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Abstract. If a normal quartic surface admits a singular point

that is not a rational double point, then the surface is determined

by the triplet (M, D, E) consisting of the minimal desingularization

M , the pullback D of a general hyperplane section, and a non-zero

effective anti-canonical divisor E of M . Geometric constructions

of all the possible triplets (M, D, E) are given.

Introduction

The purpose of this paper is to classify the complex normal quartic

surfaces in the 3-dimensional projective space P
3 with irrational sin-

gularities by determining their minimal desingularizations. Let S be a

normal quartic surface and let σ : M → S be the minimal desingular-

ization. Then M is known to be one of the following surfaces (cf. [7]):

(1) a K3 surface;

(2) a P1-bundle over a smooth quartic curve of P2;

(3) a ruled surface over an elliptic curve;

(4) a rational surface.

In the case (1), S has only rational double points as singularities. In the

case (2), S is nothing but the cone over the quartic curve. Umezu [7]

have determined the structure of M and the minimal desingularization

σ : M → S in the case (3).

The classification problem has been studied by a number of alge-

braic geometers for more than half century. Umezu [7] and Urabe [8],

[9] considered the problem from a viewpoint of singularities. Umezu

studied the singularities of a normal Gorenstein surface with trivial
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dualizing sheaf in [6]. In our case, the singularities which are not ra-

tional double points are studied by the configuration of the effective

anti-canonical divisor E of M determined by KM ∼ σ∗KS −E. In the

next paper [7], Umezu described the pair (M,E) by determining the

blowing-up process from a relative minimal model of M . Urabe [8],

[9] applied Looijenga’s argument in [4] to the pair (M,E) in which E

is irreducible. By using Dynkin diagrams, Urabe determined possible

singularities on S�σ(E). On the other hand, Degtyarev [2] considered

the problem by types of equations of hypersurface singularities listed

in [1].

Our approach is different from theirs. We consider a triplet (M,D,E)

called a basic triplet which consists of a non-singular projective surface

M , a smooth non-hyperelliptic curveD of genus 3 onM , and a non-zero

anti-canonical divisor E of M . If σ : M → S is the minimal desingular-

ization of a normal quartic surface S with irrational singularities, then

(M,D,E) is a basic triplet for the pullback D of a general hyperplane

section of S and for the anti-canonical divisor E with KM ∼ σ∗KS −E.

The basic triplet satisfies the condition C in §1. Conversely, if a basic

triplet (M,D,E) satisfies C, then it is induced from a normal quartic

surface with irrational singularities (cf. Proposition 1.4). Therefore, it

is enough to determine all the basic triplets satisfying C. We apply the

theory of extremal rays [5] to KM +D and 2KM +D. If KM +D is not

nef, then we infer thatM is a P1-bundle over a smooth non-hyperelliptic

curve of genus 3 and S is nothing but the cone over a smooth quartic

curve. If KM + D is nef, then we consider an extremal curve Γ with

(2KM + D) · Γ < 0. If Γ is a (−1)-curve and if φ : M → M ′ is the

contraction of Γ, then D′ = φ(D) is isomorphic to D and E ′ = φ∗E

is an anti-canonical divisor with KM +D ∼ φ∗(KM ′ + E ′). The mor-

phism φ is the blowing-up at the unique point D′∩E ′. The new triplet

(M ′, D′, E ′) satisfies the condition C1 in §1. Next, we consider another
(−1)-curve Γ′ with (2KM ′ + D′) · Γ′ < 0 and its contraction. In this

way, we finally have a basic triplet (X,B,G) and a birational mor-

phism ρ : M → X such that KM + D ∼ ρ∗(KX + B), D � B, and

(2KX + B) · Ξ ≥ 0 for any (−1)-curve Ξ on X. The basic triplet
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(X,B,G) is called a minimal basic triplet and M is obtained canoni-

cally from (X,B,G) by the method called separation (cf. §1.2). By the

structure of (X,B,G), the triplets (M,D,E) are classified into Types

A to D in Theorem 1.7.

We shall give examples of the triplets (M,D,E) and (X,B,G) in §2
and we shall show in §3 that any basic triplet (M,D,E) satisfying C is

one of the triplets given in §2. For the proof, we need some well-known

facts on generalized del Pezzo surfaces, rational elliptic surfaces, elliptic

ruled surfaces, double-coverings, and extremal rays.

Our classification is very rough compared to Umezu’s work [7]. Be-

cause, firstly, it is not the classification modulo isomorphisms. We need

a hyperplane section as an additional datum. Secondly, by the use of

separation, we avoid studying the configuration of centers (including

infinitesimally near points) of related blowings-up. It is related to the

description of singular points on S. However, we can give a geometric

construction of any normal quartic surface with irrational singularities.

It might be useful for the fine classification.
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Notation

Every varieties are defied over the complex number field C. Curves

and surfaces are always assumed to be irreducible, reduced, and pro-

jective. These are smooth (over C) if and only if they are non-singular.

Divisors: Let X be a normal surface or a smooth curve.

— OX(D) denotes the invertible sheaf associated with a Cartier di-

visor D.

— We write Hp(X,D) = Hp(X,OX(D)) for short. We write also

hp(X,D) = dimHp(X,D).

— For a non-zero global rational section ϕ of an invertible sheaf L
of X, we define

div(ϕ) :=
∑

ordΓ(ϕ)Γ

in which ordΓ(ϕ) is the order of zeros or the minus of the order of poles

of ϕ along a prime divisor Γ ⊂ X.

— The linear equivalence relation for divisors is denoted by ∼.

— KX denotes the canonical divisor of X. If KX is Cartier, then

X is called Gorenstein. The dualizing sheaf ωX of X is isomorphic to

OX(KX). A divisor E is called anti-canonical if E ∼ −KX .

— |D| denotes the complete linear system associated with a divisor

D. The associated rational map X ···→ |D|∨ into the dual space |D|∨

is denoted by Φ|D|. If we fix a basis (ϕ0, ϕ1, . . . , ϕn) of H
0(X,D), then

Φ|D| is equivalent to the map given by

x �−→ (ϕ0(x) : ϕ1(x) : · · · : ϕn(x)).

The base locus of |D| is denoted by Bs |D|.
— The intersection number of two Cartier divisors D and D′ on a

surface is denoted by D · D′. The self-intersection number D · D is

denoted by D2.

— A Cartier divisor D of a surface is called nef if D ·C ≥ 0 for any

curves C ⊂ X. If D2 > 0 in addition, then D is called nef and big.

Kawamata–Viehweg’s vanishing theorem states that Hp(X,KX +D) =

0 for a nef and big Cartier divisor D and for p > 0.
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— Let D be a Cartier divisor of a surface X. If there is a morphism

f : X → Y into another variety and if D ·C ≥ 0 for any curves C ⊂ X

contained in fibers of f , then D is called f -nef.

— Let D and A be Cartier divisors on a surface X. If D ·A ≤ 0 and

A2 > 0, then D2 ≤ 0, in which D2 = 0 if and only if D is numerically

trivial : D ·C = 0 for any curves C . This result is referred as the Hodge

index theorem.

Curves: Let C be a curve.

— The arithmetic genus pa(C) is defined as h1(C,OC). The genus

g(C) is defined as pa(C̃) for the normalization C̃ → C .

— A rational curve is a curve C with g(C) = 0. An elliptic curve is

a smooth curve with g(C) = 1.

— A smooth curve C of genus g(C) ≥ 2 is called hyperelliptic if the

image of the canonical map

Φ|KC | : C → P
g(C)−1

is P1. In this case, C → P1 is a double-covering. If C is a non-

hyperelliptic curve, then the canonical map is an embedding of C .

— A quartic curve is a curve C ⊂ P2 with degree 4. A smooth

quartic curve is nothing but a non-hyperelliptic curve of genus 3.

— A curve C ⊂ Pn is called a line if degC = 1. If degC = 2, then

C is called a conic.

— Let E be a locally free sheaf on C . We denote by PC(E) the

projective bundle associated with E. The tautological invertible sheaf

OE(1) associated with E is defined as the invertible sheaf on PC(E)
satisfying p∗OE(1) � E for the structure morphism p : PC(E) → C . A

tautological divisor HE is a Cartier divisor with O(HE) � OE(1).

Surfaces: Let X be a smooth surface, Γ a curve, and C a smooth

curve.

— q(X) denotes the irregularity of X: q(X) = h1(M,OX).

— For a curve Γ ⊂ X, the adjunction formula (KX + Γ)|Γ ∼ KΓ

holds. In particular, 2pa(Γ)− 2 = (KX + Γ) · Γ.
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— A (−1)-curve of X is a smooth rational curve C ⊂ X with C2 =

−1. It is usually called the exceptional curve of the first kind. A

smooth rational curve C ⊂ X with C2 = −2 is called a (−2)-curve. If

a curve Γ ⊂ X satisfies Γ2 < 0 and KX · Γ ≤ 0, then Γ is a (−1)-curve

or a (−2)-curve.

— Let f : X → Y be a morphism into another variety. If KX is

f -nef, then X is called minimal over Y or f is called minimal. If KX

is not f -nef, then one of the following cases occur (cf. [5]):

(1) There is a (−1)-curve contained in a fiber of f ;

(2) f is isomorphic to a P1-bundle over a smooth curve C defined

over Y ;

(3) f(X) is a point and X � P2.

