(Geometric realization of T-shaped root systems and
counterexamples to Hilbert’s fourteenth problem

Shigeru MUKAT *

Abstract: Generalizing a result of Dolgachev, we realize the root system 7, ,, in the
cohomology group of a certain rational variety of Picard number p + ¢+ r — 1. As an
application we show that the invariant ring of a tensor product of the actions of Nagata
type is infinitely generated if the Weyl group of the corresponding root system 7} ,, is
infinite. In this sense this article is a continuation of [4].

1

The Dynkin diagram T}, ,

T T

o o o—

defines a lattice L, ,, of rank p4+g+r—2. The set of vertices o;’s is its basis
as a free Z-module. The bilinear form is defined to be (¢;.c;;) = —2,0 or 1
according as ¢ = j, o; and «; are disjoint or joined by an edge. It is known
that the root system T, ,, is of finite type, affine or infinite according as
I/p+1/g+1/ris>1,=1or <1 ([2] Ex. 4.2).

In the case p = 2, Dolgachev[l] realizes this root system 75 ,, in the
cohomology group of the blow-up Bl ,pis P"' of the (r — 1)-dimensional
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projective space P"~! at ¢ + r points in general position. This is a general-
ization of the classical discovery that the configuration of the 27 lines on a
nonsingular cubic surface S C P3, which is the blow-up of P? at six points,
has a symmetry of the Weyl group of Eg = T533 (cf. [3]). The moduli of
cubic surfaces is a quotient of an open set of P2 x P2 by W (Fjg) (cf. [1])
and the cohomology group H?(S,Z) has a monodromy action of W (FEs).

€1 — €2 €2 — €3 €3 — €4 €4 — €5 €5 — €g
O O O

h—€1—62—63

The reflections by e; — e;.1, 1 < i < 5, generate all permutations of the 6
points which are the centers of blowing up and that by h — e; — eg — €3
corresponds to the quadratic Cremona transformation

PZ"'—>P2, (561212‘2::173)!—)(1/561:1/33‘221/$3).

It is natural to extend the result of Dolgachev to all diagrams of T-shape.
The answer is simple: just generalize P"~! to the product (P"~1)P~1 of its
p—1 copies. Let X be a blow-up of the product (P"~!)?~! at g+ points in
general position. The second cohomology group H?(X, Z), or equivalently
Pic X, is a free Z-module of rank p+ ¢ + r — 1 and has a basis consisting
of

hi, 1<i<p-1, and e;, 1<j<qg+r, (1)

where h; is the pull-back of the hyperplane class on the ¢th factor of
(P™1)?~1 and e; the class of the exceptional divisor over the jth center
of blowing up. We refer (1) as the tautological basis.

Theorem 1 The root system 1, ,, is realized in the orthogonal comple-
ment L of the anti-canonical class c1(X) in the second cohomology group
H?*(X,7Z) endowed with a certain symmetric bilinear form. (See §3.) More-
over, for each element w : H*(X,Z) — H*(X,Z) of the Weyl group
W (Tpqr), there is a strong birational map ¥, : Xy - -- — X of a a blow-up
X of (PT1)P71 at q + r points such that the pull-back of a tautological
basis of X,, coincides with the transformation of that of X by w.
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A birational map is called strong if it is an isomorphism in codimension
one.

In the special case ¢ = 1, X has a birational action of W(T},1,) =
W (Ap+r—1), which is the symmetric group of degree p + r. In fact X is
a GIT quotient of the Grassmannian variety G(p,p + r) by the maximal
torus T' ~ (C*)P™"~! of its automorphism group G ~ PGL(p + r). Hence
the Weyl group of G acts on X birationally. X is a compactification of the
configuration space of ordered p + r points on P

Remark The isomorphism between G(p,p + r) and G(r,p + r) induces
a strong birational map between Bl s (P™71)P7! and Bl s (PP
and hence that between Bl ,pis (P™1)P~! and Blyygpis (PP1) 1. For ex-

INr—1

ample Bl ,pis P’ is strongly birationally equivalent to Blagps (P?)

