursive map (,, we have

D, (G(X)) = S (1) T 5y (x50

=1
- 2"/1 ﬂ (p) (p) * > [;’/1 1} () (p) *
> (1) S (X)SE + (— 1) T s (X))
2p— 1 P i
= Z = (5180w (X) S5 — 580V, (X) P s
2p—1 p—1
:Cl(z<— ),El[zm 1]5(17 1)@( )Si(pfl)*)
i=1

— . =W(X), X €O (4.22)



Therefore, we obtain

(Wp o @SRP)(ap(mfl)Jrj) = wp(cgt—l(a§P)))
m—1)+j—1 1
= Gj( )+ (ag ))

= Dgr, (pem-1)+5), J=12,...,p; meN, (4.23)

hence
(Wp o (PSRP)(an) = ¢SR1 (an), n € N. (424)

From the above calculations, it is straightforward to generalize (4.24) to the following
form:
wﬁp o) @SRP = QPSRM (425)

where ¥, , denotes the homogeneous embedding of Oy into Oy with r being an arbitrary
divisor of p.

85. Restriction of Permutation Representations to CAR Subalgebra

In the previous sections, we have discussed on some properties of embeddings, *-
endomorphisms, the permutation representations and branchings in the Cuntz algebra,
and introduced the construction of the recursive fermion system. Hereafter, we discuss
on properties of the CAR algebra by restricting those of the Cuntz algebra through the
recursive fermion system.

§85-1. Fock(-like) representation

As shown in Ref. 1), the restriction of the standard representation 7% of Og to Asr,
for an arbitrary p gives the Fock representation, which is denoted by Rep[1], as follows:

7P (a,)e; =0, neN, (5.1)
ng)(azla;"m Sy )€1 = EN(ny )y LS < Mg < e <y (5.2)
N(ny,...,ng) =1+2m7 1 4o pomt (5.3)

where we make an identification of @gz,(a,) with a, for simplicity of description. Since
it is obvious that any n € N is expressible in the form of N(nq,...,ng) — 1, e, (n € N) is
uniquely given in the form of the lhs of (5.2), that is, ey is the unique vacuum and a cyclic
vector of the representation. We can, now, see the fact that the above Fock representation
is strictly common to all p is nothing but a direct consequence of (3.16) and (4.24):

ng) o Pgsp, = (T 0¥,) 0 Dgp,
=730 (¥ 0 PgR,) = Ts 0 Pgp,, (5.4)

where 7, is the standard representation of Os.

As a straightforward generalization of the above, we consider the restriction of
Rep(io; ) (g = 1,...,2P) of O to Agg,. From (4.5)(4.7) and (3.7) with g, ,, = €y, We
have

T2 (p(m-1)+5) €1 = B, 2 (= 1) Voo 27 7P (53 )™ s, _pi) e, (5.5)
TN (@5 1y45) €1 = i1 (—1)Nodm 27 7 (5, )" Vs i) e (5.6)



p )
where m € N, j = 1,2,...,p, and ig is obtained from iy = Y (ig; — 1)27~' + 1 with
j=1

i01,---,%0p =1,2; Ni jm and N/ are certain integers determined by iy, j, m. There-

10,7,M
fore, using a Bogoliubov transformation ¢;,(= ¢;, 1) defined by

ap(m,1)+j for iO,j = 1, )
¢io(ap(m—1)+j) = m e N7 J = 17 - Dy (57>

* . _
Upm—1)4 for ig; = 2,

we obtain ' '

T (ai)e; =0, al® = ¢y(a,), neN. (5.8)
It is shown in the same way as (5.2) that any of {e,}>2, is given by an action of
Wz(f M@l ali2") (ny < -+ < ny) on e;. We call this (irreducible) Fock-like represen-

tation of the CAR algebra the ¢;,-Fock representation, and denote it by Rep®[iy]. We
have the following relations:

Rep® [ig] = Rep® (ip; 2) o Psr,
= Rep® (1) 0 Dgp, o ¢y,
= Repl[1] o ¢;,
:FOCkO¢i0, 7:0: 1,2,...,2p. (59)

885-2. Restriction of permutation representation with central cycle to CAR

Now, we consider a generic irreducible permutation representation with a central
cycle and with an eigenvalue z (|z] = 1), Rep(L; z) of Oy, where L = (ig,41,...,05-1)
denotes the label of the representation. First, let us recall the s eigenvectors ey ;1 (A =
0,1,...,5x—1) in Rep(L; z) given by (3.9). Then, for n = k(m — 1) + ¢ with m € N and
(=1,2,..., Kk, we have

7TL(Cln) €1
=TL (Cf(m_l)M_I(Sl;Q)) €1

= 2w (G (512)) 7L ((Sigoiviiorin.d)™) €11
(-1

)(mfl)NA,NJrNA,EAZmTrL(( )mfl

Sixein_1 Sl’)\7~~~:i>\+€72,1§287;)\+27177;>\+é»~~-7i/\71) €1

m—1
) Si)\7-~-7iA+£—2:lviA+E»4-~7iA—1) €1, (510>

= Oinge1,2 (_1>N)\7n712m7TL ((Sz’)\,...,i)\_l
WL(GZ) X1

=TL (Cf(m_1)+e_1(82;1)) €1

_ — —
=Z"7y, (dm DN+ 1(32;1)) 7TL((Si)\7...,2',{_1,1'0,.,.,1')\_1)m) €\l
= (—1)(m71)NA‘”+NA’Z’15m7TL((Sz‘A,A..,iA,l)mflSiA,..A,ng,g,z;157;“@,1,1”4,...,@,1) ext
= Oixgp-1,1 (_1)Nk7n712m7TL((Six,-n,ix—l)m_lsix 77777 ix+e—2727ix+e,--~7ix—1) SWE (5'11)
-1

where Ny ; = > (ixs+r — 1) (Nyp = 0) is the number of 2 in {iy, ..., ix+;—1}. One should

note that the sibscripts of indices i;’s take values in Z,. Therefore, using a Bogoliubov
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transformation ¢y, \ defined by

(_1)N/\'nilan(m—1)+é for Ianpe—1 = 1,
¢L,)\(aﬁ(mfl)+€) = B N/\ynil . ) B m G N, e = 1’ . 7/{:’ (512)
(-1 a for iy, o1 = 2,

K(m—1)+£
we obtain
m(aM)ex1 =0, aV = ¢pa(an), n €N, (5.13)
hence ey ; (A=0,1,...,5k—1) is a vacuum for the annihilation operators {ag‘) | n e N},
and the corresponding Fock space HI is generated by 7TL<CL£L>;)*CL7(1>;)* - aT({\T)*) ex,1 with

ny < ng < --- <mng, r € N. In the special case n;, = k(m —1)+ ¢ (m e N, 1 £ /¢ <
o<l Sk, 1S r < k), we have
L (a%)*a%)* s a7('L>;)*) ex1 = z™ WL((SiA+17---7i>\)m_lsJ) €N 15

(5.14)

SJ = SiA,---viA-s-el—2,Z>\+el—1,ix+1@17---,i>\+1z2—27{>\+142—17’i>\+1827---7i>\+er—27{,\+e,>—1,i,\+er7---71}\—1

with 7, = 3 — ¢;. Here, one should note that s; in (5.14) takes any x-th order monomial
of s; (i = 1,2) other than s;, _;,_,. On the other hand, in the case n; = k(m; — 1) + ¢;
(my <-+-<m,, 1 =¥ < K), we have

(A)*  (A) * (A) * 1

TL (am Opy w0y, ) ex1 = Zm WL((SiAwniAq)ml_ SJl(Six,m,ixfl)mz_ml_lsh T
X (Siy i)™ T sy ) e, (5.15)
Sh = SiA7---7i>\+4k—27{A+zk—17i,\+ek ----- ix-1’ k= Lo
Taking (3.9) into account, it is, now, easy to infer that any nk-th (n = 0, 1, ...) order
monomial of s; (i = 1, 2) acting on ey ; is uniquely given by m, (ag\l)*a%)* e a,({y*) ex1

up to a U(1) factor with a suitable set of {n; < ny < --- < n,}. Therefore, we have®

HY = Lin({ ey 1, 7TL(CL£L>;)* ceaM ey, 1Snp <o <myr 21}
:Lin<{7TL<Sjl ----- jnn)ek,l | jlzla 27 Z.:]-w"vn’i; n20}>

