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For a Hilbert C∗-module X over a C∗-algebra A, we construct a
vector bundle EX associated with X. We represent X as a vector space
ΓX of some class of holomorphic sections on EX with the following
properties:

(i) ΓX is a Hilbert A-module and ΓX ∼= X,

(ii) EX has a flat connection which defines the action of A on ΓX ,

(iii) EX has a hermitian metric H which induces the C∗-inner product
of ΓX .

This section representation of modules is a kind of generalization of the
Serre-Swan theorem to non commutative C∗-algebras. We show that
EX is isomorphic to an associated bundle of an infinite dimensional
Hopf bundle with the structure group U(1).
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1 Introduction

The Serre-Swan theorem is described as follows:

Theorem 1.1 (Serre-Swan) Let Ω be a connected compact Hausdorff space
and C(Ω) the algebra of all complex valued continuous functions on Ω. As-
sume X is a module over C(Ω). Then X is finitely generated projective iff
there is a complex vector bundle E on Ω such that X is isomorphic onto the
module of all continuous sections of E.

Proof. See [9].
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By this theorem, finitely generated projective modules over C(Ω) and com-
plex vector bundles on Ω are in one-to-one correspondence up to isomor-
phisms. In non commutative geometry [5, 13], some class of module over
non commutative C∗-algebra A is treated as a vector bundle of “non com-
mutative space” A by generalizing Serre-Swan theorem for commutative C∗-
algebra, for example, 2×2 matrix algebra M2(C) and its free (right)module
M2(C)m ≡ M2(C) ⊕ · · · ⊕M2(C) of rank m. Specially, it is believed that
a finitely generated projective module is regarded as a non commutative
vector bundle because the condition of modules is used in Theorem 1.1.

On the other hand, for a unital general non commutative C∗-algebra A,
there is a uniform Kähler bundle (P, p, B) [3] unique up to equivalence class
of A, such that A is ∗ isomorphic onto the uniform Kähler function algebra
with ∗-product on (P, p, B) which is a natural generalization of Gel’fand
representation.

Example 1.1 We show the example of a functional representation of the
simplest, nontrivial and non commutative C∗-algebra A = M2(C). The
uniform Kähler bundle (P, p, B) of M2(C) is given as follows: Let P = CP 1,
B = {b}, where B is a one-point set and p is the trivial surjection from P
to B. The functional representation of M2(C),

f : M2(C)→ C∞(CP 1)

is defined by fA([x]) ≡ t̄xAx/‖x‖2 for A ∈ M2(C) and [x] ∈ CP 1 where
∗-product on C∞(CP 1) is defined by

l ∗m ≡ l ·m+
√
−1Xml

(
l,m ∈ C∞(CP 1)

)
.

Non-commutativity of this ∗-product comes from the second term of the
right hand side on the above equation.

We review the uniform Kähler bundle and the functional representation
of non commutative C∗-algebras in section 2 intimately. Under the above
consideration, we state the following theorem which is a version of the Serre-
Swan theorem generalized to non commutative C∗-algebras under weaker
condition.

Theorem 1.2 ((Main theorem) Serre-Swan theorem for non commutative
C∗-algebras) Let X be a Hilbert C∗-module over a unital C∗-algebra A,
(P, p, B) the uniform Kähler bundle of A, Ku(P) the C∗-algebra of uni-
form Kähler functions on P and f : A ∼= Ku(P) the Gel’fand representation
of A.
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(i) (Construction of vector bundle) There is a complex vector bundle EX
on P such that EX has a flat connection D and a hermitian metric H.
Furthermore there is a bundle map PX from a trivial bundle X × P
on P to EX which image is dense in EX at each fiber.

(ii) (∗-action and hermitian metric) Let ΓX ≡ PX∗(Γconst(X × P)) ⊂
Γhol(EX) where Γconst(X × P) is the set of all constant sections on
X×P and Γhol(EX) is the set of all holomorphic sections of EX . Then
ΓX is a Hilbert Ku(P)-module with right ∗-action

ΓX ×Ku(P) → ΓX ,

(s, l) 7→ s ∗ l ≡ s · l +
√
−1DXls ( (s, l) ∈ ΓX ×Ku(P) )

and a C∗-inner product

H|ΓX×ΓX : ΓX × ΓX → Ku(P)

where Xl is the holomorphic part of the complex Hamiltonian vector
fields of l ∈ Ku(P) ⊂ C∞(P) with respect to the Kähler form of P.

(iii) (Reconstruction) Under an identification f : A ∼= Ku(P), ΓX is iso-
morphic to X as a Hilbert A-module.

Remark 1.1 In spite that the finitely generated projective property (=FP
property) is ingredient of modules in the origianl Serre-Swan theorem (The-
orem 1.1), reader may note that there is no condition about FP property
of Hibert C∗-module in Theorem 1.2. We wish to explain for this natural
question here.

In the field of non commutative geometry [4, 5, 13], Serre-Swan theorem
has been applied as a kind of guiding principle to make theory and give corre-
spondence between modules of non commutative algebra and virtual vector
bundles. In this context, the rigid mathematical statement is stretched as a
guiding principle of “non commutative-commutative correspondence” along
with quantum-classical correspondence in quantum mechanics. In analogy
with the case of quantum mechanics, there are many ambiguities and unor-
ganized interpretations about non commutative geometry and there is no ex-
act theory which unifies them because the meaning of this correspondence is
not clear and principle itself is not mathematics. Despite of these ambiguity,
the non commutative geometry gives us strong interest and desire to study
the virtual geometry associated with non commutative algebra. Therefore
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we regard Serre-Swan theorem as a guiding principle of non commutative-
commutative correspondence in the field of non commutative geometry in
this paper. We neglect the FP property here because we have no idea to
treat the notion of FP property in our theory suitably. In this reason, we
decide to use a word “Serre-Swan” in our paper in order to stress the sig-
nificance of the role of guiding principle in non commutative geometry. FP
property may be a problem which may be studied in future. Inversely, we
can regard the Hilbert C∗-structure is more essential than FP property ac-
cording to our theorem. Here we would mention that there is a kind of FP
property of Hilbert C∗-module by Kasparov stability theorem [10].

In subsection 3.2, we introduce EX in Theorem 1.2. EX is called the
atomic bundle of a Hilbert C∗-module X which is a Hilbert bundle on the
uniform Kähler bundle. We show its geometrical structure in subsection
3.4 (e.g. A = M2(C) and X = M2(C)m, then EX ∼= S3 ×U(1) C2m which
is an associated vector bundle of a Hopf bundle (S3, µ,CP 1, U(1))). In
subsection 4.1, we give a flat connection D in Theorem 1.2. D is called
the atomic connection of the atomic bundle. In subsection 4.2, by using a
connection of the vector bundle, we define a ∗-action of a function algebra
on the vector space of holomorphic sections on a vector bundle under more
general situation than the case of Hilbert C∗-modules. In section 5, we give
a proof of Theorem 1.2.

Here we summarize correspondences between geometry and algebra.

Gel’fand representation Serre-Swan theorem

space algebra
C(Ω)

CG Ω point wise
product

NCG P → B Ku(P)
∗-product

vector module
bundle

Γ(E)
CG E → Ω point wise

action
NCG EX → P ΓX

∗-action

where we call respectively, CG = commutative geometry as a geometry
associated with commutative C∗-algebras, and NCG = non commutative
geometry as a geometry associated with non commutative C∗-algebras by
following A.Connes [4].
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2 C∗-geometry

In a naive sense of correspondence between algebraic objects and geometric
ones defined by algebraic equations, we propose a version of the algebraic
geometry for non commutative C∗-algebras. Or, it may be considered as a
generalized Gel’fand representation for non commutative C∗-algebraic ob-
jects ( = the automorphism group, modules, etc.) [3]. As a preparation,
we review the basic for an assurance that such correspondence exits by the
following [3].
What do we want to do ? It is often stated that usual geometry is com-
mutative geometry in comparison to non commutative geometry ([4, 5, 13]).
Commutative geometry means a topological, or geometrical space consist-
ing points or its function algebra. On the other hand, non commutative
geometry means the algebra which is non commutative and not function
algebra in general, and it is considered as a virtual function space on a vir-
tual topological, or virtual geometrical space. But there exist several kind
of non-commutativity outside the region of genuine non commutative ge-
ometry, too. For example, the fundamental group of topological spaces,
transformation group, the Lie algebra of vector fields of a differential mani-
fold are generally non commutative. Furthermore, for a symplectic manifold
M , the set C∞(M) of all smooth functions on M has the Poisson bracket
determined by the symplectic form of M [6]. It is nothing but which is non
commutative Lie bracket. In this sense, the function algebra is not always
commutative. As a special case, for a Kähler manifold, the smooth function
algebra has Kähler bracket from its Kähler form [11] which is the special
case of symplectic form. For example, a complex projective space CPn is a
Kähler manifold with a metric called Fubini-Study type. Cirelli, Manià and
Pizzocchero realize non-commutativity of C∗-algebra by Kähler bracket of
projective space. We are trying to explain the non-commutativity appearing
in non commutative geometry by that inherent in commutative geometry,
such as the automorphism group, module, subalgebra, Atiyah-Singer index,
K-group and so on in the theory of C∗-algebras.

2.1 Uniform Kähler bundle

We start from the geometric characterization of the set of all pure states
and the spectrum of a C∗-algebra [3].

Assume now that E and M are topological spaces.
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Definition 2.1 (E,µ,M) is called a uniform Kähler bundle if it satisfies
the following conditions:

(i) µ is an open, continuous surjection between topological spaces E and
M ,

(ii) the topology of E is a uniform topology,

(iii) each fiber Em ≡ µ−1(m) is a Kähler manifold.

Remark 2.1 This definition of uniform Kähler bundle is weaker than the
original one [3]. We do not use the condition of equivalence of Kähler topol-
ogy and uniform topology in this paper.

The local triviality of uniform Kähler bundle is not assumed. M is always
neither compact nor Hausdorff.

We simply denote (E,µ,M) by E. For a uniform topology, see [2]. Any
metric space is a uniform space. Examples and relations with C∗-algebra are
given later. Roughly speaking, the fiber of uniform Kähler bundle is related
to non-commutativity of C∗-algebra.

