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Introduction

Let X be a hyperbolic curve (cf. §0 below) over a field K of characteristic 0.
Denote its algebraic fundamental group by Ilx, . Thus, we have a natural surjection

HXK —» GK

of IIx, onto the absolute Galois group Gk of K.

When K is a finite extension of Q or Q,, and one holds G fized, then it is known
(cf. [Tama|, [Mzk6]; Theorem 1.3.4 of the present manuscript) that one may recover the
curve Xk in a functorial fashion from Iy, . This sort of result may be thought of as
a “relative result” (i.e., over G ). Then the question naturally arises:

To what extent are the “absolute analogues” of this result valid — i.e., what
if one does not hold Gi fired?

If K is a number field, then it is still possible to recover Xk from Ix, (cf. Theorem
1.3.5), by applying the theorem of Neukirch-Uchida (cf. Theorem 1.1.3). On the other
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hand, when K is a p-adic local field (i.e., a finite extension of Q, ), the analogue of the
theorem of Neukirch-Uchida fails to hold, and indeed, it is the opinion of the author at
the time of writing that it is unlikely (in the p-adic local case) that one can recover Xg
in general (i.e., in the fashion of Theorem 1.3.4) from Ilx, .

In the present manuscript, we begin by reviewing/surveying in §1 the anabelian
geometry of number fields, p-adic local fields, and hyperbolic curves from the point of
view of the goal of understanding to what extent the anabelian geometry of hyperbolic
curves over p-adic local fields can be made “absolute.” QOur main result (Theorem
2.7), given in §2, states that when K is a p-adic local field, (although we may be unable
to recover Xy itself) one may recover (in a functorial fashion) the special fiber of
Xk, together with its natural log structure, in an absolute fashion, i.e., solely from
the isomorphism class of the profinite group Il x, .

Acknowledgements: 1 would like to thank A. Tamagawa for the time that he so gen-
erously shared with me in numerous stimulating discussions, and especially for the
following: (i) informing me of the arguments used to prove Lemma 1.1.4 in §1.1; (ii)
explaining to me the utility of a theorem of Raynaud in the context of §2 (cf. Lemma
2.4).

Section 0: Notations and Conventions

Numbers:

We will denote by N the set of natural numbers, by which we mean the set of
integers n > 0. A number field is defined to be a finite extension of the field of rational
numbers Q

Topological Groups:

Let G be a topological group, and H C G a closed subgroup. Let us write

Zo(H) S {geG|g-h=h-g, VheH)}

for the centralizer of H in G;

No(H)E {geG|g-H g~' = H}

for the normalizer of H in G; and
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Cq(H) et {9 € G| (g-H-g_l)ﬂH has finite index in H, g- H - g~ '}

for the commensurator of H in G. Note that: (i) Zg(H), Ng(H) and Cg(H) are
subgroups of G; (ii) we have inclusions

H, Zg(H) C Ng(H) C Cq(H)

and (iii) H is normal in Ng(H).

Note that Zg(H), Ng(H) are always closed in G, while Cg(H) is not necessarily
closed in GG. Indeed, it is not difficult to show that if one takes GG to be the semi-direct
product of [[ Z, with Aut([[y Z,), and H to be

H pn'Zng Zy
n€eN N

then C'q(H) is not closed in G. For instance, if one denotes by e, € [[y Z, the vector
with a 1 in the n-th place and zeroes elsewhere, then the limit A,, (where

def
Aoo(en) = én + €n+1

for all n € N) of the automorphisms A, € Cq(H) (where A, (ep) e, +epyr ifn <m,

Am(en) e, if n > m) is not contained in Cq(H).

Definition 0.1.

(i) Let G be a profinite group. Then we shall say that G is slim if the centralizer
Za(H) of any open subgroup H C G in G is trivial.

(ii) We shall say that a continuous homomorphism of profinite groups G — H is
relatively slim if the centralizer in H of the image of every open subgroup of G is trivial.

(iii) We shall say that a closed subgroup H C G of a profinite group G is commen-
surably (respectively, normally) terminal if the commensurator Cg(H) (respectively,
normalizer Ng(H)) is equal to H.

Remark 0.1.1. Thus, a profinite group G is slim if and only if the identity morphism
G — @ is relatively slim.
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Remark 0.1.2. It is a formal consequence of the definitions that:

commensurably terminal = normally terminal

and that (if H C G is a closed subgroup of a profinite group G, then):

H C G commensurably terminal, H slim —

the inclusion H — (G is relatively slim

Curves:

Suppose that g > 0 is an integer. Then a family of curves of genus g

X—-=S

is defined to be a smooth, proper, geometrically connected morphism X — S whose
geometric fibers are curves of genus g.

Suppose that g, > 0 are integers such that 2g — 2 +r > 0. Then a family of
hyperbolic curves of type (g,r)

X—=S

is defined to be a morphism which factors X — Y — § as the composite of an open
immersion X — Y onto the complement Y\ D of a relative divisor D C Y which is finite
étale over S of relative degree r, and a family Y — S of curves of genus g. One checks
easily that the pair (Y, D) is unique up to canonical isomorphism. We shall refer to ¥
(respectively, D) as the compactification (respectively, divisor at infinity, or divisor of
cusps) of X. A family of hyperbolic curves X — S is defined to be a morphism X — §
such that the restriction of this morphism to each connected component of S is a family
of hyperbolic curves of type (g,r) for some integers (g,r) as above.

We shall denote the moduli stack of r-pointed stable curves of genus g (where we
assume the points to be unordered) by M, (cf. [Knud] for an exposition of the theory
of such curves). The open substack M, , C Mg,r of smooth curves will also be referred
to as the moduli stack of hyperbolic curves of type (g,r). The pair consisting of the
tautological curve over ﬂgﬁ (respectively, M, ,), together with the divisor of marked
points, will be denoted
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(Cgﬂ' - Mgﬂ" g Egﬂ')
(respectively, (Cyr — Mgr; Dyr C Cyr)). The complement of M, . in M, ., as well
as the union of ﬁgJ with the complement of Cg, in ég r, form divisors with normal

crossings, hence determine natural log structures (cf. [Katol]) on My, Cg4.r. Denote
——log log
Cy

—log .
g us, CgoT — ./\/lg . is log smooth. A morphism

the resulting log stacks by M
of log schemes

Xlog — Slog

isomorphic to the pull-back of (C,,\D, )¢ — ﬂlg > via a log morphism $'°8 — Mlog

will be referred to as a family of hyperbolic log curves over S'°8.
Section 1: Review of Anabelian Geometry

§1.1. The Anabelian Geometry of Number Fields

In this §, we review well-known anabelian (and related) properties of the Galois
groups of number fields and (mainly p-adic) local fields.

Let F be a number field. Fix an algebraic closure F of F and denote the resulting
absolute Galois group of F' by Gr. Let p be a (not necessarily nonarchimedean!) prime
of F. Write Gy C Gp for the decomposition group (well-defined up to conjugacy)
associated to p and F for the completion of F' at p.

Theorem 1.1.1. (Slimness and Commensurable Terminality)

(i) Suppose that p is not complex. Then the closed subgroup Gy C G is com-
mensurably terminal.

(ii) Suppose that p is nonarchimedean. Then Gy, GF are slim, and the inclusion
Gp — G is relatively slim.

Proof. Assertion (i) is a formal consequence of [NSW], Corollary 12.1.3. As for assertion
(ii), the slimness of G is a formal consequence of [NSW]|, Proposition 12.1.5. The
slimness of G, follows from local class field theory (cf., e.g., [Serre2]). (That is, if
o € G, commutes with an open subgroup H C Gy, then o induces the trivial action
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on the abelianization H2P. But, by local class field theory, H2® may be identified with
the profinite completion of K>, where K is the finite extension of F,, determined by
H. Thus, o acts trivially on all sufficiently large finite extensions K of Fj, so o = 1,

as desired.) Relative slimness thus follows formally from the slimness of Gy, and (i) (cf.
Remark 0.1.2). O

Theorem 1.1.2. (Topologically Finitely Generated Closed Normal Sub-
groups) Every topologically finitely generated closed normal subgroup of G is trivial.

Proof. This follows from [FJ], Theorem 15.10. O

Theorem 1.1.3. (The Neukirch-Uchida Theorem on the Anabelian Nature
of Number Fields) Let Fy, F, be number fields. Let Fy (respectively, Fs) be an
algebraic closure of Fy (respectively, Fy). Write Isom(Fo/Fy, F1/Fy) for the set of field
isomorphisms Fo = F, that map Fy onto F\. Then the natural map

ISOII].(FQ/FQ, Fl/Fl) — Isom(Gal(Fl/Fl), Gal(ﬁg/FQ))

18 bijective.
Proof. This is the content of [NSW], Theorem 12.2.1. O

Remark 1.1.3.1. It is important to note, however, that the analogue of Theorem
1.1.3 for finite extensions of Q, is false (cf. [NSW], p. 674). Nevertheless, by considering
isomorphisms of Galois groups that preserve the higher ramification filtration, one may
obtain a partial analogue of this theorem for p-adic local fields (cf. [Mzk5]).

Next, we would like to consider a situation that arises frequently in anabelian
geometry. Suppose that G is equal to Gp or G, (where we assume now that p is
nonarchimedean!), and that we are given an ezxact sequence of profinite groups:

1-A=II—-G—1

Suppose, moreover, that A is topologically finitely generated. The following result was
related to the author by A. Tamagawa:

Lemma 1.1.4. (Intrinsic Characterization of Arithmetic Quotients)

(i) Suppose that G = Gp. Let II' C II be an open subgroup. Then the kernel of
the homomorphism II' — G may be characterized as the unique mazimal closed normal
subgroup of II' which is topologically finitely generated.
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1) Suppose tha = Gy,. Assume further that for every open subgroup C 1II,
i) S that G = G,. A further that f b " C11

the abelianization (A")* of A" (where A" R N A) satisfies the following property:

() The mazimal torsion-free quotient (A")3® — Q" of (A")2> on which the

action of G" def " /A" (by conjugation) is trivial is a finite free Z-module.