— A rational surface is a surface birational to P2. A ruled surface is a

surface birational to a P1-bundle over a curve. A ruled surface is called

relatively minimal if it is non-singular and there are no (−1)-curves.

An elliptic ruled surface is a ruled surface X with q(X) = 1.

— Let X → C be a P
1-bundle. A minimal section is a section

whose self-intersection number is minimal among sections. Suppose

that the bundle is associated with a locally free sheaf E. Then E is

not semistable if and only if the self-intersection number of minimal

section is negative. In this case, the minimal section is unique and is

called the negative section.

— The Hirzebruch surface Σr for r ≥ 0 is defined as the P1-bundle

associated with O ⊕O(r) on P1.

— A surjective morphism f : X → C is called an elliptic fibration

if general fibers of f are elliptic curves. In this case, X is called an

elliptic surface.

— X is called a generalized del Pezzo surface of degree d if −KX is

nef and big with K2
X = d. The following properties are known:

(1) A generalized del Pezzo surface is a rational surface.

(2) If d = 2, then Bs | − KX | = ∅, h0(X,−KX ) = 3, and Φ|−KX |

is a generically finite surjective morphism onto P2 of mapping

degree 2.
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(3) If d = 1, then Bs | −KX | consists of one point, h0(−KX) = 2,

and Φ|−KX | induces an elliptic fibration Z → P1 from the blown-

up Z of X at Bs | −KX |.

Desingularization : Let S be a normal surface and let σ : M → S

be a birational morphism from a non-singular surface.

— A divisorD onM is called σ-exceptional if any prime components

of D are contracted to points of S.

— σ is called a desingularization or a resolution of singularities if σ is

isomorphic over the non-singular locus of S. The birational morphism

σ is minimal (in the sense KM is σ-nef) if and only if σ is a desingu-

larization with no (−1)-curves as σ-exceptional curves. The minimal

desingularization exists uniquely up to isomorphisms.

— If R1σ∗OM = 0, then the singularities of S are called rational. If

S is Gorenstein in addition, then the singularities are called rational

double points. The dual graph defined by the exceptional locus of the

minimal desingularization of a rational double point is one of Dynkin

diagrams An, Dn, E6, E7, E8. Rational double points are also called

ADE-singularities, simple singularities, Du Val singularities, and so on.

— Assume that σ is the minimal desingularization of S. If S is

Gorenstein, then KM ∼ σ∗KS −E for a σ-exceptional effective divisor

E. Here, E = 0 if and only if the singularities of S are rational double

points.

— If S ⊂ P3 with deg S = 2, then S is called a quadric surface.

— If S ⊂ P
3 with degS = 4, then S is called a quartic surface. Here,

ωS � OS and h1(S,OS) = 0. If σ is the minimal desingularization and

if M is not a ruled surface, then S has only rational double points as

singularities and M is a K3 surface.

§1. Condition C and Separation

§1.1. Condition C and quartic surfaces

Proposition 1.1. Let M be a non-singular projective surface admit-

ting a non-zero effective anti-canonical divisor E. Then h0(E,OE) =

q(M) + 1.
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Proof. In view of the exact sequence

0 → ωM → OM → OE → 0,

we infer that h0(E,OE) = 1 when q(M) = 0. Assume that M contains

a (−1)-curve Γ. Let h : M → M ′ be the contraction of Γ and let

E ′ = h∗E be the image of E as a divisor. Then OE′ � h∗OE by the

vanishing R1h∗OM(−E) = 0. In particular, h0(E,OE) = h0(E ′,OE′).

Therefore, we may assume that M is an irrational relatively minimal

surface. Hence M has a P1-bundle structure p : M → C over a smooth

curve C with g(C) = q(M) > 0. Here, we have the following exact

sequence:

0 → OC � p∗OM → p∗OE → R1p∗ωM � ωC → 0.

Since some component of E dominates C , there is a splitting of OC →
p∗OE . Thus p∗OE � OC ⊕ ωC . Therefore h0(E,OE) = 1 + g(C) =

1 + q(M). �

Corollary 1.2 (cf. [6]). A non-singular projective surface admitting

an irreducible and reduced anti-canonical divisor is rational.

Lemma 1.3. Let M be a non-singular projective surface admitting a

non-zero effective anti-canonical divisor E. If any prime component of

E is a rational curve, then M is rational.

Proof. Assume the contrary. Then the Albanese map induces a surjec-

tive morphism π : M → C into a smooth curve C of genus q(M) > 0

whose general fibers F are rational curves. Since E ·F = − degKF = 2,

some component of E dominates C . Thus C � P
1. This is a contra-

diction. �

Definition. A basic triplet (M,D,E) is a triplet consisting of a non-

singular projective surface M , a smooth non-hyperelliptic curve D of

genus 3 on M , and a non-zero effective anti-canonical divisor E of M .

The condition C for (M,D,E) is the collection of the following two

conditions:

C-1: D · Γ > 0 for any (−1)-curves Γ on M ;

C-2: D ∩E = ∅.
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If (M,D,E) satisfies C, then

D2 = (KM +D) ·D = 2g(D) − 2 = 4.

Let σ : M → S be the minimal desingularization of a normal quartic

surface S with irrational singularities. Let E be the σ-exceptional anti-

canonical divisor such that KM ∼ σ∗KS − E ∼ −E and let D be the

pullback of a general hyperplane section of S. Then the basic triplet

(M,D,E) satisfies the condition C. Conversely, we have:

Proposition 1.4. If a basic triplet (M,D,E) satisfies the condition C,
then there exist a normal quartic surface S and a birational morphism

σ : M → S such that

(1) S has irrational singular points,

(2) σ is the minimal desingularization of S,

(3) D is the pullback of a general hyperplane section of S,

(4) E is the σ-exceptional divisor satisfying KM ∼ σ∗(KS)− E.

Proof. Since D is a nef and big divisor, H i(M,KM +D) = 0 for i > 0

by Kawamata–Viehweg’s vanishing theorem. Hence

h0(M,D) = h0(M,KM +D) + h0(E,OE)

= χ(M,KM +D) + 1 + q(M)

= g(D) + 1 = 4

by Proposition 1.1. In view of the exact sequence

0 → OM → OM (D) → OD(D) � ωD → 0,

we infer that H0(M,D) → H0(D,KD) is surjective. Hence Bs |D| = ∅.
Thus we have a generically finite morphism

σ := Φ|D| : M → P
3.

Let S be the image. Then deg σ = 1 or deg σ = 2 since D2 = 4. We

note that the restriction σ|D : D → P2 is the canonical map of D. This

is an embedding since D is non-hyperelliptic. Thus deg σ = 1. Hence

σ : M → S is a birational morphism and S is a quartic surface. Now

ωS � OS, E is σ-exceptional, and KM ∼ −E. Thus S is a normal

surface and σ : M → S is the minimal desingularization by C-1. �
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Therefore, the classification of normal quartic surfaces with irrational

singularities is reduced to that of basic triplets (M,D,E) satisfying the

condition C.

§1.2. Separation

Let (X,B,G) be a basic triplet with B �⊂ G. Let ρ : Y → X be a

birational morphism from a non-singular projective variety and let BY

and GY be effective divisors on Y .

Definition. The triplet (Y,BY , GY ) or the birational morphism ρ : Y

→ X is called the separation of (X,B,G) if the following conditions

are satisfied:

(1) KY +BY ∼ ρ∗(KX +B);

(2) KY +GY ∼ 0;

(3) BY ≤ ρ∗(B), GY ≤ ρ∗(G);

(4) BY ∩GY = ∅.

Lemma 1.5. The separation exists and is unique.

Proof. First, we shall show the existence. If B ∩ G = ∅, then the

identity mapping X → X is the separation. Assume that B ∩ G �= ∅.
Let ρ1 : Y1 → X be the blowing-up at a point x1 ∈ B ∩G and let Γ be

the exceptional divisor ρ−1
1 (x1). We consider divisors BY1 := ρ∗1(B)−Γ

and GY1 := ρ∗1(G) − Γ. Here, BY1 is the proper transform of B and

B · G = BY1 · GY1 + 1. If BY1 ∩ GY1 = ∅, then ρ1 is the separation of

(X,B,G). If BY1 ∩GY1 �= ∅, then we blow up at a point x2 ∈ BY1 ∩GY1 ,

and we define BY2 and GY2 similarly. By continuing this procedure, we

finally get the separation.

Next, we shall show the uniqueness. Let (Y,BY , GY ) be a separation

of (X,B,G). If Γ is a ρ-exceptional curve, then KY · Γ = −BY · Γ ≤ 0.

If KY · Γ < 0, then Γ is a (−1)-curve. Otherwise, Γ is a (−2)-curve.

Let π : Y → V be the contraction of all the ρ-exceptional (−2)-curves.

Then V has only rational double points as singularities, and

BY = π∗(BV ) and GY = π∗(GV )
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for effective Cartier divisors BV and GV on V , respectively. There is

an effective Cartier divisor E on V such that

BV = τ ∗(B)− E and GV = τ ∗(G) − E,

for the induced morphism τ : V → X. Here, −E is τ -ample and BV ∩
GV = ∅. Hence, τ is the normalization of the blowing-up of X along

the ideal OX(−B) + OX(−G). Moreover, π : Y → V is the minimal

desingularization. Therefore, Y → X is uniquely determined. �

Definition. Let (X,B,G) be a basic triplet and let r be a non-negative

integer. The condition Cr for (X,B,G) is the collection of the following

two conditions:

Cr-1: KX +B is nef;

Cr-2: B ·G = r.