Definition 2.2 Two uniform Kähler bundles (E,µ,M), (E
′
, µ
′
,M

′
) are

isomorphic if there is a pair (β, φ) of homeomorphisms β : E → E
′

and
φ : M →M

′
, such that µ

′ ◦ β = φ ◦ µ

β

E ∼= E
′

µ ↓ ↓ µ
′

M ∼= M
′

φ

and any restriction β|µ−1(m) : µ−1(m) → (µ
′
)−1(φ(m)) is a holomorphic

Kähler isometry for any m ∈ M . We call (β, φ) a uniform Kähler isomor-
phism between (E,µ,M) and (E

′
, µ
′
M
′
).

Example 2.1 (i) Any Kähler manifold N is a uniform Kähler bundle
with a one-point set as the base space. In the same way, the direct
sum of Kähler manifolds {Ni}ni=1 as a metric space is a uniform Kähler
bundle with a n-point set as the base space endowed with discrete
topology.
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(ii) Any compact Hausdorff space X is a uniform space. X is a uniform
Kähler bundle with 0-dimensional fiber which itself as the base space
[2].

We explain the nontrivial third example of uniform Kähler bundles as fol-
lows.
Let A be a unital C∗-algebra. Denote

P : the set of all pure states on A, and
B : the set of all equivalence classes of irreducible representations of A.
B is called the spectrum of A. The weak∗ topology on P is a uniform
topology. By the GNS representation of A, there is a natural projection
from P onto B :

p : P → B.

If A is commutative, then P ∼= B ∼= “the set of all maximal ideals of A” as
a compact Hausdorff space. We consider (P, p, B) as a map of topological
spaces where P is endowed with weak∗ topology and B is endowed with the
Jacobson topology [12].

In Ref.[3], the following results are proved.

Theorem 2.1 (Reduced atomic realization) For any unital C∗-algebra A,
(P, p, B) is a uniform Kähler bundle.

For a fiber Pb ≡ p−1(b), let (Hb, πb) be an irreducible representation
belonging to b ∈ B. ρ ∈ Pb corresponds [xρ] ∈ P(Hb) ≡ (Hb \ {0})/C×
where ρ = ωxρ ◦ πb with ωxρ denoting a vector state ωxρ =< xρ|(·)xρ >.
Then Pb has a Kähler manifold structure induced by this correspondence
from the projective Hilbert space P(Hb). We denote this correspondence by
τ b:

τ b : Pb → P(Hb); τ b(ρ) ≡ [xρ]. (2.1)

The Kähler distance db of a fiber Pb is given by

db(ρ, ρ
′
) ≡
√

2arcos| < xρ|xρ′ > | ( ρ, ρ
′ ∈ Pb)

which is the length of shortest geodesic between ρ and ρ
′

in Pb.

Theorem 2.2 Let Ai be C∗-algebras with associated uniform Kähler bun-
dles (Pi, pi, Bi), i = 1, 2. Then A1 and A2 are ∗ isomorphic if and only if
(P1, p1, B1) and (P2, p2, B2) are isomorphic as a uniform Kähler bundle.

By this theorem (P, p, B) associated with A is uniquely determined up
to a uniform Kähler isomorphism. From now, we call (P, p, B) in Theorem
2.1 the uniform Kähler bundle associated with C∗-algebra A.
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2.2 A functional representation of non commutative C∗-algebras

We reconstruct A from the uniform Kähler bundle (P, p, B) associated with
A. Since Pb ≡ p−1(b) ⊂ P is a Kähler manifold for each b ∈ B, consider the
fiberwise smooth (= smooth in Pb for each b ∈ B) function. Let

C∞(P) : the set of all fiberwise smooth complex valued functions on P.

Define a product ∗ on C∞(P) denoted by l ∗m for l,m ∈ C∞(P) by

l ∗m ≡ l ·m+
√
−1Xml (2.2)

Define an involution ∗ on C∞(P) by complex conjugate. Then (C∞(P), ∗)
becomes a ∗ algebra with unit which is not associative in general, where Xl

is the holomorphic Hamiltonian vector field of l defined by an equation

ωρ
(
(Xl)ρ, Ȳρ

)
= ∂̄ρl( Ȳρ ) ( Ȳρ ∈ TρP ) (2.3)

for each ρ ∈ P, Kähler form ω on P which is defined each fiber, ∂̄ is
the anti-holomorphic differential operator on C∞(P), and TρP is the anti-
holomorphic tangent space of P at ρ ∈ P. By using Eq.2.3, Eq.2.2 can be
written as follows:

l ∗m = l ·m+
√
−1ω(X̄l, Xm).

If {·, ·} is the Kähler bracket with respect to ω, then the following equality
holds:

l ∗m−m ∗ l =
√
−1{l,m} ( l,m ∈ C∞(P) ). (2.4)

Theorem 2.3 (Gel’fand representation of non commutative C∗-algebras)
For a non commutative C∗-algebra A, the Gel’fand representation

fA(ρ) ≡ ρ(A), (A ∈ A, ρ ∈ P)

gives an injective ∗ homomorphism of unital ∗ algebras :

f : A → C∞(P); A 7→ fA

where C∞(P) is endowed with ∗-product defined by (2.2). For a function l
in the image f(A) of a map f ,

‖l‖ ≡ sup
ρ∈P

∣∣(l̄ ∗ l) (ρ)
∣∣ 12 (2.5)
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defines a C∗-norm of ∗ algebra f(A). By this norm, an associative ∗ subal-
gebra (f(A), ∗) is a C∗-algebra which is ∗ isomorphic onto A.

Furthermore f(A) is equal to a subset Ku(P)(⊂ C∞(P)) defined by

Ku(P) ≡
{
l ∈ C∞(P) :

D2l = 0, D̄2l = 0,
l̄ ∗ l, l ∗ l̄, l are uniformly continuous on P

}
,

(2.6)
where D, D̄ are the holomorphic and anti-holomorphic part, respectively, of
covariant derivative of Kähler metric defined on each fiber of P. Hence, the
following equivalence of C∗-algebras holds:

A ∼= Ku(P).

We call these objects C∗-geometry since any C∗-algebra can be recon-
structed from the associated uniform Kähler bundle [3] and, therefore, any
C∗-algebra is determined by such a geometry.

Remark 2.2 In Theorem 2.3, the function fA of the image of a functional
representation on A ∈ A is not holomorphic. It is a complex quadratic form
on a Hilbert projective space like Example 1.1. Furthermore, fA satisfies
not only continuous on across fiber but also more strong uniform continuity
like the definition of Ku(P).

Remark 2.3 (Non-commutativity and differential structure) It is not known
yet whether the function space of uniform Kähler functions on a general
uniform Kähler bundle satisfying conditions in Definition 2.1 becomes a C∗-
algebra. In this sense, the class of uniform Kähler bundles may be larger
than the class of C∗-algebras.

Remark 2.4 In [4], non commutative generalization of differential geom-
etry is claimed by using the theory of C∗-algebras. A non commutative
C∗-algebra is treated as a function algebra C∞(M) with respect to a vir-
tual smooth manifold M . On the other hand, the smooth structure of the
uniform Kähler bundle of a C∗-algebra A appears only when A is not com-
mutative since statements above Theorem 2.1. Furthermore it is known
that a commutative C∗-algebra has no continuous derivation except 0. Un-
der these considerations, our opinion is that the differential structure of a
geometry makes a C∗-algebra non commutative. In commutative case, the
differential structure do not arise from algebraic structure of a C∗-algebra.
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Hence the geometry of non commutative C∗-algebras is necessarily differ-
ential geometry with the w∗ topology of the space of states, and that of
commutative C∗-algebras is only (compact Hausdorff)topology.

By the above results, we obtain a fundamental correspondence between al-
gebra and geometry as follows:

unital commutative C∗-algebra ⇔ compact Hausdorff space

⋂ ⋂
unital generally non commutative ⇔ uniform Kähler bundle.

C∗-algebra associated with a C∗-algebra

The upper correspondence above is just the Gel’fand representation of unital
commutative C∗-algebra. Since Remark 2.3, we must restrict the class of
uniform Kähler bundles to like the above.

Example 2.2 Assume that H is a separable infinite dimensional Hilbert
space.

(i) When A ≡ L(H) which is the algebra of all bounded linear operators
on H, the uniform Käher bundle of A is (P(H) ∪ P−, p, 2[0,1] ∪ {b0})
where P(H) is the projective Hilbert space of H, P− is the union
of projective Hilbert spaces of continuous dimensional Hilbert space
indexed by 2[0,1], 2[0,1] is the power set of closed interval [0, 1] and
{b0} is the one-point set corresponding to the equivalence class of
identity representation (H, idL(H)) of L(H) on H. Since the primitive
spectrum of L(H) is a two-point set, the topology of 2[0,1] ∪ {b0} is
equal to { ∅, 2[0,1], {b0}, 2[0,1] ∪ {b0} } [8]. In this way, the base space
of the UKB is not always a one-point set when an algebra is type I.

(ii) For a C∗-algebra A generated by the Weyl form of 1-dimensional
canonical commutation relation

U(s)V (t) = e
√
−1stV (t)U(s) (s, t ∈ R),

its uniform Kähler bundle is (P(H), p, {1pt}). The spectrum is a one-
point set {1pt} since von Neumann uniqueness theorem [1].
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(iii) CAR-algebra A is a UHF algebra with the nest {M2n(C)}n∈N. The
uniform Kähler bundle has the base space 2N and each fiber on 2N is
a separable infinite dimensional projective Hilbert space where 2N is
the power set of the set N of all natural numbers with trivial topology,
that is, the topology of 2N is just {∅, 2N}. In general, the Jacobson
topology of the spectrum of a simple C∗-algebra is trivial [8].

3 The atomic bundle of a Hilbert C∗-module

The aim of this section is the construction of a vector bundle by a given
Hilbert C∗-module for a C∗-algebra.

3.1 Hopf bundles, Hilbert modules, deformation and canon-
ical quantization

We start from a naive geometric example related to some Hilbert C∗-module
in this section.

In the text book of fiber bundles, a Hopf bundle is one of typical examples
of U(1)-principal bundle where the total space is 3-sphere, the base space
1-dimensional complex projective space ( ∼= 2-sphere) and the typical fiber
U(1)(∼= circle). The Hopf bundle (S3, µ,CP 1) is defined as follows:

Definition 3.1 (Hopf bundle) (S3, µ,CP 1) is called the Hopf bundle if

S3 ≡
{
(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1

}
,

CP 1 ≡ (C2 \ {0})/C× = S3/U(1),

µ : S3 → CP 1,

µ(z1, z2) ≡ [(z1, z2)]

=
{
eiθ(z1, z2) : eiθ ∈ U(1)

}
( (z1, z2) ∈ S3 ).