Let II' C IT be an arbitrary open subgroup. Then:
(G : G- [Fy : Q] = dimg, (I)* ® Q) — dimg, (II')* © Q)

(where A’ et ANI; ¢ def Il'/A’; p is the rational prime that p divides; and 1 is
any prime number distinct from p). (In fact, p may also be characterized as the unique
prime number for which the difference on the right is nonzero for infinitely many prime
numbers 1.) In particular, the subgroup A C II may be characterized as the intersection
of those open subgroups II' C II such that:

G:G']=[I:11]

(i.e., such that [G : G'] - [Fy : Q,) = I1: II'] - (|G : G] - [Fp : @p]) ).

Proof. Assertion (i) is a formal consequence of Theorem 1.1.2.

Now we turn to assertion (ii). Denote by K’ the finite extension of F}, determined
by G’. Then:

G:G']-[Fy: Q] =[K:Q]

On the other hand, it follows formally from (x) that:

dimg, ((II')* ® Q,) — dimg, ((I)*” ® Qi) = dimg, ((G")* ® Q,) — dimg, ((G")** @ Q)
Thus, to complete the proof of Lemma 1.1.4, it suffices to prove that:

(K" : Q] = dimg, ((G")** ® Q) — dimg, ((G')*” ® Q)

But this is a formal consequence of local class field theory (cf., e.g., [Serre2]; §1.2 below),
i.e., the fact that (G')2P is isomorphic to the profinite completion of (K’)*. O

Typically, in applications involving hyperbolic curves, one shows that the condition
() of Lemma 1.1.4 is satisfied by applying the following:
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Lemma 1.1.5. (Tate Modules of Semi-abelian Varieties) Let K be a finite

extension of Q,. Fiz an algebraic closure K of K; write Gk def Gal(K/K). Let A be a
semi-abelian variety over K. Denote the resulting (profinite) Tate module of A by:

T(A) ¥ Hom(Q/Z, A(K))

Then the mazimal torsion-free quotient T(A) — @ on which Gk acts trivially is a finite
free Zi-module.

Proof. A semi-abelian variety is an extension of an abelian variety by a torus. Thus,
T(A) is the extension of the Tate module of an abelian variety by the Tate module of a
torus. Moreover, since (after restricting to some open subgroup of G i) the Tate module
of a torus is isomorphic to the direct sum of a finite number of copies of 2(1), we thus
conclude that the image of the Tate module of the torus in () is necessarily zero. In
particular, we may assume for the remainder of the proof without loss of generality that
A is an abelian variety.

Now it follows from the theory of [FC](cf., in particular, [FC]|, Chapter III, Corollary
7.3), that T'(A) fits into ezact sequences (of Gx-modules)

0— Tgood - T(A) — Teom — 0

0 — Tior — good — T(B) —0

where T'(B) is the Tate module of an abelian variety B over K with potentially good
reduction; and Teom = Meom ®7, i, Tior = Mior @7 i(l) for finite free Z-modules M;om,
Mo, on which G acts via a finite quotient. It is thus evident that Ti,, maps to 0 in
Q. Moreover, by [Mzk4], Lemma 8.1 (the proof of which is valid for arbitrary B, even
though in loc. cit., this result is only stated in the case of a Jacobian), and the Riemann
Hypothesis for abelian varieties over finite fields (cf., e.g., [Mumf], p. 206), it follows
that T'(B) also maps to 0 in Q. Thus, we conclude that @ is equal to the maximal
torsion-free quotient of T.,, on which G acts trivially. Since 7 is Z-flat, however,
this implies that @ is equal to the result of applying ®Zi to the maximal torsion-free
quotient of M o, on which Gk acts trivially. But this last quotient is manifestly finite
and free over Z. This completes the proof. (O

§1.2. The Anabelian Geometry of p-adic Local Fields

In this §, we review certain well-known “group-theoretic” properties of Galois groups
of p-adic local fields, i.e., properties preserved by arbitrary isomorphisms between such
Galois groups.
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For ¢+ = 1,2, let p; be a prime number. Let K; be a finite extension of Q,,. We
denote the ring of integers (respectively, marimal ideal; residue field) of K; by Ok,
(respectively, mg,; k;). Also, we assume that we have chosen an algebraic closures K;
of K; and write

GKi d:ef Gal(FZ/KZ)

for the corresponding absolute Galois group of K;. Thus, by local class field theory (cf.,
e.g., [Serre2]), we have a natural isomorphism

(KF)" =GR,

(where the “A” denotes the profinite completion of an abelian group; “x” denotes the
group of units of a ring; and “ab” denotes the maximal abelian quotient of a group). In
particular, G‘}‘}’i fits into an exact sequence

O—»(QKix—>G%(bi—>i—>O

(arising from a similar exact sequence for (K*)"). Moreover, we obtain natural inclu-
sions

k) — Ok, * C K} — Gy

(2

KOk, ™ = L — G, [Im(Ok, ™)

(where “ = ” denotes the morphism induced by the valuation on K;*) by considering the
Teichmiiller representatives of elements of k¢ and the Frobenius element, respectively.
Also, in the following discussion we shall write:

—  def ==X — \ def = =
py(Ki) = Hom(Q/Z, K} );  pg (Ki) = pg(Ki) @5 25
po/z(Ki) = Hom(Q/Z, p5(K5))
(where 7 %7, /Zy). Finally, we denote the cyclotomic character of Gk, by:
Xi: Gk, — 7

Proposition 1.2.1. (Invariants of Arbitrary Isomorphisms of Galois Groups
of Local Fields) Suppose that we are given an isomorphism of profinite groups:

a:Gg, — Gk,
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Then:

(i) We have: p1 = pa. Thus, (in the remainder of this proposition and its proof)

we shall write p def p1 = p2-

(ii) a induces an isomorphism Ix, = I, between the respective inertia sub-
groups Of GK17 GKZ'

(iii) The isomorphism a?P : G%’l = G‘}g induced by o preserves the images

Im(Ok, ™), Im(k), Im(K) of the natural morphisms discussed above.

(iv) The morphism induced by o between the respective quotients G52 /Tm(Ok, ™)
preserves the respective Frobenius elements.

(v) [K1: Q) = [Ky : Q; [k1 : Fp] = [k2 : Fp]. In particular, the ramification
indices of K1, Ko over Q, coincide.

(vi) The morphisms induced by o on the abelianizations of the various open sub-
groups of the Gk, induce an isomorphism

po/z(K1) = poz(K»)
In particular, a preserves the cyclotomic characters Yy;.

(vii) The morphism HQ(Kl,IJ/Q/Z(Fl)) 5 H2(K2aMQ/Z(F2)) induced by a (cf.
(vi)) preserves the “residue map”

H?(K;, poz(Ki) = QZ

of local class field theory (cf. [Serre2], §1.1).

Proof. Property (i) follows by considering the ranks of Gi}(bi over various Z; (cf. Lemma
1.1.4, (ii)). Property (iii) for Im(k;) follows from the fact that Im(k) may be recovered
as the prime-to-p torsion subgroup of Gakbi. Property (v) follows for [K; : Q] by
considering the Z,-rank of G5 (minus 1) and for [k; : F,] by considering the cardinality
of Im(k*) (plus 1) — cf. (i), (iii). Property (ii) follows from the fact that whether or not
a finite extension is unramified may be determined group-theoretically by considering
the variation of the ramification index over Q, (cf. (v)). Property (iii) for Im(Ok, ™)
follows formally from (ii) (since this image is equal to the image in G5 of Ik, ). Property
(iv) follows by applying (iii) for Im(k;) to the various open subgroups of G, that
correspond to unramified extensions of K; and using the fact the Frobenius element is
the unique element that acts as multiplication by |k1| = |ka| on EZ-X (where k; denotes
the algebraic closure of k; induced by K;). Here, we note that if L; is a finite extension
of K;, then the inclusion
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~

Gk, = (Kz‘x)/\ - (Lz'x)/\ — G,
may be reconstructed group-theoretically by considering the Verlagerung, or transfer,
map (cf. [Serre2], §2.4). Property (iii) for Im(K*) follows formally from (iv). Property
(vi) follows formally from (iii). Finally, property (vii) follows (cf. the theory of the
Brauer group of a local field, as exposed, for instance, in [Serre2], §1) from the fact that
the morphism H?(K;, pg/z(K;)) = Q/Z may be constructed as the composite of the
natural isomorphism

H(K;, poyn(Ky)) = HX(Gr,, pon(Ki)) > H* Gk, K;)

— which is group-theoretic, by (iii) — with the inverse of the isomorphism

H2(Gal(KM™ [ K;), (K¥) %) % H2(Gg,, K))

(where K" denotes the maximal unramified extension of K;) — which is group-
theoretic, by (ii), (iii) — followed by the natural isomorphism

~

H?*(Gal(K!™/K;), (KM0)*) & H*(Gal(K!™ /K;),Z) = H*(Z,7) = Q/Z
— which is group-theoretic, by (ii), (iii), (iv). O

Before proceeding, we observe that Proposition 1.2.1, (i), may be extended as
follows: Write

Ao £ |Spec(z)| | oo}

(where “| — |” denotes the underlying set of a scheme) for the set of “all arithmetic

primes of Q7 If v € A is equal to {(0)} € [Spec(Z)| (respectively, 0o), set G, def Go

(respectively, G, def Gal(GR)). If v € [Spec(Z)| C A @ is equal to the prime determined
. def

by a prime number p, set G, = Gq, -

Proposition 1.2.2. (Intrinsicity of Arithmetic Types) Fori= 1,2, let v; € Up.

Suppose that H; is an open subgroup of G,,. Then Hy = Ho implies v1 = vs.

Proof. Indeed, open subgroups of Gg may be distinguished by the fact that their
abelianizations fail to be topologically finitely generated. (Indeed, consider the abelian
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extensions arising from adjoining roots of unity.) By contrast, abelianizations of open
subgroups of G or Gg, (cf. the above discussion) are topologically finitely generated.
Next, open subgroups of Gg may be distinguished from those of some Ggq, by the fact
they are finite. The remainder of Proposition 1.2.2 follows from Proposition 1.2.1, (i).

