RANDOM POINT FIELDS ASSOCIATED WITH CERTAIN

FREDHOLM DETERMINANTS I: FERMION, POISSON AND BOSON

POINT PROCESSES
TOMOYUKI SHIRAI AND YOICHIRO TAKAHASHI

ABSTRACT. We introduce certain classes of random point fields, including fermion and
boson point processes, which are associated with Fredholm determinants of certain in-
tegral operators and study some of their basic properties: limit theorems, correlation
functions and Palm measures etc. Also we propose a conjecture on an a-analogue of the
determinant and permanent.
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1. INTRODUCTION

There are two special classes of random point fields or point processes that are associated
with determinants and permanents. They are called fermion point processes and boson
point processes [9, 22, 23, 24, 39]. In the present paper we reformulate and extend them
in terms of their Laplace transforms and study some of the basic properties.

The fermion process has been studied from several points of view since [23, 24]. H.Spohn
[35] discussed the Dyson model whose reversible measure is a fermion random field associ-
ated with the sine kernel (cf. Example 1.1). A further study was given by H. Osada [26].
Our first motivation was to give a general framework to such studies. A.Soshnikov stud-
ied the Gaussian fluctuation for fermion point processes in [31, 32, 33]. A.Borodin and
G.Olshanski used the fermion point processes (which they call determinantal point pro-
cesses) to describe and study characters of the infinite-dimensional unitary group U(co)
4, 5].

It is the Gaussian unitary ensemble (GUE) in random matrix theory that exhibits the
character of fermion processes in a natural manner: their Laplace transforms are deter-
minants as well as their densities and correlation functions are. On the other hand, the
densities and correlation functions of boson processes are permanents while the Laplace
transforms are also related to determinants but given by their reciprocals.

Thus, we are led to the classes of random point fields whose Laplace transforms are given
by the powers or inverse powers of determinants. Let ) be the locally finite configuration
space over a Polish space R. Given a real number o and a locally trace class integral
operator K on an L?-space L*(R, )\), we seek for the probability measure 1, x on @ such
that

(1.1) /Q i (4€) exp (—(€, )) = Det(I + k) /o

for any nonnegative test function f where p = 1—¢/, K, = \/oK,/p and (¢, f) =

If such a measure /i, i exists, its densities (precisely, the densities of its restriction to
the finite configuration space over compact subsets) and correlation functions turn out to
be given by the following analogue of the determinant and permanent for a square matrix

A = (ag)i =

(1.2) detod =Y o™ f[ Qo)
1

ocES, =

where « is a real number, the summation is taken over the symmetric group &, the set
of all permutations of {1,2,...,n}, and v(o) stands for the number of cycles in o. This
quantity is called the a-permanent by Vere-Jones [39] but we refer to it as a-determinant
in the present paper in order to emphasize on the following relationship with the Fredholm
determinant for a trace class integral operator J shown in Section 2:

e 1 n
(1.3) Det(l — a) Vo =3 a/ndeta (T (21, 2;)) A (dar - - - ).
n=0
The fermion process corresponds to the case &« = —1 where det_; A is the usual deter-

minant det A and the boson process corresponds to the case a = 1 where det; A is the
permanent per A. Now it is almost obvious that the Poisson point processes are within our

framework with o = 0. Indeed, taking the limit as « — 40, one finds that dety A =[], ai;
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and that
(1.4) /Quo,]((d§>e<§’f> =exp(—TrK,) = exp <—/

Hence 1 i is the Poisson point process with intensity K (z, z)A(dx).

The existence and uniqueness is already studied in [3, 33] for « = —1 and it is known
that the operator J, = (I — K) 'K plays an important role. The generalization to
locally trace class operators and general a’s can be done in two ways from K and from
Jo = (I + aK) K. First we start from the operator K.

From now on, for simplicity, we will assume that the space R is locally compact Haus-
dorft space with countable basis and A is a nonnegative Radon measure on R, and take
continuous functions or bounded measurable functions with compact support as test func-
tions. The space @ is then the space of nonnegative integer-valued Radon measures on
R. In particular, @ is a Polish space since it is a closed subset of the space of Radon
measures with vague topology. The space @ and R will be endowed with their topological
Borel structure.

In below we assume that the Radon measure A is non-atomic. But one can also consider
the case where ) is atomic and obtain almost the same results except for some properties
based on the absence of multiple points, such as (1.10) below and (6.28) in Section 6.

Our standing assumption is as follows:

Condition A.

(A1) The operator K is a bounded symmetric integral operator on L*(R,\). Moreover,
it is of locally trace class: the restriction Ky = Py K Py of K to each compact subset A is
of trace class where P, stands for the projection operator from L?(R,\) to the subspace

(1-— ef(””))K(a:,x)/\(dx)> .

n

L2(A,N).

(A2) The operator K is nonnegative definite. In particular,

(1.5) Spec(K) C [0, 00).

If o < 0, the operator I + aK is also nonnegative definite so that
(1.6) Spec(K) C [0,—1/a].

Example 1.1. Let R = R'. Take an integrable even function & with values in [0, 1] and
let k be its Fourier transform. Define K as the convolution operator on L?*(R!, dz) with
convolution kernel k. Then K satisfies Condition A and Spec(K) C [0, 1]. See Lemma 5.1
for the proof. The most interesting example in this class is the sine kernel, k(x) = sin 7x/
nx (cf. Remark 5.4 and Corollary 5.7).

We obtain the following existence and uniqueness theorem under Condition A.

Theorem 1.2. Let R be a locally compact Hausdorff space with countable basis, \ be a
nonnegative, non-atomic Radon measure on R and K be a bounded symmetric integral
operator on L*(R, \). Assume Condition A and let a € {2/m ; m e N}U{—-1/m ; m €
N}. Then there exists a unique probability Borel measure o x on the configuration space
Q such that

(1.7) /Q b (d€) exp(— (€, 1)) = Det(l + ak,) ™/

for each nonnegative measurable function f on R with compact support where K, stands
for the trace class operator defined as

(1.8) Ky(z,y) = Vo(x)K (z,y)v/ o(y)
3



and

(1.9) p(x) =1 —exp(—f(z)).

The probability measure pq x has no multiple points:

(1.10) Ha.K ({f({a}) > 2 for some a € R) = 0.
Moreover, its correlation functions are given by

(1.11) Prai (T1, T2, - -+ Tp) = dety (K (24,75)); -

Theorem 1.2 is a consequence of Theorem 3.5, Theorem 4.1 and Theorem 6.9.

The generalized binomial distribution gives a toy model of Theorem 1.2. Let R be a
one point space, A be a unit point mass on R and k be a positive real number. Then the
Fredholm determinant is reduced to a number and if |z| is small enough,

*. )
(1.12) (14 a1l —2)k)" Ve = (1+aﬁ)—1/“ZcT@ng",
n=0 )

where ¢ (a) = H;.L:_Ol(l +ja) and J, = k/(1+ak). This series is a probability generating
function in z if and only if & > 0 or &« = —1/m with m = 1,2,.... The probablity thus
defined is called a generalized binomial distribution. In particular, it is called a negative
binomial distribution if o > 0 in our notation.

There is another sufficient condition for the existence and uniqueness:
Condition B.
(B1) a> 0.
(B2) The operator K is a bounded integral operator on L?(R, \) and the kernel function
of the operator J, = K(I + oK) ! is nonnegative.

Under Condition (B2) the operator K also has nonnegative kernel as will be shown in
Theorem 6.8.

Example 1.3. Consider a Markov process on R and assume that its transition semi-
group 7; admits a continuous transition probability density with respect to A. Let
R = fooo e P'Tydt, 3 > 0, be its resolvent and set K = Rz. Then, by the resolvent
equation one obtains J, = Rpy, so that K satisfies Condition B.

The following is an immediate consequence from the proof of Theorem 1.2.

Theorem 1.4. Let K be a bounded integral operator on L?*(R,\). Assume Condition
B. Then there exists a unique probability Borel measure ji, x on Q that satisfies (1.7).
Moreover, (1.10) and (1.11) hold and pq Kk is infinitely divisible.

Once Theorems 1.2 and 1.4 are established, it is immediate to see the following gen-
eralization of test functions using the estimates stated in Lemma 4.2 and the relation
Det(I + aK,) = Det(I + apK) for nonsymmetric trace class operators ¢ K. Thus, one
can consider the characteristic function or the Fourier transform of 1, x to prove the
central limit theorem (Proposition 5.4).

Theorem 1.5. Assume Condition A with « € {—1/m;m € N} U{2/m;m € N} or
Condition B. Then we have

(1.13) /Q s (d€) exp (~ (€, ) = Det(] + aK)

for any complez-valued bounded measurable function f with compact support provided that

| flleo s sufficiently small.
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The existence and uniqueness theorem can also be proved by starting the operator
Jo = (I + aK) 'K (Theorem 6.12) by applying a convergence theorem in forms (Propo-
sition 3.8). Then the random point fields p, x might be regarded as ” Gibbs measures” (or
random field realizations of Gibbs states, if any) under so-called a-statistics as will be
discussed in 6.5. If a = —1, they are the usual Gibbs measures and are discussed in
detail in lattice cases in the Part II [28]. The Glauber dynamics for fermion point fields
in lattice case is discussed by H.J.Yoo and the first author in [29].

When R = R? and K is translation invariant, the basic limit theorems for Mo,k Can be
proved rather easily since jo x admits both of the “moment expansion” (Theorem 4.1)
and the “cumulant expansion” (Proposition 3.6). We will show the law of large numbers,
the central limit theorem and a large deviation result in the present Part 1. For instance,
we obtain the following large deviation result:

Proposition 1.6. Let K be a convolution operator with kernel k on L*(RY). Take a
nonnegative measurable function f on R¢ with compact support and set fx(-) = f(-/N).
Suppose, in addition, that ||aK|| < 1 when a > 0. Then

dim % log /Q tho, i (d€) exp (—=(&, fn))

i = (2) [ [ aom. o s

where k is the Fourier transform of the kernel k and
1

(1.15) Po(k,u) =——log (1+ar(l—e™), £>0,u>0.
e

This proposition with o = —1 is nothing but R%version of Szegd’s first theorem for
Toeplitz matrices where R = Z'. In Part II we will also give the Z?-version. See [28].

The determinantal structure brings us further properties. It might be remarkable that
the class of fermion processes is closed under the operation of taking Palm measures.