The base space CP 1 of a Hopf bundle is the total space of the uniform Kähler
bundle of C∗-algebra M2(C) by Theorem 2.1. Some examples of vector
bundles of CP 1 can be obtained from associated vector bundles S3×U(1)Cm

of the Hopf bundle defined by the space of all U(1)-orbits in a direct product
space S3 ×Cm associated to a U(1)-action on Cm. Such vector bundle has
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the structure group U(1). By Serre-Swan theorem for vector bundles of a
smooth compact manifold, a finitely generated projective C∞(CP 1)-module
X corresponds to a vector bundle E of CP 1 unique up to isomorphisms [9,
13]. In this situation, C∞(CP 1)-action on Γ∞(E) is an action by pointwise
product

Γ∞(E)× C∞(CP 1) 3 (s, l) 7−→ s · l ∈ Γ∞(E),

(s · l)(x) ≡ s(x)l(x) (x ∈ CP 1).

Let
{·, ·} : C∞(CP 1)× C∞(CP 1)→ C∞(CP 1)

be the Kähler bracket of CP 1. To define an action of a Lie algebra (C∞(CP 1),
{·, ·}), we define a ∗-action by deforming the above action by a connection
D of E (deformation of action):

s · l =⇒ s ∗ l ≡ s · l +
√
−1DXls (3.7)

where Xl is defined in (2.3). Rewrite a right action of C∞(CP 1)

Ml : Γ∞(E)→ Γ∞(E); sMl ≡ s ∗ l.

Then we obtain a deformed homomorphism of Lie algebras by curvature.

Lemma 3.1 For s ∈ Γ∞(E) and l,m ∈ C∞(CP 1), we have the following
equation:

(i) s[Ml,Mm] =
√
−1sM{l,m} +RXl,Xms

where R is the curvature of D.

(ii) If M is associated with a flat connection, then

[Ml,Mm] =
√
−1M{l,m} (3.8)

on Γ∞(E). That is, M is a rescaled homomorphism between Lie alge-
bras C∞(CP 1) and End(Γ∞(E)) with scaled factor

√
−1.

Proof. See Lemma 4.2.

By a flat connection D of E, we obtain a right action M of a Lie algebra
(C∞(CP 1), {·, ·}) on Γ∞(E) rescaled by

√
−1. Define a Lie algebra

h(C∞(CP 1)) ≡
{
Ml ∈ End(Γ∞(E)) : l ∈ C∞(CP 1)

}
.
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Then h(C∞(CP 1)) is just the canonical quantization of a classical algebra
(C∞(CP 1), {·, ·}) as operators on the space of sections by the quantum-
classical correspondence principle.

In this way, we obtain an operator Lie algebra h(C∞(CP 1)) on Γ∞(E).
By using Example 1.1 and Eq.2.4, M2(C) is embedded in C∞(CP 1). Hence
we obtain an injective homomorphism M ◦ f from a Lie algebra gl2(C) =
M2(C) to h(C∞(CP 1)) which is the following southeast arrow by composed
other two arrows M and f :

gl2(C)
f→ C∞(CP 1)

M◦f ↘ ↓ M

h(C∞(CP 1)).

In fact, for A,B ∈ gl2(C),

[ (M ◦ f)(A), (M ◦ f)(B) ] = [MfA ,MfB ]
=
√
−1M{fA,fB}

= M√−1{fA,fB}
= MfA∗fB−fB∗fA
= MfAB−fBA
= MfAB−BA

= (M ◦ f)([A,B]).

We obtain an action of gl2(C) on Γ∞(E) by a flat connection D. We finish
to explain a naive example. Note that there is no associativity of M2(C) in
general for E in this example.

In the general case, we construct a vector bundle E associated with a
Hilbert C∗-module, and a ∗ isomorphism φ from a general C∗-algebra A
with a uniform Kähler bundle (P, p, B) into an associative ∗ algebra BE ≡
∗Alg < h(C∞(P)) > and an isomorphism Ψ from Hilbert C∗-module X into
Γ∞(E) so as for the following diagram to be commutative:

X × A → X

Ψ×φ ↓ ↓ Ψ

Γ∞(E) × BE → Γ∞(E).
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By this case, we can always construct E which satisfies the associativity of
A. On the other hand, we define the atomic bundle as a kind of vector
bundle from a Hilbert C∗-module and show the bundle structure by using a
Hopf bundle.

3.2 The construction of the atomic bundle

Before starting to construct the atomic bundle of a Hilbert C∗-module, we
state the definition of a Hilbert C∗-module.

Definition 3.2 ([7]) X is a Hilbert C∗-module over a C∗-algebra A if X is
a right A-module and there is an A valued-sesquilinear form

< ·|· >: X ×X → A

which satisfies the following conditions:

< η|ξa >= < η|ξ > a ( η, ξ ∈ X ),
(< η|ξ >)∗ = < ξ|η > ( ξ, η ∈ X, a ∈ A ),

< ξ|ξ >≥ 0 ( ξ ∈ X ),
< ξ|ξ >= 0 ⇒ ξ = 0 ( ξ ∈ X )

and X is complete with respect to a norm defined by

‖ξ‖X ≡ ‖ < ξ|ξ > ‖1/2 ( ξ ∈ X ). (3.9)

Let X be a Hilbert C∗-module over a unital C∗-algebra A and (P, p, B) the
uniform Kähler bundle associated with A defined in Theorem 2.1. Defining
a closed subspace Nρ of X with ρ ∈ P by

Nρ ≡
{
ξ ∈ X : ρ(‖ξ‖2) = 0

}
(3.10)

( note ‖ξ‖2 =< ξ|ξ >∈ A ), we consider the quotient vector space

EoX,ρ ≡ X/Nρ

equipped with a sesquilinear form < ·|· >ρ on EoX,ρ defined by

< ·|· >ρ: EoX,ρ × EoX,ρ → C,

< [ξ]ρ|[η]ρ >ρ ≡ ρ(< ξ|η >) ( [ξ]ρ, [η]ρ ∈ EoX,ρ )
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where
[ξ]ρ ≡ ξ +Nρ ∈ EoX,ρ ( ξ ∈ X ). (3.11)

Then < ·|· >ρ becomes an inner product on EoX,ρ. Let EX,ρ be the completion
of EoX,ρ by the norm ‖ · ‖ρ ≡ (< ·|· >ρ)1/2. We obtain a Hilbert space
( EX,ρ, < ·|· >ρ ) from a Hilbert C∗-module X for each pure state ρ ∈ P.

Definition 3.3 (Atomic bundle) An atomic bundle EX = (EX ,ΠX ,P) of a
Hilbert C∗-module X is defined as a fiber bundle EX on P:

EX ≡
⋃
ρ∈P
EX,ρ,

where the projection map ΠX : EX → P is defined by ΠX(x) = ρ for x ∈
EX,ρ. For b ∈ B, a B-fiber EbX = (EbX ,Πb

X ,Pb) of X is defined by

EbX ≡
⋃
ρ∈Pb

EX,ρ,

Πb
X : EbX → Pb; Πb

X ≡ ΠX |EbX .

The name of the atomic bundle comes from the (reduced)atomic represen-
tation of a C∗-algebra. The atomic bundle is a collection of its B-fibers:

EX =
⋃
b∈B
EbX .

In this way, EX has a two-step fibration (EX ,ΠX ,P) and (EX , p ◦ΠX , B):

EX
ΠX→ P

p ◦ΠX ↘ ↓ p

B

where their fibers are EX,ρ = Π−1
X (ρ) and EbX = (p ◦ΠX)−1 (b), respectively

for ρ ∈ P and b ∈ B.

3.3 Unitary group action on the atomic bundle

The aim of this subsection is to give the canonical definition of the typi-
cal fiber of the atomic bundle in order to state the structure theorem in
subsection 3.4.
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Let G be the group of all unitary elements in A. Define an action χ of
G on P by

χu(ρ) ≡ ρ ◦Adu∗ (u ∈ G, ρ ∈ P).

We note that any pure state is moved to a pure state by any inner automor-
phism of A. Hence χu maps Pb to Pb for each b ∈ B and u ∈ G.

Lemma 3.2 G acts on Pb by transitively.

Proof. Because the GNS representation of any element of Pb is irreducible,
any two unit vectors inHb are transformed by πb(u) for some u ∈ G. Assume
that ρ1, ρ2 ∈ Pb. Then there are h, h

′ ∈ Hb, ‖h‖ = 1 = ‖h′‖ such that ρ1 =<
h|πb(·)h > and ρ2 =< h

′ |πb(·)h
′
>, there is u ∈ G such that πb(u)h = h

′

and

χu(ρ1) = ρ1 ◦Adu∗ =< h|πb(u∗)πb(·)πb(u)h >=< h
′ |πb(·)h

′
>= ρ2.

Hence the action χ of G is transitive on Pb.

Next, define an action tb of G on EoX by

tbu ([ξ]ρ) ≡ [ ξu∗ ]χu(ρ)

(
u ∈ G, [ξ]ρ ∈ EoX,ρ

)
.

tb is well defined since a map ξ 7→ ξu∗ maps Nρ to Nχu(ρ). In fact,

χu(ρ)
(
‖ξu∗‖2

)
= ρ

(
(Adu∗)

(
u‖ξ‖2u∗

))
= ρ

(
‖ξ‖2

)
.

Then tbu is a unitary map from EoX,ρ to EoX,χu(ρ).Hence we can extend tbu as a
unitary map from EX,ρ to EX,χu(ρ). We note that

tbcu(x) = c̄tbu(x) (u ∈ G, c ∈ U(1) ). (3.12)

We define an action t of G on EX by t|EbX ≡ t
b, b ∈ B. Then T ≡ (t, χ) is an

action of G on (EX ,ΠX ,P), that is, the following diagram is commutative
for each u ∈ G:

EX
tu∼= EX

ΠX ↓ ↓ΠX

P
χu∼= P.

16



In fact,

(ΠX ◦ tu)([ξ]ρ) = ΠX([ξu∗]χu(ρ)) = χu(ρ) = (χu ◦ΠX)([ξ]ρ).

Hence ΠX ◦ tu = χu ◦ΠX holds on EoX,ρ. By continuity, it holds on the whole
EX,ρ for each ρ ∈ P.

This action preserves B-fiber (EbX ,Πb
X ,Pb), b ∈ B, too.