If (X,B,G) satisfies the condition Cr, then

B2 = (KX +B) · B +G ·B = 2g(B)− 2 + r = 4 + r.

In particular B �⊂ G, since B2 > B · G. Note that the condition C0

implies the condition C.

Lemma 1.6. Let (X,B,G) be a basic triplet satisfying the condition

Cr.

(1) Suppose that r > 0. Let ϕ : Y → X be the blowing-up at a

point x ∈ B ∩ G, Γ the exceptional divisor ϕ−1(x), BY the

proper transform of B, and GY := ϕ∗G− Γ. Then (Y,BY , GY )

satisfies the condition Cr−1.

(2) Suppose that there is a (−1)-curve Ξ with B·Ξ = 1. Let φ : X →
Z be the blowing-down of Ξ, BZ := φ(B), and GZ := φ∗G. Then

(Z,BZ , GZ) satisfies the condition Cr+1.

Proof. (1) We infer that BY � B and that GY is a non-zero effective

anti-canonical divisor of Y . Here, KY + BY ∼ ϕ∗(KX +B) is nef and

BY ·GY = B ·G− 1.

(2) We infer that B � BZ , G · Ξ = 1, and that GZ is a non-zero

effective anti-canonical divisor. Here, φ∗(KZ + BZ) ∼ KX + B is nef

and BZ ·GZ = B ·G + 1. �
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Definition. A basic triplet (X,B,G) is called minimal if it satisfies

the condition Cr for some r and B · Γ > 1 for any (−1)-curve Γ on X.

Theorem 1.7. Let (M,D,E) be a basic triplet satisfying the condition

C. Then one of the following four possibilities can occur :

Type A: KM +D is not nef ;

Type B: (M,D,E) is the separation of a minimal basic triplet

(X,B,G) in which 2KX +B is nef ;

Type C: (M,D,E) is the separation of a minimal basic triplet

(X,B,G) in which X has a P1-bundle structure over a smooth

curve and (2KX +B) · & < 0 for a fiber &;

Type D: (M,D,E) is the separation of a minimal basic triplet

(X,B,G) in which X � P2 and deg(2KX +B) < 0.

Proof. If (M,D,E) does not satisfy C0, then it is of Type A. Thus we

assume that the triplet satisfies C0. By Lemma 1.6, we have a mini-

mal basic triplet (X,B,G) whose separation is (M,D,E). Note that

this (X,B,G) is not necessarily uniquely determined by (M,D,E). If

2KX + B is nef, then (M,D,E) is of Type B. If 2KX + B is not nef,

then there is an extremal ray R such that (2KX +B) · R < 0 (cf. [5]).

Now the contraction of R can not be birational, since (2KX +B)·Γ ≥ 0

for any (−1)-curve Γ on X. Thus X has a P
1-bundle structure over a

smooth curve or X � P2. �

§2. Examples

We shall give examples of basic triplets (M,D,E) satisfying the con-

dition C and examples of minimal basic triplets (X,B,G).

§2.1. Examples of Type A

We take a hyperplane H in P3 and a smooth quartic curve C in

H � P2. For a point v �∈ H, let S := Sv be the union of all lines

through v and a point of C . Then S is a normal quartic surface and

v is the unique singular point. Let σ : M → S be the blowing-up at

v. Then σ is the minimal desingularization of S and M is isomorphic

to the P1-bundle PC(OC ⊕ ωC) over the curve C . In this case, σ∗H

is a tautological divisor with respect to OC ⊕ ωC , thus KM + σ∗H is
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not nef. Let C0 be the minimal section of the P1-bundle. If we take

a general member D of |σ∗H|, then the basic triplet (M,D, 2C0) does

not satisfy the condition C0 but C. Thus it is of Type A.
Next, we consider the defining equation of S. Let Φ4(x, y, z) ∈

C[x, y, z] be a homogeneous polynomial of degree 4 defining C in P
2 =

ProjC[x, y, z]. Then S = Sv is defined as

Φ4(X1, X2, X3) = 0

in P3 = ProjC[X0, X1, X2, X3] in which v corresponds to the point

(1 : 0 : 0 : 0). The projection P3 ···→ P2 from v induces the rational

map

S
σ−1

···−→ M = PC(OC ⊕ ωC) → C ⊂ P
2.

§2.2. Examples of Type B

§2.2.1. A generalized del Pezzo surface of degree two

Let X be a generalized del Pezzo surface of degree 2. Then | −KX |
has no base points and defines a generically finite morphism τ : X → P2

of degree 2.

Lemma 2.1. A general member of |−2KX | is a non-hyperelliptic curve

of genus 3.

Proof. A general member B of | − 2KX | is a smooth curve of genus 3.

In view of the exact sequence

0 → OX(KX) → OX(−KX) → OB(−KX) � ωB → 0,

we infer that the restriction of τ to B is the canonical mapping of

B. If B ∈ | − 2KX | is a smooth hyperelliptic curve, then τ (B) is a

smooth conic of P
2 and B = τ ∗(τ (B)). Now h0(P2,O(2)) = 6 and

h0(X,−2KX ) = χ(X,−2KX) = 7. Thus the pullback H0(P2,O(2)) →
H0(X,−2KX ) is not surjective. Therefore, a general member B is

non-hyperelliptic. �

Let B ∈ | − 2KX | be a non-hyperelliptic curve of genus 3 and let G

be a member of | −KX |. Then (X,B,G) satisfies the condition C4 and

2KX +B ∼ 0. The separation M is a rational surface with the Picard
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number 12. In particular, E2 = −2. The triplet (M,D,E) is called of

Type B1.

We shall give a defining equation of S as follows: Let τ : X → V →
P2 be the Stein factorization of τ . Then V has only rational double

points as singularities and τ∗OX � OP2 ⊕ OP2(−2). The OP2-algebra

structure of τ∗OX is given by an element δ ∈ H0(P2,O(4)) in such a

way that

(u1, v1) · (u2, v2) = (u1u2 + v1v2δ, u2v1 + u1v2)

for local holomorphic sections u1, u2 of OP2 and v1, v2 of OP2(−2).

Let η ∈ H0(X,−2KX ) be an element corresponding to (0, 1) under the

isomorphism

H0(X,−2KX ) � H0(P2,O(2))⊕H0(P2,O).

Then η2 = τ ∗δ in H0(X,−4KX ). The smooth curve B is defined as

div(η + τ ∗q) for some q ∈ H0(P2,O(2)). The effective divisor G is

defined as div(τ ∗l) for some l ∈ H0(P2,O(1)). For a suitable choice of

homogeneous coordinate system (x : y : z) of P2, we may assume that

l = x. Then

ξ0 = η + τ ∗q, ξ1 = τ ∗(x2), ξ2 = τ ∗(xy), ξ3 = τ ∗(xz)

form a basis of the vector subspace H0(M,−2KM ) ⊂ H0(X,−2KX ).

We have the following relation:

ξ0ξ1 − q(ξ1, ξ2, ξ3) = ηξ1.

By taking square, we have

(ξ0ξ1 − q(ξ1, ξ2, ξ3))
2 = δ(ξ1, ξ2, ξ3).

Therefore, S is defined in P3 = ProjC[X0, X1, X2, X3] by

(X0X1 − q(X1, X2, X3))
2 − δ(X1, X2, X3) = 0,

in which deg q = 2 and deg δ = 4. The conditions required for q and δ

are as follows:

(1) div(δ) is a reduced divisor;

(2) the double-covering branched along div(δ) has only rational

double points as singularities;
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(3) div(δ − q2) is a smooth curve.

The image σ(E) of E under σ : M → S is just the point (1 : 0 : 0 : 0).

The projection P3 ···→ P2 from the singular point gives the composite

S
σ−1

···−→ M → X → P
2.

§2.2.2. Blowing-up of a generalized del Pezzo surface of degree one a

one point

Let Y be a generalized del Pezzo surface of degree one and let GY

be a member of | − KY |. It is well-known that | −KY | has a unique

base point b and the linear system induces a minimal elliptic fibration

π : Z → P1 from the blown-up Z of Y at b. Thus b is a smooth point of

GY . Let GY,0 be the irreducible component of GY containing b. Here,

we take a point q ∈ GY,0 such that

(1) q is a smooth point of GY ,

(2) OGY
(b− q) �� OGY

and OGY
(2b− 2q) �� OGY

.

There exists uniquely a point q1 ∈ GY,0 satisfying OGY
(q1) � OGY

(3b−
2q). Then q1 �= b by the condition (2) above. Let f : X → Y be the

blowing-up at q, Γ = f−1(q), and G the proper transform of GY in X.

Then we have the following:

Lemma 2.2. A general member of the linear system |3G + Γ| is a

smooth non-hyperelliptic curve of genus 3. In particular, (X,B,G)

satisfies the condition C1 for a general member B ∈ |3G + Γ|.