Theorem 1.7. If 1 is the fermion process associated with operator K, then for \-almost
every xo the Palm measure pu™ coincides with the fermion process associated with the
operator K™ defined by

(1.16) K™ (z,y) = mdet < ?&?) llf(((:fo’,?o)) >

whenever K (xg, o) > 0.

The Palm measure is a basic concept in point process theory and describes the spacing
distribution and this theorem will be proved as Theorem 6.4 and a little more general
result is obtained in Corollary 6.5.

Under Condition B, the Palm measure of a boson or boson-like (ov > 0) process is given
by the convolution of itself and some measure (Theorem 6.8).

The boson and boson-like processes can be constructed as a mixture of Poisson processes
(or a Cox process) with random intensity obeying y2-distributions [39].

Theorem 1.8. Assume Condition A. Let X (x),x € R be a Gaussian random field with
mean 0 and covariance K (zx,y) and IIx2 be a Poisson random field over R with intensity
X (x)®\(dzx). Then,
(1.17) Ellx2(d€)] = po,x (d),
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where E stands for the expectation with respect to the Gaussian random field X (x).

As a by-product we can prove the existence of the random point field pq x for o €
{2/m; m € N} (Theorem 6.9). This gives another proof to the positivity of permanents
of nonnegtive definite matrices.

In the final Section 7 we will propose a conjecture on the nonnegativity of det,A.

Conjecture 1.9. Let 0 < a < 2. Then det,A is nonnegative whenever A is a nonnega-
tive definite matriz.

Theorems 1.2 and 6.9 turn out to be an affirmative partial answer to the conjecture
proved by probabilistic methods. Conversely, if the conjecture is true for some a > 0,
the random field p, i exists for any nonnegative definite K. It seems that our conjecture
is closely related to Lieb’s conjecture on permanents. If we restrict ourselves to the
case a € {1/m; m € N}, the conjecture can also be proved algebraically by using the
expansion (7.3) of det,A by using the immanants.

2. PRELIMINARY

2.1. Properties of trace class operators. First of all, let us recall some basic facts
on the trace class operators and fix the notations. Let H be a complex separable Hilbert
space equipped with an inner product (-,-). A compact operator T is said to be a trace
class operator (or a nuclear operator) if

(2.1) 1Tl = Te(|T1) < oo,

where |T'| = v/T*T. The totality of the trace class operators will be denoted by Z; and
IT||; is called the trace norm. The trace of T is given by

[e.o]

(2.2) To(T) =Y (Ten, en),

n=1

where {e,} is a complete orthonormal system in H and Tr(7") does not depend on the
choice of {e,}. Let H®" = H ® --- ® H be the n-fold tensor product of H and we define
an inner product ( , ) on H®" by extending

n

(2.3) (1@ @ g, @ @) = [ [l 1)

=1

for ¢;, s € H (1< <n),
Let AH®" be the anti-symmetric subspace of H®™. For an operator T on H, we denote

(2.4) N (T)=T®@---@T|agen.
We need the following two lemmas which can be found in, for instance, [11, 30].

Lemma 2.1. (i) Let S be a bounded operator and T a trace class operator. Then

(2.5) Tr(TS) = Tr(ST)
and
(2.6) Te(|ST) < |([S||Te(|T).

6



Thus, I, forms an tdeal in the Banach algebra of bounded operators.
(ii) Let T be a trace class operator on a Hilbert space. Then for each n > 1, the operator
A™(T) is also of trace class and satisfies the following estimate

n 1 n
(2.7) A"y < ST
The Fredholm determinant of I + T is defined by

(2.8) Det(I +T) ZTr

If, in addition, S is a bounded operator, then
(2.9) Det(I +TS) = Det(I + ST).
(i) If ||T)| < 1 and T € Z,, then

(2.10) Det(I +T) = exp ( 3 "))

n=1
(iv) The Fredholm determinant Det(I +T), as a functional from Iy to C, is continuously
Fréchet differentiable. If 1 ¢ Spec(T) its logarithmic derivative is given by the formula

(2.11) S[log Det(I +T)] = Tr((I +T)~'6T).

Lemma 2.2. Let T be a trace class integral operator on L*(R, \) with symmetric bounded
continuous kernel T(z,y):

(2.12) Tf(x) = /RT(:r, y)f (y)A(dy).

Denote \®"(dxy - - - dxy,) = Mdxq) - - - M(dzy,). Then the traces and Fredholm determinant
in (2.8) are given as

1
(2.13) T (WD) = o [ det (Tla )y A" -+ o),
for eachn >1 and

e’} 1 . on
(2.14) Det(I+T) =) _ — [ det (T(wi,2))}5_y A" (dy -+ dn).

Moreover, if we identify a bounded measurable function 8 with the multiplication opera-
tor by 0 and if we denote the eigenvalues of T by {k;}i>1 and the corresponding normalized
eigenfunctions by {1;}i>1, then the Fredholm determinant can be expressed as

Det(I + OT)

(2.15)= Z Z (H/@,})/ H9 x; |det Vi, (1))} 4= 1| A" (dxy ... dxy,).

T I<ip <<y \j=1

Remark 2.1. Note that [];_, x;, are eigenvalues and

(2.16) (1/n)"2 det (v;, (25)) 7 s

are the normalized eigenfunctions of the trace class operator A"(T') considered as an
integral operator on L?(R™ \®"). These functions (possibly, without the normalizing

constant 1/(n!)'/?) are called Slater determinants in physical literature.
7



The well-definedness of the Fredholm determinant appeared in (1.7) is guaranteed by
the following lemma.

Lemma 2.3. Let T be a trace class symmetric operator on the space L*>(R, \) with Spec(T) C
[0,00) and ¥ is a measurable function on R with values in [0, 1]. Set

(2.17) Ty = \/UT\/ .

Then Ty s also a trace class operator and, for each k, the k-th eigenvalue of Ty is
dominated by the k-th eigenvalue of T.

Proof. Since 7, is an ideal and ) is bounded, T}, is a trace class operator. The rest can
be shown by using the min-max principle: for any compact self-adjoint operator A, the
n-th eigenvalue can be represented by

(2.18) A(A) = inf sup (Ao, o) .

1,02, Pn—1 0e{@1,92,..on—1}1 <99> 99>

0

2.2. Expansion of Det(I — a.J)~"/*. The next theorem is a generalization of (2.14) in
Lemma 2.2, which is first obtained in [39] for finite matrices.

Theorem 2.4. Let J be a trace class integral operator. If ||aJ|| < 1, we have

oo

—1l/a ]‘ n n
(2.19) Det(1 — ) e =" / et (T (1,5 A" (A i),
n=0
where det,, is defined by (1.2). If « € {—1/m ; m € N}, (2.19) holds without condition
|l ]| < 1.

Proof. Let T = oJ. If ||T|| < 1 we know (2.10) holds. Expanding the exponential in
(2.10) of Lemma 2.1(iii), we obtain for any § € R

Det(I —T)™"
. i k Tr(T™) -+ Tr(T™)

k! g Ny

(2.20) 14 Z Z % Z Tr(Tm) - .Tr(Tnk)-

nlc-.nk

It is well known that there is one to one correspondence between conjugacy classes of
the symmetric group S, and partitions of n, that is, (ji,...,jx) with Zle j; = n and
J1 > -+ > jr > 1. Indeed, the conjugacy class [o] of a permutation is determined by the
length j; (1 <1i < wv(o)) of cycles in o. It is easy to see that

1 !
22 BT, mewm 2t

N yenns np>1, Ugsn,_
(0} 5o} ) =155 k) [o]=@15-0dg)



where (n},...,n}) is the rearrangement of (ni,...,ng) so that nj > --- > n;. Hence we

obtain
2 G Tr(T™) - - - Te(T™)
1 A
D

n=1 k=1 nyyenng>1
ny+-+np=n
= 1+ E — E E Te(T74) - - Tr(T7%)
n=l k=1 'V J122jp21  oESn,

ji+tig=n [e]l=0G1,igk)

(2.22) = 1+ Z % Z Z () /n HT(wi,xU(i)))\@"(dm ceedxy,).
i=1

n=1 """ k=1 o€Sn
v(o)=k

Hence, we have

Det(I —T)7"
o0 1 n
(2-23) = 1+ Z ﬁ Z ﬁy(g)/R HT(%,%(i))/\m(dIl : dl"n)
n=1 """ 0c€S, " i=1

The formal computation as above can be immediately justified if T € Z; and ||T]| < 1.
Consequently, we obtain (2.19) by setting = 1/a and T = a.J.

If « = —1, the formula (2.19) is nothing but the formula (2.8) if one expresses the traces
as the integrals of usual determinants. Thus it is analytic in 7" and so we can remove
the condition ||J|| < 1 if @« = —1. More generally, since the left hand side of (2.19) is
the m-th power of an analytic function in J, we can remove the condition ||aJ|| < 1 if
a€{-1/m;m e N}. O

Remark 2.2. Let A be an n by n nonnegative definite matrix. As is well known (cf. [2]),
there hold the inequalities

(2.24) per A > [Jai > det A > 0.
i=1

In other words,

(225) detlA 2 detoA 2 det,lA 2 0.

3. EXISTENCE AND GENERAL PROPERTY

In this section we will prove Theorem 1.2 for o € {+1/m; m € N} except for the as-
sertion (1.11) on correlation functions which will be proved separately in the next section.
The rest cases a € {2/m; m € N} will be treated in Section 6 by a constructive method.

3.1. Some lemmas. We assume Condition A and, in addition, we assume the following
operators are well-defined as bounded operators for compact subsets A if a < 0.

(3.1) Jo[A] = (I + aKy) ' Kh.
The operator J,[A] is the quasi-inverse of K, in the sense that
(3.2) (I +aKp) (I —ad,[A]) =1

(though the terminology is usually used only for o = 1). If A is compact, the operator
Ja[A] is also a trace class operator with spectrum in [0, c0). Moreover,

(3.3) Spec(J,[A]) C [0,a7!)  ifa>0
9



and
(3.4) Spec(J4[A]) C [0, 00) if o < 0.
Note that J,[A] is not a restriction operator while K} is.