For two fibrations (EbX ,Πb
X ,Pb) and (S(Hb), µb,Pb), define a fiber prod-

uct Eb,U(1)
X ⊂ EbX × S(Hb) of them by

Eb,U(1)
X ≡ EbX ×Pb S(Hb)

=
{

(x, h) ∈ EbX × S(Hb) : Πb
X(x) = µb(h)

}
.

For a Hopf bundle (S(Hb), µb,Pb), see a sentence after Theorem 2.1 and
Appendix A.

Define an action σb of G on Eb,U(1)
X by

σbu(x, h) ≡ (tu(x), πb(u)h)
(
(x, h) ∈ Eb,U(1)

X , u ∈ G
)
.

In fact

Πb
X(tu(x)) = χu(Πb

X(x)) = χu(ρ) = ρ ◦Adu∗ = µb(πuh)

when (x, h) ∈ Eb,U(1)
X and Πb

X(x) = ρ = µb(h). Therefore σbu(x, h) ∈ Eb,U(1)
X .

Hence σbu is well defined.
We note that a representation (Hb, πb) of A induces an action of G on

S(Hb).

Lemma 3.3 For (x, h) ∈ Eb,U(1)
X and u ∈ G, if σbu(x, h) = (y, h), then

x = y.

Proof. It is sufficient to show for the case x ∈ EoX,ρ. Assume x = [ξ]ρ. By
assumption,

(y, h) = σbu(x, h)
= (tu(x), πb(u)h)
= ( [ξu∗]χu(ρ), πb(u)h ).

Hence h = πb(u)h. Equivalently we have

πb(u∗)h = h. (3.13)

17



By definition of fiber product,

χu(ρ) = Πb
X

(
[ξu∗]χu(ρ)

)
= µb (πb(u)h)
= µb(h)
= ρ.

Therefore we have χu(ρ) = ρ and y = [ξu∗]ρ. By using the above results, we
obtain the following equation:

‖x− y‖2ρ = ρ(‖ξ − ξu∗‖2)
= ρ(‖ξ‖2) + ρ(‖ξu∗‖2)− ρ(< ξ|ξu∗ >)− ρ(< ξu∗|ξ >)
= ρ(‖ξ‖2) + ρ(u‖ξ‖2u∗)− ρ(< ξ|ξ > u∗)− ρ(u < ξ|ξ >)
= ρ(‖ξ‖2) + χu(ρ)(‖ξ‖2)
− < h|πb(< ξ|ξ >)πb(u∗)h > − < πb(u∗)h|πb(< ξ|ξ >)h >

= 2ρ(‖ξ‖2)− ρ(< ξ|ξ >)− ρ(< ξ|ξ >) ( by ( 3.13) )
= 0.

We note that ρ =< h|πb(·)h > here. Hence we obtain x = y.

Definition 3.4 F bX is the set of all orbits of G in Eb,U(1)
X .

Let O(x, h) ∈ F bX be an orbit containing (x, h) ∈ Eb,U(1)
X . Since G acts on

S(Hb) transitively,

O(x, h) = {σbu(x, h) : u ∈ G}
= {(tu(x), πb(u)h) : u ∈ G}

for each (x, h) ∈ Eb,U(1)
X . Hence F bX is a family of spheres which is home-

omorphic to S(Hb) in Eb,U(1)
X . By Lemma 3.3, any element of O(x, h) is

written as (yh′ , h
′
) where yh′ is an element of EbX determined by h

′ ∈ S(Hb)
uniquely.

Lemma 3.4 For (y, h
′
) in O(x, h), if y = x 6= 0, then h = h

′
.

Proof. By choice of (x, h
′
), there is u ∈ G such that σbu(x, h) = (x, h

′
).

tbu(x) = x and πb(u)h = h
′
. Since

µb(h
′
) = Πb

X(x) = µb(h),

18



there is c ∈ U(1) such that h
′

= ch. Hence we can choose u = cI. If x 6= 0,
then we have

x = tbu(x) = tbcI(x) = c̄tbI(x) = c̄x

by (3.12). Therefore c = 1 and we obtain h = h
′

when x 6= 0.

Corollary 3.1 For c ∈ U(1),

O(x, ch) = O(cx, h).

Proof. If (y, h) ∈ O(x, ch), then we can take u ∈ G as u = c̄I. Then

y = tu(x) = c̄x = cx.

Furthermore O(0, h) = {(0, h′) : h
′ ∈ S(Hb)} because tbu is unitary for

each u ∈ G. Let (y, h
′
) ∈ O(x, h)∩

(
EX,µb(h) × S(Hb)

)
. Then there is u ∈ G

such that (y, h
′
) = σu(x, h). By choice of (y, h

′
), h

′ ∈ µ−1
b (µb(h)). Hence

there is c ∈ U(1) such that h
′

= ch.
We note that EX,ρ and EX,ρ′ are equivalent as a Hilbert space when

ρ, ρ
′ ∈ Pb.

Proposition 3.1 F bX is a Hilbert space which is isomorphic to EX,ρ for each
ρ ∈ Pb.

Proof. Fix h0 ∈ S(H) such that µb(h0) = ρ. Define a map

R : EX,ρ → F bX ; R(x) ≡ O(x, h0).

Then R is surjective. If R(x) = R(y) for x, y ∈ EX,ρ, then O(x, h0) =
O(y, h0). By Lemma 3.4, x = y when x 6= 0. If x = 0, then y = 0. Hence R
is bijective. We define a structure of Hilbert space of F bX from EX,ρ by R.
Then we have the statement of the proposition.

We denote calculations in F bX .

O(x, h) +O(y, h
′
) = R(tuh(x)) +R(tu

h
′ (y))
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where σuh(x, h) = (tuh(x), h0) and σu
h
′ (y, h

′
) = (tu

h
′ (y), h0). For k ∈ C,

k · O(x, h) = kR(tuh(x))
= R(k · tuh(x))
= R(tuh(kx))
= O(kx, h).

Specially, c ∈ U(1),
c · O(x, h) = O(x, ch)

by Corollary 3.1.

3.4 Structure of the atomic bundle

We show that the atomic bundle has a Hilbert bundle structure in order to
define sections on it in the next section. Let (S(Hb)×U(1)F

b
X , πF bX

, P(Hb) )
be the associated bundle of (S(Hb), µb,P(Hb)) by F bX where a Hilbert space
F bX is defined in Definition 3.4. By definition of the associated bundle(Appendix
A.3), an element of S(Hb)×U(1)F

b
X is written as the U(1)-orbit [(h,O(x, k))]

which contains (h,O(x, k)) ∈ S(Hb)× F bX .

Lemma 3.5 Any element of S(Hb)×U(1)F
b
X can be written as [(h,O(x, h))]

where O(x, h) ∈ F bX .

Proof. Take an element [(h,O(y, k))] ∈ S(Hb) ×U(1) F
b
X . By definition of

O(y, k) and the transitivity of the action of G on S(H), there is u ∈ G such
that h = uk and (tbu(y), h) ∈ O(y, k). Denote x ≡ tu(y) Then O(x, h) =
O(y, k). Hence

[(h,O(y, k))] = [(h,O(x, h))].

For h ∈ S(H) and x ∈ EbX , we denote

[h, x] ≡ [(h,O(x, h))] ∈ S(Hb)×U(1) F
b
X

from here.
Recall for each b ∈ B, Pb is a Kähler manifold which is isomorphic to a

projective Hilbert space P(Hb) by a map τ b in (2.1).

20



Theorem 3.1 For each b ∈ B, the B-fiber (EbX ,Πb
X ,Pb) at b is a local trivial

Hilbert bundle which is isomorphic to (S(Hb)×U(1) F
b
X , πF bX

, P(Hb) ):

(EbX ,Πb
X ,Pb) ∼= (S(Hb)×U(1) F

b
X , πF bX

, P(Hb) )

where F bX is a complex Hilbert space defined in Definition 3.4 which is iso-
morphic to EX,ρ for each ρ ∈ Pb.

Proof. Define a map Ψb : EbX → S(Hb)×U(1) F
b
X by

Ψb(x) ≡ [hx, x] (x ∈ EbX)

where hx ∈ µ−1
b (Πb

X(x)). We show this definition is independent in the
choice of hx. If h

′ ∈ µ−1
b (Πb

X(x)), then there is c ∈ U(1) such that h
′

= chx.
We denote h = hx for simplicity. Then we have

(h
′
, O(x, h

′
)) = (ch, O(x, ch))

= (hγc̄, cO(x, h))
= (h, O(x, h)) · c̄

where γ is an action of U(1) defined in Appendix A.3. Hence

[h, x] = [(h,O(x, h)] = [(h
′
,O(x, h

′
)] = [h

′
x].

In this way, Ψb is well defined. If Ψb(x) = Ψb(y) for x, y ∈ EbX , then [h, x] =
[h
′
, y]. Therefore there is c ∈ U(1) such that (h,O(x, h))c = (h

′
,O(y, h

′
)).

By h
′

= c̄h and Corollary 3.1,

O(y, c̄h) = O(y, h
′
)

= c̄O(x, h)
= O(x, c̄h).

By Lemma 3.3, x = y. Hence Ψb is injective. By definition of F bX , Ψb is
surjective. Ψb is a bijection. Furthermore the following diagram is commu-
tative:

EbX
Ψb∼= S(Hb) ×U(1) F bX

ΠbX
↓ ↓π

Fb
X

Pb
τb∼= P(Hb) .

21



We obtain a set-theoretical isomorphism (Ψb, τ b) of fibrations between (EbX ,
Πb
X , Pb) and (S(Hb) ×U(1) F

b
X , πF bX

, Pb ) such that any restriction Ψb|EX,ρ
of Ψb at a fiber EX,ρ is unitary between EX,ρ and π−1

F bX
(ρ) for ρ ∈ Pb.

We define a Hilbert bundle structure of (EbX ,Πb
X ,Pb) from (S(Hb)×U(1)

F bX , πF bX
, Pb ) by (Ψb, τ b). We have the statement.

We have constructed a Hilbert bundle from a Hilbert C∗-module by
Definition 3.3 and Theorem 3.1.

Let (X ×P, t,P) be a rivial complex vector bundle on P. Then there is
a map

PX : X × P → EX , (3.14)

defined by
PX(ξ, ρ) ≡ [ξ]ρ ( (ξ, ρ) ∈ X × P ).

The map PX has a dense image in EX at each B-fiber. For ρ ∈ P and
x ∈ PX(X × P) ∩ EX,ρ,

(PX)−1(x) = Nρ

where Nρ is a vector space defined in (3.10).
The following diagram is commutative:

X × P PX→ EX

t ↓ ↓ ΠX

P id→ P .