Proof. We consider the exact sequence:

0 → OX(2G+Γ) → OX(3G+Γ) → OG(3G+Γ) � OG(3b
′ − 2q′) → 0,

where b′ = f−1(b) and {q′} = G∩Γ. Note that b′ and q′ are contained in

the proper transform G0 of GY,0. There is a smooth point q′1 ∈ G with

OG(3b
′ − 2q′) � OG(q

′
1), since degOG(3b

′ − 2q′) = 1. Then q′1 ∈ G0,

f(q′1) = q1, and q
′
1 ∈ Bs |3G+Γ|. The divisor 3G+Γ is nef and big, since

the restrictions of 3G+Γ to any component of G and Γ are nef and since

(3G+Γ)2 = 5 > 0. Hence, H i(X, 2G+Γ) = Hi(X,KX + 3G+Γ) = 0

for i > 0. Therefore h0(X, 2G+Γ) = 3 and h0(X, 3G+Γ) = 4. We can



16 ISHII AND NAKAYAMA

calculate h0(X,G) = h0(X, 2G) = 1 and h1(X,G) = h1(X, 2G) = 0

from the following three exact sequences:

0 → OX → OX(G) → OG(G) � OG(b
′ − q′) → 0,

0 → OX(G) → OX(2G) → OG(2G) � OG(2b
′ − 2q′) → 0,

0 → OX(2G) → OX(3G) → OG(3G) � OG(3b
′ − 3q′) → 0.

We consider the following two cases:

B2-1: h0(X, 3G) = 1;

B2-2: h0(X, 3G) > 1.

In Case B2-2, 3b′ ∼ 3q′ and equivalently, q′1 = q′. Thus h0(X, 3G) = 2.

In Case B2-1, 3b′ �∼ 3q′ and equivalently, q′1 �= q′.

Claim 2.3. {q′1} = Bs |3G + Γ|. In particular, a general member of

|3G + Γ| is a smooth curve of genus 3.

Proof. Case B2-1: In view of the exact sequence

0 → OX(3G) → OX(3G + Γ) → OΓ(3G + Γ) � OP1(2) → 0,

we infer that H0(X, 3G+Γ) → H0(Γ,OΓ(3G+Γ)) is surjective. There-

fore Γ ∩ Bs |3G + Γ| = ∅. Hence Bs |3G + Γ| = {q′1}.

Case B2-2: The image of

H0(X, 3G + Γ) → H0(Γ,OΓ(3G + Γ)) � C
3

is contained in the two-dimensional subspace

H0(Γ,OΓ(3G + Γ) ⊗OΓ(−q′))

since q′ = q′1. Hence Bs |3G+ Γ| = {q′1} by h0(X, 3G) = 2. �

Proof of Lemma 2.2 continued. We shall show a general member B of

|3G + Γ| is non-hyperelliptic. Let ρ : M → X be the blowing up at

q′1. Then ρ is the separation of (X,B,G). Let D and E be the proper

transforms of B and G, respectively. Then Bs |D| = ∅ by h0(M,D) =

h0(X,B). If the morphism Φ|D| : M → P3 is a birational morphism

onto its image, then D � B is a non-hyperelliptic curve. Let Ξ be the

ρ-exceptional divisor ρ−1(q′1) and let Γ′ be the proper transform of Γ.
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Case B2-1: We have D ∼ 3E + Γ′ + 2Ξ. Thus 3E + Γ′ + 2Ξ is the

pullback of a hyperplane section. Now Φ|D| maps E to a point and

Ξ to a line of P3 isomorphically. Since H0(M,D) → H0(Γ′, D|Γ′) �
H0(Γ, B|Γ) is surjective, the restriction of Φ|D| to Γ′ is an isomorphism

to a conic in P
3. Therefore Φ|D| is birational.

Case B2-2: We have D ∼ 3E + Γ′ + 3Ξ. Thus Γ′ and Ξ are mapped

to lines in P
3 by Φ|D|. Therefore Φ|D| is birational. �

Therefore, (X,B,G) satisfies the condition C1 and M is a rational

surface with the Picard number 11. In particular, E2 = −1. The basic

triplet (M,D,E) is called of Type B2; more precisely, of Type B2-1 or

Type B2-2.

§2.2.3. Blowing-down from a double-covering over Σ1

Let Σ := Σ1 be the Hirzebruch surface PP1 (O ⊕ O(1)). We denote

the ruling by p : Σ → P1 and a fiber of p by &. Let Ξ be the unique

(−1)-curve of Σ and let ν : Σ → P2 be the blow-down of Ξ. We now fix

a point x0 ∈ Ξ and we denote by &0 the fiber of p passing through x0.

Lemma 2.4. There is an effective divisor ∆ ∈ |2Ξ+ 6&| satisfying the

following conditions:

(b-1) ∆ is reduced and if V → Σ is the double covering branched just

along ∆, then V has only rational double points as singularities.

(b-2) Ξ �⊂ ∆.

(b-3) x0 ∈ ∆ ∩ Ξ and multx0(∆|Ξ) = 1.

(b-4) &0 �⊂ ∆ and &0 ∩∆ = {x0}.

Proof. Let ν0 : S0 → Σ be the blowing-up at x0 and let Γ0 be the

exceptional curve ν−1
0 (x0). Let &

′
0 and Ξ′ be the proper transforms of &0

and Ξ, respectively. We next blow-up S0 at x1 := &0∩Γ0. Let µ1 : S1 →
S0 be the blowing-up with the exceptional curve Γ1 := µ−1

1 (x1) and let

&
′′
0 and Γ′

0 be the proper transforms of &′0 and Γ0, respectively. We look

at the linear system |µ∗
1µ

∗
0(2Ξ + 5&) + &

′′
0 |. Let us consider the exact

sequence:

0 → O(µ∗
1µ

∗
0(2Ξ + 5&)) → O(µ∗

1µ
∗
0(2Ξ + 5&) + &

′′

0) → O�
′′
0
→ 0.
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SinceH1(Σ, 2Ξ+5&) = 0 and Bs |2Ξ+5&| = ∅, we see that Bs |µ∗
1µ

∗
0(2Ξ+

5&) + &
′′
0 | = ∅. Let ∆

′′
be a general member of the linear system

|µ∗
1µ

∗
0(2Ξ + 5&) + &

′′
0 | and let ∆ := µ0∗µ1∗∆

′′
. Then ∆ satisfies the

conditions above. �

We fix a divisor ∆ ∈ |2Ξ+6&| satisfying (b-1) to (b-4). Let λ : Y → Σ

be the minimal desingularization of the double covering of Σ branched

just along ∆. Then we have KY ∼ λ∗(KΣ + Ξ + 3&) ∼ λ∗(−Ξ). We

set GY := λ∗Ξ. We infer that Y is a rational surface by h1(Y,O) =

h1(Σ,O⊕O(−Ξ−3&)) = 0. By the conditions (b-2) and (b-3), there is

an irreducible component GY,0 ⊂ GY such that the induced morphism

GY,0 → Ξ is a double covering. Then other components of GY are

contracted to points of Ξ by λ. Furthermore, λ is a finite morphism

over an open neighborhood of x0 and λ−1(x0) consists only one point,

which we denote by b′ ∈ GY,0. Moreover, we can write λ∗&0 = F1 + F2

for (−1)-curves F1 and F2 such that {b′} = F1∩F2. Since (Ξ+&)|Ξ ∼ 0,

we have (λ∗&+GY )|GY
∼ 0 and OGY

(GY ) � λ∗OΞ(−x0) � OGY
(−2b′).

Let µ : Y → M be the blow-down of F1. We set E := µ∗GY ∼ −KX ,

F := µ∗F2, and b := µ(b′). Then µ∗E = GY + F1 and λ∗& ∼ µ∗F .

Hence, (F + 2E)|E ∼ 0.

Lemma 2.5. |F + 2E| is base point free and its general members are

non-hyperelliptic curves of genus 3.

Proof. We consider the following two exact sequences:

0 → O(F ) → O(F + E) → OE(F + E) � OE(b) → 0,

0 → O(F + E) → O(F + 2E) → OE(F + 2E) � OE → 0.

Since F is a fiber of the ruling p◦λ◦µ−1 : X → P
1 and since b is a smooth

point of the anti-canonical divisor E, we infer that h0(M,F +2E) = 4

and H0(M,F +2E) → H0(E,OE) is surjective. Thus Bs |F +2E| = ∅.
Let D be a general member of the linear system. Then D is a smooth

curve of genus 3. We have only to show that D is non-hyperelliptic.

We set BY := µ∗D. Then BY � D, since D ∩ E = ∅. Here we

have an isomorphism H0(Y,KY + BY ) � H0(BY , KBY
) � C⊕3. Now

KY +BY ∼ λ∗&+GY + 2F1. Since

H0(Y, FY +GY ) � H0(Y, λ∗(Ξ+&)) � H0(Σ,O(Ξ+&)⊕O(−2&)) � C
⊕3,
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we infer that 2F1 is the fixed part of |KY +BY | and that |KY +BY −2F1|
is a base point free linear system inducing the morphism ν◦λ : Y → P2.

Thus its restriction BY → P2 is the canonical map of BY . Let τ : Y →
Y be a generator of the Galois group of λ. If BY is hyperelliptic, then

BY must be τ -invariant. However, τ∗BY ∼ τ∗(λ
∗(& + 2Ξ) + 2F1) ∼

λ∗(& + 2Ξ) + 2F2. Since 2F1 �∼ 2F2, we infer that BY � D is non-

hyperelliptic. �

Therefore, the triplet (M,D,E) is satisfying the condition C0 and M

has the Picard number 11 in which E2 = −1. The triplet (M,D,E) is

called of Type B3.

