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1 Introduction — Brief review of exact steepest

descent method and several problems of it

The exact steepest descent method was born in [AKT4] by combining the ordinary
steepest descent method with the exact WKB analysis. (See, e.g., [AKT2] for the
notion and notations of the exact WKB analysis used in this report.) It is a straight-
forward generalization of the ordinary steepest descent method and provides us with
a new powerful tool for the description of Stokes curves as well as for connection
problems of ordinary differential equations. Still in [AKT4] some restrictions were
imposed for its applicability. In this report, in order that we may remove such re-
strictions and apply it to more general equations in the future, we discuss the effects
of several kinds of new Stokes curves in the exact steepest descent method.

Let us here review the exact steepest descent method briefly. An equation to
be discussed is an ordinary differential equation with polynomial coefficients of the
following form:

(1) Pψ =
∑

0≤j≤m
0≤k≤n

ajkx
kηm−j

djψ

dxj
= 0,
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where ajk is a complex constant and η > 0 is a large parameter. By the Laplace

transformation ψ =
∫

exp(ηxξ)ψ̂(ξ)dξ with respect to an independent variable x
with a large parameter η (1) is transformed into

(2) P̂ ψ̂ =
∑

ajkη
m−k

(
− d

dξ

)k
ξjψ̂ = 0.

In the exact steepest descent method, following the idea of Berk et al. ([BNR]),
we take a WKB solution ψ̂k (more precisely, the Borel sum of ψ̂k) and consider its
inverse Laplace transform

(3)

∫
σ

(j)
k

exp(ηxξ)ψ̂kdξ =

∫
σ

(j)
k

exp

(
η

(
xξ −

∫ ξ

xk(ξ)dξ

)
+ · · ·

)
dξ

to discuss a solution of the original equation (1). Here xk(ξ) is a root (with respect
to x) of the characteristic equation

(4) p(x, ξ)
def
=

∑
0≤j≤m
0≤k≤n

ajkx
kξj = 0

and σ
(j)
k is a steepest descent path of Refk(x, ξ) passing through a saddle point of

fk(x, ξ), where fk(x, ξ)
def
= xξ −

∫ ξ
xk(ξ)dξ denotes the phase function of (3). Note

that, since the integrand of (3) is the Borel sum of a WKB solution ψ̂k, the so-called
Stokes phenomenon occurs and ψ̂k becomes a linear combination of ψ̂k and ψ̂k′ (as

was first observed by Voros [V]) when the steepest descent path σ
(j)
k crosses a Stokes

curve of type (k > k′) for P̂ . Hence, taking this Stokes phenomenon into account,
we find that we should globally consider a linear combination of integrals of the
following form:

(5)

∫
σ

(j)
k

exp(ηxξ)ψ̂kdξ + ck′

∫
σ

(j)

k′

exp(ηxξ)ψ̂k′dξ + ck′′

∫
σ

(j)

k′′

exp(ηxξ)ψ̂k′′dξ + · · · ,

where σ
(j)
k′ is a steepest descent path of Refk′ emanating from a crossing point of

σ
(j)
k and a Stokes curve of type (k > k′) (σ

(j)
k′′ , σ

(j)
k′′′ , . . . are also steepest descent

paths obtained by similarly repeated bifurcation procedures), and ck′ (ck′′ . . . as
well) is a constant determined by the connection formula which describes the Stokes
phenomenon at the crossing point. The configuration of these steepest descent
paths (the whole of which is called an “exact steepest descent path”) is closely
related to asymptotic behaviors (including exponentially small terms) of a WKB
solution of (1). For example, a Stokes curve of (1) is characterized as a point
where an exact steepest descent path passing through a saddle point hits another
saddle point (“Exact Steepest Descent Path Ansatz” or “ESDP Ansatz” for short, cf.
[AKT4]). The exact steepest descent method is, in a word, a method of investigating
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global asymptotic behaviors of solutions of (1) by tracing the configuration of exact
steepest descent paths.

