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Abstract

Let pug and pp be a Gaussian measure and a Poisson measure on
E* | respectively. Let a; and aj be respectively annihilation and cre-
ation operators at a point ¢ € R. In the theory of quantum white noise,
it is known that a; is a continuous linear operator from I',(Ec) into
itself and af is a continuous linear operator from I',(Eg)* into itself.
In paticular, a; + a; and a; + a; + aja; + I are called the quantum
Gaussian white noise and the quantum Poisson white noise, respec-
tively. The main purpose of this work is to realize quantum Gaussian
and Poisson white noises in terms of multiple Wiener-1t6 integrals, and
show that such realizations cannot be achieved by J-transform and its
holomorphy, but can be done by Sx-transform depending on the expo-
nential function d)? , which determines a unitary isomorphism between
Boson Fock space and L?(E*, ux), X = G, P. In Appendix A, some
connections between [6][7] and [9] will be discussed.

1 Introduction

Let E* be the dual space of a nuclear space E. The complexification of F
is denoted by FEc. Let pug and pp be a Gaussian measure and a Poisson
measure on E* | respectively. It can be shown that the spaces of generalized
functions 'y, (E¢)* and test functions I',(Er) derived from Boson Fock space
are characterized in terms of analyticity and growth conditions on their J-
transforms, Theorem 2.2 and 2.3, respectively. It is important to notice
that the J-transform can be introduced independently from the structure
of measures ux on E*. In addition, we need not refer to the isomorphism
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Ux between the Boson Fock space and L?(E*, ux) in order to characterize
spaces ['y(Ec)* and 'y (Ec) in terms of their J-transforms. In fact, the es-
sential tools to prove Theorems 2.2 and 2.3 are the Cauchy integral formula
for entire holomorphic functions of several variables, Legendre transform,
dual function, Schwartz kernel theorem, and properties of the nuclear space.
Hence the measure px “seems” to play no role in the theory of general-
ized functions on infinite dimensional space. So we have the following two

questions:
Q1. What is the role of L?(E*, ux) ?

Q2. How do we realize quantum Gaussian and Poisson white noises in
terms of multiple Wiener-It6 integrals ?

Unfortunately, J-transform cannot give us exact answers to (Q1)(Q2) due
to the lack of the isomorphism Ux.

To answer the natural questions above, it is necessary to construct the
Gel’fand triple in terms of multiple Wiener-Ito6 integrals associated with px
on E*. Of course, the spaces of generalized functions [E];  and test func-
tions [E],, x originated from L?(E*, ux), X = G or P, can be characterized
in terms of analyticity and growth conditions on their Sx-transforms, The-
orems 4.1 and 4.3, respectively. As a result, one can see in Theorem 4.5 the
correspondences between classical and quantum white noises of Gaussian
and Poisson types. That is, a quantum Gaussian white noise is a Fock space
realization of a classical Gaussian white noise B(t) and a quantum Poisson
white noise is of a classical Poisson white noise P(t).

2 Gel’fand Triple in Terms of Boson Fock Space

Consider the special Hilbert space H = L?(R,dt) with norm |- |o. Let A
be an operator in H such that there exists an orthonormal basis {e;}32;
satisfying the conditions:

1. Aej = /\jej,
2.1< M <A< <A <y
3. 200 )\J-_Qa < oo for some positive constant a.

For each p > 0, define the norm [£|, = |AP¢|o and let
Ep = {§ € H;[¢]p < oo}

It can be shown that E, C E, for any p > ¢ > 0 and the inclusion map
iptap : Epta — Ep is a Hilbert-Schmidt operator for any p > 0. Let
E = projlim E, and E* be the dual space of . Then E is a nuclear
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space and we obtain a base Gel’fand triple & C H C E* with the following
continuous inclusions:

ECE,CH=ECE,CFE", p >0,

where the norm on Ej is given by |f|-, = |[A7 flo.
Let C, 12 denote the collection of all positive continuous functions u on
[0, 00) satisfying
. logu(r)
lim

r—00 \/77

For u € U4 /5, the dual function u* of u is given by

= 00. (2.1)

2V
u*(r) = sup ——

i ST r € [0,00). (2.2)

For later use, we introduce the following additional conditions on wu.
(G1) inf,>pu(r) =1,

1
(G2) limsup log u(r) < 00,

r—00 T
(G3) logu(x?) is a convex function for = € [0, 00).