Hence (PX , id) is a bundle map from (X × P, t, P) to (EX , ΠX ,P).
By Theorem 3.1 and Definition 3.3, the atomic bundle of a Hilbert C∗-

module is a family of associated bundles of Hopf bundles indexed by spec-
trum B:

EX ∼=
⋃
b∈B

(
S(Hb)×U(1) F

b
X

)
.

Example 3.1 If A is commutative, then Ω ≡ P ∼= B and each B-fiber is

EbX → Pb ∼= {b}.

Hence the smooth structure of B-fiber collapses at each b ∈ B. Furthermore,
if X = An ≡ A⊕· · ·⊕A ∼= C(Ω)n, then Nω

∼= {{fi}ni=1 ∈ C(Ω)n : fi(ω) = 0}
for each ω ∈ Ω. Since A/Nω

∼= C, EX,ω ∼= Cn. Hence EX ∼= Ω×Cn.
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Example 3.2 If A ≡ Mn(C), then P ∼= CPn−1( = n − 1 dimensional
complex projective space), B is a one-point set. Hence the atomic bundle of
a Hilbert C∗-module over Mn(C) is a locally trivial smooth Hilbert bundle
on CPn−1. Furthermore the atomic bundle of a Hilbert C∗-module over a
finite dimensional C∗-algebra is a family of locally trivial smooth Hilbert
bundles on complex projective spaces.

4 Connection and ∗-action

In this section, we define a flat connection D on the atomic bundle and show
a relation between the associativity of ∗-action defined by D and the flatness
of D.

4.1 The atomic connection of the atomic bundle

To define the ∗-action of (C∞(P), ∗) on the smooth sections of the atomic
bundle of a Hilbert C∗-module X, we define some connection D of EX which
is called the atomic connection.

Let EX = (EX ,ΠX ,P) be the atomic bundle of a Hilbert C∗-module X
over a C∗-algebra A defined in section 3. Let Γ(EX) be the set of all bounded
sections of EX , that is, Γ(EX) 3 s : P → EX is a right inverse of ΠX and
satisfies

‖s‖ ≡ sup
ρ∈P
‖s(ρ)‖ρ <∞. (4.15)

By the following operations, Γ(EX) is a complex linear space:

(s+ s
′
)(ρ) ≡ s(ρ) + s

′
(ρ) ( ρ ∈ P, s, s′ ∈ Γ(EX) ),

(ks)(ρ) ≡ ks(ρ) ( ρ ∈ P, s ∈ Γ(EX), k ∈ C ).

Furthermore Γ(EX) is isometric onto a Banach space
⊕

ρ∈P EX,ρ of the direct
sum of { EX,ρ }ρ∈P . By Theorem 3.1, we can consider the differentiability of
s ∈ Γ(EX) at each B-fiber

s|Pb : Pb → EbX

for each b ∈ B in the sense of Fréchet differential of Hilbert manifolds.
Define Γ∞(EX) the set of all B-fiberwise smooth sections in Γ(EX).
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Let X(P) be the set of all B-fiberwise smooth vector fields of P. H is a
hermitian metric of EX defined by

Hρ(s, s
′
) ≡

〈
s(ρ)

∣∣∣s′(ρ)
〉
ρ

(4.16)

for ρ ∈ P, s, s
′ ∈ Γ∞(EX) [11].

Definition 4.1 D is a connection of EX if D is a bilinear map of complex
vector spaces

D : X(P)× Γ∞(EX)→ Γ∞(EX)

which is C∞(P)-linear with respect to X(P) and satisfies the Leibniz law
with respect to Γ∞(EX):

DY (s · l) = ∂Y l · s+ l ·DY s

for s ∈ Γ∞(EX), l ∈ C∞(P) and Y ∈ X(P).

For Y ∈ X(Pb), h ∈ S(Hb) and ρ ∈ Vh, we denote Y h
ρ a tangent vector

at ρ in a local coordinate Hh. We define a linear map

AhY,ρ : F bX → F bX

by multiplying a number

−1
2
< βh(ρ)|Y h

ρ >

1 + ‖βh(ρ)‖2
.

That is, for z ≡ βh(ρ) ∈ Hh,

AhY,ρe = −1
2
< z|Y h

ρ >

1 + ‖z‖2
e ( e ∈ F bX ). (4.17)

For the space of sections of EbX , we show that

Proposition 4.1

Dh
Y,ρ ≡ ∂Y hρ +AhY,ρ

defines a flat connection D of EbX .

Proof. Appendix B.
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Definition 4.2 We call the connection in Proposition 4.1 the atomic con-
nection of the atomic bundle.

We note that the atomic connection of the atomic bundle EX is independent
in a Hilbert C∗-module X.

We prepare some equations for the main theorem. For ρ ∈ Vh, define a
vector in Ωh

ρ in Hb by

Ωh
ρ ≡

βh(ρ) + h√
1 + ‖βh(ρ)‖2

.

Assume that ρ = ωx ◦ πb for a x ∈ Hb. Then

Ωh
ρ =

x

< h|x >

∥∥∥∥ x

< h|x >

∥∥∥∥−1

=
| < h|x > |
< h|x >

x.

Hence [x] = [Ωh
ρ ] and

< h|Ωh
ρ >> 0.

Let s be a section in Γ(EX) such that for each ρ ∈ Pb ⊂ P, there is ξρ ∈ X
s(ρ) = [ξρ]ρ ∈ EX,ρ. Let z = βh(ρ) for h ∈ S(Hb) such that ρ ∈ Vh.

Lemma 4.1 The following equations hold:

< e |ψα,h(s(ρ)) >=

〈
Ωh
ρ′

∣∣∣πb(< ξ
′ |ξρ >)(z + h)

〉
√

1 + ‖z‖2
(4.18)

for e = O([ξ
′
]ρ′ , h) ∈ F bX ,

∂Y φh(ρ)(s(ρ)) = O
([

∂Y ξ̂ρ + ξρ

(
Kh
Y,ρ −

< z|Y >

2(1 + ‖z‖2)

)]
ρ

, h

)
(4.19)

where an element Kh
Y,ρ ∈ A is defined by

πb(Kh
Y,ρ)(h+ z) = Y (4.20)

and [∂Y ξ̂ρ]ρ ∈ EX,ρ is defined by〈
[η]ρ

∣∣∣ [∂Y ξ̂ρ]ρ 〉
ρ
≡ ρ(∂Y < η|ξρ >)

for [η]ρ ∈ EX,ρ.

Proof. Appendix C.
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4.2 The ∗-action of a function algebra on sections of the
atomic bundle

By (2.2), the function space C∞(P) is a ∗ algebra with ∗-product which
is not generally associative. We define the ∗-action of (C∞(P), ∗) on the
smooth sections of the atomic bundle of a Hilbert C∗-module by using the
atomic connection D of EX . And we characterize algebraic properties, com-
mutativity, associativity, of ∗-action by D and the curvature of EX with
respect to D.

Let D be any connection of EX .

Definition 4.3 We define the (right) ∗-action of C∞(P) on Γ∞(EX) by

s ∗ l ≡ s · l +
√
−1DXls

for l ∈ C∞(P) and s ∈ Γ∞(EX) where Xl is the holomorphic Hamiltonian
vector field of l with respect to the Kähler form of P.

Remark 4.1 (i) By this lemma, the non-commutativity of ∗-action of
C∞(P) on Γ∞(EX) depends on the connection D of EX and the Kähler
form of P.

(ii) We use three different notions, ∗-action, ∗-product and involution by
the same symbol “∗” when they do not make confusions.

We show the geometric characterization of ∗-action.

Lemma 4.2 For each s ∈ Γ∞(EX) and l,m ∈ C∞(P), the following equa-
tion holds:

(s ∗ l) ∗m− (s ∗m) ∗ l =
(√
−1{l, m}+ [DXl , DXm ]

)
s,

s ∗ (l ∗m)− s ∗ (m ∗ l) =
(√
−1{l,m}+D[Xl, Xm]

)
s.

Proof. According to Definition 4.3, we have

(s ∗ l) ∗m− (s ∗m) ∗ l
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=
(
s · l +

√
−1DXls

)
∗m−

(
s ·m+

√
−1DXms

)
∗ l

=
√
−1DXm(s · l) +

√
−1
(
(DXls) ·m+

√
−1DXmDXls

)
−
√
−1DXl(s ·m)−

√
−1
(
(DXms) · l +

√
−1DXlDXms

)
=
√
−1s · (Xml −Xlm)−DXmDXls+DXlDXms

=
√
−1{l, m}s+ [DXl , DXm ]s

since
∂l(Xm)− ∂m(Xl) = ω(Xl, Xm)− ω(Xm, Xl) = {l, m}.

Similarly we see

s ∗ (l ∗m)− s ∗ (m ∗ l) = s ∗ (l ∗m−m ∗ l)
=
√
−1s ∗ {l,m}

=
√
−1
(
{l,m}s+

√
−1DX{l,m}s

)
=
√
−1{l,m}s−D−[Xl, Xm]s

=
(√
−1{l,m}+D[Xl, Xm]

)
s

since
X{l,m} = −[Xl, Xm]

for l,m ∈ C∞(P).

Let the associator a(l,m) of l,m ∈ C∞(P) be an operator

a(l,m) : Γ∞(EX)→ Γ∞(EX)

defined by

a(l,m)s ≡ (s ∗ l) ∗m− s ∗ (l ∗m) (s ∈ Γ∞(EX)).

Then we have a relation between associativity and curvature.

Proposition 4.2 On Γ∞(EX) and for l,m ∈ C∞(P), the following equation
holds:

a(l,m)− a(m, l) = RXl,Xm ,

where R is the curvature of EX with respect to D defined by

RY,Z ≡ [DY , DZ ]−D[Y,Z] (Y, Z ∈ X(P)).
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5 A sectional representation of Hilbert C∗-modules

Before starting the main part of Theorem 1.2, we summarize notations in
this article. Let X be a Hilbert C∗-module over a unital C∗-algebra A,
Ku(P) the image of the Gel’fand representation of A and EX = (EX ,ΠX ,P)
the atomic bundle of X. For the map PX defined in (3.14), define a linear
map

PX∗ : Γ(X × P)→ Γ(EX),

(PX∗(s)) (ρ) ≡ PX(s(ρ)) ( s ∈ Γ(X × P), ρ ∈ P ).