However, if we try to apply this method to general equations, we may encounter
several difficulties mainly because the Laplace transformed equation (2) often has
new Stokes curves and/or some singular points. The purpose of this report is to
discuss how these difficulties can be overcome by studying a few examples with the
aid of a computer. To be more concrete, we investigate the following situations:
In [AKT4], to avoid these difficulties, we imposed the restriction that the Laplace
transformed operator P̂ is of at most second order (i.e., the degree of the coefficients
of P is at most two). If we try to remove this restriction, the effect of a new Stokes
curve for P̂ becomes a problem. In Section 2 we first investigate the effect of a
new Stokes curve for P̂ . Next in Section 3 we consider the case where P̂ has a
singular point. In particular, when P̂ has a singular point of “simple pole type”,
there appears a Stokes curve emanating from such a singular point ([K1], [K2]). In
Section 3 we investigate the effect of a Stokes curve emanating from a singular point
of simple pole type. Furthermore, in Section 4 we deal with the case where the
characteristic polynomial p(x, ξ) defined by (4) is factorized as

(6) p(x, ξ) = (ξ − α)(ξ − p0(x))(ξ − p1(x))

with α being a constant. In a generic situation a root ξj(x) of (4) with respect to ξ
gives a saddle point of the phase function fk(x, ξ) of (3) and the integral (5) along
an exact steepest descent path passing through ξj(x) corresponds to (the Borel sum
of) a WKB solution ψj of (1) with the phase factor η

∫ x
ξj(x)dx. However, in the

situation where p(x, ξ) is factorized as (6) only p0(x) and p1(x) give saddle points
of (3) and hence the number of saddle points is strictly smaller than that of WKB
solutions of (1) (that is, a WKB solution with the phase factor η

∫ x
αdx = ηαx

cannot be expressed in the form of (5)). In section 4, taking up an example which
has its origin in the problem of non-adiabatic transition probabilities in quantum
mechanics, we consider the case where (4) has a root (with respect to ξ) independent
of x. Finally in Section 5 we give a summary and concluding remarks.

In ending this Introduction, we would like to thank Prof. T. Kawai and Prof.
T. Aoki for valuable advice and discussions with them.

2 The effect of a new Stokes curve

In this section we study the following equation:

Pψ = −(12 + 14i)x
d2ψ

dx2
(7)

+
(
(6 + 3i)x2 + 2− 11i− (24 + 28i+ 4c1)η−1

)
η
dψ

dx

−
(
x3 − 15

4
(1 + 2i)x− (12 + 6i− 2ic0)η−1x

)
η2ψ = 0,
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where c0 and c1 are arbitrary complex constants. This equation is an example of
Carroll-Hioe type equations discussed in [AKT3]. As a matter of fact, by setting

(8)
r1 = 2− i, r2 = −(

1

2
+ 2i), r3 = 0,

Ω12 = −3 + 4i, Ω23 = 1− 3i

in Equation (CH) of [AKT3, p. 629], we obtain (7). As (7) is of second order, its
Stokes geometry can be completed without introducing any new Stokes curve. The
result is shown in Figure 1, where and in subsequent Figures 2, 5 and 8 a Stokes curve
(with its type being specified by a symbol “+ < −” etc.) is designated by a solid
line, while a wiggly line designates a cut which is placed to define a characteristic
root of (7) as single-valued analytic function.

Figure 1: Stokes curves of (7).

Note that the origin x = 0 in Figure 1 is a regular singular point of “double pole
type” discussed in [AKT1, Section 3]. In what follows we will observe that a new
Stokes curve of the Laplace transform of (7) plays an important role when we try
to detect a Stokes curve of (7) by using the exact steepest descent method.