O

Next, let us write Spec(Of,)'°8 for the log scheme obtained by equipping the scheme
Spec(Ok;) with the log structure defined by the divisor V(mg,). Thus, by pulling back
this log structure via the natural morphism Spec(k;) < Spec(Ok,), we obtain a log
scheme Spec(k;)'°8, which we denote by

log
ki

log “
i
global chart” in the sense that it is defined by a single constant monoid (in the Zariski
topology of Spec(k;)) M, 10s, which fits into a natural ezact sequence (of monoids):

for short. Note that the “étale monoid” that defines the log structure on k admits a

1 —>kz~x _)Mkl‘og _>N_>0
Thus, the k-torsor U; determined by considering the inverse image of 1 € N in this

sequence may be identified with the k*-torsor of uniformizers € mg, considered modulo
2
my..

Next, let us write
1
G K; =™ G koig

for the quotient defined by the mazimal tamely ramified extension K™ of K;. Thus,
G}coig may also be thought of as the “logarithmic fundamental group” Wl(k;Og) of the log

1 1 .
scheme k;°8. Moreover, G® fits into a natural ezact sequence:
k2

1 — ps(k;) — G};g —7Z—1
where, just as in the case of K;, we write:

—_ —_ ef —
ps (ki) = pz (ki)  Hom(Q/Z, k) );
= \ def -
poz(Fi) & Hom(Q/Z, 5 (ki)

The “abelianization” of this exact sequence yields an exact sequence:
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1—kX— (Gicoig)ab 71

Now we have the following:

Proposition 1.2.3.

(i) Any isomorphism o : Gx, — Gk, (as in Proposition 1.2.1) induces an isomor-
phism G};g = G}cozg between the respective quotients.

(ii) There is a natural isomorphism of k-torsors between the torsor of uni-
formizers U; discussed above and the H'(Z, pz(k;)) = k; -torsor HI(GEg,uz(E))[I]
of elements ofHI(GLc:g, pz(k;)) that map to the identity element in H' (ps(k;), ps (ki) =
Homy, (p5(k;), pz(ki)). This isomorphism is defined by associating to a uniformizer

1/N

T € U; the ps(k;)-torsor over k;og determined by the roots =%, as N ranges (multi-

plicatively) over the positive integers prime to p;.

(iii) The profinite group G};g is slim.

Proof.  Property (i) follows from Proposition 1.2.1, (ii), together with the fact that
the quotient G, — G}fig may be identified with the quotient of Gk, by the (unique)
maximal pro-p subgroup of If,. Next, since any morphism of k;*-torsors is necessarily an
isomorphism, property (ii) follows by observing that the stated association of coverings
to uniformizers is indeed a morphism of k. -torsors — a tautology, which may by verified
by considering the case N = ¢; — 1 (where ¢; is the cardinality of k;), in which case
this tautology amounts to the computation: ((*/N)% = ¢ (¢Y/N) (for ¢ € k). Finally,
property (iii) follows formally from the fact that the quotient Gfig /Im(p5(k;)) acts

faithfully on all open subgroups of the closed subgroup Im(p,i(%i)) C G}coig. O

log
%

log

In the following, let us denote by (k.°6)~ — ki the “universal covering” of ki

defined by the extension K}!*™ of K;. Thus, Gfig acts naturally as the group of covering

transformations of (k°8)~ — k%8,

Proposition 1.2.4. (The “Grothendieck Conjecture” for the Logarithmic
Point) Suppose that we are given an isomorphism of profinite groups:
log ~ lo
AGE =GB
Then:

(i) We have: |k1| = |ka|; p1 = pa. Thus, (in the remainder of this proposition and
. . def
its proof) we shall write p = p1 = ps.
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(ii) X preserves the subgroups Im(p(k;)) C Gfig as well as the Frobenius elements
in the quotients Gﬁg/lm(ui(a)).

(iii) Assume further that the morphism

induced by A (by thinking of E; as NQ/Z(EZ') ) arises from an isomorphism of fields

G : ki1 = ko. Then there exists a unique commutative diagram

08\ ~v (Ulog)N 08\~
(k%)™ — (ky®)
klOg ﬁ klog

1 2

of log schemes, compatible with the natural action of Glog on (k log) (fori=1,2), in
which the vertical morphisms are the natural morphisms, and the horizontal morphisms
are isomorphisms for which the morphisms on the underlying schemes are those in-
duced by o .

Proof.  Property (i) follows by observing that p; is the unique prime number such
that 1 plus the cardinality of the torsion subgroup of (G Og)ab — i.e., the cardinality
of k; — is equal to a power of p;. Property (ii) follows by thinking of the quotients
Gfig /Im(pz(k;)) as the quotients of G 28 obtained by forming the quotient of (Glog)aLb
by its torsion subgroup, and then using that the Frobenius element is the unique element
that acts on the abelian group Im(u5(k;)) via multiplication by |ki| = |k2|. As for (iii),
the morphism ¢'°8 is the unique logarithmic extension of ¢ whose induced morphism
U; = U, is the morphism obtained (cf. Proposition 1.2.3, (ii)) by considering the
morphism induced by A between the H'(Z, s (k;)) = k}-torsors H 1(Glog s (ki)
(for ¢ = 1,2) — which are preserved by A, by (ii). Note that here we also use (cf. (ii))
that the Frobenius element € 7, is preserved, since this element is necessary to ensure
the compatibility of the identifications

HY (%, (i) = b
(cf. Proposition 1.2.3, (ii)). The morphism (0'°8)™ is obtained by applying this con-
struction of “o'°8” to the various finite log étale coverings of k;og obtained by considering
various open subgroups of Gfig. Here, the transition morphisms among coverings are
induced by the Verlagerung, as in the proof of Proposition 1.2.1. Finally, the uniqueness
of the lifting (0'°8)™ of ¢'°8 is a formal consequence of the fact that Gfig is center-free
(cf. Proposition 1.2.3, (iii)). O
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§1.3. The Anabelian Geometry of Hyperbolic Curves
Characteristic Zero:

Let K be a field of characteristic 0 whose absolute Galois group is slim. Let X be
a hyperbolic curve of type (g,r) over S def Spec(K). Fix an algebraic closure K of K
and write 5 : Spec(K) — S; Gk et Gal(K/K). Let T € X(K) be a K-valued point of

X lying over 5. Then, setting IIx def m1(X,T), we obtain an ezract sequence

1—>Ax—>Hx—>GK—>1

which determines a well-defined (up to composition with an inner automorphism of the
range) continous homomorphism

Gk — Out(Ax)

to the group of outer automorphisms Out(Ax) of Ax.

Lemma 1.3.1. (Slimness of Geometric and Arithmetic Fundamental
Groups) The profinite groups Ax, Illx are slim.

Proof. The slimness of IIx is a formal consequence of the slimness of Ax and our

assumption that Gk is slim. Thus, it remains to prove that Ax is slim. Let H C Ax

. . . f — .
be an open normal subgroup for which the associated covering Xy — X4 e X kK K is

such that Xy is a curve of genus > 2. Thus, H®® may be thought of as the profinite Tate
module associated to the generalized Jacobian of the singular curve obtained from the
unique smooth compactification of Xy by identifying the various cusps (i.e., points of
the compactification not lying in Xy ) to a single point. In particular, if conjugation by
an element § € Ay induces the trivial action on H2P, then we conclude that the image
of § in Ax/H induces the trivial action on the generalized Jacobian just discussed,
hence on Xy itself. But this implies that 6 € H. By taking H to be sufficiently small,
we thus conclude that 6 = 1. O

In particular, it follows formally from Lemma 1.3.1 that:

Corollary 1.3.2. (A Natural Exact Sequence) We have a natural exact sequence
of profinite groups:
1—Ax — Aut(Ax) — Out(Ax) — 1



oHlNICHL MOCORIZUKI

In particular, by pulling back this exact sequence, one may recover the exact sequence
1— Ax — IlIx — Gg — 1 entirely group-theoretically from the outer Galois represen-
tation Gk — Out(Ax).

One example of the sort of “K” under consideration is the case of a “sub-p-adic

field”:

Corollary 1.3.3. (Slimness of Sub-p-adic Fields) The absolute Galois group of
a sub-p-adic field (i.e., a field isomorphic to a subfield of a finitely generated field
extension of Q,, for some prime number p) is slim.

Proof. This fact is implied by the argument of the proof of [Mzk6|, Lemma 15.8. O

In [Mzk6], the author (essentially) proved the following result (cf. [Mzk6], Theorem
A):

Theorem 1.3.4. (“Sub-p-adic Profinite Grothendieck Conjecture”) Suppose
that K 1is a sub-p-adic field, and that X and Y are hyperbolic curves over K. Denote
by Isomg (X,Y) the set of K-isomorphisms X = Y; by Isomg‘;(t(Ax,Ay) the set of
outer isomorphisms between the two profinite groups in parentheses that are compatible
with the respective outer actions of Gg. Then the natural map

Isomg (XK, Yk) — Isomgit(AX, Ay)
1s bijective.

Thus, by combining Theorems 1.1.3; 1.3.4; Lemma 1.1.4, (i), we obtain the follow-
ing:

Corollary 1.3.5. (Absolute Grothendieck Conjecture over Number Fields)
In the situation of Theorem 1.3.4, suppose that K is a number field. Denote by
Isom(X,Y) the set of isomorphisms X = Y; by Isom®%(Ily, Iy, ) the set of outer
isomorphisms between the two profinite groups in parentheses. Then the natural map

Isom(X g, Yi) — Isom®% (I, , Iy, )
18 bijective.
Remark 1.3.5.1. Since the analogue of Theorem 1.1.3 in the p-adic local case is false,

it seems unlikely to the author at the time of writing that the analogue of Corollary
1.3.5 should hold over p-adic local fields.
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One interesting result in the present context is the following, due to M. Matsumoto
(cf. [Mtmo], Theorems 2.1, 2.2):

Theorem 1.3.6.  (Injectivity of Galois) Let X be an affine hyperbolic curve
over a sub-complex field K — i.e., a field isomorphic to a subfield of the field of
complex numbers. Then the resulting outer Galois representation

Gk — Out(Ax)
1s injective.