=Lin({exm | meN }). (5.16)

It is obvious that a direct sum of HM (A =0,1,...,x—1) gives the total Hilbert space H:

Kk—1

PHY =Lin({exm | ANEZy, meN})=H. (5.17)

A=0

Therefore, the restriction of the irreducible permutation representation Rep(L; z) of O,
to Agg, gives a direct sum of x ¢, y-Fock representations as follows:

k—1

~ D (Fock 0 QbL,/\)- (5.18)

A=0

Rep(L; z)

Asry

This result is nothing but an explicit realization of the general theory for restriction of
the permutation representation with a central cycle of Oy to OdU(l) discussed in Ref.5).

hTt should be understood that the completion of the Hilbert space is carried out.
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It should be noted that it is also possible to derive the above formula (5.18) by using
the homogeneous embedding ¥, of Oy« into Oy. From (2.16), we have

K

U (Siyinrionin 1) =Sioys =D (g1 =127 +1, A=0,1,..., k=1, (5.19)
/=1

where the generators of Oqx are denoted by {s!|i=1,2,...,2%}. Hence we can rewrite
(3.9) as
(mLoWe)(sipy) en1=zeaxr, A=0,1,...,k—1, (5.20)

which shows that 7y oW, is a reducible permutation representation of Qs consisting of a
direct sum of x irreducible ones, i.e., Rep™ (i(A); z) (A =0,1,...,x — 1). Therefore, we
obtain

Rep(L; 2) =7 0Pgp, =7 oW, 0 Dgp,
Asry
k—1 k—1
~ (B Rep™ (i(\): z) o Bsn, = D (Fock o gzm)) (5.21)
A=0 =0

where use has been made of (5.9) with p = k. Here, from (5.7) with p = x and (5.12),
®ipn(an) for each n € N is identical with ¢, x(a,) up to sign. Hence the rhs of (5.21) is
unitarily equivalent with the rhs of (5.18).

§85-3. Restriction of permutation representation with chain to CAR

In the same way as above, it is straightforward to obtain the restriction of the
permutation representation with a chain of Oy, Rep(Leo) with Loo = {ir}2,, to Agg,.
By direct calculations using (3.12)—(3.15), we have

TLoo (n) €x1 = Oiypr 12 (1) ™75, i ot €24, 1, (5.22)

Moo (an) ext = 0oy 1 (1) "85, s o @1, (5.23)
n—2

where Ny, = > (ixy;—1) (n 2 2, Ny; = 0) is the number of 2 in {iy, ixt1, ..., Irfn_2},
=0

and we set i, = 1 for £ < 0. By using a Bogoliubov transformation ¢, » defined by

(=1)Mxna,,  for iyi, 1 =1,
Proa(an) = (5.24)
(=1)Mxngr for iyin_1 =2,
we obtain
T (@M)ex1 =0, aY = a(an), neN, (5.25)
hence ey 1 (A € Z) is a vacuum for the annihilation operators {agf‘) | n € N}, and
the corresponding Fock space HWM is generated by 7 (ag{\l)*a%)* . -a&)*) ex1 with ny <
ng < ---<n,, r € N. From
Tra (@) ) ) enn =i (1) exn 1,

S7T=S. . > . . > . . > ( ’ )
J Z/\:--~7'L)\+n1 72’1)\+n1 —1 »’L>\+n1 >~~-77f/\+n27271)\+n271 77')\+n2 st A nge —254np—1
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with {j = 3 —i;, and noting that s; takes any n,-th monomial except for s;,
obtain

"7i)\+nr71 ) we

HY = Lin({ ey 1, WL(af{\l)* aﬁl’y*) ext, 1Sny<---<ngr=21})
=Lin({ exm | me N }). (5.27)

Hence the total Hilbert space H is a direct sum of an infinite number of the above Fock-
like spaces:
H=EEH. (5.28)
\EZ

Thus, the restriction of the permutation representation with a chain of O, to Agg, gives
a direct sum of an infinite number of ¢_ x-Fock representations.

§85-4. U (1)-variant RFS

So far, we have studied the restriction of the permutation representations of Oy (or
O with p 2 2) to Agg, = 03“) (or Agg, = O;]p(l)), and found that the resultant repre-
sentations are reducible in general except for the case of the permutation representation
with a central cycle of length 1. However, for a RFS; Ry with Ag, & (9;](1), the situation
changes drastically. In the following, we briefly describe this feature.

In O,, for any irreducible permutation representation with a central cycle, 7y, there
exists a RFS R; such that 7 o @p, is an irreducible representation of the CAR algebra.
This fact is nothing but the result of the existence of the *-endomorphism ¢ satisfying
(3.61), which is explicitly given by (3.65)—(3.67). Indeed, if we define Ry by (4.16), then
we have

WLO@RI :WLO((pO@SRl)
= (7. 0 ¢) o Psp,
= T O¢SR1

= Fock. (5.29)

An example for the case L = (1,2) is given by (4.17). In this case, the eigenvector ey ; of
1 2(51,2) satisfies

<7T1,2 © ¢R1)(an) €0,1 = Oa n e N? (530)

and any vector in {eg, €1} (m 22, n 2 1) is uniquely given by

(71'1,2 O@Rl)(@zl N -&;k)em (531)
with an appropriate set of positive integers ny < --- < ny, k = 1.

On the other hand, there also exists a RFS; Ry with Ag, ¢ Oij(l) such that 7,0 Pp,
(more generally, mo®p, with an arbitrary irreducible representation ) gives an infinitely
decomposable representation just like 7y o @gg,. An example is given by (4.18). Since
the term involving s;.4 at the right of X in (;(X) defined by (4.18) vanishes if X includes
s at its right end, it is obvious that any of ®g, (a,) (n € N) involves s} at its right end.
Therefore, from 74(s1) €, = €2m—1 (m € N), we obtain

(ms 0 Pr,)(an)eam—1 =0, neN (5.32)
926 —



for each m € N, which means that there exist an infinite number of vacuums {eg,,_1}
(m € N). Hence the restriction of Rep(1) to the above RFS is a direct sum of an infinite
number of Fock representations as follows:

Tg O @Rl = (7Ts o @SRl)EBOO

= (Fock)®>. (5.33)

§6. Restriction of Permutation Endomorphisms of O, to Agg,

We consider the restriction of the permutation endomorphism ¢, of Oy defined by
(2.40) and (2.41) to the CAR subalgebra Agg, associated with the standard RFS; defined
by (4.6)—(4.8). Since ¢, commutes with the U(1) action v defined by (2.7), we have

2a(07) c 05 (6.1)
Thus, the restriction of ¢, to (92U - Agsrg, yields a x-endomorphism
Y, : CAR — CAR,
(6.2)

Po = Dy, © 0o 0 Psp,

of the CAR algebra. In this section, we identify ®gg,(a,) with a,, hence @, with ¢,, for
simplicity of description. First, we study all the second order permutation endomorphisms
and after that we consider some higher order ones.

886-1. The second order permutation endomorphisms

To specify each of the second order permutation endomorphisms of Oy defined by
(2.40), we denote it as follows:

2 2

o) =D Sylionz0 = D Soti) 55

j=1 j=1

1=1,2, o€ By, (63)

where Sf) = S11, SF) = S21, S§2) = 51,2, Sf) = S99. Here, from the one-to-one corre-
spondence between SZ»(Q) and s;, ;,, a natural action of 0 € &, on (iy,42) € {1,2}* is in-
duced. For example, 0 = [1, 3] and o = [1, 2, 4] denote the transposition of (1,1) < (1,2),
and the cyclic permutation of (1,1) — (2,1) — (2,2) — (1, 1), respectively.