We define a subspace ΓX of Γ(EX) as follows:
Definition 5.1

ΓX ≡ PX∗ (Γconst(X × P))

where Γconst(X × P) is the subspace of Γ(X × P) consisting of all constant
sections.

Remark 5.1 ΓX is quite smaller that the set of all holomorphic sections
of EX . In fact, by Theorem 5.1, the hermitian form restricted on ΓX is in
Ku(P). Hence ΓX is small as same as Ku(P).

We state a reconstruction theorem of a Hilbert C∗-module by the atomic
bundle.

Theorem 5.1 (i) Any element in ΓX is holomorphic.

(ii) ΓX is a Hilbert C∗-module over Ku(P).

(iii) There is an isomorphism between two Banach spaces

Ψ : X ∼= ΓX

such that the following diagram is commutative:

X × A → X

Ψ×f ↓ ↓ Ψ

ΓX × Ku(P) → ΓX ,

where two horizontal arrows mean module actions. Hence, under the
identification f : A ∼= Ku(P), ΓX is isomorphic onto X as a Hilbert
A-module.
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We prepare some lemmata for the proof of Theorem 5.1 and explain how the
structure of Hilbert C∗-module is interpreted as the geometrical structure
of the atomic bundle.

For ξ ∈ X, we define a section sξ ∈ Γ(EX) of EX by

sξ(ρ) ≡ [ξ]ρ ( ρ ∈ P ).

Consider ∗-action defined in Definition 4.3 by the atomic connection D in
Proposition 4.1 of EX . Recall that X and Γ(EX) have norms defined by (3.9)
and (4.15), respectively. Then, the following lemma holds.

Lemma 5.1 For each ξ ∈ X,

(i) ξ 7→ sξ is linear and isometric,

(ii) sξ ∈ Γ∞(EX) and it is holomorphic,

(iii) sξ ∗ fA = sξ·A for A ∈ A.

Proof. (i) ξ 7→ sξ is linear by definition of linear structure of each fiber of
EX , and we have

‖sξ‖ = sup
ρ∈P

‖sξ(ρ)‖ρ
= sup

ρ∈P
|ρ(< ξ|ξ >)|1/2

= ‖ < ξ|ξ > ‖1/2
= ‖ξ‖X .

Hence sξ is bounded on P and a map s is an isometry.
(ii) Let ρ ∈ P. Assume ρ ∈ Pb for some b ∈ B. Let (H, π) be a representative
irreducible representation of b. Take local trivialization ψα,h at (Vh, βh,Hh)
and at ρ with a typical fiber F bX defined in Definition 3.4. By (4.19), we
obtain

∂Y φh(ρ) (sξ(ρ)) = O
([
ξ

(
Kh
Y,ρ −

< z|Y >

2(1 + ‖z‖2)

)]
ρ

, h

)
. (5.21)

Owing to (4.20), the right-hand side of (5.21) is smooth with respect to
z ≡ βh(ρ) ∈ Hh, and hence, sξ is smooth at Pb for each b ∈ B. For ρ0 ∈ Pb,
we can choose h0 ∈ S(Hb) such that

ρ0 =< h0|πb(·)h0 > .
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Then βh0(ρ0) = 0. By (4.18), we have

< e |φh0(ρ)(sξ(ρ)) >=

〈
Ωh0

ρ′

∣∣∣πb(< ξ
′ |ξ >)(z + h0)

〉
√

1 + ‖z‖2

for z = βh0(ρ), ρ ∈ Vh0 . For an anti-holomorphic tangent vector Ȳ of Pb,
we have

∂̄Ȳ φh(ρ) (sξ(ρ)) = O
([
−ξ < Y |z >

2(1 + ‖z‖2)

]
ρ

, h

)
from which follows

∂̄Ȳ φh(ρ) (sξ(ρ))
∣∣
z=0 = 0.

We see that the anti-holomorphic derivative of sξ vanishes at each point in
Pb. Hence sξ is holomorphic.
(iii) Let A ∈ A. For b ∈ B and ρ0 ∈ Pb, take local coordinate (Vh, βh,Hh)
at ρ0 where h is a unit vector in H and (H, π) is a representative irreducible
representation of b. Then for z ∈ Hh, we have(

fA ◦ β−1
h

)
(z) =

< (z + h)|π(A)(z + h) >
1 + ‖z‖2

.

Then the representationXh
fA

of the Hamiltonian vector filedXfA at (Vh, βh,Hh)
is (

Xh
fA

)
z

= −
√
−1
(
π(A)(z + h)− < h|π(A)(z + h) > (z + h)

)
for z ∈ Hh. If we take h such that βh(ρ0) = 0, then it holds that(

Xh
fA

)
0

= −
√
−1
(
π(A)h− < h|π(A)h > h

)
.

D satisfies

< v|(DXfA
s)(ρ0) >ρ0= ∂ρ0

(
< v|s(·) >ρ0

)
(XfA)

for v ∈ Eh, s ∈ Γ∞(EX). Hence we have

(DXfA
sξ)(ρ0) =

[
ξaXfA ,0

]
ρ0

where aXfA ,0 ∈ A satisfies

π
(
aXfA ,0

)
h = XfA

= −
√
−1
(
π(A)− < h|π(A)h >

)
h.
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Therefore we have
√
−1(DXfA

sξ)(ρ0) =
√
−1[ ξaXfA ,0 ]ρ0

=
√
−1
[
ξ ·
(
−
√
−1
(
A− < h|π(A)h >

))]
ρ0

= [ ξA]ρ0 − [ξ]ρ0 < h|π(A)h >
= sξA(ρ0)− sξ(ρ0)fA(ρ0)

from which follows

(sξ ∗ fA)(ρ0) = sξ(ρ0)fA(ρ0) +
√
−1(DXfA

sξ)(ρ0)
= sξA(ρ0).

Therefore we arrive at

(sξ ∗ fA)(ρ) = sξA(ρ) ( ρ ∈ P )

which proves lemma (iii).

Proof of Theorem 5.1 (i). Define a map

Ψ : X → Γ∞(EX); Ψ(ξ) ≡ sξ ( ξ ∈ X ).

Then Ψ is a linear isometry by Lemma 5.1. For each τ ∈ Γconst(X × P),
there is ξ ∈ X such that τ(ρ) = (ξ, ρ) for ρ ∈ P. We denote such τ by ŝξ.
Then

s ∈ ΓX ⇔ there is ξ ∈ X such that s = PX∗ŝξ
⇔ s(ρ) = [ξ]ρ ( ρ ∈ P )
⇔ s = sξ
⇔ s = Ψ(ξ)
⇔ s ∈ Ψ(X).

Hence ΓX = Ψ(X). Therefore Theorem 5.1 (i) follows from Lemma 5.1 (ii).

Lemma 5.2 (i) ΓX is a right Ku(P)-module by ∗-action defined in Def-
inition 4.3.

(ii) For a hermitian metric H of EX which is defined by Equation (4.16),
let h be the restriction H|ΓX of H of EX on ΓX . Then a function-
valued sesquilinear form

h : ΓX × ΓX → C∞(P)
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satisfies

h(s, s
′
) ∈ Ku(P) ( s, s

′ ∈ ΓX ),
h(s, s′) = h(s

′
, s) ( s, s

′ ∈ ΓX ),
h(s, s) ≥ 0 ( s ∈ ΓX ), (5.22)

h( s, s
′ ∗ f ) = h(s, s

′
) ∗ f ( s, s

′ ∈ ΓX , f ∈ Ku(P) ),
‖h(s, s)‖1/2 = ‖s‖ ( s ∈ ΓX )

where the positivity in (5.22) means h(s, s) being a positive-valued
function on P and the norm of h(s, s) is the one defined in (4.15).

(iii) The following equation holds:

hρ (Ψ(ξ),Ψ(η)) = ρ(< ξ|η >) ( ξ, η ∈ X, ρ ∈ P ).

Proof. (i) From the proof of Theorem 5.1 (i), ΓX = Ψ(X). Since Lemma
5.1 (iii) and Ku(P) = f(A), the following map

ΓX ×Ku(P) = Ψ(X)× f(A) 3 (s, l) 7−→ s ∗ l ∈ Ψ(X) = ΓX

is bilinear. Hence, ΓX is a right Ku(P)-module. Thus (i) is verified.
(ii) and (iii): Next, we have the following equations

hρ(Ψ(ξ), Ψ(ξ
′
)) = hρ(sξ, sξ′ )

= Hρ(sξ, sξ′ )
= < sξ(ρ)|sξ′ (ρ) >ρ
= ρ(< ξ|ξ′ >),

which proves (iii). Furthermore,

ρ(< ξ|ξ′ >) = f<ξ|ξ′>(ρ).

Therefore h(Ψ(ξ), Ψ(ξ
′
)) = f<ξ|ξ′> ∈ Ku(P). Hence h(s, s

′
) ∈ Ku(P) for

each s, s
′ ∈ ΓX . For ξ, η ∈ X, A ∈ A,

hρ( sη, sξ ∗ fA ) = hρ(sη, sξA)
= ρ(< η|ξA >) ( by using (iii) )
= ρ(< η|ξ > A)
= (f<η|ξ>A)(ρ)
=

(
f<η|ξ> ∗ fA

)
(ρ)

=
(
h(sη, sξ) ∗ fA

)
(ρ).
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Hence it is shown that

h(s, s
′ ∗ l) = h(s, s

′
) ∗ l (s, s

′ ∈ ΓX , l ∈ Ku(P)).

Remain equations appearing in the statement (ii) follow from the property
of C∗-valued inner product of X and the proof of Lemma 5.1 (i). This com-
pletes the proof of (ii).

Proof of Theorem 5.1 (ii), (iii): (ii) By Lemma 5.2 (i), (ii) and Definition
3.2,

h : ΓX × ΓX → Ku(P) (5.23)

is a positive definite C∗-inner product of ΓX . Hence ΓX is a Hilbert C∗-
module over a C∗-algebra Ku(P).
(iii) By the proof of Lemma 5.1 (i) and Lemma 5.2 (i), Ψ is an isomorphism
between X and ΓX . If we rewrite module actions φ and ψ of X and ΓX ,
respectively, by

φ(ξ,A) = ξA,
ψ(s, l) = s ∗ l

for ξ ∈ X, A ∈ A, s ∈ ΓX and l ∈ Ku(P), then we have

(ψ ◦ (Ψ× f)) (ξ, A) = Ψ(ξ) ∗ fA
= sξ ∗ fA
= sξA
= Ψ(ξA)
= (Ψ ◦ φ) (ξ, A)

by Lemma 5.1 (iii). Hence we obtain the following equation:

ψ ◦ (Ψ× f) = Ψ ◦ φ.