Remark 1.3.6.1. This injectivity was first proven by Belyi in the case of hyperbolic
curves of type (g,r) = (0,3). It was then conjectured by Voevodskii to be true for all
(hyperbolic) (g, r) and proven by Voevodskii to be true for g = 1. Finally, it was proven
by Matsumoto to hold for all (g, r) such that » > 0. To the knowledge of the author, the
proper case remains open at the time of writing. We refer to the discussion surrounding
[Mtmo|, Theorem 2.1, for more details on this history.

Remark 1.3.6.2. One interesting aspect of the homomorphism appearing in Theorem
1.3.6 is that it allows one to interpret Theorem 1.3.4 as a computation of the centralizer
of the image of this homomorphism Gx — Out(Ax).

Next, we would like to discuss various properties of the inertia groups of the cusps
of a hyperbolic curve. For every cusp x of X5 f ¥ x x K — i.e., point of the unique
smooth compactification of X3 over K that does not lie in X7 — we have an associated
inertia group (abstractly isomorphic to 2)

I:ngX

(well-defined, up to conjugation). If [ is any prime number, then let us denote the

mazximal pro-l quotient of a profinite group by means of a superscript “({).” Thus, we
also obtain an inertia group Y ¢ Ag? (abstractly isomorphic to Z;).
Lemma 1.3.7. (Commensurable Terminality of Inertia Groups) The sub-

groups Ig) C Agl(), I, C Ax are commensurably terminal.

Proof. Indeed, let o be an element of the commensurator. If the asserted commensu-
rable terminality is false, then by projecting to a finite quotient, we may assume that
we have a finite Galois covering
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(of degree a power of [ in the pro-l case), together with a cusp z of Z such that: (i) z
maps to z; (ii) z # 27; (iii) 2z, 27 have conjugate inertia groups in Ayz. We may also
assume (by taking Az C Ax to be sufficiently small) that Z has genus > 2 and admits
a cusp 2z’ # z,2%. Then it is easy to see that Z admits an infinite abelian (pro-/, in the
pro-l case) covering which is totally ramified at z, 2/, but not at z°. But this contradicts

property (iii). O

Now, let us assume that we are given two hyperbolic curves (X;)k, (for i = 1,2),
each defined over a finite extension K; of Q,,. Let us write ¢; for the cardinality
of the residue field of K;. Choose basepoints for the (X;)g, and denote the resulting
fundamental groups by I1x,) K" Also, let us denote the unique proper curve over K; that
compactifies (X;)k, by (Y;)k,. Suppose, moreover, that we are given an isomorphism

ax 1(x,) e, = Mx,),

of profinite groups.

Lemma 1.3.8. (Group-Theoreticity of Arithmetic Quotients) The isomor-
phism ax 1s necessarily compatible with the quotients 11 x,) x, Gk, -

Proof. This follows formally from Lemmas 1.1.4, 1.1.5. O
Thus, Lemma 1.3.8, Proposition 1.2.1, (v), imply that ¢; = gs.

Lemma 1.3.9. (Group-Theoreticity of the Cusps) The types (gi,r;) of the
hyperbolic curves (X;)k, coincide. In particular, for any prime number I, ax maps
inertia groups of cusps in Ax, (respectively, Ag?l) to inertia groups of cusps in Ax,

(respectively, Ag?z ).

Proof. Whether or not r; = 0 may be determined by considering whether or not Ay,
is free as a profinite group. When r; > 0, one may compute r; by considering the weight
— i.e., the number w such that the eigenvalues of the action are algebraic numbers of
archimedean absolute value ¢}’ — of the action of the Frobenius element € Gy, (cf.
Proposition 1.2.1, (iv)) as follows: First, we observe that (as is well-known) the weights
of the action of Frobenius on A%Pi ®Q; (where [ is a prime number distinct from py, po)
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belong to the set {0, 1, %} Now if M is a -vector space on which Frobenius acts, let
us write

th w

for the Q;-subspace of M on which Frobenius acts with eigenvalues of weight w. Then,
setting I; def Ker(Af}g ®RQ —» A'g‘/t_’ ® @), we have:

I;) = dimg, (I} 1)
AR @ Q)Y ! — dimg, (AP @ Q)" !
Ag.}:; ® Ql)wt 1 _ dlle(Ag}? ® Ql)wt 0

A%(bi ® Ql)wt 1 _ dile(Ag(bi ® Ql)Wt 0

r, — 1= dile
= diIIlQ

1

= diIIlQ

1

~ N/~

= dile

(where the fourth equality follows from the auto-duality (up to a Tate twist) of A%,? ®
@Q;; and the second and fifth equalities follow from the fact that Frobenius acts on I;
with weight 1). On the other hand, the quantities appearing in the final line of this
sequence of equalities are all “group-theoretic.” Thus, we conclude that r; = r4. Since
dimg, (A_‘}g ® Q) = 2g; — 2 + r;, this implies that g; = g2, as desired.

Finally, the statement concerning preservation of inertia groups follows formally
from the fact that “r; is group-theoretic” (by applying this fact to coverings of X;).
Indeed, let [ be a prime number (possibly equal to p; or ps). Since r; may be recovered
group-theoretically, given any finite étale coverings

Zi = Vi— X

such that Z; is Galois, of degree a power of [, over V;, one may determine group-
theoretically whether or not Z; — V; is “totally ramified at a single point of Z; and
unramified elsewhere,” since this condition is easily verified to be equivalent to the
equality:

rz, = deg(ZZ/VZ) . (TVi - 1) + 1

Moreover, the group-theoreticity of this condition extends immediately to the case of
pro-l coverings Z; — V;. Thus, by Lemma 1.3.7, we conclude that the inertia groups of
cusps in (Ax,)® (i.e., the maximal pro-I quotient of Ax,) may be characterized (group-
theoretically!) as the maximal subgroups of (Ax,)® that correspond to (profinite)
coverings satisfying this condition.
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In particular, (by Lemma 1.3.7) the set of cusps of X; may be reconstructed (group-
theoretically!) as the set of (Ax,)®-orbits (relative to the action via conjugation) of
such inertia groups in (Ax,)"). Thus, by applying this observation to arbitrary finite
étale coverings of X;, we recover the inertia subgroups of the cusps of Ay, as the
subgroups that fix some cusp of the universal covering )A(:l — X; of X, determined by
the basepoint in question. This completes the proof. ()

Positive Characteristic:

For ¢ = 1,2, let k; be a finite field of characteristic p; X; a hyperbolic curve over k;.
Choose a universal tamely ramified (i.e., at the punctures of X;) covering X; — X; of
X;; write

migme € Gal(X;/X;)

for the corresponding fundamental groups. Thus, we obtain ezract sequences:
1— Af)?fle — Hf)?fne — G, — 1

(where Gy, is the absolute Galois group of k; determined by )N(Z) As is well-known, the
Frobenius element determines a natural isomorphism Z = Gy, .

Lemma 1.3.10. (Slimness of Fundamental Groups) For i = 1,2, the profinite
groups A™e, TIR™® are slim.

Proof. The slimness of A}?f‘e follows by exactly the same argument — i.e., by consid-
ering the action of Ag?ime on abelianizations of open subgroups — as that given in the
proof of Lemma 1.3.1. By a similar argument, the slimness of Ht)?:ne follows formally
from:

(i) the slimness of Ag?ime;

(ii) the Riemann Hypothesis for abelian wvarieties over finite fields (cf., e.g.,
[Mumf], p. 206); and

(iii) the fact that the covering of X; determined by a sufficiently small open
subgroup H C II™ has p-rank > 1 (cf. [Tama], Lemma 1.9).

(Here, we note that while (ii) is sufficient to deal with the “/-primary portion” of Z & G ks
(for [ # p); one needs both (ii), (iii) to cover the “p-primary portion” of Z = Gg,.) O
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The following fundamental result is due to A. Tamagawa (cf. [Tama|, Theorem
4.3):

Theorem 1.3.11. (The Grothendieck Conjecture for Affine Hyperbolic
Curves over Finite Fields) Assume, fori= 1,2, that X; is affine. Then the natural
map

Tsom(X /X1, Xa/X5) — Isom (1™, TI{2m)

(from scheme-theoretic isomorphisms )}1 = )Z'g lying over an isomorphism X, = X

to isomorphisms of profinite groups IIE™® = TIR™®) is bijective.

Finally, we observe that, just as in the characteristic zero case, inertia groups of
cusps are commensurably terminal: If x; is a cusp of (Xi)E- def X; X, k;, then we have

an associated inertia group (abstractly isomorphic to A )

I, C AR
(well-defined, up to conjugation). If I is any prime number distinct from p, then we also

obtain an inertia group Iéli) - (A}?;“e)(l) (abstractly isomorphic to Z;).

Lemma 1.3.12. (Commensurable Terminality of Inertia Groups) The
subgroups L,(;li) - (Ag?;ne)(l), I, € AR™ are commensurably terminal.

Proof. The proof is entirely similar to that of Lemma 1.3.7. O
Section 2: Reconstruction of the Logarithmic Special Fiber

For i = 1,2, let K; be a finite extension of Q,, (cf. §1.2), and suppose that we are
given a hyperbolic curve (X;)k, over K;. Let us fix a K ;-valued basepoint for (X;)x, and
denote the resulting fundamental m1((Xi)xk,) by Il(x,),, - Suppose, moreover, that we
are given an isomorphism ax : Ix,y, = I x,), > which, by Lemma 1.3.8, necessarily
fits into a commutative diagram

Hix,)g, =% Hix,)k,

l !

aK
GK1 — GK2

where the vertical morphisms are the natural ones, and the horizontal morphisms are
assumed to be isomorphisms. Note that by Proposition 1.2.1, (i), this already implies
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that p1 = pa; set p def p1 = p2. That such a diagram necessarily arises “geometrically”
follows from the main theorem of [Mzk6| (cf. Theorem 1.3.4) — if one assumes that ag
arises geometrically (i.e., from an isomorphism of fields K; = K5). In this §, we would
like to investigate what one can say in general (i.e., without assuming that oy arises
geometrically) concerning this sort of commutative diagram. In some sense, all the
key arguments that we use here are already present in [Mzk/], except that there, these
arguments were applied to prove different theorems. Thus, in the following discussion,
we explain how the same arguments may be used to prove Theorem 2.7 below.