Let a be the *-automorphism of Oy defined by a(s;) = s2, a(s2) = s1. Then, all the
second order permutation endomorphisms of @, are given by

Pid=1 (6.4)
©n9(81) =52,1;1 51,222 ©n,9(82) =51,1,1 52,222, (6.5)
on,3(81) =512+ 51,152, op3(s2)=s Y3 =a0ppqgoa, (6.6)
r,4(81) =522,1+ 51,22 90[1,4](52):32114—8112, (6.7)
90[2,3](51):81 1,1 +82,1;2, V12,3 (82) = 512,14 52,22, P[2,3] = Ps (6.8)
P[2,4] (s1)=s P[2,4] (s2)=5221+521.2, (6.9)
90[3,4](31):3111+5222 90[3,4](32):3211+8122> P[3,4] = P1,2] © @, (6.10)

P2 (s) = 241 (52) = Prsa =0 (6.11)



¥,3)[2, 4](51) 51,21 1T51,1;2,  P[1,3][2,4] (52) 82,21 52,1;2, P[1,3][2,4] = P[1,4][2,3] O, (6.12)
O4)2,3(51) = 8220+ 82,1:2,  P1a)2,3(52) = 51,20+ 51,132, (6.13)
Pn23(51) =so11+5112,  ©2,3(52) =81,21+ 8222, (6.14)
24 (51) =211 +5122,  P.24)(82) =82.21+ 51,122, (6.15)
©n,3,2(51) =51,21+521;2, @32 (S2) = 51,11 +52,22, O3 =P34 oq, (6.16)
134](31)23121+3222, 134(32)23211+3112, P[1,3,4] = P[1,2,3]CC (6-17)
142](31)23221+8122, P[1,4,2] (s2)=511,1+521:2, P[1,4,2] = P[2,4,3] © Qs (6.18)
Onag(s1)=s221+511:2, @43 (S2)=52,1;1+5122, Onasz=¢neaqoa, (6.19)
P34 (51) =81,11+8222,  P2,34)(82) =51.21+ 52,122, (6.20)
243](81)28111+S212, ©12,4,3(52) = 52,21+ 51,2;2, Pl2,4,3) = 0w 2300, (6.21)
¥[1,2,3 4](81) =S ¥[1,2,3,4] (52)=s51 2151132, ¥,2,34] = P[1,3] © &, (6.22)
80[1243](81)282114—8112, P,2.4.3 (52) = 52,21+ 51,22, Y[1,2,4,3] = P,4] © Q, (6.23)
P24 (51) =5121+8212,  P[1,3,24(52) =221 51132, (6.24)
P,342(51) =8120 5222,  P1.342(52) =511+ 5212, P1,3,4,2] = P2,3] © Q, (6.25)
¥l1,4,2 3](51) S22:1 751,132, P[1,4,2,3) (52) =51 211752132, $l1,4,2,3] = P[1,3,2,4] © &, (6.26)
P[1,4,3 2](51) 82,21 152,1;2,  P[1,4,3,2] (52) ¥1,4,3,2] = P[2,4] © &, (6-27)

where p is the canonical endomorphism of Os.
First, we note that there are four *-automorphisms in the above *-endomorphisms:
©Vig = id, Q11234 = @, Q1,3)2,4] and Q42,3 As for @[1 42,3, we can rewrite it as follows:

Pra2s)(s1) = s = Js1J", (6.28)
Pra2s)(s2) = s = Js2J", (6.29)
J=891+ 810, J=J,  J=1, (6.30)

where J satisfies Js; = sy and Jsy = s1. Thus, @[ 423 is an inner *-automorphism:
s; and s, are expressed in terms of ¢; = ¢p ap, 3}(31) (1 = 1, 2) owing to the identity
toq +t12 = JJJ* = J. On the other hand, since a is an outer *-automorphism, so is
P34 (= Py © Q).

It should be noted that the restriction of the *-automorphism o = ¢ 934 to Asrg,
gives the following Bogoliubov transformation:

a(a,) = (G (s12)) = (=1)"la;,,  neN. (6.31)

Therefore, we obtain (¢,0a)(a,) = (—1)" ', (a,)*. Hence we hereafter restrict ourselves
to consider only the eleven *-endomorphisms in the following: @191, 1.3, ©p,4), Pp2,3(=
/))7 P24, P[1,4][2,3]5 P[1,2,3]s P[1,2,4]s L[2,3,4]s L[2,4,3]; L[1,3,2,4]-

Since @ 4)2,3 1s an inner *-automorphism, it is easy to obtain its restriction to Asp,:

*

a; forn =1,
o (an) = JanJ” = (a1 + al)an(a; +aj) = (6.32)
—a, forn = 2.

Hence this x-automorphism of Agg, is nothing but a Bogoliubov transformation up to
sign for a specific mode a;.
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Next, we consider the restrictions of ¢y 23 and pp43. As for ¢y 23, we have
Pr23(a1) = Sa1,21 + S1,1;22 = S2a1 87 + 5141 55 (6.33)
If X € O, satisfies pp 23(X) = 52 X 57 + 51 X 53, we have

@[1,2,3}(@1()()) =(so1;1 +511,2) (52 X 87 + 51 X 85) (51,12 + 52,11)
— (S1,2,1 + 82.2,2) (52 X 87 + 51 X 55)(S1,2,1 + 52,2,2)
= 5901(X)8] + 5101 (X)s3. (6.34)

Hence we obtain

.23 (an) = $2a, 87 + S1 A, 55 = (821 — $1.2)C1(an)
= (a} —a1)apns1, n € N. (6.35)

Then, from (6.21) and (6.31), we have
P (an) = (@oppag o a)(a,) = (=1)"" (a0 pppg)(a,)

= (—1)""alan (a1 —a)) = (=1)"H(=1)"an (0] — a1)

= (a] — a1)ap41 = 90[1,2,3](%)- (6.36)

Therefore, ¢y 2,3 and 9 43 induce the *-endomorphisms of the CAR algebra which are
expressed in terms of the second order binomials.
As for ¢jp.3.4), we have

90[2,3,4](a1) = 511,21 + S22.12 = S101 5] + S2a] S5 (6.37)
If X € O, satisfies 3.4 (X) = 51 X s7 & 59 X* 55, we have

90[2,3,4](C1(X)) = (5111 + S2.2:2)(s51 X 5] £ 52 X™ 83)(51.1,1 + S2:2.2)
— (S12.1 + S21.2)(51 X 87 £ 50 X7 83)(S1,21 + S2.1.2)
= 5101 (X)s] F 5201 (X)"s5. (6.38)

Hence we obtain

P (an) = s1a, 87+ (—1)" Vspalss = s1.1G(an) + (—1)"s22C1 (an)*

= aajap1 + (—1)"ajaray,,,, neN. (6.39)

In a similar way, we obtain

(—1)%1@[2,3,4](%)* for odd n,
P2 (an) = . (6.40)
(=1)2¢pps4(an) for even n.
For the canonical endomorphism p = 3, by simple calculations, we obtain
plan) = GG (an) = (511 = $22)an41 = Kiany1,  n €N, (6.41)
K, = a1a} — dlay = I — 2dia; = exp(vV—17alay), (6.42)
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where use has been made of (4.4) and an identity (afa;)? = ala;. Here, K; is the Klein-
Jordan-Wigner operator anticommuting with a;, hence we have

plan), ai] = [p(an), aj] = 0, neN. (6.43)

Hence p(Agg,) is the commutant of the subalgebra generated by a; and af. Likewise, for
©[1,4), we obtain

pa(an) = (~1)"p(a,)* = (-1 Kyal,,, neN. (6.44)

Therefore, @34, Yp24, P = Y23, and @14 induce the *-endomorphisms of the CAR
algebra which are expressed in terms of the third order polynomials.
Next, for ¢ 4), we have

Ppalar) =s11;22 + 512,12

= —a (a2 + CL;), (645)
90[2,4](%) =511,1;2,2,1 T 51,1,2:1,2,1 — $2,2,1:2,1,2 — 52,2,2:1,1,2
= — (majas + ajayas)(as + aj), (6.46)

90[2,4](a3) =511,1,1;2,2,1,1 T S1,1,1,2;1,2,1,1 — S1,2,2,1;2,1,2,1 — S1,2,2,2;1,1,2,1
— 8991,1;2,222 — 522121222 T $212,1;2,1,1,2 + $2,1,2,2:1,1,1,2
= — ayaj(agazas + ajasay)(ag + ay) + ajai(ayasas + azayal)(aq + ay). (6.47)
In general, we obtain the recurrence formula as follows:

@pa(an) = araib, | —aja b, n =3, (6.48)

where b),_, is obtained from ¢y 4(a,—1) by replacing a, and aj, (k =1, ..., n) by az41 and
aj. , respectively, while b),_; is obtained from b, _, by exchanging a; and a3. It should
be noted that ¢ 4(a,) is expressed in terms of the (2n)-th order polynomials. Likewise,
for ¢ ,3), we obtain

(—1)%190{2,4}(%) for odd n,
ep3)(an) = { (6.49)