§2.3. Examples of Type C

§2.3.1. Minimal triplet (X,B,G) satisfying C4

Let C be an elliptic curve with an ample divisor A of degree 2. Let X

be the P1-bundle PC(OC ⊕OC(A)) and let p : X → C be the structure

morphism. Then | − KX | is non-empty. We take an effective divisor

G ∼ −KX . Note that h
0(G,OG) = 2 by Proposition 1.1.

Lemma 2.6. A general member B of |p∗A − KX | is a smooth non-

hyperelliptic curve of genus 3.

Proof. Let C0 be the negative section of p : X → C . Then p∗A−KX ∼
2(p∗A+C0), (p

∗A+C0)|C0 ∼ 0, and Bs |p∗A+C0| = ∅. Thus |p∗A−KX |
is also base point free. Hence, B is smooth with B ∩ C0 = ∅. Since

KB ∼ (KX +B)|B ∼ p∗A|B ∼ (p∗A+C0)|B, we have g(B) = 3 and an

exact sequence:

0 → OX(KX + C0) → OX(p
∗A + C0) → OB(KB) → 0.

This indices an isomorphism H0(X, p∗A + C0) � H0(B,KB), since

H1(X,KX + C0) = 0. Hence, for the morphism Φ := Φ|p∗A+C0| : X →
P

2, the restriction Φ|B : B → P
2 is the canonical map. Here B ∼

p∗A − KX ∼ 2(p∗A + C0) ∼ Φ∗O(2). Hence, B is hyperelliptic if

and only if B is the pullback of a conic by Φ. However, we have

h0(P2,O(2)) = 6 and h0(X,B) = h0(C,O ⊕ O(A) ⊕ O(2A)) = 7.

Therefore, B is non-hyperelliptic. �
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Thus we obtain a minimal triplet (X,B,G) with B ∼ p∗A − KX

and G ∼ −KX . Since B · G = 4, the condition C4 is satisfied. Let

(M,D,E) be the separation of (X,B,G). Then M is an elliptic ruled

surface with Picard number 6. The basic triplet (M,D,E) is called of

Type C1.

§2.3.2. Minimal triplet (X,B,G) satisfying C2

Let C be an elliptic curve and let E be one of the following locally

free sheaves:

C2-1: E = OC(q1) ⊕ OC(q2) for two points q1 �= q2 of C with

2q1 �∼ 2q2.

C2-2: There is a non-splitting exact sequence:

0 → OC(q) → E → OC(q) → 0

for a point q of C .

Case C2-1: Let p : X → C be the P1-bundle associated with E. For

a point q ∈ C , we denote the fiber p−1(q) by &q. Then we have two

sections C1 and C2 with C1 ∼ HE − &q1 and C2 ∼ HE − &q2, respectively.

Here HE denotes a tautological divisor with respect to E. Then C1 ∩
C2 = ∅. Furthermore, | −KX | = {C1 + C2}, since C1|C1 ∼ q2 − q1 and

C2|C2 ∼ q1 − q2. We set G := C1 + C2.

Lemma 2.7. A general member B of |HE − KX | is a smooth non-

hyperelliptic curve of genus 3.

Proof. First, we shall prove that B is a smooth curve of genus 3. From

the exact sequence

0 → OE(1) → OX(HE −KX) → OC1(2q2 − q1)⊕OC2(2q1 − q2) → 0,

we infer that h0(X,HE −KX) = 4 and

Bs |HE −KX | = (&q3 ∩ C1) � (&q4 ∩ C2),

where q3 and q4 are points of C determined by q3 ∼ 2q2 − q1 and

q4 ∼ 2q1 − q2, respectively. Therefore, B ∈ |HE −KX | must intersect

C1 and C2, transversally. Thus B is smooth. The genus g(B) is 3, since

(KX +B) · B = HE · (HE −KX) = 4.
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Next, we shall prove that B is non-hyperelliptic. Here, we note

that {q3, q4} ∩ {q1, q2} = ∅ by assumption. We consider the separation

ρ : (M,D,E) → (X,B,G). Since B intersects C1 and C2 transversally

at points x1 := &q3 ∩ C1 and x2 := &q4 ∩ C2, ρ is just the blowing-up

at {x1, x2}. Let Γi = ρ−1(xi) and let C ′
i be the proper transform of

Ci in M for i = 1, 2, respectively. Then D = ρ∗B − Γ1 − Γ2 and

E = ρ∗G−Γ1 −Γ2 = C ′
1+C ′

2. The linear system |D| is base point free
by the proof of Proposition 1.4. Let Φ be the morphism Φ|D| : M → P3.

Suppose that M → Φ(M) is not birational. Then this is a generically

finite morphism of degree 2 and Φ(M) is a quadric surface in P3. Now

D ∩ E = ∅, D · Γ1 = D · Γ2 = 1, and D · ρ∗&q1 = D · ρ∗&q2 = 3.

Thus Φ(C ′
1) is a point, Φ|Γ1 : Γ1 → Φ(Γ1) is an isomorphism onto the

line Φ(Γ1), and ρ∗&q1 → Φ(ρ∗&q1) is birational. This is a contradiction,

since 2C ′
1 + Γ1 + ρ∗&q1 + C ′

2 is supposed to be the pullback of a conic

of P2. Therefore, Φ: M → Φ(M) is birational and D � B is non-

hyperelliptic. �

For B and G above, (X,B,G) is a minimal triplet satisfying the

condition C2. The separation (M,D,E) is called of Type C2-1. Here,

M is an elliptic ruled surface with Picard number 4.

Case C2-2: Let p : X → C be the P1-bundle associated with the E.
Then we have a minimal section C0 with C0 ∼ HE − &q . Then −KX ∼
2C0. Moreover, | −KX | = {2C0}, since the exact sequence

0 → O(q) → E → O(q) → 0

admits no splitting. We set G := 2C0.

Lemma 2.8. A general member B of |HE − KX | is a smooth non-

hyperelliptic curve of genus 3.

Proof. First, we show that B is a smooth curve of genus 3. Note that

HE −KX ∼ 3C0 + &q. Let us consider the following exact sequences:

0 → OX(2C0 + &q) → OX(3C0 + &q) → OC0(q) → 0,

0 → OE(1) → OX(2C0 + &q) → OC0(q) → 0,

0 → OX(3C0) → OX(3C0 + &q) → O�q(3) → 0.
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Then H1(X, 2C0 + &q) = 0, h0(X, 3C0 + &q) = 4, and the image of

H0(X, 3C0 + &q) → H0(&q,O(3)) is a 3-dimensional subspace. Hence

Bs |3C0 + &q| consists of only one point b := &q ∩ C0. Furthermore,

a general member B ∈ |3C0 + &q | intersects C0 and &q at b. This is

because B ·C0 = 1 and the image of H0(X, 3C0+&q) → H0(&q,O(3)) is

just the subspace H0(&q,O(3C0 + &q|�q ) ⊗O(−b)). Thus B is smooth.

The genus g(B) is 3, since (KX +B) · B = (C0 + &q) · (3C0 + &q) = 4.

Next, we shall prove that B is non-hyperelliptic. Let ρ1 : X1 → X

be the blowing-up at the point b and Γ1 the exceptional divisor ρ
−1
1 (b).

We set G1 := ρ∗1G− Γ1. Let B1, C
′
0, and &′q be the proper transforms

of B, C0, and &q , respectively. Then B1 · G1 = 1. Thus there is a

smooth point b1 of G1 with OG1(B1) � OG1(b1). Now G1 = 2C ′
0 + Γ1

and B1 · C ′
0 = 0. Therefore b1 ∈ Γ1. From the exact sequence

0 → ρ∗1OX(C0 + &q) → OX1(B1) → OG1(B1) → 0,

we infer that q1 ∈ Bs |B1|. Hence q1 �∈ &′q , since H0(X1, B1) →
H0(&′q,O(2)) is surjective. Let ρ2 : M → X1 be the blowing-up at b1

and Γ2 the exceptional curve ρ
−1
2 (b1). Let C

′′
0 , &

′′
q , and Γ′

1 be the proper

transforms of C ′
0, &

′
q and Γ1, respectively. Then we get the separation

(M,D,E) → (X,B,G), where D and E are the proper transforms of

B1 and G1, respectively. Here, E = 2C
′′
0 +Γ′

1, D ∼ 3C
′′
0 +&

′′
q +3Γ′

1+2Γ2,

and D ·&q = 2. We know that Bs |D| = ∅ by Proposition 1.4. Therefore,

it is enough to show that the morphism Φ := Φ|D| : M → P3 is bira-

tional onto its image. The divisor 3C
′′
0 + &

′′
q +3Γ′

1 +2Γ2 is the pullback

of an effective Cartier divisor of Φ(M), since it is linearly equivalent to

D. All the components C
′′
0 and Γ′

1 are contracted to points by Φ, since

these are also components of E. The restriction Γ2 → Φ(Γ2) is an iso-

morphism in which Φ(Γ2) is a line of P
3, sinceD·Γ2 = 1. The restriction

Φ�′′q
: &

′′
q → P3 is a closed embedding, since H0(M,D) → H0(&

′′
,O(2))

is surjective. Therefore, Φ is birational onto its image. �

For B and G above, (X,B,G) is a minimal triplet satisfying the

condition C2. The separation (M,D,E) is called of Type C2-2. Here,

M is an elliptic ruled surface with Picard number 4.
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§2.4. Examples of Type D

Let B and G be a smooth quartic curve and an effective divisor

of degree 3 in P2, respectively. Then (P2, B,G) is a minimal triplet

satisfying the condition C12. The separation (M,D,E) is called of

Type D. Here, M is a rational surface with Picard number 13. In

particular, E2 = −3.