Let us denote the type of the hyperbolic curve (X;)k, by (g;,7;). Also, we shall
denote the geometric fundamental group by

AXi d:ef KeI'(H(Xl,)Ki — GKz)

and the unique proper curve over K; that compactifies (X;)k, by (Y;)k,-

Lemma 2.1. (Group-Theoreticity of Stability) (X;)x, has stable reduction if
and only if (X2)k, does.

Proof. This follows (essentially) from the well-known criterion of Serre-Tate: That is
to say, (X;)k, has stable reduction if only if the actions of Gk, on A%,E’ ® Z' and on the
(finite) set of conjugacy classes of inertia groups of cusps in Ax, (i.e., the set of cusps of
(Xi)k, ®k, K; — cf. Lemma 1.3.9) is unramified (a condition which is group-theoretic,
by Proposition 1.2.1, (ii)). O

Now let us assume that (X;)k, has stable reduction over Ok,. Denote the stable
model of (X;)k, over Ok, by:

(Xi)oxi - SpeC(OKz’)

Here, in the case where r; > 0, we mean by the term “stable model” the complement of
the marked points in the unique stable pointed curve over O, that extends the pointed
curve over K; determined by (X;)k,. Then, by the theory of [Mzk4], §2, 8, there exists
a well-defined quotient

H(Xi)K,L- - Hz(i;i(rzn)Kz

whose finite quotients correspond to (subcoverings of) admissible coverings of the result
of base-changing (X;)o,, to rings of integers of tamely ramified extensions of K;. In
particular, we have a natural exact sequence:
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adm adm log
1—- A" — H(Xi)Ki — Gki —1

(where A‘}gm is defined so as to make the sequence exact). Moreover, H?}%K‘ itself

admits a natural quotient (cf. [Mzk4], §3)

Mixoe, = D, = Wik, .,

whose finite quotients correspond to coverings of (X;)g, that extend to finite étale
coverings of (Xi)OKi which are tamely ramified at the cusps. In particular, we have a
natural exact sequence:

1— A% — H?}(i)Ki — G, — 1

(where A%, is defined so as to make the sequence exact).

Lemma 2.2. (Admissible and Etale Quotients)
(i) The profinite groups X))k, s H?%%Ki, and H?E(i)Ki are all slim.

(ii) The morphism ax is compatible with the quotients
d
Wiy, = UGk, = H?E(i)Ki

Of H(Xi)Ki .

Proof. The portion of assertion (i) concerning II x,) X, (respectively, H?%%Ki, H?E(i)Ki)
follows formally from Theorem 1.1.1, (ii); Lemma 1.3.1 (respectively, Proposition 1.2.3,
(iii); the proof of Lemma 1.3.10).

Next, we turn to assertion (ii). For H?%‘SK', this follows (essentially) from Propo-

sition 8.4 of [Mzk4|. Of course, in [Mzk4|, K; = K3 and ak is the identity, but in fact,
the only property of ax necessary for the proof of [Mzk4]|, Proposition 8.4 — which is,
in essence, a formal consequence of [Mzk4], Lemma 8.1 (concerning unramified quotients
of the p-adic Tate module of a semi-abelian variety over a p-adic local field) — is that
ag preserve the inertia and wild inertia groups (which we know, by Proposition 1.2.1,
(ii); Proposition 1.2.3, (i), of the present paper).

Similarly, the portion of assertion (ii) concerning H?E{i)K' follows (essentially) from
[Mzk4], Proposition 3.2. That is to say, even though ak is not necessarily the identity
in the present discussion, the only properties of ax that are necessary for the proof of
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[Mzk4], Proposition 3.2, are Proposition 1.2.3, (i); Proposition 1.2.4, (ii) (of the present
paper).

Finally, we remark that although in [Mzk4], we only treated the case where r; = 0,
one verifies easily that the arguments there extend immediately to the case of arbitrary
r; > 0: Indeed, tame ramification at the marked points may be distinguished from tame
ramification at the nodes by considering the action of the Galois group of a covering on
the semi-graphs of Lemma 2.3 below. O

Lemma 2.3. (Group-Theoreticity of Dual Semi-Graphs of the Special
Fiber) The morphism ax induces an isomorphism

axre : Day, = Tixy,,

between the “dual semi-graphs with compact structure” (i.e., the usual dual graphs
F(Xi)lci7 together with extra edges corresponding to the cusps — cf. the Appendiz) of
the special fibers (X;)k, of (Xi)oKi. Moreover, ax re is functorial with respect to pas-
sage to finite étale coverings of the (X;)k, -

Proof. Indeed, if one forgets about the “compact structure,” then this is a consequence
of Lemma 1.3.9, Lemma 2.2 (in the proper case), and the theory of [Mzk4], §1 — 5,
summarized in [Mzk4|, Corollary 5.3. Even though oy is not necessarily the identity
in the present discussion, the only properties of a g that are necessary for the proof of
[Mzk4], Corollary 5.3 are Proposition 1.2.3, (i); Proposition 1.2.4, (ii) (of the present
paper). That is to say, the point is that the Frobenius element is preserved, which means
that the weight filtrations on l-adic cohomology (where [ is a prime distinct from p) are,
as well. The compatibility with the “compact structure” follows from the pro-I (where
[ # p) portion of Lemma 1.3.9, together with the easily verified fact (cf. the proof of
adm

Lemma 1.3.7) that the inertia group of a cusp in Iy} . is contained (up to conjugacy)
in the decomposition group of a unique irreducible component of (X;)g,. O

Next, we would like to show that ax is necessarily “of degree 1.” This is essentially
the argument of [Mzk4], Lemma 9.1, but we present this argument in detail below since
we are working here under the assumption that agx is arbitrary. For simplicity, we
assume until further notice is given that r; = 0 and that the special fiber (X;), of
(Xi)ok, is singular and sturdy (cf. [Mzk4], Definition 1.1) — i.e., the normalizations
of all the geometric irreducible components of (X;)r, have genus > 2 — and has a
noncontractible dual semi-graph F?Xi)ki — i.e., this semi-graph is not a tree. (These
conditions may always be achieved by replacing (X;)g, by a finite étale covering of
(X;)k, — cf. [Mzk4], Lemma 2.9; [Mzk4], the first two paragraphs of the proof of
Theorem 9.2.)
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We begin by introducing some notation. Write:

def

1€ b.
v; 2 A

def

H; < H™8(T¢

(Xi)k;? Z) = Hfmg(r(xi)m , L)

(where “H fing” denotes the first singular homology group). Thus, by considering the
coverings of (X;)o «, induced by unramified coverings of the graph I'(y,), , we obtain
natural (group-theoretic!) “combinatorial quotients”:

Vi > (Hi); © H 0 Z

Lemma 2.4. (Ordinary New Parts, after Raynaud) For a “sufficiently large
prime number 1”7 (where “sufficiently large” depends only on p, g;), there exists a cyclic

étale covering (Z;)o,, — (Xi)ok, of (Xi)oy, of degree I such that the “new part”
n def

V'iew = A?gl)Kz

satisfies the following:

/A?}Q)K of the abelianized geometric fundamental group of (Z;)k,

k2

(i) We have an exact sequence:

0— V'imlt N (‘/;;neW)Zp d:ef ‘/inew ®z Zp N V;:etl =0
— where VY is an unramified Gy, -module, and V™ is the Cartier dual

of an unramified G g, -module.

i) The “combinatorial quotient” of AL arising from the coverings of
(Z) K,
Z)o.. induced by unramified coverings of the dual semi-graph of the special
K'L
fiber of (Z;)o,. ) induces a nonzero quotient V"V — (HV)- of V"¢V,
K; 1 1 Z 2

Here, the injection A?}’Q)K. — A?Z)n is the injection induced by pull-back via (Z;)k, —
(X;)k, and Poincaré duality (or, alternatively, by the “Verlagerung”).

Proof. Note that since both conditions (i), (ii) are group-theoretic, they may be realized
simultaneously for i = 1,2. Now to satisfy condition (i), it suffices — cf., e.g., the
discussion in [Mzk4], §8, of “Viz,” “Vgora” — to choose the covering so that the “new
parts” of the Jacobians of the irreducible components of the special fiber of (Z;)o x, are
all ordinary. That this is possible for [ sufficiently large is a consequence of a theorem of
Raynaud (as formulated, for instance, in [Tama|, Lemma 1.9). Then let us observe that,
so long as we choose the étale covering (Z;)o,, — (X;)oy, so that it is nontrivial over
every irreducible component of (X;),, condition (ii) is automatically satisfied: Indeed,
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if we write h; def rky(H;) — so h; > 0 since F((:Xi)k» is assumed to be noncontractible —
then to assert that condition (ii) fails to hold — i.e., that there are “no new cycles in
the dual graph” — is to assert that we have an equality of Euler characteristics:

(3 925) +hi—1=1{(> gxs) +h:—1}

J J

(where the first (respectively, second) sum is the sum of the genera of the irreducible
components of the geometric special fiber of (Z;)o,, (respectively, (Xi)o,,)). But, since

Y 9z -1 =) llgx;—1)
J J

we thus conclude that (I — 1) = {EJ (I- 1)} + hi(l — 1), hence that 1= (3_; 1)+ h;
— which is absurd, since both the sum and h; are > 1. This completes the proof. ()

Remark 2.4.1. The author would like to thank A. Tamagawa for explaining to him
the utility of Raynaud’s theorem in this sort of situation.