(—=1)"% ppa(an)*  for even n.
Therefore, 4 and ¢ 3 induce the x-endomorphisms of the CAR algebra which are
expressed in terms of even polynomials.
For (1 91, we have
P[1,2] (a1) =s21;11 + S1,2,2,2
= aja2a; + a1a5az, (6.50)
¥1,2] (GQ) =51,2,1;1,1,2 T 52,1,2;2,2,1 — 52,2,1;1,1,1 — S1,1,2;2,2,2
= (a] + a1)(—asaza; + asajaz), (6.51)
P1,2] (G3) =821,21;1,1,2,1 T 51,2,1,2;2,2,1,2 — S1,2,2,1;1,1,1,2 — 52,1,1,2;2,2,2,1
— S1,1,2,1;1,1,2,2 — 522,1,2:2.2,1,1 T 82221:1,1,1,1 + 51,1,1,2;2,2,2,2
= (a] — a1)(—a5 + ag)(—azasa) + azayay). (6.52)
In general, we obtain the recurrence formula as follows:
erzlan) = (af + (=1)"a)bp-1, n 22, (6.53)
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where b, is obtained from ¢ 9(an—1) by replacing as, aj, ax, and a;, (k =2, ..., n) by
ag, —as, apy1, and ay,, respectively. It should be noted that ¢y 9(a,) is expressed in
terms of the (n + 2)-th order polynomials. Likewise, for ¢ 324, we obtain

ens24(an) = (=1)"ppgla,)", neN. (6.54)

Thus, we have completed to clarify restrictions of all the second-order permutation
endomorphisms of O to Agg, .

In summary, the x-endomorphisms of the CAR algebra induced by the second order
permutation endomorphisms of O, are divided broadly into the following:

(1) *-automorphisms

Identity map:  ;q,
Bogoliubov (inner) s-automorphism: ©[1,41[2,3)» (6.55)

Bogoliubov (outer) *x-automorphisms: O2B4s  P,3]24] 5
(2) *-endomorphisms expressed in terms of the second order binomials
P23 P,34 P42 L2435 (6.56)
(3) #-endomorphisms expressed in terms of the third order polynomials

P,4]; P[2,3] ©1,2,4] ©[1,3,2; (6 57)
©[1,4,3] ©[2,3,4] ¥[1,3,4,2]5 ©[1,2,4,3] 5

(4) #-endomorphisms expressed in terms of even polynomials

P,3 P24 PR,234]  ¥P,4,32] (6'58)
(5) other s-endomorphisms expressed in terms of polynomials

P2y PBAs P24, P423) (6.59)

It should be noted that the above division of the induced *-endomorphisms is ac-
cording to their apparent differences only, but not to their intrinsic properties. Indeed,
all *-endomorphisms of Item (2) and half of Item (3) are expressed as composites of those
in Items (4) and (5) as follows:

{ ¥[1,2,3] = P[1,3] © P[1,2] P[1,3,4] = P[1,3] © P[3,4] (6 60)

P1,4,2] = P[2,4] © P[1,2]» P[2,4,3] = P[2,4] © L[3,4]

{ Pl1,24] = P2 © P4l P[1,3.2 = P2 © P35 (6.61)
P[1,4,3] = P[3,4] © P[1,3] P[2,3,4] = P[3,4] © P[2,4]

On the other hand, the rest of Item 3 are not expressed as above.

In this subsection, we have restricted ourselves to consider the second order permu-
tation endomorphisms only. If we consider more generally the second order homogeneous
endomorphisms involving the x-automorphism by the U(2) action, we can find a relation
between Items (4) and (5) above. Indeed, by using a x-automorphism of O, given by

ag(sy) = cosf sy —sinf s,

0560<2 6.62
ap(s2) = sinf sy + cosf sq, = i (6.62)
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we can rewrite @ o as follows:

Pl1,2] = Q—r/4 © P[2,4] © /4, (6.63)

where ay induces an outer x-automorphism of the CAR algebra expressed in terms of a
nonlinear transformation as discussed later in Sec. 8.

§86-2. Even-CAR endomorphisms

As pointed out in Ref. 1), ¢ 4 induces the *-endomorphism @z 4 = Pg R Lo Pl2,4] ©
®gp, of the CAR algebra onto its even subalgebra''?. Since ¢} 4 is nothing but the
special case of yp,, with p =1 defined by (3.22), we consider it in more general.

Let T and I be the s-automorphism of Oy defined by ['(s1) = s1, ['(s2) = —s9 and its
induced #-automorphism of the CAR algebra defined by I' = ngll%l ol"'oPgp,, respectively.
Then, from (4.5) with (4.9), we have

I'(an) = —a,, neN. (6.64)

Hence, from @5, (CAR) = (’);] (1), we obtain the following *-isomorphism:

CAR, = (0YM),, (6.65)
CAR, = {X € CAR | T'(X) = X}, (6.66)
(05"). = {X € 07V | T(X) = X}, (6.67)

where CAR, is the even subalgebra of the CAR algebra, and ((95 (1))e is the I'-fixed point
subalgebra of (’)g M Since it is obvious that I' o o, = o, from (3.22), we have

20, (05) < (OF M), pEN. (6.68)

In the case p=1, we also have @, (05 ) > (OY™M),, since it is shown inductively that
0o, (Dr)=&,, k€N, (6.69)
DkE{52'1,...,%,1,2;Z,jk,h...,jl | il; . ,’l'kfl,jl, c. ,jkfl, (= 1, 2}, (670)
ng{XZSil ..... RS TR o1 ’F(X)IX, il;---yikajla---7jk:172}7 (671)

where {&, | k € N} generates (the dense subset of) (OY™),. Since ¢,, is injective and
8Dy = 2%8~1 = 4 &, it is sufficient to show ¢,, (D) C &. First, from (3.22), we have

Por (51;1) = 81,1, Po, (52;2) = s2JJ" 55 = 89,9, (6.72)

hence (6.69) is satisfied for k = 1. Next, suppose that (6.69) is satisfied for k = m, and
set Loy (SiQ ,,,,, o ls Ly jz) = 81‘/2 77777 i;n+1?j1/n+1 _____ 75 € gm for a fixed ¢ = 1, 2. Then, from (350),
we have

Pt (Siv izl imresfarit) = Sl iyl i fos 1o fipdlidi (6.73)
3 o y o
P foriy, =1, , |7 for j; =1, 6.74
27Y3-0 foriy =2, 2T 13—4, forj =2 (6.74)
— i fori; =2, — jy for j; = 2.
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Since the number of 2 in {41,145, j1, 74} and that in {7}, 5}, } are congruent modulo 2, we
have @, (Siyig,o.osim s Cjmrioi) € Emt1. Thus, (6.69) is obtained. Therefore, we have

0o (05 D) = (05 V). (6.75)

On the other hand, for p 2 2, ¢,, ((9;](1)) generates a proper subset of ((93“))6. In-
deed, in this case, there exists a proper (i.e., not surjective) *-endomorphism gp’o_p such that

Pop = P, © Pors (6.76)

p—2
o, (s1) =51, @ (s2) = s2 [ [ PF(I). (6.77)
k=0

Since ¢y, commutes not only with the U(1) action v but also with ¢,,, its restriction to

0o, (OF (1)) c O) () is also proper. Consequently, we obtain

20,(05) = ¢, (96 (0) 1)) G 06, (0 ) = (O3 M), pz2. (678)

Therefore, the restriction of p,, to Asg, = (’)g M generally induces a *-endomorphism

Po, = Pgp, Lo ¥o, © Psp, of the CAR algebra into its even subalgebra, and only for the

case p = 1, it gives the x-isomorphism between them. In general, the *-endomorphism of

the CAR algebra whose range is a subset of its even subalgebra is called the even-CAR

endomorphism. Thus, @, (p € N) are typical examples of the even-CAR endomorphisms.

We write down the explicit expression for ¢, (a,) in the form of a recurrence formula
similar to (6.48) in the following:

n+p—1
a, H Ky (nyp +ap,,) for 1 <n < p,

@ap (an) - ei}kpfl (679)

b, n H Ky(anip+a,,,) formp+1=n<=(m+1)p, meN,

l=n—p

bi,n = Qnply_ Q0 + Gy Gy p05,, (6.80)
b2,n = an72pa;—2pb1,n + a:;—Zpaan;Dbll,n? (681>
bm,n = a'n—mpa:;_mpbm—l,n - a;_mpan—mpb;n—Lna m 2 3a (682)
K, = wa; — ajap =1 — 2aja, = exp(V—17majay), (6.83)

where 0], ,, is obtained from b,, , by exchanging a, ., and a;,_,,. It is straightforward

to see that (6.45)—(6.48) is reproduced from (6.79)—(6.83) by setting p = 1.