Next, we consider the defining equation of S ⊂ P3. Let Φ3(x, y, z) =

0 and Φ4(x, y, z) = 0 be the defining equations of G and B, respectively,

in P2 = ProjC[x, y, z]. Let ρ : M → P2 be the separation. Then

ρ∗Φ3 = ϕ3e and ρ∗Φ4 = ϕ4e,

where ϕ3 ∈ H0(M,E) is a defining equation of E, ϕ4 ∈ H0(M,D) is

a defining equation of D, and e ∈ H0(M,KM − ρ∗KP2). The vector

space H0(M,D) is spanned by

ξ0 := ϕ4, ξ1 := ϕ3ρ
∗x, ξ2 := ϕ3ρ

∗y, ξ3 := ϕ3ρ
∗z.

We have a relation

ξ0Φ3(ξ1, ξ2, ξ3)− Φ4(ξ1, ξ2, ξ3) = ϕ4ϕ
3
3ρ

∗Φ3 − ϕ4
3ρ

∗Φ4

= ϕ4ϕ
4
3e− ϕ4

3ϕ4e = 0.

Therefore, S ⊂ P
3 = ProjC[X0, X1, X2, X3] is defined by

X0Φ3(X1, X2, X3) = Φ4(X1, X2, X3).

The image σ(E) of E under σ : M → S consists of the point (1 : 0 :

0 : 0). The rational map S ···→ P2 induced by the projection P3 ···→ P2

from the point is the birational map

S
σ−1

···−→ M → X = P
2.

§3. Theorem

In what follows, we shall prove the following:

Main Theorem. A normal quartic surface with irrational singularities

is obtained from one of the examples of basic triplets in §2.
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§3.1. Proof in the case of Type A

Proposition 3.1. Let (M,D,E) be a basic triplet satisfying C such that

KM +D is not nef. Then M is isomorphic to the P1-bundle PD(OD ⊕
ωD) and E = 2C0 for the negative section C0 of M → D. Moreover,

the corresponding quartic surface S is a cone over D.

Proof. By the cone theorem [5], there is an extremal curve Γ such that

(KM+D)·Γ < 0. If the contraction morphism of Γ is birational, then Γ

is a (−1)-curve with D ·Γ = 0; it contradicts the condition C-1. On the

other hand, M is not isomorphic to P2, since M is a desingularization

of a normal quartic surface S. Therefore, the contraction morphism

p : M → C of Γ is a P1-bundle structure over a curve C . Then D · Γ =

D · & = 1 for a fiber & of p. Therefore D � C and M � PC(E) for the
locally free sheaf E := p∗OM(D). In view of the exact sequence

0 → OM(KM +D) → OM(D) → OE → 0,

we have an isomorphism E � p∗OE. Thus E � OC ⊕ ωC by Proposi-

tion 1.1. Let C0 be the negative section of p. Then C0 ∼ D − p∗KC

and E = 2C0, since D∩E = ∅. Therefore the morphism Φ|D| : M → P3

maps E to a point v and a fiber & of p to a line of P3. Hence the image

S is the join of v and the quartic curve Φ|D|(D). Thus S is a cone over

D. �

§3.2. Proof in the case of Type B

Suppose that (X,B,G) satisfies Cr and 2KX+B is nef. Then (2KX+

B)·G = −2K2
X +r ≥ 0 and (2KX +B)2 = 4K2

X −3r+4 ≥ 0. Therefore

3r − 4 ≤ 4K2
X ≤ 2r.

Hence r ≤ 4 and −1 ≤ K2
X ≤ 2.

Lemma 3.2. (X,B,G) satisfies one of the following conditions:

B1: r = 4 and X is a generalized del Pezzo surface of degree 2

with B ∼ −2KX ;

B2: r = 1 and X is a rational surface with K2
X = 0;

B3: r = 0 and X is a rational surface with K2
X = −1.
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Proof. Assume that r = 3. Then 5 ≤ 4K2
X ≤ 6. This is a contradiction.

Next assume that r = 2. Then K2
X = 1, (2KX + B) · G = 0, and

(2KX + B)2 = 2. This contradicts the Hodge index theorem. Hence

r = 0, 1, or 4.

Case r = 4: Now K2
X = 2. Since G2 = 2 > 0 and (2KX + B) · G =

(2KX + B)2 = 0, we infer that 2KX + B is numerically trivial by the

Hodge index theorem. In particular, −KX is nef and big. Hence X is a

generalized del Pezzo surface of degree 2. Since X is rational, we have

B ∼ −2KX .

Case r = 1: NowK2
X = 0. Furthermore, (2KX+B)·G = (2KX+B)2 =

1. Thus we have an irreducible component G0 of G such that B ·G0 = 1

and B ∩G1 = ∅ for the effective divisor G1 := G−G0. Note that G1 is

not necessarily a non-zero divisor. The inequality (2KX +B) ·G0 ≥ 0

impliesKX ·G0 ≥ 0 and hence (2KX +B) ·G0 ≥ 1. Another inequality

(2KX +B) ·G1 ≥ 0 implies (2KX +B) ·G0 = 1, (2KX +B) ·G1 = 0, and

KXG0 = KXG1 = 0. By the Hodge index theorem, every component

of G1 is a (−2)-curve. Now G2
0 = −G1 ·G0 ≤ 0.

If G2
0 < 0, then G0 is also a (−2)-curve and hence every component

of G is a rational curve. Thus X is rational by Lemma 1.3.

If G2
0 = 0, then G2

1 = 0 and hence G1 = 0 by the Hodge index

theorem. Thus G = G0 is an irreducible and reduced anti-canonical

divisor. Therefore, X is rational by Corollary 1.2.

Case r = 0: Now K2
X = 0 or −1. If K2

X = 0, then (2KX +B)2 = 4 > 0

and (2KX +B) ·G = 0. Thus G = 0 by the Hodge index theorem. This

is a contradiction. Therefore K2
X = −1. The equality B · G = r = 0

implies that KX · Γ ≥ 0 for any component Γ of G. Thus, there is an

irreducible component G0 of G such that KX ·G0 = 1 and KX ·G1 = 0

for the effective divisor G1 := G− G0. We infer that the intersection

matrix of the prime components of G is negative definite by applying

the Hodge index theorem to B · G = 0 and B2 = 4. If G1 �= 0, then

any component of G1 is a (−2)-curve. On the other hand, pa(G0) ≤ 1

by (KX +G0)G0 < 1.

If pa(G0) = 0, then X is a rational surface by Lemma 1.3.
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If pa(G0) = 1, then G2
0 = −1, G0 · G1 = 0, and G2

1 = 0. Therefore

G1 = 0 and G = G0 is an irreducible and reduced anti-canonical divisor.

Thus X is rational by Corollary 1.2. �

§3.2.1. Proof in Case B1

In this case, X is a generalized del Pezzo surface of degree 2, B is a

member of | − 2KX |. Hence (X,B,G) is obtained as Type B1 in §2.

§3.2.2. Proof in Case B2

In this case, X is a rational surface with K2
X = 0, r = B ·G = 1 and

B2 = 5. Since 2KX +B is nef and big, h0(X, 3KX +B) = χ(X, 3KX +

B) = 1. Let Γ be the unique member of |3KX +B|.

Lemma 3.3. Γ is a (−1)-curve.

Proof. We have KX · Γ = −1, Γ2 = −1, and (KX + B) · Γ = 1. We

can take a prime component Γ0 of Γ with (KX + B) · Γ0 = 1. Then

(KX + B) · (Γ − Γ0) = 0 and (2KX + B) · (Γ − Γ0) ≥ 0. Hence

KX · (Γ−Γ0) ≥ 0, thus KX ·Γ0 ≤ −1. By (2KX +B) ·Γ0 ≥ 0, we have

KX · Γ0 = −1. Therefore, (2KX + B) · Γ0 = 0 and Γ0 is a (−1)-curve

by the Hodge index theorem. Moreover, (3KX +B) ·Γ0 = Γ ·Γ0 = −1.

This implies that (Γ − Γ0)
2 = 0. Thus Γ = Γ0 by the Hogde index

theorem. �

Let f : X → Y be the contraction of Γ. Then BY := f∗B has

a singularity at q := f(Γ) with multq BY = 2. The push-forward

GY := f∗G is an anti-canonical divisor and 3KY + BY ∼ f∗Γ = 0.

Hence Y is a generalized del Pezzo surface of degree 1. Therefore

dim | − KY | = 1 and Bs | − KY | consists of a unique point b. Let

g : Z → Y be the blowing-up at b and let Ξ be the exceptional curve

g−1(b). Then |−KZ| is base point free and we have an elliptic fibration

π := Φ|−KZ | : Z → P1 in which Ξ is a section of π.

Lemma 3.4. There is a component GY,0 of GY such that

(1) multGY,0
GY = 1,

(2) b and q are not contained in the divisor GY −GY,0.