In the following discussion, to keep the notation simple, we shall replace (X;)k, by
some (Z;)k, as in Lemma 2.4. Thus, V;"°V is a Gk,-quotient module of V;. Moreover,
we have a surjection

VI s (HEY)g
such that the quotient (H;); — (HV)s; is defined over Z, i.e., arises from a quo-
tient H; — HP*V. (Indeed, this last assertion follows from the fact that the quotient
H,; — H!V arises as the cokernel (modulo torsion) of the morphism induced on first sin-
gular cohomology modules by a finite (ramified) covering of graphs — i.e., the covering
induced on dual graphs by the covering (2;)o,, — (Xi)oy, of Lemma 2.4.)

On the other hand, the cup product on group cohomology gives rise to a nondegen-
erate (group-theoretic!) pairing

VY @5 VY @5 ps(Ki) — M; S H*(Ax,, py(K;)) (2 Z)

(where we think of V.Y ef Hom(V;,Z) as Hl(AXi,z)), hence, by restriction to
(Vi)Y — Vi¥, a pairing

new new 74 def 74 ~
(VW)Y @5 (VY)Y @5 pgp (K) — M = H*(Ax,, uz(Ki)) (2 2)



ADPLVLULTE ANADRLLIAN GLROMELRY Z(

which is still nondegenerate (over Q), since it arises from an ample line bundle — namely,
the restriction of the polarization determined by the theta divisor on the Jacobian of
(X;)k, to the “new part” of (X;)k,. This pairing determines an “isogeny” (i.e., a
morphism which is an isomorphism over Q):

(Vinew)v ®2 Ni(Fz) ®2 Mz‘v PN V;new

Thus, if we take the dual of the surjection discussed in the preceding paragraph, then
we obtain an inclusion

(Hinew)% ® p’i(Fl) ® sz N (V;:new)\/ ® MZ(FZ) ® MZ,V PN V;:new

which (as one sees, for instance, by applying the fact that uz(Fi)GKi = 0) maps into
the kernel of the surjection V;"*% — (HV)5.

Next, let us observe that the kernel N; of the surjection of unramified Gk, -modules
(i.e., Gg,-modules)

Vietl s (Hzpew)Z

P

satisfies:

HO(Gk”Ni ®Qp) = Hl(GkuNi ®Qp) =0

(Indeed, N; arises as a submodule of the module of p-power torsion points of an abelian
variety over k;, so the vanishing of these cohomology groups follows from the Riemann
Hypothesis for abelian varieties over finite fields (cf., e.g., [Mumf], p. 206), i.e., the
fact that (some power of) the Frobenius element of Gy, acts on N; with eigenvalues
which are algebraic numbers with complex absolute values equal to a nonzero rational
power of p.) In particular, we conclude that the above surjection admits a unique
Gk, -equivariant splitting (H*V)z, — (V")g,. Similarly, (by taking Cartier duals)
the injection (H*%)y & pz,(K;) ® My — V;™" also admits a unique G k,-equivariant
splitting over Q,. Thus, by applying these splittings, we see that the G, -action on
(V;"*V)z, determines a p-adic extension class

(m)z, € {(H7*")g, } @MY @(H (Ky, pz(Ki)) [ Hp(Ky, pa(Kq))) = {(HP")g, }¥* @M,

where (by Proposition 1.2.1, (vii)) H'(K;, p5(K;)) may be identified with (K;)", and
we define
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—-— def ~ =
H} (K, py(K;)) = Ok, C (K[ 5 HY Ky, py(K;))

2 (3

so the quotient group (H'(Kj, puy(K;))/H}(K;, pz(K;))) may be identified with Z.

Next, let us observe that the kernel N; of (V;"*V)5, - (H®Y)s5, is an unramified
representation of G, (since it arises from the module of prime-to-p-power torsion points

of a semi-abelian variety over k;). Moreover, the injection of unramified G k,-modules

(H{*")3, ® pg,(Ki) @ M;" — N

splits uniquely over @ since (by the Riemann Hypothesis for abelian varieties over finite
fields — cf., e.g., [Mumf], p. 206) the Frobenius element of Gy, acts on the smaller
module (respectively, quotient by this smaller module) with weight 1 (respectively, 3).
Thus, just as in the p-adic case, we may construct a prime-to-p-adic extension class
(n3)5, from the G g,-action on (V;"*V),, which, together with (n;)z,, yields an extension
class (cf. [FC], Chapter III, Corollary 7.3):

n; € {(H*")7}* @M @{ H' (Ky, pz(K:)) /Hy(Ki, pa(Kq)) } ® Q= {(H )7} @M ® Q

That is to say, 1; may be thought of as a (group-theoretically reconstructible!) bilinear
form:

new def
(= )i : (H}™)E* — (MY)e ¥ MY ® Q

Moreover:

Lemma 2.5. Assume that (Xi)o,, arises as some (Z;)oy,”

Then:

as in Lemma 2.4.

(i) (Positive Rational Structures) The image of (H**")®? under the morphism
(lT{ineW)%"2 — (MY)q forms a rank one Z-submodule of (M) )q. Moreover, for any two
nonzero elements a,b € H;, {a,a); differs from (b,b); by a factor in Qs (i-e., a positive
rational number). In particular, this image determines a “Qsq-structure” on (M} )q,
i.e., a Qrational structure on (M))q, together with a collection of generators of this
@-rational structure that differ from one another by factors in Qsq. Finally, this Qso-

structure is the same as the Qsq-structure on M determined by the first Chern class
of an ample line bundle on (X;)k, in M; = H*(Ax,, ps(K;)).
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(ii) (Preservation of Degree) The isomorphism
M1 = H2(AX17 ”Z(Fl)) = H2(AX2aH'Z(F2)) = M2

induced by ax preserves the elements on both sides determined by the first Chern class
of a line bundle on (X;)k, of degree 1.

Proof. Indeed, assertion (i), follows formally from [FC]|, Chapter III, Corollary 7.3,
and Theorem 10.1, (iii) (by considering “new part” of the Jacobian of (X;)x, equipped
with the polarization induced by the theta polarization on the Jacobian).

As for assertion (ii), the elements in question are the unique elements that, on the
one hand, are rational and positive with respect to the structures discussed in assertion
(i), and, on the other hand, generate M; as a Z-module. O

Remark 2.5.1. Note that the conclusion of Lemma 2.5, (ii), is valid not just for
(Xi)k,, but for any finite étale cover of the original (X;)k,, i-e., even if this cover does
not arise as some “(Z;)o,,” as in Lemma 2.4. Indeed, this follows from the fact that
the crucial “Qso-structure” of Lemma 2.5, (i), is preserved by pull-back to such a cover,
which just multiplies the Chern class at issue in Lemma 2.5, (ii), by the degree of the

2

cover (an element of Qs¢!).

Remark 2.5.2. In the discussion of [Mzk4], §9, it was not necessary to be as careful
as we were in the discussion above in constructing the p-adic class (1;)z, (i.e., “pp” in
the notation of loc. cit.). This is because in loc. cit., we were working over a single
p-adic base-field “K.” In this more restricted context, the extension class (7;)z, may be
extracted much more easily from V; by simply forming the quotient by the submodule
of H'(K;,Ker((Vi)z, — (H;)z,)) generated by the elements which are “crystalline,”
or, more simply, of “geometric origin” (i.e., arise from Og-rational points of the for-
mal group associated to the p-divisible group determined — via “Tate’s theorem” (cf.
Theorem 4 of [Tate]) — by the Gk,-module Ker((V;)z, - (H;)z,)). Unfortunately, the
author omitted a detailed discussion of this aspect of the argument in the discussion of
[Mzk4], §9.

Remark 2.5.3. Relative to Remark 2.5.2, we note nevertheless that even in the
discussion of [Mzk4], §9, it is still necessary to work (at least until one recovers the
“Qso-structure” — cf. Remark 2.5.1) with (X;)x, such that the dual graph of the
special fiber (X;)k, is noncontractible. This minor technical point was omitted in the
discussion of [Mzk4], §9.

Next, let us write (Xilog)oKi for the log scheme obtained by equipping (&Xi)o,
with the log structure determined by the monoid of regular functions € O(x,), . Which
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are invertible on the open subscheme (X;)k; C (&;)og,. Thus, in the terminology of

[Kato2], (Xilog)oki is log regular. Also, let us write (X,°6);, for the log scheme obtained
by equipping (X;)g, with the log structure determined by restricting the log structure
of (Xilog)oKi. Thus, the quotient I x,), — H?}%Ki determines a “universal admissible
covering”

(X,%%)k, — (X%,

of (X]°%),, .

(2 2

Now let us choose a connected component i of the k;-smooth locus (i.e., the com-

plement of the nodes) of (Xilog)ki. Write Z; C (X;)k, for the image of Z; in (X)g,.
Thus,

is a “tame universal covering” of Z; (i.e., a universal covering of the hyperbolic curve
7; among those finite étale coverings that are tamely ramified at the “cusps” of this
hyperbolic curve). In the following discussion, we shall also assume, for simplicity,
that Z; is geometrically connected over k; (a condition that may always be achieved by
replacing K; by a finite unramified extension of K;).

Now the Galois group Iz, of this covering may also be thought of as the quotient
of the decomposition group in H?%’SK of I; by its inertia group. In particular, since
I1z, is formed by taking the quotient by this inertia group, it follows that the surjection

log - Lo
H?}i(’?) —-» G ,;?g induces a natural surjection
1)K 7

HL‘ i sz

whose kernel is the geometric (tame) fundamental group wi*™°((Z;)z) of Z;.