Lemma 3.1. Let A be a compact subset of R and f : R — [0,00) be measurable and
assume

(3.5) supp f C A.
Then,
(3.6) Det(I + aK,) "/ = Det(I + oK) /* Det(I — aJo[A])e-r) <,

where (Ju[A])e—r = e~ T/2J,[A]le= /2.
Proof. By using (2.9) we can compute the Fredholm determinant as follows:
Det(I + aK,) = Det(I +aKxp) = Det(I +aKy —aKye™)
= Det(I + aKy)Det(I — (I +aKy) 'akye ™)
= Det(I + aKy)Det(I — aJ,[Ale )
(3.7) = Det(I + aKy)Det(I — a(Jo[A])e-s).
Hence we obtain the lemma. O

Now let Q(A) be the configuration space over A. If A is compact, Q(A) will be iden-
tified with U2, A"/ ~ where the equivalence relation ~ is defined by permutations of
coordinates. Using det, we can define a symmetric function o x on |, , A" as follows:
set, for n > 1,

(3.8)  Onax(®i,...,2,) = Det(l + aKky) ety (Ja[A](2s, xj))i=1 on A",
and for n = 0 if we denote the empty configuration by 0,

(3.9) Orai (D) = Det(I 4+ aKy) ™" on A® = {p}.

Define a (possibly, signed) measure pip o x on Q(A) by

/ tin o (dE) exp(— (€, 1))
Q(A)

=1
(3.10) = E ﬁ/ Onak(T1, s Ty exp( E f:ck))\®” e dxy).
n:0 - n

The measure pi5 o x Will turn out to be a probability measure for @ = £1/m in Lemma 3.3
below and for & = 2/m in Section 6. The rest case is to be posed as Conjeture 7.1 in
Section 7.

Lemma 3.2. Let f be a nonnegative measurable function on R. Assume (3.5) holds, i.e.,

(3.11) supp f C A,

and set ¢ =1 —e~/. Then for a € {—1/m; m € N} U (0, 0),

(312) | nacd) exp(=(¢. 1)) = Det( + ak,)
Q(A)

10



Proof. Assume supp f C A. If a > 0, ||aJu[A]]] = ||aKa(I + aK) || < 1. Thus under
the assumption of the lemma, we can apply Theorem 2.4 to the right hand side of (3.12)
and we get,

Det(I + aK,) '/
= Det(I 4+ aKy) Y Det(I — a(Jy[A])e-r) Y/
= Det(l 4+ aK,)™H*

n

. {1 DI N AT

3,7=1

A" (dxy - - dxn)}

= Det(I 4+ aK)™H*

x{l—f—i%/ndet (Ja[A] (3, 25))7 = 1exp( Zf :ck)A@" dxn)}
%/n oa(xy, ..., exp( Zf a:k> "(dxy - - - dx,,)

]2

n=0

LA o, (dE) exp(—(&, f)).

(A)

Il
S~

O

Lemma 3.3. If a € {£1/m; m € N} the measure up ok s a probability measure on
Q(A) and op o is its density with respect to @. ., A°™.

Proof. If a = +1, then it is obvious that the function o, is nonnegative since det_; = det
and det; = per (see Remark 2.2). Hence, p 11, is a probability measure and o4 11  is
its density.

By the definition of their Laplace transforms, the measure pip o/m,x is the m-fold con-
volution of pia o, Kk /m:

/ MA,a/m,K(df)€_<§’f>
QA)

(313) = / MA,a,K/m(dgl) ,u“AaK/m(df ) (atootm, f>
Q(A)x-xQ(A)

Hence, iz +1/m, k is also a probability measure and o +1/m i is necessarily nonnegative.
]

Let @ = —1 and A be a compact subset of R. If the restricted operator K, admits
1 as its eigenvalues, J_;[A] loses its meaning. So we cannot follow the argument above.
But this gap will be compensated for by the next lemma. Thus we may safely abuse the
notation (3.8) even in the degenerated cases where det(I — K, ) = 0: the precise definition
(3.8) is then given by (3.16) below.

Lemma 3.4. Let o = —1 and A be a compact set of R. Let 1 > k1 > kg > -++- > 0 are

the eigenvalues of Ky and {1;};>1 be the corresponding normalized eigenfunctions.
11



(i) Assume that all the eigenvalues of Ky are strictly less than 1. Then the density
function op 1k defined in (3.8) can be expressed as

O'A’,l’K(ﬁL'l, e ,SEn)
(3.14) = ) (H o m) | det (v, (1)) ey |2 o A™.
1§i1<-~~<in j:1 k#il,...,in

(ii) Assume that 1 is an eigenvalue of K with multiplicity m. Then there exists a
unique probability measure pa 1,k such that

(3.15) /Q NS Lk (d€)e &) = Det(I — K,),

where ¢ =1 — e I, Its density function oa 1 k s given by

(3.16)

oa—1k(T1,. -, Tn) = Z ( H Ki; H (1 — Ry ) | det (¥, (@) p=y|* 0on A"

.1S71;1<""<in Jj=m+1 k#i1,..., ]

i1=1,...,imqp=m

forn>m and op 1 g(x1,...,2,) =0 on A" for n < m. In particular,
(3.17) pin ok (E(A) > m) = 1.

Simalarly, if a positive integer k is an eigenvalue of K with multiplicity m, then for
a=-1/k

(3.18) pa,—1/k6x (§(A) > mk) =
Proof. (i) Recall that
(3.19) Det(I — K,) = Det(I — K») Det(I + e J_1[A])

for any nonnegative measurable function f with supp f C A. Applying (2.15) of Lemma 2.2
to (3.19) with 6 = e~/ and T = J_;[A], we obtain

Det(I — K,,)

= Det I — KA Z Z Hﬂz] "fzJ

1<z1< <ip J=1
" / o= S )

det (i, (24)) s | A" (day - .. dazy)
1
=25 X s I oo

1<i1 < <in j=1 kg, . in

(3.20) ></ e~ iz f(@)

(ii) Let 0 < s < 1 and consider the operator sK. Then one can obtain the probability
measures /5 _1,sx(0 < s < 1). On one hand, the Laplace transform Det(I — (sK),) of
pa,—1,sk converges to Det(I — K,) as s — 1 for any nonnegative measurable function f
with supp f C A. Since the Laplace transform determines a probability measure uniquely,

we obtain a unique probability measure on Q(A) associated with K, say pa 1 k-
12

det (Y, (x1))] k=1 ‘2 N (dzy . .. dxy,).




On the other hand, the probability measure py 1 sx has the density function ox 1 sk
given by (3.14) with sk; in place of k;. Thus taking the limit s — 1, we easily obtain the
density function o 1 x of the form (3.16). O

Finally, we note the following fact.

Remark 3.1. Let « = —1 and assume Condition A on K. If 1 is an eigenvalue of K}y,

then 1 is also an eigenvalue of K and any corresponding eigenfunctions are localized on
the set A. In fact, let Ky fyn = fa and define f : R — C by setting f = f, on A and
f =0 outside A. Then

(3.21) 1A% = Wfall® = KA fall® < IKASal? + [ Kaeafal® = 1K FI* < £
Hence, Kpepfa =0and Kf = f.

3.2. The existence and uniqueness theorem under Condition A for a = +1/m.
The existence and uniqueness theorem under Condition B will be treated in Section 6.

Theorem 3.5. Assume Condition A and o € {£1/m; m € Z}.
(i) The family {pnarx; A C R, compact} satisfies the Kolmogorov consistency condition
and, hence, there exists a unique probability measure po i on the whole configuration space

Q = Q(R) satisfying
(3.22) /QMQ’K(df) exp(—(¢, f)) = Det(I + aK,) V.
(i) If supp f C A, then

/ o (dE) exp(— (€, 1))
Q

= / ,LLA,a,K(df) exp(—(§, f))
QM)

(3.23) = Z % /n Ok (T1,...,2,)€xp (— Z f(gpk)) A (dwy -+ - dy,).

k=1

(111) The measure p has no multiple points:

(3.24) Ha,K (f €Q; &({a}) > 2 for some a € R) = 0.

Proof of Theorem 3.5. Let

(3.25) Ag=suppf, AgNA; =0
and set

13



Then, since supp f C A, we have
Det(I + ak,) /®

_ / i (dE) exp(— (€, £))
Q(A)

= Z% / Oras(T1, ..., T0) XD (‘me)) A (dwy - - dey)
n=0 "

k=1
(o] o0 1
= ZZ—/ /crAaK(xl,...,xm,yl,...,yz)/\@’@(dyl...dw)
m!/!
m=0 (=0
(3.27) xexp( > fla ) "(dxy -+ diy).
k=1

On the other hand,
Det(I + aK,)~"/®

_ / Haoe i (d€) exp(—(€, f))
Q(Ao)

=1
(3.28) = Zﬁ/ Oppa i (T1,- exp( Zf Tp ) A" (dxy -+ - dxy).
n=0 3

Consequently, comparing the above two equations (3.27) and (3.28), one can conclude

1
(329) O-Ao,a,K(Ila ey xm) = Z E /l UA,a,K(xla ce sy Tmy Y1y - - y@)/\@w(dyl e dye),
—o YA

which is nothing but the desired consistency condition. Hence by a version of Kol-
mogorov’s extension theorem (e.g., cf. [18]), there exists a unique probability measure
L= ok o0 @ = Q(R) which satisfies

(3.30) /Q F(&) o,k (dE) = Z % /A Ono i (T1, ... ,xn)F(Z 62, ) A" (dzy - - - dy,)
n=0  JA" i=1

for any bounded measurable function F' such that F(§) = F(€,) where &, is the restriction
of £ to A. Hence we obtain (i). In particular, putting F(§) = exp(—(&, f)) for f supported
by A, we obtain (ii).

To prove (iii), it is sufficient to show that for any compact set A C R

(3.31) Ha.K (5 €Q; &({a}) > 2 for some a € A) =0
or, a fortiori, that
(3.32) o (€€ Q5 €(N) 22 ) = o\ (A)

as A1 (A) — 0 uniformly in A C A where \;(A) = fQ Lo, i (AE)E(A). However, by using the
Taylor expansion of the function g(t) = Det(I + taT)~'/*, we obtain
N’a,K(g(A) 2 2) =1- Na,K(g(A) = O) - ,ua,K(g(A) = 1)
= 1—Det(I + k)" — Det(I + oK)~V Tr(J,[A])

(333) < % Det(I + takn) ™/ | (a + 1) (Tr(Jim[A])? — 20 Tr (A2ia[A])|
14



for some 0 < ¢t < 1. Thus we have

1+ 2|o|

Ha i (E(A) = 2) Det(I + aky) /|| Ja[A]lIS

< P2y o)A
(334 < LG gy

Here we used (2.7) in Lemma 2.1 for the first inequality and the fact ||Ka|l; = Tr Ky =
A1(A) for the last inequality. Hence we obtain (3.32). O

Remark 3.2. The above proof remains valid for a Polish space R if we replace compact
sets A by measurable sets A with A(A) < oo and functions with compact support by
functions with A(supp f) < oo.