We denote the complexification of a real space K by K. It is well-known
that the Boson Fock space over Hg, denoted bX I'(Hr), is a Hilbert space
consisting of sequences (f,,)5°,, where f,, € HZ" and Y o2 nl|fu|3 < oc.
For (f,) € T(Hg), p > 0, and a given function u € C4 12 satisfying the
conditions (G1)(G2)(G3), define

1l 5y ) = (Z » Ifn\2>

where /¢, is the Legendre transform of u given by

fu(t) = inf ﬁf) t€[0,00). (2.3)
Technical details of Equations (2.2)(2.3) and (G1)(G2)(G3) can be found in
6]. See also Appendix A. Let Ty (Eyc) = {(fa)i20 € T(HE) ;| (f)llru(e, o) <
oo} for each p > 0 and T'y,(Ec) be the space of test functions, which is the
projective limit of the family {I',(E,c) ; p > 0}. Hence I',(Ec) C I'(He)
and the condition (b) implies that T', (E¢) is a nuclear space. The dual space
'y (Ec)* is called the space of generalized functions. By identifying I'(Hr)
with its dual we get the following continuous inclusions:

FU(E@) — Fu(Ep’(c) — F(H@) — Fu(Epﬁc)* — FU(E@)*



and I'y(Ec) C T'(He) C T'w(Ec)* is a Gel'fand triple. Note that we have used
condition (G2) in order to have the continuous inclusion I'y, (£, c) <— I'(Hc).
The canonical bilinear form on I, (E¢)* x 'y (Ec) is denoted by ((-,-))r. For
each @ € I',(E¢)*, there exists a unique F, € (EZ")} with

symm

=

e, = (L PG@IRE, ) <o

n=0

for some p > 0 such that

((E), () = D nl(Fn, fa).

n=0

Let 6; be the Dirac delta function at ¢ € R. In order to deal with
annihilation and creation operators in the framework of white noise theory,

we assume, from now on, additional hypothesises on the base triple £ C
H C E* as follows:

H1) each function £ € E has a continuous version 2,

H3) the mapping ¢t — J; is continuous with the strong topology for E*,

(H1)
(H2) 6; € E* for all t € R so that (d;, &) = £(t),
(H3)
(H4)

H4) F is an algebra.

Thus functions in E will be regarded to be continuous, and E be simply
denoted by £ throghout this paper.
Now we are ready to define an annihilation operator a; by

at (fn);ozo = (n5t ®1 fn)oo a)=0, f,¢€ Eg@n

n=1’

where ®; is the contraction of tensor product and €2 is the Fock vacuum.
It is easy to show that a; is a continuous linear operator from I',(Er) into
itself. The adjoint operator a; of a; is called a creation operator, given by
oo = oo
ay (F")n:o = ((5t®Fn)n:0, E, e (Eg");kymm,
and is a continous linear operator from I'y,(E¢)* into itself. These operators
satisfy the following canonical commutation relations:

l[as,a;] =0, ai,a;] =0, [as,a;]=0d5(t)].

Note that operators a; and a; are not operator-valued distributions. In
quantum stochastic calculus (cf. [11][24]), a; + a} is called the quantum
Gaussian white noise and a; 4+ aj + aja; + I is called the quantum Poisson
white noise acting on the same space I'y,(Ec)* of generalized functions. We



remark that we need the condition in (H4) in order to discuss quantum
Poisson white noise and exponential vector associated with Poisson measure
given by (3.2). In addition, (H4) will be necessary to prove Theorem 4.5
(2).

Since u € C ;o satisfies (G3), (51) € Tw(Er) for all € € Ec. Solet us
introduce the J-transform for the characterization of I'y,(E¢) and T, (F)*.

£®n

Definition 2.1 (J-transform). For (F,)>2, € I',(Ec)*, J-transform is
defined to be the function

UEN© = (B ED)) . ce ke (2.4

n!

The next Theorems 2.2 and 2.3 claim respectively that I',(E¢)* and
', (Ec) are characterized in terms of analyticity and growth order of J-
transforms.

Theorem 2.2. Supposeu € Cy 1/, satisfies conditions (G1)(G2)(G3). Then
a C-valued function F' on Eg is the J-transform of a generalized function
in Ty(Ec)* if and only if it satisfies the conditions:

(a) For any £,m € Ec, the function F(z€ +n) is an entire holomorphic
function of z € C.

(b) There exist constants K,a,p > 0 such that

[F(&)] < Ku*(alé;)"?, V& € Er.

Theorem 2.3. Supposeu € Cy 1/, satisfies conditions (G1)(G2)(G3). Then
a C-valued function F on Er is the J-transform of a test function in T (Ec)
if and only if it satisfies the conditions:

(a) For any £,m € Ec, the function F(z€ +n) is an entire holomorphic
function of z € C.