Furthermore, b is not contained in BY .
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Proof. Let G0 be a component of G with B · G0 = 1 and let G1 :=

G− G0. Then 2KX ·G0 ≥ −B ·G0 = −1. Hence KX · G0 ≥ 0. Thus

(2KX + B) · G0 = 1 and (2KX + B) · G1 = 0. Therefore KX · G0 =

KX · G1 = 0. Since (3KX + B) · G0 = Γ ·G0 = 1 and Γ · G1 = 0, the

push-forward GY,0 := f∗G0 is the unique component of GY containing q

and q is a smooth point of GY . On the other hand, KY ·f∗G1 = 0, since

KX · G1 = 0 and G1 is away from the (−1)-curve Γ. In particular, a

general member of |−KY | does not intersect f∗G1. Thus the base point

b is not contained in f∗G1 but GY,0. We shall show that b �∈ BY . If

b ∈ BY , then the proper transform BZ of BY in Z is linearly equivalent

to g∗BY −mΞ for some m ≥ 1. Thus

(−KZ) · BZ = (−KY ) · BY −m = 3−m ≤ 2.

This implies that π induces a double-covering BZ → P1. This contra-

dicts the assumption: B is non-hyperelliptic. �

Lemma 3.5. Let q′, q′1, and b′ be the points of X defined by

{q′} = G ∩ Γ, {q′1} = B ∩G, and {b′} = f−1(b),

respectively. Then the following properties hold :

(1) OG(G) � OG(b
′ − q′);

(2) OG(G) �� OG and OG(2G) �� OG;

(3) OG(3b
′) � OG(2q

′ + q′1).

Proof. Let GZ be the proper transform of GY in Z: GZ = g∗GY − Ξ.

Then GZ is a fiber of π. Thus OGZ
(GZ) � OGZ

. Hence OGY
(GY ) �

OGY
(b). Since G ∼ f∗GY − Γ, the isomorphism OG(G) � OG(b

′ − q′)

in (1) follows. The linear equivalences BY ∼ 3GY and B ∼ f∗BY −
2Γ imply the isomorphism OG(B) � OG(q

′
1) � OG(3b

′ − 2q′). Thus

(3) follows. Since the dualizing sheaf of G is trivial, h0(G,OG(b)) =

χ(G,OG(b)) = 1. Hence b �= q implies OG(G) �� OG. If OG(2G) �
OG, then b′ = q′1 by (3). However, b′ �= q′1 since b = f(b′) �∈ BY by

Lemma 3.4. Thus (2) follows. �

Therefore, the minimal triplet (X,B,G) is constructed as Type B2

in §2.
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§3.2.3. Proof in Case B3

Lemma 3.6. The linear system |2KX +B| is base point free and it de-

fines a morphism Φ: X → P1 whose general fibers are rational curves.

Proof. We have h0(X, 2KX +B) = χ(X, 2KX +B) = 2, since KX +B

is nef and big. Thus Φ = Φ|2KX+B| is a rational map into P1. Let

ν : X ′ → X be a proper birational morphism such that the composite

Φ ◦ ν : X ′ → X ···→ P1 is a morphism. Then ν∗(2KX + B) ∼ F + N

for a fiber F of Φ ◦ ν and an effective divisor N . The inequality 0 =

(2KX + B)2 ≥ (F + N) · F implies N · F = 0. Hence Φ: X → P1

is a morphism. Thus we may write 2KX + B ∼ F + N . Since X is

rational, a general fiber F of Φ is irreducible. Moreover, F � P1 by

(2KX + B) · F = 0 and B · F > 0. Thus B · F = 4, B · N = 0, and

N2 = 0. Therefore, N = 0 by the Hodge index theorem and hence

2KX +B ∼ F . �

Therefore B ∼ F − 2KX ∼ F + 2G for a fiber F of Φ: X → P1.

Since B ∩G = ∅, we have OG(F + 2G) � OG.

We consider the following exact sequence:

0 → OX(F ) → OX(F +G) → OG(F +G) → 0.

Then Bs |F +G| = Bs |(F +G)|G| = {b} for a point b. Thus a general

member of |F +G| is smooth. Let µ : Y → X be the blowing-up at b

and let Λ be the exceptional divisor µ−1(b). Then µ∗G = GY + Λ for

the proper transform GY of G. We set FY := µ∗F . Then FY + GY ∼
µ∗(F +G)−Λ and OGY

(FY +GY ) � OGY
. Thus Bs |FY +GY | = ∅ by

the exact sequence:

0 → OY (FY ) → OY (FY +GY ) → OGY
→ 0.

Let f be the morphism Φ|FY +GY | : Y → P2. Then f is a generically

finite surjective morphism of degree 2, since (FY +GY )
2 = 2.

Lemma 3.7. Let τ : Σ → P2 be the blowing-up at the point f(GY ) and

let Ξ be the exceptional curve. Let & be a fiber of the ruling p : Σ → P1

of the Hirzebruch surface Σ � Σ1.

(1) There is a generically finite morphism λ : Y → Σ such that

f = τ ◦ λ and GY = λ∗Ξ.
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Let Y → V → Σ be the Stein factorization of λ.

(2) V has only rational double points as singularities.

(3) Y → V is the minimal desingularization of V .

(4) V is the double-covering of Σ branched along a reduced divisor

∆ ∼ 2Ξ + 6&.

Proof. (1) Let π be the composite Φ ◦ µ : Y → X → P1. Then E :=

π∗OY (GY ) is a locally free sheaf of P1 of rank 3 and there is the following

exact sequence on P1:

0 → OP1(1) → E ⊗OP1(1) → π∗OGY
→ 0.

Since h0(OGY
) = 1, by pulling back the injection OP1 ↪→ π∗OGY

, we

have a subsheaf F of E and an exact sequence

0 → OP1(1) → F ⊗OP1(1) → OP1 → 0.

Furthermore, we have a surjection π∗F → OY (GY ), since Bs |FY +

GY | = ∅. Therefore, we have a morphism λ : Y → Σ � PP1(F) over P1

such that λ∗& ∼ FY and λ∗Ξ = GY . In particular, f = τ ◦ λ.
(2)–(4) We have KY −λ∗KΣ ∼ λ∗(Ξ+3&) by (1). Therefore, V → Σ

is the double-covering branched along a reduced divisor ∆ ∼ 2Ξ + 6&.

Moreover, V has only rational double points and Y → Σ is the minimal

desingularization, since KY is relatively trivial over V . �

The point b′ = GY ∩Λ is a smooth point of GY . Thus b
′ is contained in

a unique component GY,0 of GY . We have an isomorphism OGY
(FY ) �

OGY
(−GY ) � OGY

(2b′) by GY ∼ µ∗G − Λ and OG(G) � OG(−b).
Thus λ induces a double-covering GY,0 → Ξ and contracts the other

components of GY to points of Ξ. We set x0 := λ(b′) ∈ Ξ. Then λ is a

finite morphism over a neighborhood of x0, and x0 is contained in the

branch locus. Hence x0 is a smooth point of ∆. Let &0 be the fiber of

p : Σ → P
1 passing through x0. Note that Λ ≤ λ∗&0. In particular, λ∗&0

is reducible. Since Λ · λ∗Ξ = −Λ ·KY = 1, we infer that Λ → &0 is an

isomorphism.

Lemma 3.8. &0 is not a component of ∆.

Proof. Assume the contrary. Then λ∗&0 = 2Λ + J for a non-zero effec-

tive divisor J . Here any component Γ of J is a (−2)-curve contracted to
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a point by λ, since Γ·KY = −Γ·λ∗Ξ = 0. Now J ·Λ = λ∗&·Λ−2Λ2 = 2.

If Γ · Λ = 2, then µ∗(µ∗Γ) = Γ + 2Λ and thus (µ∗Γ)
2 = 2 > 0. This is

a contradiction, since µ∗Γ is contained in a fiber of Φ: X → P1. Hence

we have Γ · Λ ≤ 1. Let Γ1 be a component of J with Γ1 · Λ = 1 and

let C1 := µ∗Γ1. Then C1 is a (−1)-curve on X. By Proposition 1.4,

Bs |B| = Bs |F + 2G| = ∅ and Φ|B| is a birational morphism into a

normal quartic surface in P3. Now B · C1 = (F + 2G) · C1 = 2. Hence

Φ|B|(C1) is a conic of P3. On the other hand, we have H0(X,F +G) �
H0(X,B −G) � C⊕3. Thus the rational map Φ|F+G| : X ···→ P2 is the

composite of Φ|B| : X → P3 and the projection P3 ···→ P2 from the point

Φ|B|(G). The image of C1 under Φ|F+G| : X → P2 is the point λ(Γ1) of

P2. Therefore Φ|B|(C1) is a line of P3. This is a contradiction. �

The divisor ∆|�0 on &0 is 2x0, since &0 · ∆ = 2. In other words, ∆

intersects &0 only at x0 and the intersection is tangential. Hence, ∆

and &0 satisfy the conditions (b-1) to (b-4) of Lemma 2.4. Thus the

triplet (X,B,G) is obtained as Type B3 in §2.

§3.3. Proof in the case of Type C

Let (X,B,G) be a minimal basic triplet satisfying Cr such that X

has a P1-bundle structure p : X → C in which −(2KX +B) is relatively

ample. Let us denote a fiber of p by &. Since KX +B is nef, we have

(KX +B)2 ≥ 0 and (KX +B) ·G ≥ 0. These imply

r − 4 ≤ K2
X ≤ r.