Therefore the diagram in the statement (iii) is commutative.

We summarize our results. The functional representation f of a non
commutative unital C∗-algebra A with the set P of all pure states on A,
and the sectional representation s of a Hilbert A-module X are given as
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follows:

A
f∼= Ku(P) ⊂ C∞(P),

A 7→ fA; fA(ρ) ≡ ρ(A),
(A ∈ A, ρ ∈ P),

X
s∼= ΓX ⊂ Γholo(EX),

ξ 7→ sξ; sξ(ρ) ≡ [ξ]ρ,
(ξ ∈ X, ρ ∈ P)

where EX is the atomic bundle of X and Γholo(EX) is the set of all holomor-
phic sections on EX . The correspondence of module structures of them is
the following:

(ξ,A) ∈ X ×A ∼= ΓX ×Ku(P) 3 (sξ, fA)

↓ ↓

ξA ∈ X ∼= ΓX 3 sξ ∗ fA.

Remark 5.2 Compairing the characterization of non commutative Gel’fand
representation of C∗-algebra by [3], it seems that our characterization is not
sufficient. Reader may request that another characterization which is de-
fined by uniformity and etc, is necessary. Of course, we have tried to find
more suitable characterization of section. Despite of our effort, we have not
suceeded yet. The difficulty of characterization is similar to Remark 2.3.
This is a problem in our future study.

Acknowledgement I would like to thank Prof. I.Ojima for a critical read-
ing of this paper.

Appendix

A Hopf bundle

We summarize about Hopf bundle and its associated bundle.
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A.1 Definition

We denote H a Hilbert space over C such that dimH ≥ 1. Denote C× ≡
C \ {0}. Define

S(H) ≡ {z ∈ H : ‖z‖ = 1},

P(H) ≡ (H \ {0})/C×.

We call S(H) and P(H) a Hilbert sphere and a projective Hilbert space over
H, respectively. We denote an element of P(H) by [z] for z ∈ H \ {0}. We
define a topology of S(H) the relative topology of H, and that of P(H) the
quotient topology from H \ {0} ⊂ H by the natural projection. Define a
projection µ from S(H) to P(H) by

µ : S(H)→ P(H),

µ(z) ≡ [z] (z ∈ S(H)).

Definition A.1 We call (S(H), µ,P(H)) a Hopf (fiber)bundle over H.

Clearly, µ−1([z]) ∼= S1 for each [z] ∈ P(H).

Example A.1 When H = C, then

S(H) = S1, P(H) = {1pt}.

When H = C2,
S(H) = S3, P(H) = CP 1.

We define local trivial neighborhoods of a Hopf bundle ([3]).
Fix h ∈ S(H) and define

Wh ≡ {z ∈ S(H) :< h|z >> 0},

Vh ≡ {[z] ∈ P(H) :< h|z >6= 0},

Hh ≡ {z ∈ H :< h|z >= 0},

βh : Vh → Hh; βh([z]) ≡ z

< h|z >
− h ([z] ∈ Vh).

Then {(Vh, βh,Hh)}h∈S(H) is a system of local coordinates of P(H). P(H)
is a Kähler manifold by this local coordinate system [3].
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Let ψh be the local trivialization of S(H) at Vh defined by

ψh : µ−1(Vh) ∼= Vh × U(1)

ψh(z) ≡ ( [z], φh(z) ),

φh(z) ≡ < z|h >
| < h|z > |

( z ∈ µ−1(Vh) ),

ψ−1
h ([z], g) ≡ z

< h|z >
| < h|z > |

g ( [z] ∈ Vh, g ∈ U(1) ).

Hence {Vh}h∈S(H) is a system of local trivial neighborhoods of P(H) for
(S(H), µ,P(H)). Let R be a right action of U(1) on S(H) defined by

S(H)× U(1)→ S(H); (z, c) 7→ z · c = Rcz ≡ c̄z.

Then the following conditions are satisfied:

(i) µ(Rcz) = µ(z),

(ii) R is free, that is, if Rcz = z, then c = 1,

(iii) for each h ∈ S(H),

φh(Rcz) =
< z|h >
| < h|z > |

c (z ∈ S(H), c ∈ U(1)).

Hence (S(H), µ,P(H)) is a principal U(1)-bundle.

Lemma A.1 For h, h
′ ∈ S(H), assume Vh′ ∩ Vh 6= ∅. For z,X ∈ Hh, we

have

(βh′ ◦ β
−1
h )(z) =

h+ z

< h′ |h+ z >
− h′ ,

∂z(βh′ ◦ β
−1
h )(X) =

1
< h′ |h+ z >

X − < h
′ |X >

< h′ |h+ z >2
(h+ z).

Definition A.2 For a local trivial neighborhood Vh,

Ωh : Vh → S(H)

is a local section defined by

Ωh([z]) ≡ < z|h >
| < z|h > |

z ([z] ∈ P(H))

where z ∈ S(H).
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By definition, < h|Ωh(ρ) >> 0 for ρ ∈ Vh.

A.2 Transition function

If h, h
′ ∈ S(H) such that h

′ ∈ Vh, then the transition function

Qh′h : Vh ∩ Vh′ → U(1)

is defined by

Qh′h([z]) ≡ < z|h′ >
| < h′ |z > |

(
< z|h >
| < h|z > |

)−1

=
< z|h′ >
| < h′ |z > |

< h|z >
| < h|z > |

.

Fact A.1 (i)

Qhh([z]) = 1 ([z] ∈ Vh).

(ii) If h, h
′ ∈ S(H) satisfy < h

′ |h >6= 0, then

Qh′h = Q−1
hh′
.

(iii) If h, h
′
, h
′′ ∈ S(H) are mutually non orthogonal, then

Qh′′h′ ([z]) ·Qh′h([z]) = Qh′′h([z]) ([z] ∈ Vh ∩ Vh′ ∩ Vh′′ ).

Lemma A.2 Let X be a tangent vector of P(H) at ρ ∈ Vh ∩ Vh′ which is
realized in Hh′ and βh′ (ρ) = z. Then we have

∂z
(
Q−1
h
′
h
◦ β−1

h′

)
(X) = −1

2
< z + h

′ |h >2< h|X >

| < h|z + h′ > |3
.

Proof. For w ∈ Hh′ , we have(
Q−1
h′h
◦ β−1

h′

)
(w) =

(
Qhh′ ◦ β

−1
h′

)
(w)

=
< w + h

′ |h >
| < h|w + h′ > |

< h
′ |w + h >

| < h′ |w + h > |

=
< w + h

′ |h >
| < h|w + h′ > |
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because < h
′ |w >= 0 by definition of Hh′ .

∂z
(
Q−1
h
′
h
◦ β−1

h
′

)
(X) = −1

2
< z + h

′ |h >2< h|X >

| < h|z + h′ > |3
.

Lemma A.3(
Qh′h ◦ β

−1
h′

)
(w) · ∂w

(
Q−1
h′h
◦ β−1

h′

)
(X) = −1

2
< h|X >

< h|w + h′ >
.

Proof. By the previous lemma,

(
Qh′h ◦ β

−1
h′

)
(w) · ∂w

(
Q−1
h′h
◦ β−1

h′

)
(X)

=
< h|w + h

′
>

| < w + h′ |h > |
·
(
−1

2
< h|X >< w + h

′ |h >2

| < h|w + h′ > |3

)

= −1
2
< h|w + h

′
>< h|X >< w + h

′ |h >2

< w + h′ |h >2 < h|w + h′ >2

= −1
2

< h|X >

< h|w + h′ >
.

A.3 Associated bundles of Hopf bundles

Let F be a C∞-manifold with left U(1)-action α and S(H) × F the direct
product space of S(H) and F . Define a right U(1)-action γ on S(H) by

zγc ≡ c̄z ( c ∈ U(1), z ∈ S(H) ).

We define S(H) ×U(1) F by the set of all orbits of U(1) in S(H) × F
where a U(1)-action is defined by

(z, f)c ≡ (zγc, α(c̄)f) ( c ∈ U(1), (z, f) ∈ S(H)× F ).
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The topology of S(H)×U(1)F is induced from S(H)×F by the natural pro-
jection π : S(H)×F → S(H)×U(1)F . We denote the element of S(H)×U(1)F
containing (x, f) by [(x, f)]. Define a projection

πF : S(H)×U(1) F → P(H)

by
πF ([(x, f)]) ≡ µ(x)

(
[(x, f)] ∈ S(H)×U(1) F

)
.

Definition A.3 A fibration F ≡
(
S(H)×U(1)F, πF , P(H)

)
is called the

associated bundle of (S(H), µ,P(H)) by F .

For h ∈ S(H), define a map

ψα,h : π−1
F (Vh)→ Vh × F

by
ψα,h ([(z, f)]) ≡ (µ(z), φα,h([(z, f)]) ) ,

φα,h([(z, f)]) ≡ α(φh(z))f ( [(z, f)] ∈ π−1
F (Vh) ).

Hence we have

ψα,h([(z, f)]) =
(

[z], α

(
< z|h >
| < h|z > |

)
f

)
( [(z, f)] ∈ π−1

F (Vh) ),

ψ−1
α,h([z], f) =

[(
z, α

(
< h|z >
| < h|z > |

)
f

)]
( ([z], f) ∈ Vh × F ).

The definition of ψα,h is independent choice of (z, f). In fact, if (z
′
, f
′
) =

(z, f)c for c ∈ U(1), then (z
′
, f
′
) = (c̄z, α(c̄)f) and

ψα,h([(z
′
, f
′
)] =

(
[z
′
], α

(
< z

′ |h >
| < h|z′ > |

)
f
′
)

=
(

[z], α

(
c
< z|h >
| < h|z > |

)
α(c̄)f

)

=
(

[z], α

(
< z|h >
| < h|z > |

)
f

)

= ψα,h([(z, f)]).
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ψα,h is a local trivialization of F at Vh. The transition function is given by

Q̂α,h′ ,h ≡ ψα,h′ ◦ ψ
−1
α,h : (Vh′ ∩ Vh)× F → (Vh′ ∩ Vh)× F,

([z], f) 7→
(

[z], α(Qh′h([z]))f
)
.