Remark 3.3. Behind the formula (3.29) there lies the relation
(3'35) Ja[AO] = Ja[A]Ao + aJa[A]AoAl (I - aJa[A]Al)_lja[A]AlAO'

It can be proved directly as follows. If T' is a positive definite operator with bounded
inverse 7! on a Hilbert space H, then

(3.36) (Tt = (Ty — Tia(Ta2) ™ Tor) ™"

whenever T;; = P,TP; (i, j = 1, 2) for some orthogonal projection P, on H and P, = I—P;.
Consequently, we have

aJ,[Ag] I—[I4aKy]™?
I —[(I+aKy)a,) !
= I = [{(I = aJa[A]) " }a,] ™
= I —{(I = aJa[A)a, = (I = aJa[A])aga, (I = ado[Ala,) T (I = ada[A]) a0}
(3.37) = aJu[Ala, + P Ju[Alaga, (I — aduA]a,) " TalA]A, A,

Here we note that (3.36) implies
(3.38) (T™")11 > (T)™"

This inequality will be used in the proof of Theorem 6.12.
3.3. An expansion formula and two convergence theorems. As a direct conse-
quence of the expansion formula (2.10) of the Fredholm determinant in Lemma 2.1 we

obtain the following “cumulant expansion”.

15



Proposition 3.6. Let f be a nonnegative measurable function with compact support A.
Suppose ||aK || < 1. Then we have

—log/Qua,K(df) exp(—(&, f))

Y p=lpn-t —1 T T
= ZZ(_l) « Z npl'pn'/nK(l'l,Ig) K( n 1)

p=1 n=1 P1y-Pn21

n

X H F(z)P X" (dxy - - - day,)

i=1

= | E@o)f@a)
1

(3.39) —= ( . K(z,2)f(x)’\(dz) + «

. K (. y>2f<m>f<y>x<dx>x<dy>) .

R2
Proof. We can immediately obtain (3.39) by using Taylor expansion of the exponential
function. ]

One of the advantages of our definitions of those point processes is a convergence
theorem.

Proposition 3.7. Let {K(")}n21 be integral operators with nonnegative definite contin-
wous kernels K™ (z,y). Assume that K™ satisfies Condition A (or Condition B) and
that K™ (x,y) converges to a kernel K (z,%) uniformly on each compact sets as n tends to
infinity. Then the kernel K(z,y) defines the integral operator K satisfying Condition A
(or Condition B, respectively). Moreover, if a € {—1/m; m € N} U{2/m; m € N}, the
measure fi, gx on Q associated with K™ converges weakly to the measure lo K associated
with K as n tends to infinity.

From the nonnegative definiteness of operators we also obtain the following conver-
gence theorem in terms of quadratic forms, which is sometimes much more useful than
Proposition 3.7.

Proposition 3.8. LetT,, n > 1, be nonnegative definite trace class operators on a Hilbert
space H. Assume that there exists a trace class operator T such that the quadratic form
(T, f, f) is monotone nondecreasing in n and converges to (T'f, f) as n goes to infinity
for every f € H. Then the Fredholm determinant Det(I + T,,) converges to Det(I +T).

For the proofs we need the following fact whose proof can be found, e.g., in [30]

Lemma 3.9. Let T,,T be nonnegative definite self-adjoint operators on a Hilbert space.

Suppose that as n — oo, T,, converges to T weakly and ||T,||1 converges to ||T||1. Then
T, — T, — 0.

Proof of Proposition 3.7. First we prove the case of Condition A. Since the kernels K (z, )
are continuous and nonnegative definite, the trace coincides with the integral on diagonal:

(3.40) Tr K" = / K™ (2, 2)A(dz)
A
16



for each compact sets A (cf. [GK]). Hence, the compact-uniform limit K (x,y) is also
continuous and nonnegative definite and

(3.41) TrKy = / K(z,z)\(dx) < oc.

Moreover, we obtain ||K|| < C from ||[K™| < C for all n € N. Thus, the operator K
satisfies Condition A if K™ satisfies Condition A.
Let €(n) = sup(, yyeaxa K (2, y) — K™ (2,y)|. One can check that

(3.42) 1K — K|l < e(n)A(A)

and so since K\ (z,y) — K (x,y) is a compact uniform convergence then K" converges
to K, in uniform operator topology. Moreover,

(3.43) |Tr K" — Tr Kp| < e(n)A(A)

and so ||K1(Xn)||1 — ||Ka|l; as n — oco. Then by Lemma 3.9 we obtain

(3.44) 1Kx = Kl = o.
Since Det(I + oK) is continuous in K with respect to the norm || - ||; for each ¢

with compact support, one can conclude that the Laplace transform f e~ (&S >ua’ o (dE)
converges pointwise to f e {&f >ua’K (d€). Consequently, the probability measure ey, 1 ()
on the space Q(R) converges weakly to fiq k-

It is also easy to prove the case of Condition B. O

Proof of Proposition 3.8. Since (T, f, f) converges to (T'f, f) for any f € H, T, con-
verges T' weakly. Since, in addition, the convergence is monotone nondecreasing and each
(T,e;,€;) is nonnegative, one obtains

(3.45) ITally =Y (Theie) &Y (Tei ey = |IT])s,
=1 =1

where {e;}, is an orthonormal basis of H. Thus, by Lemma 3.9, T,, converges to T in
the norm || - ||; and hence Det(I 4+ T,,) — Det(I + T) as n — oc. O

4. CORRELATION FUNCTIONS

4.1. Definitions of correlation measures and correlation functions. Let us recall
the definitions of correlation measures and correlation functions. Let u be a probability
measure on Q. Assume that (@, ) has no multiple points. For £ € @ and any bounded
measurable function f, on R™ with compact support, denote

(41) <§nafn> = Z* fn(xlaxZa"'amn)a
T1,r2,...,knEE

where Y * denotes the sum over all mutually distinct points x1, s, ..., ,. Then, for any
function f with compact support one obtains

(4.2) exp(— (6, fy) =3

n=0

<£n? (pn>a

n!

17



where ¢, (21,22, ..., 2n) = [[1eg ©(xi) = [[i=1(1 — exp(—f(z;)). In fact, the right hand
side is a finite sum since N = &(supp f) < oo and so (4.2) is easily obtained from the
identity

(4.3) [[a-a)=> (-1 > []a
=1 n=0 IC{1,....,N} 2€l
|I|=n

If £(A)™ is pu-integrable for each compact subset A of R, then (&,, f,) is p-integrable for
each bounded measurable function f, with compact support on R™ and the formula

(4.4) [ ntntde) = [ falor ) h(dar - d)
Q R™
defines a Radon measure A\, on R" which is called the n-th correlation measure of x. In
particular, A\; is often called the intensity or the mean of p.
Moreover, if f E(A)™ (d&) n > 1, satisfy a suitable growth condition for each A so that

if Y7 (1/n!) fQ p(d€) < oo for each A, then one can integrate (4.2) and obtains
the following expansmn formula of the Laplace transform by correlation measures:

45) [ ewi-temua =3 S [ et mn - dn),
n=0
where f is a nonnegative measurable function with compact support.

Now let A\; be the intensity of u. Fix a Radon measure A on R and assume that Ay
is absolutely continuous with respect to A\. Then the n-th correlation measures A\, of u
are absolutely continuous with respect to the direct product measures A" whenever it
exists. The Radon-Nikodym density p,(z1,...,z,) is called the n-th correlation function
of p (with respect to \).

Moreover, if p admits all the correlation functions and (4.5) holds, then one obtains
the following expansion formula of the Laplace transform by correlation functions:

(4.6)

Lot mnae =3 S8 [ ot o).

n=0

For instance, if u is the Poisson point process with intensity A, then A, = A®" and p, =1
for each n > 1 and (4.6) is the expansion of the exponential function.

The n-th correlation function p,(x1,...,x,) is obviously symmetric in z1,...,z, and
so it is often convenient to write it as p(X) where X = {xy,...,2,}.

Under this notation, the correlation functions p(X) of the convolution p = p*) % ()
are given by the formula

(4.7) = Y AP (X),
X=X1UXo
where »y_y | x, stands for the summation over all disjoint subsets X;, Xy of X with

X, U X, =X and p® is the correlation function of p(), i = 1,2. Formally, (4.7) follows
from

(4.8) /Qu(df)e—(&f):/Q (d§) =& . /Q (df) —{&,F)

by using (4.6).
18



4.2. a~-determinants and correlation functions. Now we proceed to prove the last
part of Theorem 1.2 assuming the other parts.

Theorem 4.1. Assume Condition A and o € {2/m; m € N} U{—1/m; m € N}. Then
all the correlation functions p, o k of the probability measure 11, k defined in Theorem 1.2
exist and are given by the formula

(4.9) (1, - w0) = deto (K(zi,2;)) (n>1)
ij=1

and

(410) P0,0, K = 1.

Moreover, if we assume, in addition, ||¢||e||aK|| < 1 when o > 0, we have the expansion
formula

(4.11)
(o] _1 n
/ fhox (dE)e™ &) = Z (=1) / deto (K (i, 25))7 =1 @n (@1, - .o, ) A" (day . . - day).
Q n=0 "

n!

In order to prove the existence of correlation functions, we need the following estimates
of the probabilities of basic events for 1ty k-

Up to now we have discussed things only for o = +1/m(m € N). But the proofs below
work also in the case a = 2/m(m € N) which will be discussed in Section 6.