Furthermore, (KX + B) · & ≥ 0 and (2KX + B) · & < 0. Hence one of

the following two cases can occur:

C1: B · & = 2;

C2: B · & = 3.

§3.3.1. Proof in Case C1

In this case, we have (KX +B) · & = 0. Thus there is a divisor A on

C such that KX + B ∼ p∗A. Then (KX + B)2 = 0 and K2
X = r − 4

hold. Hence, (KX +B) ·G = r −K2
X = 4. This implies degA = 2.

Now p : B → C is a double-covering. Hence C is not rational since

B is non-hyperelliptic. We have K2
X = 8(1− g(C)), since p : X → C is
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a P1-bundle. Thus K2
X = r− 4 ≥ −4 implies that g(C) = 1 and r = 4.

In particular, C is an elliptic curve.

We may assume that X is isomorphic to PC(E) for one of the follow-
ing locally free sheaves E of rank 2:

(α): E � OC ⊕L for an invertible sheaf L of degL ≤ 0;

(β): E has a non-splitting exact sequence:

0 → OC → E → OC → 0;

(γ): E has a non-splitting exact sequence:

0 → OC → E → OC(x) → 0

for a point x ∈ C .

The case (γ) does not occur by the following:

Lemma 3.9. In the case (γ), | −KX | = ∅.

Proof. LetG be a member of |−KX |. ThenG = G1+G2 for a horizontal

prime divisor G1 and a non-zero effective divisor G2 by Corollary 1.2.

Then G1 and G2 are nef, since E is stable. Thus we have G2
1 = G2

2 =

G1 · G2 = 0 from K2
X = 0. The divisor G1 is not a section, since E

is stable. Hence G1 → C is a double-covering and G2 is contained in

fibers. Since some ample divisor of X is written as a combination of

G1 and G2, we infer that G2 = 0 by the Hodge index theorem. This is

a contradiction. �

Case (β): We have a unique member C0 of the linear system |HE |
which corresponds to the injection OC → E. Therefore KX ∼ −2C0.

Since the exact sequence

0 → E → Sym2(E) → O → 0

is not split, 2C0 is a unique member of | −KX |. Thus G = 2C0. Now

B is a member of |p∗A − KX |. Hence B|C0 ∼ p∗A|C0. Let us take a

point x ∈ C0 ∩B and let µ : X ′ → X be the blowing-up at x. Let &′ be

the proper transform of the fiber p−1(p(x)), B ′ the proper transform

of B, Ξ the µ-exceptional curve µ−1(x), and G′ := µ∗G − Ξ. Then

the basic triplet (X ′, B ′, G′) satisfies the condition C3 and &′ is also a
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(−1)-curve with B ′ · &′ = 1. We can contract &′ and obtain another

triplet (X
′′
, B

′′
, G

′′
). The separations of (X,B,G) and (X

′′
, B

′′
, G

′′
)

are identical. Therefore, we can reduce to Case (α) with degL = −1.

Case (α): If L � OC(−A), then (X,B,G) is constructed as Type C1

in §2. Thus it is enough to show the following:

Lemma 3.10. In the case (α), we can reduce to the case: L �
OC(−A).

Proof. Step 1: Suppose that L � OC. Then OX(−KX) � π∗OP1(2)

for the first projection π : X � P1 ×C → P1. Thus G = π∗(b1 + b2) for

some points b1, b2 ∈ P
1. We have B · π∗(b1) = 2 by B ∼ p∗A − KX .

Let us take a point q in B ∩ π∗(b1) and let ν : Y → X be the blowing-

up at q. Here we consider the separation (M,D,E) → (X,B,G).

Then the morphism M → X factors through the blowing-up Y → X.

Let Γ be the exceptional curve ν−1(q), BY the proper transform of B,

GY := ν∗G−Γ, and & the proper transform of the fiber p−1(p(q)). Then

& is a (−1)-curve with BY ·& = 1. Let (Y,BY , GY ) → (X ′, B ′, G′) be the

contraction of &. Then (M,D,E) is also the separation of (X ′, B ′, G′).

Hence we can reduce to the case degL < 0.

Step 2: Suppose that L �� OC but degL = 0. Then we have two

mutually disjoint sections C0 and C1 of the ruling p : X → C such that

C0 ∼ HE and C1 ∼ HE−p∗L. Since L is not trivial, C0+C1 is a unique

member of | − KX |. Hence G = C0 + C1. Now B · C0 = 2. Let us

take a point q in B∩C0 and consider the elementary transformation of

X at q. Then as in the previous argument, we can reduce to the case

degL < 0.

Step 3: Suppose that degL = −1. Then we have two mutually disjoint

sections C0 and C1 such that C0 ∼ HE and C1 ∼ HE − p∗L. Then

G = C0+G1 for an effective divisor G1 with G1 ∼ C1. Now B ·C0 = 1.

Let q be the point B ∩ C0. By taking the elementary transformation

of X at q, we can reduce to the case degL ≤ −2.

Step 4: Suppose finally that degL ≤ −2. We have two mutually

disjoint sections C0 and C1 such that C0 ∼ HE and C1 ∼ HE − p∗L.



CLASSIFICATION OF QUARTIC SURFACES 33

We have B|C0 ∼ p∗(A + L)|C0. The inequality B · C0 ≥ 0 implies that

degL = −2 and B ∩ C0 = ∅. In particular, L � OC(−A). �

§3.3.2. Proof in Case C2

In this case, we have (KX +B) · & = 1 and (2KX +B) · & = −1. Thus

X � PC(E) for E := p∗OX(KX +B). Since K2
X ≥ −4, the genus g(C)

is 0 or 1.

Case g(C) = 0: Now X is isomorphic to the Hirzebruch surface Σd

for some d ≥ 0. Thus K2
X = 8 and hence 8 ≤ r ≤ 12. Let C0 be

the minimal section. Then we can write KX +B ∼ C0 +m& for some

m ≥ d, since KX + B is nef. We have −KX ∼ 2C0 + (d + 2)&. Thus

B ∼ 3C0 + (m+ d+ 2)&. Hence

4 = (KX +B) ·B = (C0 +m&) · (3C0 + (m+ d+ 2)&) = −2d+4m+2.

Thus 2m = 1 + d which implies m = d = 1. Therefore X is the

Hirzebruch surface Σ1 and C0 is the unique (−1)-curve in whichB·C0 =

1. Let X → P2 be the blow-down of C0 and let B ′ and G′ be the image

of B and G, respectively. Then the separation of (X,B,G) is also that

of (P2, B ′, G′). Thus we are reduced to the Type D.

Case g(C) = 1: We have −KX ∼ 2HE − p∗(det E) and B ∼ HE −KX .

Thus r = B·G = (HE−KX)·(−KX) = deg E. Hence 4 = (KX+B)·B =

HE · (HE −KX) = 2deg E. Therefore deg E = r = 2. The locally free

sheaf E is one of the following:

C2-0: E � OC ⊕A for an invertible sheaf A on C of degA = 2;

C2-1: E � OC(q1)⊕OC(q2) for two points q1, q2 of C ;

C2-2: There is a non-split exact sequence

0 → OC(q) → E → OC(q) → 0

for a point q ∈ C .

Case C2-0: Let C0 be the negative section of p : X → C . Then C0 ∼
HE − p∗A and −KX ∼ 2C0 + p∗A. Thus B ∼ 3C0 + 2p∗A. Hence

B · C0 = − degA = −2. This is a contradiction.
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Case C2-1: First assume that q1 = q2. Then X � P1×C . Let π : X →
P1 be the first projection and let & be the fiber p−1(q1) = p−1(q2). Then

B ∼ HE −KX ∼ π∗OP1(3) + &. Thus

p∗OX(B) � p∗(π
∗OP1(3)⊗OX(&)) � O⊕4

C ⊗OC(q1).

Therefore, & is a fixed component of the linear system |B|. This is a

contradiction. Thus q1 �= q2.

Let &i be the fiber p
−1(qi) for i = 1, 2. Let C1 and C2 be the minimal

sections of p : X → C with C1 ∼ HE−&1 and C2 ∼ HE−&2, respectively.

Then C1 ∩ C2 = ∅, OC1(C1) � OC1(&2 − &1), OC2(C2) � OC2(&1 − &2),

and −KX ∼ C1+C2. SinceG|C1 ∼ (&2−&1)|C1 is non-trivial, G contains

C1 and also C2. Thus G = C1 + C2.

Suppose that 2q1 ∼ 2q2 on C . Then 2C1 ∼ 2C2. Thus the base

point free linear system |2C1| defines a morphism φ : X → P1. Now

B ∼ HE+G and B ·C1 = 1. Thus φ induces a double-covering B → P1.

This is a contradiction. Hence 2q1 �∼ 2q2. Therefore the (X,B,G) is

obtained as Type C2-1 in §2.

Case C2-2: We haveKX+B ∼ C0+& and −KX ∼ 2C0 for the minimal

section C0. Hence G = 2C0 and B ∼ 3C0 + &. Thus the (X,B,G) is

constructed as Type C2-2 in §2.

§3.4. Proof in the case of Type D

Let (X,B,G) be a minimal basic triplet satisfying Cr such that X �
P2 and that −(2KX +B) is ample. Then B is a smooth quartic curve,

since g(B) = 3. Therefore r = 12. Hence (X,B,G) is obtained as

Type D in §2. This completes the proof of Main Theorem.
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