Each vector space V over C has the scalar multiplication as U(1)-action α.
If F = V , then we have

ψα,h ([(z, f)]) =
(

[z],
< z|h >
| < h|z > |

f

)
( [(z, f)] ∈ π−1

F (Vh) ),

Q̂α,h′ ,h([z], f) =

(
[z],

< z|h′ >
| < h′ |z > |

< h|z >
| < h|z > |

f

)
(

([z], f) ∈ (Vh′ ∩ Vh)× F
)
.

A.4 Recovery of the typical fiber

Let (S(H), µ,P(H)) be a Hopf bundle and F a complex Hilbert space. We
consider S(H)×U(1) F by the scalar multiple of U(1).

Proposition A.1 There is the following equivalence relation of fiber bun-
dles on P(H): (

S(H)×U(1) F
)
×P(H) S(H) ∼= S(H)× F

where the left hand side is the fiber product of (S(H)×U(1)F, πF ,P(H)) and
(S(H), µ,P(H)), and (S(H)× F, µF ,P(H)) is the trivial bundle.

Proof. Let
X1 ≡

(
S(H)×U(1) F

)
×P(H) S(H).

We note that any element of X1 is written as ([(h, v)], h) where [(h, v)] ∈
S(H)×U(1) F because

πF ([(h, v)]) = µ(h)

and we can choose phase factor of (h, v) according to h. Let

π̂F : X1 → P(H); π̂F ([(h, v)], h) ≡ h.
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Define a map

Φ : X1 → S(H)× F ; Φ ([(h, v)], h) ≡ (h, v).

If (h
′
, v
′
) ∈ [(h, v)], then there is c ∈ U(1) such that

(h
′
, v
′
) = (h, v)c = (hγc, c̄v) = (c̄h, c̄v).

But our notation restricts c = 1 since h
′

= h. Hence Φ is well defined. Φ is
bijective. Furthermore

(µF ◦ Φ)([(h, v)], h) = µF (h, v)
= h
= π̂F ([(h, v)], h).

Therefore µF ◦ Φ = π̂F and (Φ, id) is a bundle map between X1 and
(S(H)× F, µF ,P(H)). Hence we have the statement.

Let G be a group such that G acts on S(H) transitively and acts on F
trivially. Then we have the following proposition.

Proposition A.2 There is the following equivalence of linear spaces:((
S(H)×U(1) F

)
×P(H) S(H)

)/
G ∼= F.

Proof. We use the symbol in the previous proposition. Let α and β be
actions of G on S(H) and F , respectively. Denote the action

α̂ ≡ (α×U(1) 1)×P(H) α

of G on X1 and

Y1 ≡
((
S(H)×U(1) F

)
×P(H) S(H)

)/
G.

For [x] = [([(h, v)], h)] ∈ Y1,

[x] = {([(αgh, v)], αgh) : g ∈ G} .

Hence we can extend Φ as

Φ̂ : Y1 → S(H)× F ; Φ̂([x]) ≡ [Φ(x)].
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Then
Φ̂([([(h, v)], h)]) = [Φ([([(h, v)], h))]

= {Φ ([(αgh, v)], αgh) : g ∈ G}
= {(αgh, v) : g ∈ G}
= S(H)× {v}.

Note Φ̂ is bijection, too. Hence we denote v̂ ≡ Φ̂([([(h, v)], h)]).] We define
a linear structure for Y1 by

av̂ + bŵ ≡ ̂(av + bw) (v, w ∈ F, a, b ∈ C).

Then
ˆ: Y1 → F

is a linear isomorphism.

A.5 Connections of an associated bundle of a Hopf bundle

Let F ≡ (S(H)×U(1) F, πF ,P(H)) be an associated vector bundle of a Hopf
bundle (S(H), µ,P(H)) by a complex Hilbert space F . Let Γ(F) be the set
of all smooth sections of F, that is the set of right inverses of a projection
πF . By the following operations, Γ(F) is a complex linear space:

(s+ s
′
)(ρ) ≡ s(ρ) + s

′
(ρ) (ρ ∈ P(H), s, s

′ ∈ Γ(F)),

(ks)(ρ) ≡ ks(ρ) (ρ ∈ P(H), s ∈ Γ(F), k ∈ C).

Definition A.4 D is a connection of F if D is a bilinear map of complex
vector spaces

D : X(P(H))× Γ(F)→ Γ(F)

which is C∞(P(H))-linear with respect to X(P(H)) and satisfies the Leibniz
law with respect to Γ(F):

DY (s · l) = ∂Y l · s+ l ·DY s

for s ∈ Γ(F), l ∈ C∞(P(H) and Y ∈ X(P(H)).

For Y ∈ X(P(H)), h ∈ S(H) and ρ ∈ Vh, we denote Y h
ρ a tangent vector at

ρ in a local coordinate Hh. We consider a linear map

AhY,ρ : F → F

such that ∂Y |hρ +AhY,ρ is a connection of F.
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Fact A.2

D ≡ ∂ +A

is a connection of F if and only if a family {Ah}h∈S(H) satisfies the following
equality:

Ah
′

Y,ρ = −1
2

< h|Y >

< h|z + h′ >
+AhY,ρ ( ρ ∈ Vh′ ∩ Vh ) (A.24)

where Y is a holomorphic tangent vector of P(H) at ρ which is realized on
Hh′ and z = βh′ (ρ).

Proof. By using Leibniz rule and Lemma A.3,(
Ah
′

Y ◦ β−1
h′

)
(z) = −1

2
< h|Y >

< h|z + h′ >
+
(
AhY ◦ β−1

h′

)
(z) ( z ∈ βh′ (Vh′ ∩Vh) ).

We have the statement.

B The atomic connection

Proof of Proposition 4.1.
At the beginning, we show the cocycle condition for A ≡ {Ah}h∈S(Hb)

defined by (4.17). For ρ ∈ Pb, choose h, h
′ ∈ S(Hb) such that ρ ∈ Vh ∩ Vh′ .

The cocycle condition for A is given by (A.24) in Appendix A.2.

43



Let z
′ ≡ βh′ (ρ), z ≡ βh(ρ). Then we have

−2 ·AhX,ρ =
< z|Xh

ρ >

1 + ‖z‖2

=
< (βh ◦ β−1

h′
)(z
′
) | ∂z′ (βh ◦ β

−1
h′

)(Xh
′

ρ ) >
1 + ‖(βh ◦ β−1

h
′ )(z

′
)‖2

=

〈
z
′
+ h

′

< h|z′ + h
′
>

Xh
′

ρ

< h|z′ + h
′
>
− < h|Xh

′

ρ > (z
′
+ h

′
)

< h|z′ + h
′
>2

〉
∥∥∥∥∥ z

′
+ h

′

< h|z′ + h
′
>

∥∥∥∥∥
2

=
< z

′
+ h

′ |Xh
′

ρ > − ‖z
′
+ h

′‖2 < h|Xh
′

ρ >

< h|z′ + h
′
>

‖z′ + h
′‖2

= < z
′ |Xh

′

ρ >

1 + ‖z′‖2
− < h|Xh

′

ρ >

< h|z′ + h
′
>

( since < h
′ |Xh

′

ρ >= 0)

= −2 ·Ah
′

X,ρ −
< h|Xh

′

ρ >

< h|z′ + h
′
> .

We obtain (A.24). Therefore D which is defined in Proposition 4.1 is a
connection.

The curvature R of D is written by using A defined in (4.17) as follows:

RX,Y = (dA)(X,Y ) + (A ∧A)(X,Y ) (X,Y ∈ X(Pb) ).

Since A is scalar,
A ∧A = 0.
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In a local coordinate (Vh, βh,Hh) of ρ ∈ Pb and z = βh(ρ) ∈ Hh, we have

(dzA)(X,Y ) = XAhY,z − Y AhX,z −Ah[X,Y ],z

=
X < z|Y > −Y < z|X >

2(1 + ‖z‖2)

+
< z|X >< z|Y > − < z|X >< z|Y >

2(1 + ‖z‖2)2

− < z|[X,Y ] >
2(1 + ‖z‖2)

=
dz(< z| · >)(X,Y )

2(1 + ‖z‖2)

=
(d2
zk)(X,Y )

2(1 + ‖z‖2)

= 0,

where a one-form < z|· > is defined by

< z|· > (X) ≡< z|X >

and a function k(z) ≡ ‖z‖2 =< z|z > defined on Hh. Hence we arrive at

R = 0.

Thus D is flat.

C Proof of Lemma 4.1

Proof. Let φα,h : (Πb
X)−1(Vh)→ F bX be a map defined by

ψα,h(x) = (µb(h), φα,h(x)) .
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For e = O([ξ
′
]ρ′ , h) ∈ F bX such that h ∈ µ−1

b (ρ), we have

< e |φα,h(s(ρ)) >= < O([ξ
′
]ρ′ , h

′
) |O([ξ]ρ, h) >

=
〈

[ξ
′
]ρ
∣∣∣[ξuh

ρ,ρ
′

]
ρ′

〉
ρ′

= ρ
(
< ξ

′ |ξρuhρ′ ,ρ′ >
)

=
〈

Ωh
ρ′
|πb(< ξ

′ |ξρuhρ′ ,ρ >)Ωh
ρ′

〉
=

〈
Ωh
ρ′
|πb
(
< ξ

′ |ξρ >
)
πb
(
uh
ρ′ ,ρ

)
Ωh
ρ
′

〉
=

〈
Ωh
ρ′
|πb
(
< ξ

′ |ξρ >
)

Ωh
ρ

〉

=

〈
Ωh
ρ
′ |πb(< ξ

′ |ξρ >)(z + h)
〉

√
1 + ‖z‖2

.

From this, the following equality holds:

< e | ∂Y φh(ρ)(s(ρ)) >= ∂Y < e |φh(ρ)(s(ρ)) >

= ∂Y

( 〈
Ωh
ρ′
|πb(< ξ

′ |ξρ >)(z + h)
〉

√
1 + ‖z‖2

)

=

〈
Ωh
ρ′
|πb(∂X < ξ

′ |ξρ >)(z + h)
〉

√
1 + ‖z‖2

+

〈
Ωh
ρ′
|πb(< ξ

′ |ξρ >)Y
〉

√
1 + ‖z‖2

−

〈
Ωh
ρ
′ |πb(< ξ

′ |ξρ >)(z + h)
〉
< z|Y >

2(
√

1 + ‖z‖2)3.

Hence we have

∂Y φh(ρ) (s(ρ)) = O
([

∂Y ξ̂ρ + ξρ

(
Kb
Y −

< z|Y >

2(1 + ‖z‖2)

)]
ρ

, h

)
. (C.25)
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We finish to prove Lemma.
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