The Laplace transform of (7) is

P̂ ψ̂ = η−1

[
d3ψ̂

dξ3
+ (6 + 3i)ξη

d2ψ̂

dξ2
(9)

+

(
(12 + 14i)ξ2 − 15 + 30i

4
+ 2ic0η

−1

)
η2dψ̂

dξ

+
(
(2− 11i)− 4c1η

−1
)
ξη3ψ̂

]
= 0

and the configuration of its ordinary and new Stokes curves is drawn in Figure 2
below:
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Figure 2: Stokes curves of the Laplace transformed equation (9).

In Figure 2 (and in Figures 5 and 8 as well) a small dot designates an ordinary or
virtual turning point and a broken line means that no Stokes phenomenon occurs on
that portion of the curve. Note that P̂ itself is a Carroll-Hioe type operator. Hence
we readily find that it is transformed into a Laplace type operator by a change of
independent variables z = ξ2 and consequently it possesses an integral representation
of solutions. Figure 2 can be confirmed to be the correct Stokes geometry of (9) by
using the integral representation.

As is observed in Figure 2, (9) has several new Stokes curves. These new Stokes
curves are necessary to detect a Stokes curve of (7). For example, we find that, in
order to detect a Stokes curve γ in Figure 1, a new Stokes curve γ̂ (of type (0 < 2))
passing through an ordered crossing point Â in Figure 2 is necessary in the following
way: Let us take two points x0 and x1 near γ as is shown in Figure 1 and describe
the configuration of exact steepest descent paths at these two points x0 and x1. We
then obtain Figure 3. (In Figure 3 and subsequent figures describing exact steepest
descent paths as well a solid line designates a steepest descent path and a dotted line
designates a Stokes curve of the Laplace transformed equation.) Figure 3 shows that
between x0 and x1 a steepest descent path σ, which a steepest descent path passing
through a saddle point ξ+ bifurcates at its crossing point with γ̂, hits another saddle
point ξ−. This clearly visualizes the necessity of the new Stokes curve γ̂.

Furthermore, we next let x0 and x1 be closer to a turning point a0 (cf. Figure 1).
Then the steepest descent path passing through ξ+ crosses an ordered crossing point
Â and, for example, at x̃0 and x̃1 the configuration of exact steepest descent paths
becomes that described in Figure 4. In Figure 4 a bifurcated steepest descent path
σ̃ obtained by repeated bifurcation from the steepest descent path passing through
ξ+ (that is, the steepest descent path passing through ξ+ bifurcates another steepest
descent path at its crossing point with a Stokes curve of type (1 < 2), and further it
bifurcates σ̃ at its crossing point with a Stokes curve of type (0 < 1)) hits a saddle
point ξ−.
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Figure 3: Exact steepest descent paths at x = x0 (a) and x = x1 (b).

Figure 4: Exact steepest descent paths at x = x̃0 (a) and x = x̃1 (b).

In this manner a new Stokes curve is built in the exact steepest descent method
very exquisitely to the effect that it explains the change of configuration occurring
when a steepest descent path crosses an ordered crossing point very well.

3 The effect of a singular point of simple pole type

We next consider the following example in this section:

(10) Pψ = x2d
3ψ

dx3
− x2η

d2ψ

dx2
− θη2dψ

dx
− iθη3ψ = 0,
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where θ = exp(2iπ/5). Its Laplace transform is given by

P̂ ψ̂ = η

[
ξ2(ξ − 1)

d2ψ̂

dξ2
+ (6ξ2 − 4ξ)

dψ̂

dξ
(11)

−
(
θξ + iθ + (−6ξ + 2)η−2

)
η2ψ̂

]
= 0.

The Laplace transformed equation (11) has a singularity of “double pole type” at
ξ = 0 and of “simple pole type” at ξ = 1. In particular, there appears a Stokes
curve emanating from the singular point ξ = 1 of “simple pole type”. In what
follows we investigate the effect of such a Stokes curve emanating from a simple
pole type singularity.

The configuration of Stokes curves of (10) is shown in Figure 5.

Figure 5: Stokes curves of (10).