Lemma 4.2. For any compact set A C R, the following estimates hold:

(4.12) o (€A =k) < ~ _IRAl Y if a <0

’ kN1 = |JaK,| ’

LN )k :

4.13 wrx (6N =F) < Oy | ——A >0,
(4.13) po € =1 < (1550 ra
where C'\ 1s a positive constant.
Proof. In the case of @ = —1 it is immediate from Lemma 2.1 (i) and (ii) since
(4.14) pio1,x (E(A) = k) = Det(I — Kx) Tr (A*J_1[A])

for any £ € N. In the case of « = —1/m (m € N), fi_1/m k is the m-fold convolution of
H—1,K/m and so

pomi ) =k) = > []ronem(€A) =)

ditetim=k =1

J1tetim
< ¥ e (exa)
PR ARV LLAN loal
L/ Bl
4.15 = —|—] .
(419) i (e
In the case of o > 0, note that
(4.16) > o,k (E(A) = k) = Det(T + aF,) ™/ Det(T — zaJo[A]) "/
k=0
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and then the right hand side is analytic in z whenever |z| - ||aJo[A]|| < 1. Thus, we obtain
Ha (E(A) = k) < Ca (ladulA])"

laki| )
4.17 < C SR L . .
(4.17) < A<1+||aKA||

O

Proof of Theorem 4.1. First assume o > 0. By Lemma 4.2, for each compact set A of R,
we have

(4.18) Hax (§(A) = k) < CrfB",
where 8 = ||[aK,||(1 + ||aKA||)—1 < 1. Since ||¢]|oo||@ K4l < 1, we get

‘ Z / Sn,wn)uaK(d@‘

n>N

<y el / E(A) (6(A) = 1)+ (€(A) = 1+ 1) pra c ()

n>N

o 3 Dol Canisr

Lol (1- g

(4.19) < Oh ) llollillaEa]™ < co.

n>N

Hence for any bounded measurable function with compact support the formula (4.4) is
well-defined and the correlation measure A, o x of o i exist for each n. Thanks to the
estimate (4.19), we can integrate the both hand side (4.2) safely to obtain

(4.20) /Q P () :Z% / ul s A ()

n=0

On the other hand, by the expansion (2.8) of the determinant in Lemma 2.1 and the
expression (2.13) for the trace of the exterior product in Lemma 2.3, we obtain

/ exp(—(€, F))tia o1 (d€)
Q(A)
= Det(l + ak,)

= Z(_l)n /n deta(KLp(Ii,ZL’]))” 1/\®n(dx1 dxn)

n!
n=0
00 _1)
az) = YL [ et K)o, m A e o)

Comparing (4.21) with (4.20), we can conclude that A, . x is absolutely continuous with
respect to A®™ and

(4.22) Proi (T1, T2, ..., T,) = dety (K (4, xj))?,j:l'

In the case where o < 0, a similar argument shows (4.22). O
20



4.3. Correlation inequalities. Finally we had better to notice that fermion and fermion-
like (¢ = —1/m < 0) point processes have "repulsive” character and boson and boson-
like(cv = 1/m > 0) point processes have ”attractive” character.

Proposition 4.3. The correlation functions of the probability measure [, x satisfy the
following inequalities:

(423) pn,a,K(xl,...,a:n) > pl,a,K(‘Tl)---pl,a,K(wn) zfa: 1/m >0
and
(424> pn,a,K(xla s )xn) S pl,a,K(xl) s pl,a,K(xn) Zf o= _1/m < Oa
where m s a positive integer.
Furthermore, if a = —1,
Prtmt,—1 1 (T1y ooy Ty Yty e ooy Yy 215 -« 5 20) Po—1.K (215 - - - 5 20)
(4.25) < Pt 1K (X1, Ty 205+ w05 20) Pt b1, K (Y1« o 3 Yy 215 -+ 5 Z0)-

Proof. Tt suffices to prove the assertions only for a = +1. Indeed, pio/m x is the m-fold
convolution of fiq x/m and it follows from (4.7) that

> L pnci/m (X5)

XUuXoll--UX,, =X j=1

} > ﬁ PLa K /m(T3)

XuXol--UXm=X i=1

[ r1ex (@) =TT prasmx (@),
i=1 P

Prn,a/m,K (X>

—N—
IN IV

(4.26)

where X = {x1,...,2,} and the summation is taken over all mutually disjoint subsets
Xi,..., X, of X with X; U...,UX,, = X. Here we used the fact that p; , x depends
only on K.

First we consider the case a = —1. The inequality (4.24) and (4.25) follow from an
inequality for a nonnegative definite, 3 by 3 block matrix.

All A12 A13
(427) det Agr Ass Axs det Ay < det ( ﬁll ﬁlZ ) det < 322 313 ) ‘
Azr Aszp Asg o v

For the case o = 1, we immediately obtain (4.23) by considering the highest coefficient
of per(A(t)) and putting t = 1 in the following Theorem 4.4 obtained by E. Lieb. O

Theorem 4.4 (Lieb [19]). Let

(4.28) Aft) = @9 g) ;

where t is an indeterminate over C. Assume that A(1) is nonnegative definite. Then all
the coefficients of the polynomial per A(t) are real and nonnegative.
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5. LIMIT THEOREMS

5.1. Convolution kernels. In this section we restrict ourselves to convolution operators
on R? and discuss basic limit theorems, namely, the law of large numbers, the central
limit theorem and a large deviation result. Throughout this section, we assume o €
{£1/m;m e N}U{2/m; m € N}. We continue to assume Condition A in Theorem 1.2,
which can be restated in terms of the Fourier transform as follows.

Lemma 5.1. Assume that K is a convolution operator on L*(R%) with continuous kernel
k. Then the following two statements are mutually equivalent:
(a) K satisfies Condition A.

(b) The convolution kernel k is the Fourier transform of an even function k in L*(R%)

(5.1) k(z) = (%)d/m%(t)e”'tdt

and & takes values in [0,00) if & > 0 and in [0,]|a|™] if o < 0.

Remark 5.1. Note that (b) implies & € L%(R%). But k does not necesarily belong to
L*(R?). Indeed, the sine kernel sin 7z /7x is a typical example which satisfies Condition
A but does not belong to L' (R!).

Proof of Lemma 5.1. First we consider the case a < 0. We assume (a). Then, Spec(K) is
contained in [0, 00) and so the kernel k is a positive definite continuous function. Hence,
it is the Fourier transform of a finite measure, say v, on R%:

(5.2) h(z) = (%)d /R e (i),
Then, for f € L2(R%)

(5:3) (Kf.f) = (%) /R [NF@Py(ar).

Since Spec(K) C [0, |a]™'],

1\¢ ~
(5.4) (K f, O < a7 F 172 ey = (g) a7 1 1172 ey

Combining (5.3) and (5.4), one finds that v is absolutely continuous and its density, say

k, takes the values only in [0, |a|™}]. Consequently, (b) holds.
The converse assertion is obvious. O

Remark 5.2. For the convolution operator K there exist no localized eigenfunctions. In-
deed, if there existed an eigenfunction f with compact support, say A, associated with an
eigenvalue «, then its translations f, = f(- + x) would be also eigenfunctions. Thus, «
would be an eigenvalue of K5 with infinite multiplicity whenever a compact set A contains
an open neighborhood of A. This would be contradicted the compactness of operators
K.

AOn the other hand, the convolution operator K itself may have an eigenvalue with
infinite multiplicity. For instance, consider the sine kernel k(x) = sin 7z /7z on R!. Then

the function k,(y) = k(xz — y) is an eigenfunction with eigenvalue 1 for each z € R!.
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From now on we always assume the kernel k(x) satisfy the conditions given in above
Lemma 5.1. Thus, it follows from Theorem 4.1

(5.5) Prax () =k(0), prax(r,y) =k(0)*+ ak(x —y)? etc.
5.2. Law of large numbers. First we compute the limiting covariance in generic case.

Lemma 5.2. Let f be a bounded measurable function on R with compact support and
set fx = f(-/N). Then, as N — oo,

e (e - JAG mea,K(df))Q
= /Q<§a fN)ZMa,K(df) - </Q<§7f1v>ﬂa,f<(df))2

d 2 1 ‘ n N
(5.6) ~ N Rdf(x) dx><<2—> /de(t)(1+ak(t))dt.

™

Proof. By the definition of the correlation function

L€t = [ i@onstoi
/ (& I barc (dE) = / P (@) (9 2.0k (& — y)dady
Q RIxR4

(5.7) + ” In(@)?prax(2)dz.

Hence from (5.5) we can compute the left hand side of (5.7) directly to obtain
(LHS) = / (@) fu(y) (R(0)* + ak(z — y)*)dedy + | fu(2)’k(0)dx
RIxR4 R

([ fN<x>k<o>d:c)2

=/, fN(:v)zk(O)da:—I-a/RdXRd In(@) fn(@)k(z — y)*dedy
- Nd< Rdf(x)Qk(O)d:r—ira/de(u)Qdu Rdf(x)f(ﬁ%)dx)
" N <k(0) +a /R dk(u)Qdu> [ fapas

1

(5.8) = N <—

2T

)d /R 0+ aRo)dex [ f)de
[l

Now let us state our law of large numbers.

Proposition 5.3. Let f be a bounded measurable function on R* with compact support.
Then

(5.9) —>/ f(@)k(0)dz o r-a.e. and in LNQ, po k),
N).

where fy(-) = (/
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Proof. First we consider the case when R = R!. Let f = 1j0,), the indicator of interval
[0,a) with @ > 0. Since i, x is translation invariant, the Birkhoff’s ergodic theorem can
be applied to the integrable function (£, f) = (£, 1j0,4)). Then one can find a function F
such that

N

1
(510) <§ fN> Z<§7 (n—1 ana)> — F(f) Hao K-a.€.
n:l
and [, ta,x (A€)F(§) = [ Ha,x( = Jg: f(2)k(0)dz. On the other hand, it follows
from Lemma 5.2.
1 2 1
(5.11) Hayie (d) | (& fx) = | f(2)k(0)dz | = O(5) =0
Q 1
as N — oo. Hence, F(& le 0)dx fto,k-a.e. In other words, (5.9) holds for

J = 1j0,0). Thanks to the translatlon invariance, (5.9) holds for 1f,4) for any a < b. Thus,
(5.9) holds for every simple function f and, therefore, for every bounded measurable
function f with compact support because f can be approximated uniformly by simple
functions.

The case of R = R? with d > 2 is proved in a similar manner by using a multidimen-
sional version of Birkhoft’s ergodic theorem (cf. [36]). O

Remark 5.3. If K is a convolution operator on R?, the translations turns out to be mixing
under fi, . In Part 1T we will discuss the case where R = Z“ but we do not go into the
detail about ergodic properties here.