2

Our interest in Theorem 1 comes from Nagata’s counterexample to Hilbert’s
fourteenth problem also. Let

(t1,...,tn) €C" L Clzy,...,ZTn,Y1,--.,Yn) =: S (2)
o 1<i<n,
Yi = Yi + 4T

be the standard unipotent action of C”, or the additive algebraic group
G more precisely, on the polynomial ring .S of 2n variables and G C C"
a general linear subspace. In [5], Nagata studied the invariant ring S¢ of
the subaction of G. The key fact is that the ring S¢ is isomorphic to the
total coordinate ring

TC(X):= @ H(X,Ox(ah—bier—-- —bnes)) = D H(X,L)
a,bi,....bn€Z LePic X
(3)

of the variety X = Bl s P ! where r is the codimension of G C C".

In [4], we pay attention to the support of this graded ring 7C(X),
which is the semi-group Eff X C Pic X of effective divisor classes on X. A
divisor D C X is called a (—1)-divisor if there is a strong birational map
X -+ — X’ such that the image of D can be contracted to a smooth point.
Obviously the linear equivalence class of a (—1)-divisor is indispensable as
generator of Eff X.



Assume that the inequality

1 1 1

- <1. 4
2 n-—r * r (4)
holds. Then the Weyl group W (13 ,,—,,) of X is infinite and infinitely many
(—1)-divisors on X are obtained as its orbit. Hence Eff X and 7TC(X) are
not finitely generated. This is an outline of the main argument of [4].

In order to obtain more examples, we take p — 1 actions

Gi \Lc[xla"'axnayla'“ayn}::Sa GZCC",lgzgp—l

of Nagata type on the same polynomial ring S and take their tensor product

p—1 ~
G=®G¢¢S®C[$]---®C[$]SZ:S (5)
i=1
over Clz1,...,x,]. S is a polynomial ring of pn variables.

Theorem 2 The invariant ring S€ of the above action (5) is isomorphic
to the total coordinate ring

&P HO(X, OX(a1h1 —|-"'+(Ip_1hp_1 —bieg —--- —bnen))

al,...,ap_l,bl,...,bnez
of the blow-up X of the product P! x ... x P> 171 of p — 1 projective
spaces at n points, where h; is the pull-back of the hyperplane class of P71,

We can localize the action (5) by z1,...,z, since they are G-invariant.
Then the additive group G acts on

g[xl_lv ) xT_Ll:I = S[xl_lv R x;l] Oclzz-1] *** OClzz-1] S[xl_la ) ‘T’.El]
+1 +1 Y1 Y +1 +1 9 Y
:C[xl R 7x_1a---7x_2]®C[m,m—1]'"®C[:c,:c_1]C[x1 IR Y ,117_1,.“’517_2 .

Since (t1,...,t,) € G; acts by the translation y;/z; — y;/z;+t;, 1 < j < mn,
the invariant ring S[z7?,...,z,;']¢ is a polynomial ring of r{ + --- + 1,1
variables. The rest of the proof is similar to that of the case p = 2 in [4]
and we omit it.

If r;’s are all the same, then we can apply Theorem 1 and obtain the

following by the same reason, that is, X has infinitely many (—1)-divisors.
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Theorem 3 The invariant ring S¢ of (5) is not finitely generated if G; C
C" are general subspaces of codimension r and if the inequality

1 1

1
. +-<1
p n—r T

holds.

In the case p = 2 there are three cases where the diagram is of affine
type:

r q X diagram dimG =gq
3 6 Blyys P? T [6),3 6
4 4 BlgysP? T 144 4
6 3 Blgps P° Ty 316 3

Allowing p > 3, we obtain three new ones with p < r. (See Remark at the
end of §1.)

progq X diagram dimG = (p—1)q
3 3 3 Blﬁpts P2 X ].:)2 T3,[3],3 6
3 6 2 Blgpts P5 X P5 T3,[2],6 4
4 4 2 BlopsPPxP?xP? Ty, 6

Ty q, is the diagram 7)., plus an extra vertex, which is defined in the
next section.