Figure 6: Magnification of Figure 5 near the Stokes curves γ.
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We first take two points x0 and x1 near a Stokes curve γ (cf. Figure 6) and draw the
configuration of exact steepest descent paths at these points. The resulting figures
are Figures 7(a) and 7(b).

Figure 7: Exact steepest descent paths at x = x0 (a) and x = x1 (b).

A change of the configuration can be readily observed: A steepest descent path σ
passing through a saddle point ξ0 bifurcates another steepest descent path σb at a
crossing point of σ and a Stokes curve γ̂ emanating from the singular point ξ = 1
of simple pole type, and σ and σb simultaneously hit a saddle point ξ1. This shows
the relevance of a Stokes curve emanating from a simple pole type singularity in the
exact steepest descent method.

Remark 3.1 In Figure 7(a) a steepest descent path σb bifurcated at a crossing
point of σ and γ̂ intersects again with γ̂. We can verify that this second intersection
point of σb and γ̂ is passed also by the original steepest descent path σ. As a matter
of fact, letting ξ∗ denote the first intersection point of σ and γ̂ (i.e., the bifurcation
point of σb), we find that γ̂, σ and σb can be described respectively by

γ̂ : Im

∫ ξ

ξ∗

(xk′ − xk)dξ = 0,(12)

σ : Im

(
x(ξ − ξ∗)−

∫ ξ

ξ∗

xkdξ

)
= 0,(13)

σb : Im

(
x(ξ − ξ∗)−

∫ ξ

ξ∗

xk′dξ

)
= 0(14)

with some indices k and k′. Then the second intersection point ξ∗∗ of σb and γ̂
should satisfy

(15) Im

∫ ξ∗∗

ξ∗

(xk′ − xk)dξ = 0
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and

(16) Im

(
x(ξ∗∗ − ξ∗)−

∫ ξ∗∗

ξ∗

xk′dξ

)
= 0.

Summing up these two equations, we obtain

(17) Im

(
x(ξ∗∗ − ξ∗)−

∫ ξ∗∗

ξ∗

xkdξ

)
= 0,

which implies that σ also passes through ξ∗∗.

If we further let x0 and x1 approach closer to a crossing point B of Stokes curves
(cf. Figure 6), we obtain Figure 8.

Figure 8: Exact steepest descent paths at x = x̃0 (a) and x = x̃1 (b).

It appears that only σ hits a saddle point ξ1 and a Stokes curve γ̂ emanating from
ξ = 1 is irrelevant in Figure 8. However, the degeneracy in Figure 8 is “multiple-ply”;
other steepest descent paths are bifurcated at crossing points ξ̃∗ and ξ̃∗∗ of σ and
γ̂ and these bifurcated steepest descent paths simultaneously hit ξ1 with overlying
σ (cf. Remark 3.2 below). Thus a Stokes curve emanating from a simple pole type
singularity is relevant also in Figure 8.

Remark 3.2 The Stokes curve γ̂ emanating from a singular point ξ = 1 of simple
pole type can be described by

(18) Im

∫ ξ

1

(xk′ − xk)dξ = 0,

or equivalently by

(19) Im

∫ ξ

ξ†
(xk′ − xk)dξ = 0,
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where ξ† denotes a point on R, the Riemann surface of xk and xk′ ramified at ξ = 1,
which has the same projection with ξ but is different itself from ξ. Since γ̂ passes
through ξ̃∗ and ξ̃∗∗, we have

(20) Im

∫ ξ̃∗

ξ̃†∗

(xk′ − xk)dξ = Im

∫ ξ̃∗∗

ξ̃†∗∗

(xk′ − xk)dξ = 0.

Taking these relations into account, we can verify that the steepest descent paths
bifurcated at ξ̃∗ and ξ̃∗∗ overlie σ by the same reasoning as in Remark 3.1.