5.3. Central limit theorem.

Proposition 5.4. Let f be a bounded measurable function on R? with compact support
and assume [gq f(x)dz = 0. Then

1
5.1) Jim [ ety (it i) ) = expl—3o2cl ).
where
(5.13) ook = k(0)+a / k(x)*dx
R4

1

(5.14) - (%> /R R (1 + ok (0)de
and fn(-) = f(-/N).

Proof. Set A = suppf. Let py(z) = 1 — exp(ifN( )/N¥?) | NA = {Nz;z € A},
Ky =1n7K1ys and Ly = oy Ky. Since [g, f(z)dz = 0, we get

iy = [ (1o (5ml) + ol (5)) ko)
_ %/Rdf( 12(0 )dw—l—O(N}m)

(5.15) 5 1 /R F(a)k(0)de.

2
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Similarly, we have

T 1
To(13) = - /RR F(@)(—=2) £ (4) f(y + < )dady + O( )
(5.16) o - / ka)de [ f(2)2de.
R4 R4
Using Lemma 2.1(i) and Theorem 1.5, we obtain the following estimates: for sufficiently
large N,
: In @ 2
= 10g [ pac(d€)exp (i€, 550 ) = Tr(Lw) + 5 Te(L)
Q
n—1
<> o™ 3y |Ly|"
n>3 n
< |a|n—1 L n72T L 2
< Sl T L )
n>3
(5.17) < —lallog(1 = [laK| - lowllee) Tr(|Zy ")

and since Ky is bounded and nonnegative definite
Tr(lLy?) < llon g Tr(KR)
< lenlBIE N Tr(KN)
CRNTINT
Nd/2
(5.18) FONE - ([ fIIZIAL-
Here we used ||¢n]loo < ||f]loo/N%2. From (5.17) and (5.18) it follows

_J&Enool()g/Qua’K(dg) exp (Mfa%ﬁ

IN

K

_ %(k(o)+aAdk(x)2dx> [ fapas
(5.19) - %(%)d /R 00+ okt [ fapdn

O

Remark 5.4. In the case where o« < 0 the range of the Fourier transform k is crucial
for the asymptotic behavior of the variance. For instance, if &« = —1 and k takes only
two values, 0 and 1, then the quantity 031’  vanishes and the standard scaling factor
N~ loses its meaning. The sine kernel k(z) = sin7x/7x is a typical case among such
degenerated cases. Indeed, if we denote the fermion process associated with it by pi_1 sine,

then one obtains the following log N behavior

[t st - ( JAG fN>u_1,sme<df>)2

(5.20) ~ (log N)~

T2

Y (flz+0) — fz —0)
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for functions f of bounded variation and with compact support provided that its jump
are square summable. In particular, if we take the indicator function of unit interval [0, 1]

as f,
(5.21) /Q<§afN>2M1,sine(d‘S) - (/QG;U fzv)pu,sme(d&))z = % log N + O(1).

This comes from the well-known log N behavior for Dirichlet kernel in Fourier analysis.
In fact,

[ ) - ( e fN>u_1,sme<d§>)2

[ [ (B
= N (=[O ) [
— 0(1)+<7T2/1 du“+0(1)>

1
(5.22) = —logN +0O(1).
m

The central limit theorem does hold for indicator functions of an interval under this log N
scaling. It was first proved by O. Costin and J. Lebowitz [8]. Further discussions were
given for general f by A. Soshnikov [31, 32].

5.4. A large deviation result.

Proposition 5.5. Let f be a nonnegative measurable function on R* with compact sup-
port and set fn(-) = f(-/N). Suppose, in addition, that ||aK|| < 1 when o > 0. Then

529 fim s7tos | polde) e (~(€, 1) - () [ [ aes 0 s,

where we set
1

(5.24) Po(k,u) = ——log (14 ar(l —e™)) .
o

Remark 5.5. The quantity ®,(k,u) is the logarithm of the Laplace transform of a gener-
alized binomial distribution:

(™) (q
(5.25) exp ®o(k, 1) = (14 ar(l — e )V = (1+ar)™ Z ¢ n( )J" I
n=0

where ™ (a) = H;.L:_&(l + ja) and J, = /(1 + ak) as in the introduction.

Proof. First we assume k € L! in addition to k € L'. Let ¢ = 1 — exp(—f), o~

1 —exp(—fn) and A = supp f. Note that K,, = \/pnEKna\/¢n, and by Lemma 2.1(i)
we obtain

Tr(K2) < llonlli - IKnall™ t Tr(Kya)

(5.26) = el K" RO)NA]
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and

Tr(KZN) = / k(xy — o)« - k(x, — x1)n(z1) - - - on(an)day . . . dx,
Rdn
2/ E(ya) - k(Yn-1)k(=y1 — - — Yn—1)
Rdn
x T+ T+t Yn-
PR (I I gy
= [ k) B == )
+...+ n—
w(x)go(x+%)---¢(x+yl = Iy N gedy, . .. dyn
~ Nd/ dyr ... dyp—1k(y1) - k(Yn-1)k(=y1 — -+ — Y1)
Rd(n—1)

X/Rd dze(x)"
(5.27) ~ N (%)d /R dt Ry /R pla)d

By the dominated convergence theorem, we get

1 () 1 n
]\}I_I}loo Wlog Det([‘l‘ QK¢N) = — A}linoo — n WTI‘(K‘PN)
[e'9) _ n 1 d N
_ —Zﬂ(—> / dtk(t)”/ o(z)"da
1 n 2 Rd Rd

(5.28) - (%)d /R Lt /R drlog(1 -+ ak(t) ().

Now we consider the general case. If k is in L' then we can find a sequence {k,} such
that both &, and k, are in L' and ||k — k,||;1 — 0 as n — oco. Consequently we obtain
Proposition 5.5 from the following lemma. O

Lemma 5.6. Let f be a nonnegative measurable function of compact support and p(x) =
1 —e 7@, Suppose ||aK|| < 1. Then,

(5.29) / dt / dzlog(1 + k(1) o(x))
R¢ JRI
is Lipschitz continuous in k with respect to the norm || - [|[z: and so are the quantities
1
(5.30) i log Det(1 + aK,, )

uniformly in N where o = ¢(-/N).
Proof. We only give a proof to the second assertion because the first one is proved in a
similar and easier way.

Let ko, k1 be such that kg, k; € L' and set k. = (1 —r)ky + rk; (0 <7 < 1). Denote by
K™ the operator corresponding to k,. Then, by Lemma 2.1(iv),

d r r)\— d r
(5.31) - log Det(1 + aK()) = aTr <(1 +aK)) 151(;13)
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and

JKQ(DQ (@,y) = (on(@)on®)? (ks — ko)(z —y)

(5.52) = (en@en) (5 ) [ =R =

d 1\* SN
(5:33) - -logDet(1+ aK)) =« (§> /Rd<(1 + aKUN) TN i) (ky — ko) ()dt,

where
(5.34) V(@) = e oy (x)'?.
Now noting ||aK ™| < 1 and
(M4 aKI) Wi, vh) < (1= llelle) (W, U

(5.35) = N1~ [l¢lleo) Hl@lloo] supp ¢|
we obtain
d . ~ -
(5.36) |$ log Det(1 + aK((mg)| < Cla| Nk = kol
with C' = (1 — [l¢lleo) " lllleo| supp 0]/ (27)7.
Consequently,
1 1 ~~ AN
(5.37) | <77 log Det(1 + k() — — log Det(1 + ak ()| < Cla - b1 = Folls.

U

If we consider the degenerated fermion and fermion-like point processes, we obtain the
following, rather strange result from Proposition 5.5. One might say that a strong mean
field theory works for degerated fermion and fermion-like point processes.

Corollary 5.7. Let f be a nonnegative measurable function on R® with compact support

and set fn(-) = f(-/N). Suppose a« = —1/m,m € N and k takes only two values 0 and
m. Then,

539 Jim lon | nomlde) o (~(6 fa)) = kO) [ f@)ae

6. FURTHER PROPERTIES

6.1. Palm measures. Throughout this section, we assume that A is non-atomic and we
deal only with point processes which have no multiple points and admit all the correlation
measures \,.

Definition 6.1. Let u be a probability measure on Q. If i has mean A1, one can define
a probability measure u* on Q for A\i-a.e.x by the disintegration formula

(6.1) /Q utde) [ edopu(ea) = [ ndo /Q i (dEYu(€ + b, 2)

for any bounded measurable function u(&,x) on Q X R with compact support in x. The
probability measure u* on Q is called the Palm measure or Palm-Khintchin measure or
sometimes Kendall measure of L.
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Remark 6.1. In our definition, the Palm measure u” of u is supported on the set of &
satisfying £{x} = 0, that is,

(6.2) pEeQ; Hap=0)=1

For instance, if IT is the Poisson point process with intensity A, then its Palm measure I1*
coincides with II for A-a.e.z. Indeed, differentiating

(63) /Q @) € —exp (= (1= etnan)

in t at t = 0, one finds

(6.4) /Q W(de) (€, g)e 6P = /

R

o@)e [ u(dg)e e
Q

for any nonnegative measurable functions f and g with compact support. If we set
u(z, €) = g(z)e & then those functions span the space L'(R x Q, X @ 7). Hence, (6.1)
holds for p = II with p* = I1.

Similarly, for n > 2 the n-th Palm measure is defined as the probability measure p*
on @ for \p-a.e.(x1,...,x,) satisfying the following equation

/ w(de) En(day - - dap)u(é, xq, ... xy)
Q R™

(6'5) - / A”(d$1"'dx”)/ pr Zn(dg)u(g'i_(sm+"'+5wmxl7"'7xn)
” Q
for any measurable function u(,z,...,x,) on @ x R™. These Palm measures satisfy the
recursive relation
(6.6) pEEEeT = (FLEDee TN I N g e (T, ., Xy)-

The following is a well known fact which gives an intuitive picture to Palm measures.