§86-3. Simple examples of higher order permutation endomorphisms

As for other higher order permutation endomorphisms, we give two simple examples
in the following.

It is straightforward to generalize the inner x-automorphism ¢ 42,3 so that it should
yield the Bogoliubov transformation exchanging a; and aj for an arbitrary k. For that
purpose, we define a linear mapping & : O — Os by

E(X) = 52Xs] +51Xs5, X e€O,. (6.84)
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Then, it satisfies the following:

§(X)" = ¢£(X7), (6.85)
§X)EY) = p(XY),  &(X)p(Y) = p(X)E(Y) =&(XY), X, Y €Oy, (6.86)
D) =J, J=sp1+s19, J=J =J" (6.87)

As a generalization of the operator J, we introduce J; (k € N) as follows:
=), Jo=Ji=J", JL=J keN, (6.88)

which satisfies
Jisi = Ss3_iJp_1, 1=1,2 k=2, (6.89)
Jde = Jodw = p*(Jir), k <Z, (6.90)
T CM(X) T = {(_1)mm‘]’“‘mXJ;m) ormsk o, (6.91)
(—1)k(X) for m 2 k.

In terms of Ji, we define an inner *-automorphism ¢ (k =1, 2, ...) of Oy by

Pr(X) =

{JlXJf for k =1, Y eo (692
c Us. .

Jo1 X JEJr for k= 2,

Then, it is shown that ¢y is one of the (k + 1)-th order permutation endomorphisms of
O,. Since 1 = @ 42,3, We consider the case k = 2:

@k(sz) = kalt]]{;sit]]j:t]]:_l = & Jk72Jk71Jka71 =S pkiz(*‘]?)
2

*
= E  SiShee (S22 F S12012 F S21520 F 81,1,22)85

..... —

JiyenJk—2=1
2
= Z So (i1, ]k)sjl ..... s
J1yeenfi=1
g (i7j17"'7jk—27jk—17jk)'_>(lev"wjk—?ajk—hjk% jE?)—j (693>

From (6.89) and (6.91), it is straightforward to show that ¢y, gives the following Bogoliubov
transformation if restricted to Agg,:
G, for n < k,
Orla,) =< a;  forn =k, (6.94)
—a, forn>k.
Another example is the p-th power of the canonical endomorphism of Os, p? (p = 1),

which is one of the (p+1)-th order permutation endomorphism. Restricting it to Agg,,
we obtain

P an) = () Fan) = [[ Knmansp: K = exp(vV=1mapan), neN,  (6.95)
[P (an), an] = [pP(an), a,] =0, neN, m=12 ...,p. (6.96)

Therefore, p?(Agg, ) is the commutant of the x-subalgebra generated by {a,, | 1 £ m < p}.
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§7. Branching of Fock Representation and KMS state

As shown in the previous section, the *-endomorphism ¢, (p € N), which is defined
by (3.22), of O, induces the *-endomorphism @,, = gﬁg}ﬁ 0 s, 0 Psr, of the CAR algebra
into its even subalgebra. In this section, we consider a branching of the Fock representation
of the CAR algebra by ¢,,, and show that a certain KMS state!®) of the CAR algebra is
obtained.

Let m*" be a representation of the CAR algebra obtained by composing the Fock
representation and the even-CAR endomorphism ¢, as follows:

even —
T =

o = Fock o ¢,, = (ms 0 Pgg,) © (gbg}lh 0 Py, O Dsr,)

= T30 Ps, 0 PspR,. (7.1)

Then, from (3.43), (5.21) and (4.25), it is straightforward to have

T

even
P = @ L © Psr

LEIPR,

k—1
= P P o s,

LEIPR, A=0

r—1
= EB @W]('?))\)ngﬁapo@SRp7 (7.2)

LEIPR, A=0

K

where the label of 7, is set by L = (Jo, .-, jx_1); 7(A) = Y. (o1 — 1)25°1 + 1 with the
=1

subscript of ja;¢—1 taking values in Z,, and ¥, , denoting the homogeneous embedding

of Oy into Ogx. Substituting (3.18) with d = 2% and ¢ = p/k into (7.2), we obtain the

branching formula as follows:

k—1
even ~v ot 22 —1 .
= P Dy o Psn, IV =GN - +1

LEIPR, A=0

2P
= P o bsr,

i0=1

= é (Fock o ¢io>~ (7.3)

i0=1

Here, the vacuum egi(’) of Fock o ¢;, is given by (3.33), that is,

(7 0 Bgg, ) (al?) e =0, al® = ¢y (a,), neEN, (7.4)
6510) = WS(SiO,l,myiO,p) €1
= €y io = 1,2,...,2p, (75)

where use has been made of (3.11). We denote the ¢;,-Fock space by Hlol:

Hlol = Lin({ ™, () o Psp,)(alio)* .. qlio)%) o <ooi<n, r21Y). (7.6)

i0 ni Ny
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Although it is rather comphcated to express the basis of {enO)}oo of Hl®l directly in
terms of the basis of 7 , {en}22, of H except for the vacuum eg ), we can adopt the
similar numbering in (3.11) by an appropriate unitary transformation:

T

elio) = ( (p) o @SRP)( i) * a(io)*> egiO)’ n= Z AL (77)

n Ny
k=1

In any way, the total Hilbert space H, which is the representation space of w4 0 Pgpr, (=

P ) o PsR,), is decomposed into a direct sum of mutually orthogonal subspaces:

2p
H =Pl Al L HI g £ (7.8)
i0=1

Now, we consider a state w of the CAR algebra defined by the representation m*"

with an appropriate unit vector {2 € 'H as follows:

w(X) = (Q|m"(X)Q), X € CAR. (7.9)
If we set
Q= Z Ay, et (7.10)
i0=1
2p
with {A;,}; _, being a set of nonnegative constants satisfying > A;, = 1, then, from
10=1

(7.3) and (7.8), we can rewrite w as a convex sum of pure states as follows:

- i/\ wio (X), (7.11)

i0=1

wWin(X) = (e (7 0 D, )(X) ™)), (7.12)

7

where w;, is pure since 7r Vo &g r, = Fock o ¢;, is irreducible. We parametrize {A;,} by

p
Aio = HAj,io,jv (713)

1=\ forig, =1,
{ ! " (7.14)

)‘j for Z'()’j =2

P )
with io = Z(ZOJ — 1)2]_1 +1 (i071,...,i07p = 1,2) and 0 § )\2 § 1 (j = 1,...,])), so that

j=1
DA =1=X ) Ag= (7.15)

ioEAj,l ioGAjyg

we have

with A; 1 and A5 (j =1,...,p) being a set of all indices 4y’s which satisfy 4p; = 1 and
that 7y ; = 2, respectively. Then, we obtain

w(%(m 145 @ pn 1) +k = Omn0jik Z Aig = Omn0jn(1 = A), (7.16)
i0€EA; 1

w(a p(m—1)+j Ap(n—1) +k’ 5m néjk Z A’Lo 5m,n5j,k)\j (717)
Z()EAJ 2
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with m,n € N, j,k = 1,...,p, and states for products of the same number of a,,’s and

a’’s expressed in terms of (7.16) and (7.17), while others vanish.
If each of {\; | j =1,---,p} satisfies 0 < \; < 1/2, we rewrite it as follows:
1

Aj=————,

1 + exp(fe;)

Then, w is identical with the KMS state of the CAR algebra with the inverse temperature

[ with respect to the one-parameter group {Tt(o) | t € R} of x-automorphisms defined by

>0, [B>0. (7.18)

Tt(O) (ap(m—l)-‘rj) = eXp(_ Vv —1 gj t) ap(m—1)+j7 m e N7 ] - 17 R 2 (7]‘9)

which describes the time evolution of a (quasi-)free fermion system. Here, the superscript
(0) stands for the free fermions. Indeed, it is shown that w satisfies the KMS condition'®
given by

w(X PG

D (V) =w(YX), X, Y eCAR. (7.20)

It is remarkable that we can induce {Tt(o) | t € R} from a one-parameter group {ago) |
t € R} of x-automorphisms of Oy by using the embedding @gp, of the CAR algebra into
Oy associated with the standard RF'S, as follows:

70 = Dp, o a® o bgp, , (7.21)

p

o (s)) = exp (V=Teli)t) si, (i) = (i;—1)e;+e (7.22)

J=1

p .
with i = > (4; — )27 +1 (i = 1,...,2P; i; = 1,2), £ being an arbitrary real constant.
j=1
However, one should note that the above w is not induced from the KMS state of Oy
with respect to the one-parameter group {ago)}. In contrast with the KMS state for the
CAR algebra, as is well-known, the inverse temperature 3 for the KMS state of the Cuntz
algebra is uniquely determined for a one-parameter group of x-automorphisms such as
(0)y 14-16)
{7}

If each of {\; | j =1,---,p} satisfies 1/2 < \; < 1, using the Bogoliubov transfor-
mation ¢gp(a,) = a) (n € N), we can identify w o ¢or with the KMS state as above. If
Aj =1/2for any j =1,...,p, or equivalently A;, = 1/2? for any iy = 1,...,2P, then, w is
the normalized trace, that is, it satisfies

w(XY)=w(YX), X,Y e CAR. (7.23)

If \; =0,1for any j =1,...,p, or equivalently A, = 1 for one ¢y and all the other A;;’s
vanishing, then, w is nothing but the pure state obtained from the ¢;,-Fock representation.

For the case p = 1, the above classification with respect to A; is complete, and
reproduces the Araki-Woods classification of factors for the CAR algebra.'” For the case
p = 2, we decompose the set {1,...,p} into three disjoint subsets as follows:

{1,...,p}:J1UJ2UJ3, (724)
Ji={je{l,....p} | N =0, 1},
ng{je{l,...,p}])\j:%
J3,15{j€{17"'ap}|O<)\j<%}’
J3725{j€{1,...,p}|%<)\j<1}.
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Correspondingly, we decompose each monomial in the CAR algebra into a product of
elements of the three C*-subalgebras as follows:

A = C*< {ap(m,l)Jrj | meN, j€ Jk} >, k=1,2,3. (726)

Then, we can factorize w into the following form:
w(X; Xy X3) = Hwk (X1), Xk e A, (7.27)

where w1, wy, and w3 are the vector state assomated with the Fock-like representation, the
normalized trace, and the ¢;-transformed KMS state for the one-parameter group {Tt(o)}
of x-automorphisms, respectively, where ¢; is the Bogoliubov transformation defined by

(5.7) withi = . 2/7'4+1. Therefore, the state w given by (7.11) and (7.12) for a generic
J€J3,2
p may be also understood according to the classification by Araki-Woods.

§8. Induced Automorphism of the CAR Algebra

In this section, we summarize the induced *-automorphism? of the CAR algebra from
the U(27) action on the Cuntz algebra Qs , and apply it to construct one-parameter groups
of x-automorphisms of the CAR algebra describing nontrivial time evolutions of fermions.

We consider a *-automorphism a,, of Qg obtained from the action of U(2?) as follows:

2p

ay(s;) = Zskuk,i, u=(ux,;) €eU2P), i1=1,2,...,2°, (8.1)
k=1

Since a, commutes with the U(1) action v defined by (2.7), the restriction of «, to
Og;(l) gives a *-automorphism of (95@‘”. Therefore, from Agg, = O;]p(l), o, induces a x-
automorphism 7, of the CAR algebra as follows:

7ot U(2P) ~ CAR, weU(2?P),
) (8.2)
Ty = @ng oy © Pgp,.

It is straightforward to show that 7,(a,) is expressed in terms of a polynomial in a; and a;
with k, £ < pm for p(m—1)+1 < n < pm. Therefore, 7, gives a nonlinear transformation
of the CAR algebra associated with u € U(2P). The whole set of 7, with u € U(2P)
denoted by

Autyon)(CAR) = {7, | ueU(2")} (8.3)

constitutes a nonlinear realization of U(2”) on the CAR algebra. Using the homogeneous
embedding ¥, , of Oy into Oy with ¢ being a nontrivial multiple of p, which is defined
by (2.16), it is shown that, for any u € U(2P), there exists v € U(2?) such that

ayoW,, =¥,, 0w, (8.4)
From (4.25) and (8.2), we obtain
Tu = @g}zp oy, 0 Pgp,
:@g}%p o (v 0W,,) 0 Pgp, = (@S}% oW, q) 0 ay 0 Py,

—1
= Pgp, © Qw © Psp,
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hence we obtain
Autyor)(CAR) C Autym) (CAR), r=2,3,.... (8.6)

Now, it becomes possible to define a product 7,, o 7, even for u; € U(2P) (p1 # p2)
explicitly by 7y, 0 Ty, = Tojugs To; = Tu;» Vi € U(29) with ¢ being the least common multiple
of p; and p,. Thus, we obtain an infinite-dimensional *-automorphism group of the CAR
algebra defined by

Auty(CAR) ={7, | ueU(2P), pe N}. (8.7)
Next, we consider *-automorphism subgroups AS) (1=1,...,2P) of Og defined by
AV ={ay | u; €UQ), usy =0, j#4}, i=1,...,2" (8.8)

where «,, is defined by (8.1). Then, it is obvious that AW =~y (1) x U(2P — 1). Corre-
spondingly, we introduce the subgroup Autg)(Qp)(CAR) of Auty2ry(CAR) by

Aut{jly, (CAR) = {7, = 5l 0a, 0 Dsn, | a, € AV} (8.9)

Since we have 7, 0 o, & 7 with o, € A, L = (i52), I = (i;2') and z, 2 € U(1), we
obtain the unitary equivalence as follows:

Rep®[i] o7 = Rep®[i], 1 € Autl),, (CAR), (8.10)

where Rep®][i] is defined by (5.9). In general, however, we have Rep®[j]o7® 2 Rep® [;]

for j # i, hence 7 € Autg)(Zp)(CAR) is generally an outer s-automorphism of the CAR
algebra.
Now, we consider the subgroup of Auty(CAR) defined by

Aut{(CAR) = | J Aut{}),, (CAR). (8.11)

peN

Then, as seen from (7.19) with (7.21) and (7.22), any one-parameter group of -
automorphisms corresponding to the time evolution of a (quasi-)free fermion system is
contained in Autg)(CAR). As for a generic one-parameter group of x-automorphism in
(8.11), because of its nonlinearity, it describes a time evolution in which the particle num-
ber changes generally. In the following, we show this property of (8.11) by using a few
simple examples.

Example 1. Let {«; | t € R} be a one-parameter group of *-automorphisms of O, defined

by

ae(s;) =85, =12,
{ o5 (8.12)

ai(s3) = cosby s3 —sinby sy, y(sy) =sinb; s3 + cos by sy, 0y = pt,

where p is a nonvanishing real constant. Then, the corresponding induced one-parameter
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group {7y | t € R} of x-automorphisms of the CAR algebra is obtained as follows:

Ti(a2m—1) = Gm-1 |:a2m_1— sin 6, (sin 0; (agm—1 + aj,, 1) — cos b, ng_1>a’2‘ma2m} , (8.13)

Ti(aom) = Gm-1 [cos Or azp, + sin 0, W1y (a2m—1 — a3,,_1) agm} , (8.14)
G, = H F,, Go=1, (8.15)

k=1
F,=1—2sin Gt(sin 0, I — cos O, Wog,—1y (age—1 — &;k_l))a;k&gk, (8.16)
WnEHKg, W() E], KgEaeaZ—aZae: eXp(w/—lﬂaZag), (817)

(=1

where m € N, and Fy’s satisfy [F, Fy] = 0. Since the vacuum e; in the Fock representa-
tion at ¢ = 0, which is defined by (5.1) with (5.2), satisfies

T(an)er =0, t€R, neN, (8.18)

as it should be, we can adopt e; as the vacuum at any t. Then, 7, does not conserve
the particle number due to the nonvanishing term proportional to agy, 1G9, in 7 (ag,)
(m € N). To show this in detail, we define the (formal) particle number operator at t,
N;, as follows:

N=> milanan), (8.19)
n=1

* * : : * *
T(as,, asm_1)=Hp 1 {anlagml +sin 6, (sm 0y Kom_1+cos O (agm-_1+as, )) azman},