3 Proof of Theorem 1

Let X be as in the theorem. The anti-canonical class ¢;(X) is equal to
r(hi+- 4 hpa) = (r=2)(er 4+ + egir).
We define an integral symmetric bilinear form on H?(X,Z) as follows:

1. h; and e; are orthogonal forevery 1 <¢<p-—1land1<j<gqg+r,
2.
(ei-e;) = { 0 otherwise and - (hi-hj) = { r —1 otherwise.
We take a new Z-basis of H*(X,Z) consisting of
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1. hy —eg —---— e,

2. hi —hiy1, 1<i<p-2,
3.ej—ejy1, 1<j<qg+r—1,and
4. eqyr-

Then H?(X,Z) becomes a root system with the following diagram, which
is denoted by T}, 4. (See [2] §5.11 also for T g 3.)

€1 — €2 €2 — €3 €r — €r41 €g+r—1 — €q4r C€q4r
O—- O === OG- O O—=>0

hl_el_”'_eT

? hi — hs

|

|

|

|

|

|

!

|
hp—3 — hp_s
hp—3 — hp_1

The p+ g+ r — 2 classes except for e, are of length —2 and form a basis of
the orthogonal complement L of ¢;(X) in H*(X,Z). Hence L is isomorphic

to the root lattice Ly .

In order to show the latter half of Theorem 1, it is enough to check it
for the simple reflections. This is obvious for e; — e;j41’s and h; — hjy1’s
since they correspond to transpositions of a pair of centers and a pair of
factors. The reflection with respect to hy — e; — .-+ — e, transforms the
tautological basis (1) of H%(X,Z) as follows:

hiw (r—1)h1 — (r—2)%%_; e

hl—)(r—l)hl—i—h—(r—l)zj 1€, 2<i<p-1, (6)
ejr>hi—e—--—€ —-—ep, 1<3<r,
ej — €j, r+l1<j<gqg+r.



Let P = {p1,...,p,} be a set of r distinct points on (P"1)P~1. P is
non-degenerate if ith components pgi), cen pff) spans P71 for every 1 <3 <
p — 1. If P is non-degenerate we can choose homogeneous coordinates of
P '’s such that P is the image of the r coordinate points by the diagonal

morphism A : P71 — (Pr-1)p-1,

Lemma Let P = {p1,...,p-} and Q = {q1, ..., q-} be non-degenerate sets
of r points of (P™"1)?~1 and Xp and Xq be the blow-ups with center P and
Q, respectively. Then there exists a strong birational map

U=Upg:Xp-- — Xg

such that
U*hl = (r— 1)hy — (r — 2) Siopej
U*h! = (r—l)h1+h—(r—1)z§ e, 2<i<p-1, (7)
\If*e’—hl—el ce— € — e —epy, 1<j5<,

where {h;,e;} and {h},e
respectively.

0 J} are tautological bases of Pic Xp and Pic X,

Proof. We may assume that both P and () are the image of the coor-
dinate points by the diagonal morphism A. Consider the (toric) Cremona
transformation

U: P IlxPIx...xPl... s P IxPIx...x P!

((T1:zo:eoizy),(Yr1:y2 oo i¥r)yey (212000000 2))
i e G e e e )

Its indeterminacy locus is the union Ui<;<j<,H;NH; of the intersection of all
pairs of H;’s, where Hy, ..., H, are the pull-backs of coordinate hyperplanes
of the first factor. The map V is an isomorphism off the union Ui<i<rH; and
U2 is the identity. By blowing-up, we obtain the commutative diagram:

L
XP e — XQ
1 I
Pl ...... - Pl
U



Let (Xo,...,X,),(Ys,...,Y.),...,(Za, ..., Z,) be the standard inhomoge-
neous coordinate of (P"™"1)?~! arround py = A(1:0:...:0). Then the
rational map Xp--- — (P"1)P~1 is given by

Eiro(Xe:...: X, Yo .0, o iy i Zp)
L Y Y L L
((O.E.....XT),(I.)Q.....XT),...,(l.XZ.....XT)).

over the exceptional divisor F; over p;. Hence W resrtricted to E; is a
birational map onto (the strict transform of) the divisor H;. Therefore, ¥
is an isomorphism in codimension one. (7) is obvious. O
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