Lemma 6.2. Let \; be a nonnegative non-atomic Radon measure and let p be a proba-
bility measure on Q) with intensity A\y. Suppose that

(67) | smtde) = ou())
§U)>2
for open sets as U — {z} for A\i-a.e.x. Then the Palm measure p® is the limit of the

conditional probability subject to the condition that there exists a particle in a neighborhood
U of x as U shrinks to {x}. Precisely, for any bounded continuous function F,

(6 W(F160)>0) = [ e+ oun(a

as U — {x} for A\i-a.e.x. Moreover, if the n-th correlation measures A\, exists

(6.9) w(F | &U;) >0 for1<i<n)— / F(§E+ 0y + -+ 0, )" (dE)
Q

as U; = {x;} (1 < i< n) for My-a.e.(xq,...,2,).
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Also it may be worthy to notice here that the spacing distribution is given by Palm
measures when R = R!. Let 6(£) be the distance between the two particles in ¢ that
are the nearest and the second nearest to the origin 0 among those located on [0, o).
Assume for simplicity the probability measure y is translation invariant. Then there hold
the equalities

(6.10) H(OE) > 1) = W0(6(0,1] = 0) = (€ 1] = 0)] oo

Next lemma shows the relationship between correlation functions of x and those of its
Palm measures.

Lemma 6.3. Let u be a point process over R and fix a Radon measure A on R. Assume
that p admits all the correlation functions {pn }n>1 (with respect to ). Then for m > 1 and

for Ap-a.e. (z1,...,2y,) the Palm measure p* "™ admits all the correlation functions
{ppr®mtosq1 (with respect to A) and
(611) pm('rla s ,l'm) : pzl’m’wm (y17 s 7yn) = pm-l-n('rla sy Tmy Y1 - - 7y7l)

holds for A°"-a.e.(y1,...,Yn)-

Proof. We only give a formal proof. A rigorous proof can be easily done by induction
on n and m keeping in mind the definition of £,’s. Let f, g be any bounded measurable
nonnegative functions with compact support. Then,

/m(z)/\(dx)g(x)ef(””)/,ux(dg)e@,f)
R’ Q
= [ ntagye.ghete

Q

d / u(d{)e*“’fﬂg)
t=0 Q

d = —1)" 2 —f(z;)—tg(z; n
D DL PRTS § ((R I
= n=0 R"

n!
i=1

[e%) _1 n n+1 ~ 4
(6-12) X Z ( n') / Pn+1(331,«’152, - ,i’n+1) H(1 —€ f(xl))/\m(dl"z e 'd$n+1)-
n=0 : " i=2

Hence, the correlation function p* of y*' exists and is given by

1
6.13 Y1y ey Yn) = ——— Pt (T1, Y1, - o, Yn)-
( ) on (1 Yn) m(xl)p +1(z1, 41 )
Similarly, we can obtain (6.11) for m > 2. O

6.2. Palm measures of fermion processes. As is mentioned in the introduction, the
class of fermion processes is closed under the operation of taking Palm measures.

Theorem 6.4. If u_ x s the fermion process associated with operator K and if we
denote its intensity by A1, then for Ai-almost every xq the Palm measure /VL‘EOLK cotncides
with the fermion process associated with the operator K™ defined by

(6.14) K*™(z,y) = mdet< Il(f((:foz/)) I[((((:f(;,?o)) )
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whenever K (xg, o) > 0.

Proof. Assume K (xg,zq) > 0 and show that K*° satisfies Condition A. In fact, K < [
because K7 = K — K(zg,-) @ K(-,20)/ K (z9,29) < K. To see K* > 0, one may apply
to the eigen-expansion Ky = > Knp, @ @, for any compact A C R. Then

p S o vz (Do Kaon (@) (s £
<KA fa f) - ; n<99naf> 220:1 lfn@n(l’o)z
(6.15) > 0.

Hence O < K7 < [ and K}°
from Lemma 6.3 that

is of trace class for each compact A C R. Finally, it follows

- 1
(6.16) Pt 1 k(T ) = )pnﬂ,_l,K(xo, Tyeey Tp).

P1,—1,K($0

On the other hand, it is immediate to see

(6.17) det(K™(zy,25))} = = m det(K (zi,75)); j=o-

Hence,

(6.18) pﬁ?_l’K(a;l, ) = det (K7 (g, 25) )72

Consequently, ,ufOL x is the fermion process associated with K™°. O

By induction we have the following:

Tn

18 associated with the integral

T1,..,Tp _ n -1
K (z,y) = <det(K(xiaxj))i,j:1)

K(z,y) K(z,z1) K(z,x,)
(6‘19) % det K(:r:l,y) K(l':l,l'l) K($1,l‘n)
K(‘Tﬂny> K(wnaxl) K(xn,xn)

for A\p-a.e. (z1,...,2,), where \, is the n-th correlation measure of pi_ k.

The following formula may be interesting in itself.

Example 6.6. [15] Let R = R' and )\ be the Lebesgue measure on it, and K (z,y) be
the resolvent kernel of a one-dimensional diffusion process or, the Green function for a
Sturm-Liouville equation. Write

_ Julz)u(y), ifz <y
(6.20) K“W*‘{mwmw,ﬂwzy
Then
det(K (z;, 7))oy = K(of,a5) K" (25, a5) K™ (x5, 4%) - - - K1 (2, o)
(6.21) = K(z, x;)Kx: (x5 _1, 35;—1)[(36:71 (Th oy o) - K" (z7,27),

where x7 < --- <z is the rearrangement of xy, ...
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Proof. Let a;,b;,1 =1,...,n be complex numbers. Then it is well known that

n_ by by by b3 bn1 by
(6.22)  det(amingipbmax{i))ij=1 = a1 a ay | |as as | Un 1 Gn | b
Hence (6.21) follows from the definition of K*(-, ). O

Remark 6.2. The relation (6.21) shows that the spacings, i.e. the distances between
nearest neighboring particles in £, are independent under p1_q x (cf. [9]). The converse is
also true (cf. [33]).

6.3. Palm measures of boson processes: the case of nonnegative kernel. Recall
that a point process u is said to be infinitely divisible if for any n € IN there exists a point
process v, so that u is expressed by the n-fold convolution product of v,.

Theorem 6.7. Assume Condition B. Then for any o > 0 there exists a unique probability
measure [io g Such that

(6.23) /Q o e (d€) exp (— (€, £)) = Det(I + aK,)~V,

where ¢ =1 — e~/ and f is a nonnegative measurable function with compact support.
Moreover, [ i s always infinitely divisible.

Proof. Under Condition B the density functions o, o x on A™ defined in (3.8) and (3.9)
are nonnegative. Then one can obtain the unique probability measure p, x satisfying
(6.23).

Obviously, if o and K satisfy Condition B, so do na and K/n for any n € N. Hence
na,k/n 1S also a probability measure and then the Laplace transform of p, g is equal
to the n-th power of the Laplace transform of ti,q x/n. Consequently, p, k is infinitely
divisible. O

Remark 6.3. If 1, f is infinitely divisible, then the restriction pia o x to the subspace Q(A)
is also infinitely divisible for each compact set A and we obtain the following representation
by the Lévy measure (cf. [9]):

(6.24)
o0 n—1
/ pia o i (d€)e™ ) = exp [ - Z a / (1 — e~ Zi=m @A (dey .. dzy) |,
Q o n=1 n " o
where
(6.25) Mo (dzr . dzy) = [ [ JalA](@i, 2i00) A" (dy - - - davy)
i=1

with x,11 = x1. Indeed, if supp f C A, we obtain

1
—logDet(I + a(l — e)Ky)
o

1 1
= ——log Det(I — aJ,[A]) + —log Det(I — ae™ J,[A])

oo n—1
_ Zo‘n [Tr(Ju[A])" = Tr(e™ Ju[A])"]
n=1
- a”I/ n
6.26 = 1—e Ziml@ph o (dgy ... dz,
(6.26) nZ::l ol )0, (421 )
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by using the expansion formula (2.10) in Lemma 2.1.

Remark 6.4. When the underlying space R is a finite set, Griffiths and Milne[12] already
discussed the necessary and sufficient condition on the matrix K for the infinite divisibility.

It is well known that the Palm measure of a Poisson random field II is given by
(6.27) I1" =11 forae.x

and that the relation (6.27) gives a characterization of the Poisson random fields. This
implies that the existence of a particle at = does not affect the location of other particles
in the Poisson random fields while the next theorem indicates that the existence of a
particle at x increases the number of particles in the boson random fields.

Theorem 6.8. Let 11,k be the point process given in Theorem 6.7 above. If we denote
the intensity of pa,x by A1, then for A\i-a.e.x there exists a probability measure vy o x 0N
{6 € Q; E(R) < oo} such that the Palm measure pif, i 1s given by the convolution

(628) Mz’K = Ha,K * Vg o,K-

Proof. Let f, g be nonnegative measurable functions on R with compact support contained
in a compact set A. Then

//\(da:)K(i,i)g(:c)ef(””)/ufx’K(dg)e<§af>
R’ Q
= K x x 67<§:f>
| entae) [ etanrote)

d
dt t=0 /Q' NQ’K (dg)e
d
=~ Det(I 4 a(l —e T79)K,) e

= Det(I+a(l —e K\ V*Tr(ge " Ka(I +a(l —e /)Ky)™)
= /R/\(da:)K(a:, 2)g(@)e LKL (I + (1 — e ) Ky) "}z, 2)
(6.29) x Det(I + a1 — e F) )7,

Hence,

| sl exp (~(6. )
Q

(6.30) = {Kall+a(l-e/)Ky) "} (o, 2) - /Q/vLa,K(dg) exp (—(£, ) -

Now if J, has nonnegative kernel, then the operator J,[A] also has nonnegative kernel
since, as is easily seen by the formula (3.36),

(6.31)  JJJAl= (I — (I +aKa) ™ /a= (Jo)a + a(Ja)are(I — a(Ja)re) " (Ja)aca-
Consequently, if € A and supp f C A, then
Ky(I+a(l—eHKN)™? = JJAII — ae T JJA)E

(6.32) = Y a"J[Al(eT T[A]"
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and so one can define a probability measure by the formula

/ Vi (d€) exp (—(€, f))
Q

= > a"Ju[Al(e T T[AD (2, 2)

(6.33) = > a" / JalA(z,2y) - - Jo[A) (2, 2)e™ Zi= FEINE (g day,)
n=0 "
for any measurable function f of compact support. O

6.4. Boson point processes and Gaussian random fields. It is well known that
symmetric nonnegative definite Hilbert-Schmidt operators correspond to Gaussian ran-
dom fields whose covariance are the given operators. In particular, under our Condition
A there exists a Gaussian random field X*(z) on A for an integral operator K and a
compact subset A of R since K, is then a Hilbert-Schmidt operator. It is not difficult to
see that the family {X*(x); x € A}, A being a compact subset, satisfies the consistency
condition and so there exists a Gaussian random field X (x) on R with mean 0 such that
X (z) is locally integrable with respect to A and satisfies

(6.34) /X A(dz)] = / (z,2)\(dzr) < 00
A

for each compact subset A of R and

(6.35) EX(z)X(y)] = K(z,y) for A®@ Ma.e.(x,y).