(8.20)
Te(A3m@2m) = Hin—1 03, G2, (8.21)
=[] (1 +sin®(26,) a;ka%), Ho=1. (8.22)

k=1

Obviously, N, is explicitly dependent on t. An eigenvector of NV, with an eigenvalue k is
called a k-particle state vector at t. A generic k-particle state vector at t is, of course,
a linear combination of vectors in the form of (ay, ---ay )er (n1 < -+ < ny), and is
orthogonal to any k’-particle state vector at ¢ with k&’ # k. Then, since, from (8.14), we
have

mi(ay, )er = (cosO; [ —sinbyay  )as eq, m € N, (8.23)

a one-particle state vector at t # wc/u (¢ € Z) given by 7(a3,,) €1 is not orthogonal to a
two-particle state vector at t = 0 given by (a3, ,a5,,) €1 = a5, 105, €1 (m € N):

(1e(as,,)er | To(as,,_1a5,)€1) = —sinb;. (8.24)

Therefore, the one-parameter group {7} of x-automorphisms given by (8.13)—(8.16) does
not conserve the particle number.
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Next, we consider the expectation value of N; by a k-particle state at t = 0, vy, as
follows:

W(Ng; vg) = (v | Nyo ), Nowvg = kv, k€N, (8.25)

which may give the particle number of vy, at t. From (8.19)—(8.22), it is straightforward to
calculate w(Ny; vy) for each vg. More precisely, we denote a k-particle state for a specific
set of the creation operators by

k% *
Vnymgyy = Gy Oy * Ay €1, N < Mg < v v < M. (8.26)

Then, for one-particle state vectors and two-particle state vectors, we obtain

1 for ny=2m,—1,

W(Ng; vp,) = { (8.27)

1+sin?6, for n;=2m.,

;

2 for ny=2my1—1, no=2mo—1,
2 —sin? 6, for ny=2mq—1, no=2m,,
W(Ng; Vnyny) = 4 2 +sin? 6, for ny=2m; —1, ny=2ms, (8.28)
2 4 sin? , + sin?(26,) for nqy =2m., Nno=2mo—1,
(2 +sin?(260,))(1 +sin® ;) for ny=2m1,  ny=2my,

where my,my € N (m; < my). As for k-particle state vectors, in particular case in which

either all of ny,...,ng (ng < -+ < nyg) are odd or they are even, it is easy to obtain the
following:
W(Nt; Vomy -1, 2mp—1) = k, (8.29)
(1 + sin?(26,))* — 1 .
W(Nt; Vamy .. 2my) = (26, (1 +sin”6,). (8.30)

In this way, w(Ny; vg) is, in general, dependent on ¢ nontrivially.
Example 2. Let {a; | t€ R} be a one-parameter group of x-automorphisms of Og defined
by
at(si) = S, 1= 172a3747677a
(8.31)

ay(S5) = cosl; s5 —sinby sg, y(ss) = sinb, s5 + cosby sg, 0 = ut,

where p is a nonvanishing real constant. Then, the corresponding induced one-parameter
group {7 | t € R} of *-automorphisms of the CAR algebra is much simpler than (8.13)-
(8.17), since we have ay((3(X)) = (3(a: (X)) (X € Og) for the recursive map (3 defined by
(4.11), and (,(X; -+ - X,,) = G(X7) -+ - (p(X,,) for an odd integer n and p € N. We obtain
the following:

T(a3m—2) = A3m_o + ((cos 0, — 1)agy,_o +sin b, agm_l)agmagm, (8.32)

Ti(a3m—1) = a3m—1 + ( —sinb; a3, o + (cos b — 1)a3m_1)a§ma3m, (8.33)
T(agm) = [cos 0, 1+ (1 —costy)(as,, 2azm_o— a3, 1a3m_1)°
+ sin 0, (agm—_2a3m -1 + agm_2a§m_1)] A30m,s (8.34)
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where m € N. As seen from the term as,;,—2a3,—2a3, in (8.34), a one-particle state vector
at t # me/u (c € Z) given by 1,(a3,,) €1 is not orthogonal to a three-particle state vector

at t = 0 given by mo(a,,_oa%,_1a5,) €1

% * * .

* * * * _ :
(Ti(azm,) er | T0(a3, 203, _103,,) €1) = —sinb;. (8.35)
The particle number operator /V; in the present case is given by
oo
Ny = g (aray), (8.36)
* c 2 * * *
Te(A3m—9@3m—2) = 3y _903m—2 — SIN° 04 (a3, 903m—2 + a3, 1a3m—1 — 1)z, a3,
. * * *
+ sin 6, cos 0y (a3, 903, 1 + 3m—103m—2)a%,03m., (8.37)
* * c 2 * * *
Ti( @3 103m—1) = A3, 1A3m—1 — 810”0y (a3, 203m—2 + A3, 103m—1 — 1)a3,a3m
. * * *
+ sin 6, cos 0y (a3, 205, 1 + 3m—103m—2)a%,03m., (8.38)
* *
(@5 A3m) = A3, A3, (8.39)

where m € N. It is easy to obtain the expectation values of N; by k-particle state vectors
at t = 0 as follows:

1 for ny =3m — 2, 3m — 1,
W(Nt; vy ) = (8.40)
1+ 2sin?6, for ny = 3m,
W(N; Unymy) = W(Ng; vy ) + W(Ng; Uy), (8.41)
3 — 2sin%6, for ny=3m—2, no=3m—1, n3=3m,
W(NE Vnyngins) = S & (8.42)
’ Zw(Nt; Un;) otherwise,
i=1

where m € N, and likewise in the case of k = 4.

Example 3. Let {a; |t €R} be a one-parameter group of s-automorphisms of O;4 defined
by

4
a(si) = sy,

©1=1,4,6,7,10,11,13, 16,

ay(s9) = cos by so —sin by s15, y(s15) = sin b, sy + cos b s15,

y(83) = cos by s3 — sin 0 s14, 14) = sin 6, s3 + cos 0, $14,

)= (

oy (s

(s3) = o (8.43)

ay(s5) = cosl; s5 —sin by s12,  @y(s12) = sin b, s5 + cos O, 19,
(s9) = ay(sg) = sin by sg + cos b, s,

4(8g) = cos by sg — sin b; sg,

9,5 = /J,t,

\

where p is a nonvanishing real constant. In this case, it is also possible to introduce one to
four mutually different constants u’s for the SO(2) action on four pairs (sq, S15), (3, S14),
(s5,812), and (sg, sg). If we have introduced more than one constants p’s whose ratios are
irrational for at least one pair of them, {a;} would become nonperiodic in contrast with
the previous examples. Anyway, for simplicity, we have introduced only one constant pu.
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Then, the corresponding one-parameter group {r; | t € R} of x-automorphisms of the
CAR algebra is obtained as follows:

Te(Am,j,) = COSOp Qo gy +8I0 0 by iy Armjy = Qam—1)4415 (8.44)
bm,jl = amaj2 am7j3 am,j4 + a:(n,jg a:;”b,jg am7j4 + am,j3 a;kn,j4 amaj2 - a:n,j;; a/:n,jg am,jga (845)
where m € N, (j1, J2, 73, ja) is a cyclic permutation of (1,2,3,4). From the existence of
A jy O, js Amj, 10 (8.44) with (8.45), a one-particle state vector at t # mc/u (¢ € Z) is
not orthogonal with a three-particle state vector at ¢ = 0 as in Example 2. The particle
number operator NV, is given by

[e.9]

N, :Z T(a)an)

n=1

oo 4
_ s 02 * s 2 * * *
= E g [(1 + 2sin 0;)ay, ;, @mj, +2sin Qt(2am’j2am7j2 Ui Vi Qo 4 Qrm

m=1ji=1
* * * * * *
_a’m,jg Am,ja am,jg Qm,j3 _am,jgamds am,j4am,j4 _am,j4am7j4 a’m,—i—jg am,jz)
: * * * *
—2sin 6, cos b, (amd1 Ay iy Qo iy Qo 5y oy 51 Qo iy Gy i am,j4)] ) (8.46)

where (j1, jo2, js, j4) is a cyclic permutation of (1,2,3,4). The expectation values of N; by
k-particle state vectors at t = 0 are obtained as follows:

W(Ng; vn, ) =
w(Ne; Vny s )
wW(Nt; Uiy na )
)

(Nt7 Uny ,na,ng,na

1+ 2sin?4,, (8.47)
2+ 4(1 — Sy my ) SIN? 0y, (8.48)
3+ (6 4 4(0my myOmams — Omyms — Omaims — Omgmy) ) SIn* 6y, (8.49)
4 + 4(2461m1 1msOma s + Oma,ma Omg,ma ~+ Omg.ma Omama + Omamy Oy s

- 5m1 mo 6m1 ms3 67711 myg 5m2,m3 - 5m2,m4 - 6m3,m4) sin 9t7 (85())

where n; = 4(m; — 1) + j;, m; € N, j; = 1,2,3,4 with n;, < n,, for iy < iy, and likewise
in the case of k = 5.