4 The effect of a constant characteristic root

In this section we discuss an example of the form

Pψ =
d3ψ

dx3
− iηd

2ψ

dx2
+
(
x2 + (i+ |c0|2 + |c1|2)η−1

)
η2dψ

dx
(21)

−
(
ix2 + (−1 + i|c0|2x+ i|c1|2)η−1

)
η3ψ = 0

with c0 and c1 being arbitrary constants, which is equivalent to the following 3× 3
non-adiabatic level crossing problem in quantum mechanics:

(22) i
d

dx
ϕ = η

 −1 0 0
0 x 0
0 0 −x

+ η−1/2

 0 c0 0
c0 0 c1

0 c1 0

ϕ.
The configuration of Stokes curves of (21) is shown in Figure 9.

Figure 9: Stokes curves of (21).
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There are three ordinary turning points (all of them are double) and two virtual
turning points for (21). (The correctness of Figure 9 can be confirmed by the
same reasoning as that employed in [AKT5, Remark 2.1].) Since the characteristic
polynomial of (21) can be factorized as (ξ−i)(ξ+ix)(ξ−ix), the difficulty explained
in Section 1 appears for (21) due to the existence of a constant characteristic root
ξ0 = i. In what follows we investigate the effect of this constant characteristic root
ξ0 = i.

Figures 10(a), . . . , 10(f) respectively describe the configuration of exact steepest
descent paths at points x0, . . . , x5 near a crossing point A of Stokes curves in
Figure 9.

Figure 10: Exact steepest descent paths at x = x0 (a), x = x1 (b), . . . , x = x5 (f).

In Figure 10, besides exact steepest descent paths passing through saddle points ξ1

and ξ2, we have added steepest descent paths of

(23) Ref± = Re

(
xξ −

∫ ξ

x±dξ

)
= Re

(
xξ −

∫ ξ

(±iξ)dξ
)

emanating from the constant characteristic root ξ0 = i and steepest descent paths
bifurcated from them also (“exact steepest descent path emanating from ξ0 = i”).
Note that, since ξ0 = i is a “new” turning point for the Laplace transformed equa-
tion in the sense of [K3], a Stokes curve passing through ξ0 = i is also included
in Figure 10. As is clear from Figure 10 (for example, from comparison between
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Figures 10(c) and 10(d)), a Stokes phenomenon for Borel resummed WKB solutions
of (21) occurs at a point where such an exact steepest descent path emanating from
ξ0 = i hits a saddle point. This example strongly suggests that a constant charac-
teristic root like ξ0 = i of (21) should be dealt with in the same manner as a saddle
point.

Remark 4.1 From the above considerations it may appear that only one of the
exact steepest descent paths of Ref± emanating from ξ0 = i should be relevant.
However, generically speaking, both exact steepest descent paths (n exact steepest
descent paths in case the Laplace transformed equation is of n-th order) must be
taken into account, as is shown by an example in [AKoT, Section 4] (cf. Figures 18
and 19 of [AKoT]). Both exact steepest descent paths being relevant might be
related to the fact that ξ0 = i is a “new” turning point in the sense of [K3].

5 Concluding remarks

As the examples in Section 2 and 3 show, we should deal with a new Stokes curve
and a Stokes curve emanating from a singular point of simple pole type as if they
were an ordinary Stokes curve in defining exact steepest descent paths. These new
Stokes curves and Stokes curves emanating from simple pole type singularities are
built in the exact steepest descent method very exquisitely. Furthermore, when the
characteristic equation has a root (with respect to ξ) being independent of x, such
a constant characteristic root plays the same role with a saddle point.

In order to establish the exact steepest descent method for generic equations,
we are required to take into account (and to prove rigorously) these effects. In
particular, when there exists a constant characteristic root ξ0 = α, it is an interesting
and important problem to find out an exact description of (the Borel sum of) a
WKB solution of Pψ = 0 with the phase factor ηαx in terms of the inverse Laplace
integrals. (The fact that ξ0 = α is a “new” turning point in the sense of [K3] might
be a key to attack this problem.)
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