Thus we can consider the Poisson random field IIx> over R with intensity X (z)*\(dx).
Then, it is immediate to see

B JRSEE M| = B lew- [0 crex@pa

(6.36) = Det(I +2(1 —e)K)™1/2

Thus, the Poisson point process with random intensity X2\ gives us the probability
measure [io . The Boson point process associated with the integral operator K is given
by the convolution of two independent copies iy /2 or equivalently the Poisson point
process with random intensity (X2 + Y2)- )\ where X and Y are independent copies of
Gaussian random fields defined above from K /2. This construction brings us an extra
bonus.

Theorem 6.9. Assume Condition A as in the Theorem 1.2. Then for o € {2/m;m €
N} there ezists a unique probability measure i, i Such that (1.7) holds.

Proof. We have already got a probability measure 15 x as above. The probability measure
U2/m,k is nothing but the m-fold convolution of fis /m. O

Remark 6.5. E. Dynkin gave an integration by parts formula for Gaussian random fields
in [10]. The following special case is called Dynkin’s isomorphism theorem in [1]: let
X = {X(x)}ser be a Gaussian random field on R. Then there exists an independent
random variable of L(x) such that

X (x)*

(6.37) E [F(XQ)E[X( ]

] E[F(X? + L(2))].
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The random varible L(z) is known to be an occupation field of a certain Markov process
on R starting at x and killed at . In our context, this formula can be understood as a
restatement of the formula (6.28) in the case oo = 2. In particular,

(638) Vg,o, K = E[HL(x)]

The fact that all the correlation functions of y, i for a € {2/m; m € N} are nonneg-
ative leads us to the following conclusion.

Corollary 6.10. Let o € {2/m; m € N}. Then det,A is nonnegative whenever A is a
nonnegative definite square matrix.

Now expand the term e~‘$#) in the left hand side of (6.36) according to (4.2). Then
one finds

(6.39) E /Q Mys (d€)e (6] :i(_l)nE[ /Q M (d€) (60, 00,

n!
n=0
where ¢, (21,...,2,) = [[=,(1 — e /(®)) as in Section 4. Since Iy is a Poisson point
process with intensity X (z)?\(dz), we have
(6.40) / My (@) (Ens o) = | X(21)% - X (@) 20n (@1 - 2) A (dy - - - ).
Q R"

On the other hand, we know if ||¢||s||2K]| < 1
Det(I +2(1 — e F)K))™1/2

(641) = nZ:O n! ndet2(K(I27x]))z,j:lwn(xlu7xn)A®(d‘r1dIn)
Consequently,
(6.42) dety (K (25, 25))1 2 = E[X (21)?--- X(2,)°] A®"-as.

for each n > 1.
Similarly, we can obtain a representation of det,A for « = 2/m, m € N, by Gaussian
integrals. In particular, we have the following:

Corollary 6.11. Let A = (a;;)};—, be a symmetric nonnegative definite matriz and Z =
(Zi)i=1,2,..n be a Gaussian random variable with mean 0 and covariance A. Then the

a-determinant for o = 2 can be expressed as follows:
(6.43) detoA = E[Z7--- Z7].

Another, direct proof can be given by differentiaing det(I + A)~'/2? repeatedly in a
suitable manner.

6.5. A statistical-mechanical aspect. So far we constructed the random point field
Lo,k starting from K and showed that the density o, is given in terms of the operator
Jo[A] = KA(I + aK,) ' But, if one want to interpret u, x as an object of statistical
mechanics, it is natural to start from the operator J, = K (I + «K)~!. The operator J is
the quasi-inverse of K in the sense that (I — aJ,)(I + oK) = I and its existence should
be assumed if a < 0.

Let H be a Hamiltonian operator and N be the number operator both realized on a
L?-space L?(R, )\). It may be quite natural to assume that the operator

(6.44) J=ePH=N) (350, €R)
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is a symmetric operator and furthermore J may be assumed to be nonnegative definite.
Assume, in addition, Spec(J) C [0,1/|a|) if @ > 0. Under so-called a-statistics the grand
canonical partition function is given by an infinite product using eigenvalues. We may
consider

[e.o]

(6.45) Zo(A) =Det(I — adp) M = [[(1 = aBEn(A)7V*,

n=1
where J, is the restriction of J to L*(A,d\) and E,(A), n > 1 are the eigenvalues of J,.
The a-statistics is the fermion and the boson statistics if & = —1 and o = 1, respectively.

If we want to realize the grand canonical ensemble u(aA)

transform will be

046 [ O e (e 1) = gy Petll — (e

as a random point field, its Laplace

Applying Proposition 3.8 to (6.46), we obtain the following second construction of 1, x
starting from J

Theorem 6.12. Let « € {—1/m; m € N} U{2/m;m € N} and J be a bounded sym-

metric integral operator with continuous kernel J(x,y). Assume J is nonnegative definite
and, in addition, ||aJ|| < 1 if « > 0. For a compact subset A of R define a probability

measure ,uSXA) by

(6.47) N (day - - - day) =

1 n n
7o (0 deto(J (@i, ;)7 = A" (dy - - - day,)
on each A™. Then u&M satisfies (6.46) and converges as A tends to R to the probability
measure [o x constructed in Theorem 1.2. In other words,

(A) _ _ Det(I — ae~fJy)"e
[ e ) = SRt

(6.45) = Det(T +ak,) ' = [ poseld)exp (—(6,1)
Q
as A tends to R for each nonnegative measurable function f with compact support.

Proof. It is obvious that p&") satisfies (6.46). Set
(6.49) KoAl=(I=aJ)) "= (I —adr)" = 1)/
Then we have

Det(I — ae=/Jy)

Det(I — aJy)
(6.50) = Det(I + apK,[A]).
Now set A = A’\ A. Then by using (3.38) in Remark 3.3 we obtain
(651) IA + a(Ka[A'])A = {(I — aJA/)_l}A Z (IA - CYJA)_l = IA —+ CY(KQ[A])A.
Thus, for any f € L*(R, \),
(K [ADAS F) = ((aKu[A"])a fa, fa)

((Ba[AT)r f2, fa)
(@Ka[ADAS, )

6

Det((I + oI [A]) — ae ™ K,[A)])

v

(6.52)

ol



whenever A C A’ C A”. Hence, (aK,[A'])4 is nondecreasing in A’ in the sense of quadratic
forms and converges strongly to

(6.53) {Iy — adyne — a?Ippe(Ine — adpe) Ppen} ' = Iy = aKjy.

Consequently, we can apply Proposition 3.8 and obtain

(6.54) Det(I + ay/@(K.[A'])av/@) — Det(I + ay/eKn\/9)

as \' — R. O

7. ON a-DETERMINANT

7.1. Conjecture and partial results. In Section 2 we encountered the function det, A
of a matrix A defined by

(71) detaA = Z an—u(a) ﬁaw(i)
=1

O'ESn

for an n by n matrix A = (a;;);;—; where S, is the symmetric group of order n and v(o)
is the number of the cycles which consist of o. The existence problem of random point
fields associated with Det(I 4+ K,)~/* was equivalent to the nonnegativity problem of
det, A for all nonnegative definite matrices. The nonnegativity is trivial if the entries of
A is nonnegative even if A is not symmetric matrix. For a nonnegative definite matrix
we have proved the nonnegativity for o € {2/m; m € N} U {—1/m; m € N} by the
probabilistic construction given in Section 3 and in Section 6, respectively. Besides, one
can easily see that det, A > 0 for small o’s for each fixed matrix size. We strongly feel
that the following is true.

Conjecture 7.1. Let 0 < o < 2. Then det,A is nonnegative whenever A is a nonnega-
tive definite matriz.

It is easy to see that Conjecture 7.1 for a < 0 fails unless o ¢ {—1/m; m € N}.

Conjecture 7.2. Let a > 2. Then there exists a matriz size n(c) such that the non-
negatiwvity of det, A fails for some nonnegative definite matirizc A of size n if and only if
n > n(a).

Remark 7.1. (i) The usual g-analogue of determinants is defined by using the inversion
number (o) in place of n — v(o) where 0 < ¢ < 1 and (o) = #{(4,5);1 < i <
j < mnando(i) > o(j)}. The function d(c,7) = t(c7'7) is a distance in S, and the
matrix (qb("_lﬂ)oﬁe‘gn is nonnegative definite. Hence, this g-analogue is nonnegative if A
is nonnegative definite. But the matrix (o (°"')), ;es, is not nonnegative definite in
general for 0 < o < 1. Indeed, ¢V (a)’s defined below in (7.4) are the eigenvalues of this
matrix.

(i) It is well known that there is one-to-one correspondence between the equivalence class
of irreducible characters of S,, and the partitions A = (A1, A, ..., Ax) of n. The following
quantity is called immanant of A (cf. [13, 21]):

(7.2) det,onAd =Y xM(0) [ | aiog,
=1

oES,

where Y is the character which is associated with a partition A. It is also known that

det,» A is nonnegative whenever A is nonnegative definite.
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(iii) It is not so difficult to see the following formula which seems to be well known among
specialists:
Let A be an n by n matrix. For any a € R, we obtain

1
(7.3) detaA = —(dim e (a)det, o) A,
— n!

where dim A is the dimension of an irreducible representation associated with a partition
A and we set
koM

(7.4) MN(a) = H H(l +(j —i)a).

=1 j=1
The dimension dim A is given by the formula

) n!

where £; = \; +k —i (1 <i<k)and A(ly,...,04) = [[;;((; — &) is the Vandermonde
determinant.

The formula (7.3) gives a quick proof to the fact that det, is nonnegative for a €
{£1/m;m € N} U[0,1/n] if A is an n by n nonnegative definite matrix. But the fact
that det, is nonnegative also for a € {2/m; m € N} is rather mysterious and is difficult,
at least to the authors, to be deduced from the formula (7.3) with (7.4) and (7.5).
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