It is straightforward to generalize the one-parameter group {a;} of *-automorphisms
in the above examples to the case of Q. The corresponding induced one-parameter
group {7} of x-automorphisms of the CAR algebra may, in general, contain mixing of
one-particle states and r-particle states with » < p. By composing such *-automorphisms
which mutually commute, it is possible to make various one-parameter group of *-
automorphisms of the CAR algebra, which change the particle number with keeping the
Fock vacuum invariant.

§9. Discussion

In the present paper, we have shown that it is possible to reveal some nontrivial
structures of the CAR algebra concretely in terms of generators without difficulties by
transcribing various properties of the Cuntz algebra through our recursive fermion system.

As far as the permutation representations of the Cuntz algebra are concerned, the
standard recursive fermion system yields irreducible representations only from those with
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central cycles of length 1. It is remarkable that, from any irreducible permutation repre-
sentation with a central cycle of length greater than 1, a suitable nonstandard recursive
fermion system, which is obtained from the standard one by using an inhomogeneous en-
domorphism, yields an irreducible one. According to the recent study in C*-algebra,'® for
any two pure states (or irreducible representations) in a rather wide class of C*-algebras
including the Cuntz algebra, there exists a x-automorphism connecting them. However, it
seems still unknown how to construct such a kx-automorphism explicitly in terms of gen-
erators. If it becomes to possible to construct it, we may apply it in the recursive fermion
system by replacing the above inhomogeneous endomorphisms.

As shown in Sec. 3-2, a set of permutation endomorphisms ¢, (p € IN), which induce
x-homomorphisms of the CAR algebra to its even subalgebra, has interesting properties
such as (3.23), (3.24) and (3.43), although it is not closed with respect to the composition.
It may be useful for a systematic study of such even-CAR endomorphisms to extend the
set of ¢, (p € N) so as to constitute an abelian semigroup. Let r be an odd positive
integer and P = (p1,p2,...,pr) With p1,...,p, € N and p; < py < --+ < p,.. We define
a family of the (p, 4+ 1)-th order permutation endomorphisms ¢,, of Oy by (2.41) with
op € Gop+1 being given by

UP(17.j17 s ijr) = (17j17 s 7jpr)7
JP(27j17 cee 7jp1—17jp17 s 7jp2—17jp27 s 7jpr—17jpr) (91>

= (27j17 cee 7jp1—1ajp1a s 7jp2—17jp27 e ajp7-—17.jp7-)

with j = 3 — j. Then, ©Yop 1s Written as follows:

%p(sl) = 31,

T e 9.2
Pop(52) = 52 prk '), J = a1+ sip, (92)
k=1

where p is the canonical endomorphism of O,. Let P be the whole set of P’s, each
of which consists of an odd number of mutually different positive integers. Then, it is
straightforward to show that {¢,, | P € P} constitutes an abelian semigroup with respect
to the composition, that is, for any P, () € P, there exists an element R € P such that

SOUR = Pop © SOUQ - SOUQ C Yop- (93)

As for the KMS state of the CAR algebra given in Sec.7, we have constructed it
from Rep(1) of Oy by using the above even-CAR endomorphism ¢,, but not from a KMS
state of the Cuntz algebra. Since it is known that the inverse temperature for the KMS
state of the Cuntz algebra with respect to a certain type of one-parameter group of *-
automorphisms is unique,'* % it does not seem desirable to construct a KMS state of the
CAR algebra by restricting that of the Cuntz algebra with a unique inverse temperature.
For more study of KMS states of the CAR algebra in view of the Cuntz algebra, it
seems important to clarify in what class of one-parameter groups of *-automorphisms the
uniqueness of the KMS state of the Cuntz algebra is valid.

In Sec.8, we have constructed nontrivial one-parameter groups {7;} of *-
automorphisms of the CAR algebra which preserve the Fock vacuum invariant. For rather
simple cases such as Examples 2 and 3, we can also construct the generator of 7;, that is,
the Hamiltonian. From the unitary u, € U(1, Og) associated with the s-automorphism
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oy of Oqp, which is defined by

op
U = Z ay(s;) s;, (9.4)
i=1

we obtain
Tt(aj> :é»;}l%p(ut a’j”:)? j - 17"'7p7 (9‘5)
where a;’s are the seeds of the standard RF'S,. In the case of Examples 2 and 3, since
{apem-1)+j | 7 =1,...,p} for a fixed m € N transform in the same way as the seeds, by
extrapolating the expression for u; in terms of the seeds to that of {aym_1)+; | m € N, j =
1,...,p}, it is straightforward construct the corresponding Hamitonians H generating 7
as follows:
T(an) = eV Mg e VI gr — (9.6)
Example 2: H =+ —1pu Z (a:’;m_Q A1 — A3m—1 agm_g)agmagm, (9.7)
m=1

o0 4
Example 3: H = v—1p Z Z (az(m—l)ﬂ‘l aZ(m—1)+j2 @Z(m—l)ﬂ‘g A4(m—1)+ja

m=1j1=1
— 1)1y Qd(m—1)4js Qa(m—1)+j Qa(m—1)451)>  (9-8)

where (j1, jo, js, J4) is a cyclic permutation of (1,2,3,4). Here, it should be noted that
the above H’s are well-defined only in the Fock representation, or more precisely, in the
representations induced from those of the Cuntz algebra which are kept invariant under
the corresponding «.

It is interesting to consider expectation values of products of 7(a,,)’s and 7(a},)’s
with mutually different time variables by the vacuum e;, which is written as

w(ah,, (tr) af, (t2) -+ afy, (ta)) = (er | afy, (0) aby, (t2) -+ af, (ta)er),  (9.9)

where af (t) denotes 7(a,,) or 7(a’,). In contrast with those obeying linear transfor-
mations such as (7.19), we found there are nontrivial truncated n-point functions, where
truncation means subtraction of contributions from lower-point functions. As illustration,
we consider those consisting only of ay, aj, as and a} in the case of Example 1. Since
all one-point functions vanish, there is no difference between truncated functions and un-
truncated ones in the case of n = 2,3. From (8.13) and (8.14), we obtain the following
two-point functions and three-point ones:

w(ai(t)ay(tz)) = (9.10)
w(as(t)az(ts)) = cos(b; — ), (9.11)
( (tl)a; tQ)CL){ ) ( (t4)a’2‘(t3))* = sin(@l — 92), (912)
( (t1>a>{ tQ)CL; ) ( (tg)ag(t1)>* = Sin(@l - 02) COS(QQ - 83), (913)

and others vanish, where 6; = 6;,. Here, (9.13) reproduces (8.24) with n = 1 by setting
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ty =t,ty = t3 = 0. As for the truncated four-point functions, they are obtained as follows:

w(a1(t)as(ta)ai(ts)as(t)) p = w(aa(ta)ar(ts)as(t2)ai(tr))

= w(ai(t)as(t2)ai(ts)as(ts)) +w(ai(tr)ai(ts)) w(az(tz)as(ts))

= —cos(f3 — 0;) cos(63 — 0,) + cos(fz — 04)

= sin(fy — 03) sin(05 — 0,), (9.14)
w(ag(t)ar (t2)a;(ts)as(ta))

= w(aa(ti)ar(ta)ai (ta)az(ts)) — wlai(ta)ai(ts)) w(az(ti)as(ts))

= cos(6y —0) cos(fy—03) cos(03—04) — cos(61—0y)

= sin(#; —6) sin(O—603) cos(0;5—04) + sin(0; —0s) sin(63—6,), (9.15)
w(ax(t1)ai(t2)as(ts)as(ts)) ., = sin(fy — 6) cos(fy — 3) sin(f5 — 6,), (9.16)

and others vanish, where a subscript T denotes truncation. Likewise, we can show there
are nonvanishing truncated five-point functions and six-point ones. To clarify the phys-
ical meaning of these results, it is necessary to study in more detail the one-parameter
group {7} of *-automorphisms as time evolutions of quantum field theoretical dynamical
systems.
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