Finally, we observe that it makes sense to speak of 7, and Ty as corresponding
via ax. Indeed, by Lemma 2.3, ax induces an isomorphism between the pro-graphs
determined by the (f;og)ki. Thus, the Z; may be said to correspond via ax when the
vertices that they determine in these pro-graphs correspond. Moreover, when the Z;
correspond via ay, it follows (by considering the stabilizer of the vertex determined
by i) that ax induces a bijection between the respective decomposition groups D; in
H?%%Ki of Z-, as well as between the respective inertia subgroups of these decomposition
groups D; (which may be characterized group-theoretically as the centers of the sub-
groups D; N Ker(l‘[z(’“;i{;“)Ki — G, ), since A¥™ is center-free — cf. the proofs of Lemmas

1.3.1, 1.3.10). Thus, in summary, ax induces a commutative diagram:
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7, 5 I
Gk, — G,

We are now ready (cf. [Mzk4], §7) to apply the main result of [Tama]. This result
states that commutative diagrams as above are in natural bijective correspondence with
commutative diagrams

I, S I,

. 5 I
lying over commutative diagrams

ki S kg

ki = ks
(cf. Theorem 1.3.11). In particular, these commutative diagrams induce an isomorphism

~

(Z' =) H2(Th)g,, uz, (k1)) = H2X(Z2)z,, uz (k2)) (2 Z)

(where “H2” denotes étale cohomology with compact supports — cf. [Milne], Chapter
ITI, Proposition 1.29; Remark 1.30) which maps the element “1” (i.e., the element
determined by the first Chern class of a line bundle of degree 1) on the left to the
element “1” on the right. (Indeed, this follows from the fact that the morphism Z; = T,
appearing in the above commutative diagram is an isomorphism, hence of degree 1.)
Note that the isomorphism ps,(k1) = ps,(ks) that we use here is that obtained from
the commutative diagram above, i.e., that provided by Theorem 1.3.11.

Lemma 2.6. (Compatibility of Isomorphisms Between Roots of Unity)

2

Assume that (X;)o,, arises as some (Z;)o, " as in Lemma 2.4. Then the following

diagram

~

pz (k) = pg(ks)

l l

ps(K1) 5 pg(K))
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— in which the vertical morphisms are the natural ones (obtained by considering Te-
ichmiiller representatives); the upper horizontal morphism is the morphism determined
by Theorem 1.3.11; and the lower horizontal morphism is the morphism determined by
Proposition 1.2.1, (vi) — commutes.

Proof. Indeed, the diagram in the statement of Lemma 2.6 induces a diagram:

~

HZ (T, b7, (k1)) = HZ((Z2)g, ug(k2))

l l (%)

HE (T, wz/(EK1) = H((Ta)g, pz/(K2))

Moreover, we have a diagram

HZ((Th)g,, uz/(K1)) = HZ((Z2)g,, uz(K2))

l l o (%2)

H((X1)%,, uz,/(K1)) =  H((X2)g,, uz/(K2))

where the horizontal morphisms are induced by ak (cf. Proposition 1.2.1, (vi)), and
the vertical morphisms are induced “group-theoretically” as follows: First, observe that

H* (X)), 17,/(K:)) & H*(Ax,, ps,(K;)) & H(AE™, ps, (K5))

k2

while Hf((L-)E,,—) may be thought of as the “cohomology of the group Az, def

Ker(Ilz, — Gy,) with trivializations over the inertia groups in Az, of the cusps of
Z;” (cf. the exact sequences of [Milne], Chapter ITI, Remark 1.30). On the other hand,
let us recall that A%gm may be constructed using a semi-graph of (profinite) groups
(whose underlying semi-graph is the dual semi-graph of (&X;)k, with compact structure
Ff X, cf. the Appendix) in which Az, is the group lying at the vertex corresponding
to Z;, and the groups lying at the edges meeting this vertex are all inertia groups in Az,
of cusps of Z;. Thus, the vertical morphisms of diagram (x9) may be thought of as being
obtained by extending cohomology classes of Az, with trivializations over the inertia
groups of Az, to cohomology classes “over the entire semi-graph of (profinite) groups”
(and hence over A%gm) by gluing such classes to the trivial cohomology classes over all
the other edges and vertices. In particular, we thus see that the vertical morphisms of

diagram (x9) are group-theoretic, i.e., (in other words) diagram (x3) commutes.

Now let us compose the above two diagrams (1), (*2) to form a single diagram:
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HZ(To)g, > uz(k1)) = HYA(Ta)g,, wg (k)

l l - (%3)

~

H*((X1)g,, m7,(K1)) = H*(X2)g,, pz(K2))

Note that this diagram (*3) commutes, since, by Lemma 2.5, (ii) (applied to the lower
horizontal morphism of (x3)), and the discussion immediately preceding the present
Lemma 2.6) (applied to the upper horizontal morphism of (x3)), all of the morphisms
of this diagram are compatible with the elements “1” determined by the first Chern
class of a line bundle of degree 1. But this implies that diagram (1) commutes (since
diagram (*2) has already been shown to be commutative, and all the arrows in both
of these diagrams (*1), (*2) are isomorphisms between rank one free i’—modules). On
the other hand, since diagram (*;) was obtained by applying the functors H, 2((Ii)Ei’ -)
(which are manifestly faithful) to the diagram appearing in the statement of Lemma
2.6, we thus conclude that the diagram appearing in the statement of Lemma 2.6 is
commutative, as desired. O

The significance of Lemma 2.6 from our point of view is the following: Lemma 2.6
implies that ax induces an isomorphism

. log ~ log
CUGIkOg . le — sz

which satisfies the hypothesis of Proposition 1.2.4, (iii). Thus, we conclude from Propo-
sition 1.2.4, (iii), that ages arises geometrically. In particular, it follows that we may
k

apply [Mzk4], Theorem 7.2, to the commutative diagram

~

adm =

Hadm

(X1)K, (X2) K,
o 5 i

(where we note that Lemma 2.6 also implies — when translated into the terminology of
[Mzk4], §7 — that the “RT-degree” associated to this commutative diagram is 1, as is
necessary for the application of [Mzk4], Theorem 7.2). Here, we observe that although
[Mzk4], Theorem 7.2, is only stated in the proper singular case, it extends immediately to
the affine (and not necessarily singular) case. In particular, we conclude that the above
commutative diagram of fundamental groups arises geometrically from a commutative
diagram:
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(%), S (%)

| |

log log
kq — k,

2

Moreover, the isomorphism exhibited in the upper horizontal arrow of this commuta-
tive diagram is easily seen to be functorial with respect to arbitrary finite étale cover-
ings of the (X;)k, (i-e., not just coverings that arise from finite étale coverings of the
(X))o Ki)' Indeed, this functoriality follows formally from the uniqueness assertion in
Proposition 1.2.4, (iii), and the fact that dominant (i.e., not just finite étale) morphisms
between hyperbolic curves in characteristic p may be distinguished by considering the
morphisms that they induce between the respective Jacobians, hence, in particular, by
the morphisms that they induce between the [-power torsion points (where | # p) of the
respective Jacobians. Thus, in summary:

Theorem 2.7. (Group-Theoretic Reconstruction of the Logarithmic Special
Fiber of a p-adic Hyperbolic Curve) Let p be a prime number. Fori= 1,2, let K;
be a finite extension of Q,, and (X;)k, a hyperbolic curve over K; whose associated
pointed stable curve has stable reduction over Ok,. Denote the resulting “stable model”
of (Xi)k, over Ok, by (X;)o,. Assume that we have chosen basepoints of the (X;)k;
(which thus induce basepoints of the K;). Then every isomorphism of profinite groups
Hixy), = I x,) x, tnduces commutative diagrams:

~ dm ~ dm
H(Xl)K1 - H(XZ)KQ H?Xl)Kl - H?X2)K2
GK1 = GKQ G};)lg = G};g

Moreover, the latter commutative diagram (of admissible quotients H?%%Ki of the

H(Xi)Ki lying over the tame Galois groups G}coig of the K; ) necessarily arises from unique
commutative diagrams of log schemes

(0 5 (%) (B~ 5 (k%)
() S (), BSOS kS

where the commutative diagram on the left lies over the commutative diagram on the
right (which is as in Proposition 1.2.4, (iii)). Here, we equip Spec(Ok,) (respectively,
Spec(ki); (Xi)ox,; (Xi)k;) with the log structure determined by the closed point (re-
spectively, determined by restricting the log structure on Spec(Ok,); determined by the
monoid of functions invertible on the open subscheme (X;)k,; determined by restricting
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the log structure on (X;)og, ) and denote the resulting log scheme by Ol};f (respectively,

ki°®; (X°%)0 o (X/°8)y,); the vertical morphisms in the above commutative diagrams

of log schemes are the universal coverings induced by the various basepoints chosen.

Proof.  First, note that the additional assumptions that were used in the course of
the above discussion — e.g., that (X;)o,, arise as some “(Z;)o,,” as in Lemma 2.4 —
were applied only to show that the hypotheses of Proposition 1.2.4, (iii) (and [Mzk],
Theorem 7.2) are satisfied. Thus, (cf. Remark 2.5.1; the paragraph following the proof
of Lemma 2.3) one concludes that — except when (X;)k, is proper, with good reduction
— one may reconstruct the logarithmic special fiber in a functorial fashion (i.e., with

respect to finite étale coverings of the (X;)g,), as desired.

In the case that (X;)xk, is proper, but has good reduction over Ok,, we may still
reconstruct its logarithmic special fiber (despite the fact that [Tama], Theorem 4.3,
is only stated in [Tama| for affine hyperbolic curves!) by arguing as follows: First
of all, we observe that in the case of good reduction, the log structure of the special
fiber of the curve is obtained by simply pulling back the log structure of kiog. Thus,
it suffices to construct the (non-logarithmic, scheme-theoretic) special fiber. Next, we
observe that (after possibly enlarging K;) there exist — cf., e.g., [Mzk4], the first two
paragraphs of the proof of Theorem 9.2 — corresponding finite Galois étale coverings
(Zi)k, — (Xi)k, (for i = 1,2), where (Z;)k, is a hyperbolic curve over K; with bad
stable reduction (2;)o,, over Ok,. Thus, by applying Theorem 2.7 to (Z;)k, allows
us to reconstruct the logarithmic special fiber (Z,°8),, together with the action of the

Galois group G def Gal((Z;)k,/(Xi)k,). Note that irreducible components of (Z;),
that dominate (X;)k, may be distinguished (group-theoretically!) by the fact that their
geometric fundamental groups map surjectively onto open subgroups of the geometric
fundamental group of (X;)g,. Let us choose corresponding (closed, proper) irreducible

components

C; C(Z)),

that dominate (hence surject onto) (X;)r,. Denote the decomposition (respectively, in-
ertia) group associated to C; by D; C G; (respectively, I; C D; C G;). Thus, D;/I;
acts faithfully on C;, and the order |I;| of I; is a power of p, equal to the degree of
inseparability of the function field of C; over the function field of (X;)k,. Then we may
reconstruct (X;)x, as a finite flat quotient of C; by considering the subsheaf

(OENP: C O,

(i.e., the D;-invariants of the subalgebra Ogjl C Og,, where we use that |I;| is a power
of p). By applying the functoriality with respect to finite étale coverings of (X;)k

A
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observed in the discussion immediately preceding the statement of Theorem 2.7, we
conclude that this construction of (X;), is independent of the choice of (Z;)k,, C;, and
itself functorial with respect to finite étale coverings of (X;)x,-

This completes our reconstruction of the logarithmic special fibers of the (X;)k,, in
a fashion that is functorial with respect to finite étale coverings of the (X;)k,. Thus,
we conclude, in particular, (from this functoriality, applied to covering transformations;
Lemma 2.2, (i)) that the morphism induced on admissible fundamental groups by the
isomorphism constructed between logarithmic special fibers coincides with the original
given morphism between admissible fundamental groups. This completes the proof of

Theorem 2.7. O

Remark 2.7.1. Given data as in Theorem 2.7, one may consider the outer Galois
representation

Gk, — Out(Ax,)

which is known to be injective if » > 0 (cf. Theorem 1.3.6). Thus, at least in the case
r > 0, it is natural to ask:

What is the commensurator of Im(Gg;) in Out(Ax,)?

Although Theorem 2.7 does not give a complete explicit answer to this question, it tells
us that, at any rate, elements of this commensurator (which define isomorphisms of the
sort that are treated in Theorem 2.7) preserve the logarithmic special fiber. In particular,
(although one does not know whether or not elements of this commensurator induce
“isogenies” of K, i.e., are “geometric”) one obtains that elements of this commensurator
do induce “isogenies” of ki°®. Moreover, since it follows from Theorem A of [Mzk6] (cf.
Theorem 1.3.4, Remark 1.3.6.2) that the centralizer of Im(Gg,) in Out(Ax,) consists
precisely of those (finitely many) automorphisms that arise geometrically (i.e., from
automorphisms of (X;)g,), it follows that an “isogeny” of Gk, induced by an element
of this commensurator corresponds to (up to finitely many well-understood possibilities)
an essentially unique element of this commensurator. This motivates the point of view
that:

The “isogenies” of Gk, defined by elements of this commensurator — which
we shall refer to as quasi-conformal isogenies of Gk, — are natural objects
to study in their own right.

The reason for the choice of the terminology “quasi-conformal” is that those isoge-
nies that are “of geometric origin” — i.e., “conformal” — are (by the main theorem
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of [Mzk5]) precisely those which preserve the higher ramification filtration, which is
closely related to the “canonical p-adic metric” on the local field in question. Thus,
quasi-conformal isogenies do not preserve the “metric (or conformal) structure” but
do preserve the “logarithmic special fiber” which one may think of as a sort of p-adic
analogue of the “topological type” of the objects in question.

Remark 2.7.2. Note that isomorphisms
kllog :) leOg

(such as those arising from “quasi-conformal isomorphisms” G, = G, as in Theorem
2.7) need not be “geometric” from the point of view of characteristic zero (i.e., induced
by an isomorphism of fields K; = K5). For instance, such an isomorphism might take
the section of the log structure corresponding to p to some multiple of this section by
a root of unity (a situation which could never occur if the isomorphism arose from an
isomorphism K; = Ks). Whether or not, however, this sort of phenomenon actually
takes place in the case of “quasi-conformal isomorphisms” as in Theorem 2.7 is not clear
to the author at the time of writing.

Remark 2.7.3. The theory of the present § prompts the question:

Do isomorphisms I1(x,),, = H(x,)x, as in Theorem 2.7 only preserve the
logarithmic special fiber or do they preserve other information as well con-
cerning the liftings (X;)k, of the respective logarithmic special fibers?

Although the author is unable to give a complete answer to this question at the time of
writing, it does appear that when the lifting in question is in some sense “canonical,”
then this canonicality is preserved by isomorphisms as in Theorem 2.7. In a future paper,
we hope to discuss this sort of phenomenon — which may be observed, for instance, in
the following cases:

(1) Serre-Tate canonical liftings;

(2) “arithmetic hyperbolic curves,” i.e., hyperbolic curves isogenous to a
Shimura curve;

(3) canonical liftings in the sense of “p-adic Teichmiiller theory” (cf.
[Mzk1], [Mzk2])

— in more detail. Perhaps this phenomenon should be regarded as a natural extension
of the phenomenon of preservation of the logarithmic fiber in the sense that canonical
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liftings are, in some sense, liftings that are “defined over F; ” — i.e., a hypothetical (but,
of course, fictional!) absolute field of constants sitting inside Z,.

Appendix: Terminology of Graph Theory

The Notion of a Semi-Graph:
We shall refer to as a semi-graph I' the following collection of data:

(1) aset V — whose elements we refer to as “vertices”;

(2) aset & — whose elements we refer to as “edges” — of (not necessarily distinct)
unordered pairs of (not necessarily distinct) elements of the set V ] {0} (i.e.,
the disjoint union of V and the symbol “0”).

A graph T is a semi-graph for which all of the edges are unordered pairs of elements of
V itself. We will say that a graph or semi-graph is finite if its sets of vertices and edges
are finite.

Let I' = {V,€} be a semi-graph. If e € £ is an edge of I consisting of two (not
necessarily distinct elements) vy, vy of V [] {#}, then we shall say that e joins vy to va,
that e meets v, v, or that e abuts to vy, vy. If precisely one (respectively, two) of vy,
vg is equal to (§, then we shall say that e abuts to precisely one (respectively, no) vertes.
Thus, an edge of a graph always abuts to precisely two (not necessarily disinct) vertices,
while an edge of a semi-graph may abut to precisely one vertex, or to no vertices at all.

By thinking of vertices as points and edges as line segments that join points to
points or are “open” at one or both ends, we may think of semi-graphs as defining
topological spaces. Thus, it makes sense to speak of a semi-graph as being contractible
(in the sense of algebraic topology). Such a semi-graph will be referred to as a tree.

Finally, a morphism between semi-graphs is a pair of compatible maps between the
respective sets of vertices and the respective sets of edges. Here, we allow an edge that
abuts to no (respectively, precisely one) vertex to map to an edge that abuts to any
number > 0 (respectively, > 1) of vertices.

Semi-Graphs of Profinite Groups:
We shall refer to the following data G:

(i) a finite semi-graph T,

(ii) for each vertex v of ', a profinite group G.;
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(iii) for each edge e of I, a profinite group G., together with, for each vertex v to
which e abuts, a continuous homomorphism e, : Go. — G,.

as a semi-graph of profinite groups. When I' is a graph, we shall refer to this data G as
a graph of profinite groups.

Suppose that we are given a semi-graph of profinite groups G. Then to GG, one may
associate (in a natural, functorial fashion) a profinite group — namely, the profinite
completion of the well-known construction of the fundamental group associated to a
(semi-)graph of groups (cf. [Serrel], I, §5.1).

Pointed Stable Curves:

Let k£ be an algebraically closed field of characteristic 0. Let g,r > 0 be integers
such that 29 — 2+ 7 > 0. Let (X — Spec(k), D C X) be an r-pointed stable curve of
genus g (where D C X is the divisor of marked points) over k, and set:

Write I'x for the dual graph of X. Thus, the vertices v of I'x correspond to irreducible
components I,, of X, while the edges e of I'x correspond to nodes v, of X. Moreover,
the node v, has two branches e, and e,,, which correspond to the vertices v, w joined by
the edge e. Let us write X,, C X for the open subscheme which is the complement of the
nodes in the irreducible component I,,, and X, for the scheme-theoretic intersection
with X, of the completion of the branch e, at the node v,. Thus, X,  is noncanonically
isomorphic to Spec(k[[t]][t™!]) (where ¢ is an indeterminate).

In the following discussion, we would like to fix isomorphisms:

via which we shall identify X, with X, and denote the resulting object by X.. In
particular, we have natural morphisms X, — X,, X, — X,,. One verifies immediately
that the induced morphism on (algebraic) fundamental groups is independent of the
choice of isomorphism. Thus, the dual graph I'x, together with the result of applying
“r1(—)” to the data {X,; X¢; Xe — X, } determines a graph of profinite groups Gx
associated to the stable curve X.

When considering the case of a curve with marked points (i.e., r > 0), it is useful
to consider the following slightly modified “data with compact structure” Let us denote
by I' the semi-graph obtained from I'x by appending to I'x, for each marked point
r € X, the following:
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an edge e, that abuts to only one vertex, namely the vertex v, corresponding
to the irreducible component of X that contains z.

We shall refer to the new edges “e,” that were added to I'x to form I'S; as the marked
edges of I' and to I' itself as the dual graph with compact structure associated to X.

If, moreover, we associate to e, the scheme X, (which is noncanonically isomorphic
to Spec(k[[t]][t"!])) obtained by removing x from the completion of X at z, and apply
“m1(=)” to the natural morphism X., — X, , then we obtain a natural semi-graph of
profinite groups G5 with underlying semi-graph I';. Moreover, one checks easily that
the profinite group associated (as described above) to Gx or G% is isomorphic to “ﬁg’r,”
i.e., the profinite completion of the fundamental group of a Riemann surface of genus g
with r points removed.

In fact, if we take k = G and we think of the X , as Riemann surfaces and of the
X, as “copies of the circle S1,” then we see that this construction corresponds quite
geometrically to gluing Riemann surfaces with boundary along copies of the circle.

Finally, we remark that thinking of coverings of X in terms of coverings of the X,
glued together along the nodal X, amounts essentially to the notion of an admissible
cover of a stable curve (cf. [Mzk3], §3).
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