(b)’ For any constants a,p > 0, there exists a constant K > 0 such that

|F(€)| < Ku(alé|2,)"?, V¢ e Ec.

Since Theorems 2.2 and 2.3 can be obtained with the same technique given in
[7], we omit their proofs. The reader should notice that (H1)(H2)(H3)(H4)
are not used at all to prove them. The well-known examples for v will be
mentioned later in Example 3.3, Remarks 4.2 and 4.4.

Questions: Note that up to here we have not yet fixed any isomorphism
Ux between I'(H¢) and L?(E*, ux ), which will be given in the next Section
3. Hence, the measure px plays virtually no role in the definition of J-
transform. Moreover we do not necessarily quote Ux to characterize spaces



F'y(Ec) and T'y(Eg)* in terms of their J-transforms. However, it does not
mean that the considerations of J-transform and its holomorphy are enough
to study our questions (Q1)(Q2). A crucial point is as follows. It is easy
to see that the flow @, given by

& — (0,19,4,0,--+) for each t >0
! (0, =1p,0],0,---) foreach t <0,

is an element of I'( Hc). Then the tangent vector P, is (0,6¢,0,---) and be-
longs to T'y(Ec)* with u(r) = " and J&,(£) = £(t). However, Theorems 2.2
and 2.3 cannot distinguish wheather @, is the tangent vector corresponding
to Brownian motion or (compensated) Poisson process in both classical and
quantum contexts, for example. That is,

&, < Which type of white noises ?

This is not the problem on topology and holomorphy, but is on sample
functions and measures on E*. We will make comments on this point in
Sections 3 and 4.

3 Gel’fand Triples in Terms of Multiple Wiener-
Ito Integrals Associated with Gaussian and Pois-
son Measures

To answer our questions (Q1)(Q2), we shall construct the Gel’fand triple in
terms of multiple Wiener-1t6 integrals associated with Gaussian and Pois-
son measures on F*. Omne can see the correspondence between classical
and quantum white noises of Gaussian and Poisson types. In the follow-
ing, we quickly summarize the essence of Gaussian white noise theory from
[19][20][23] and Poisson white noise theory from [13]. From now on, we al-
ways suppose (H1)(H2)(H3) to discuss the Gaussian part. On the other
hand, we also assume (H4) in addition to (H1)(H2)(H3) when the Poisson
part is discussed.
Let pg be the standard Gaussian measure on E* given by

| exvlite,ldua(e) = exp[ - 51¢E]. €€

and pp be the Poisson measure on E* by

/* expli(z, §)ldup(x) = exp [/

(ei6® _ 1)dt], ¢ekb.
23

Let us denote the complex Hilbert space L?(E*, ux) by (L?)x, X = G, P
and the multiple Wiener-It6 integrals with respect to a measure pux by



LX(f,) for f, € Hg". Then each ¢ € (L?)x is uniquely decomposed as

o) =S IX(fa),  fo€ HE™
n=0

It is important to notice that there exist unitary isomorphisms Uy between
(L?)x, X = G, P, and I'(Hg) determined uniquely by the exponential func-
tions (vectors)

o = el -5l — (57) =e@. cen @

|
n. n=0

when X = G and
o () = exp(olog(l +6) — [ €] — (@), ceBe ()

when X = P, respectively. We remark that the Poisson case is not addressed
in [3][4][5][7][8][9][18]]20][23]. It is known that the linear span of the set
{qﬁg( ;€ € Ec}is dense in [E], x and {e(£);§ € Ec} does the same for

I'.(Ec). In those cases, it holds that the (L?)x-norm of ¢ is given by

o

Il = [ lo@)Pdux(a) = 3 nlff

n=0

The Sx-transform of ¢ € (L?)x, given by
(5x0)(©) = [ e@)oF @hdux(a), €€ B

is an isomorphism from (L?)x onto the Hilbert space K of holomorphic func-
tions F' on B¢ with a reproducing kernel exp[(¢,n)], &,n € E. We remark
here that Sg has been recognized as an extension of the Segal-Bargmann
transform to generalized functions on infinite dimensional space [10].

Let

> 1
Ephux = {0 € U 5 Iellp = 3 s lnlf < oo}
n=0 Y

and [E],,x be the space of test functions, which is the projective limit of the
family {[E,]ux ; p > 0}. Hence [E], x C (L?)x by condition (G2), and the
condition (b) implies that [E], x is a nuclear space. The dual space [E]},
is called the space of generalized functions. Then we obtain the following
continuous inclusions:

[Elux = [Eplux — (L*)x — [Ep];

u [E}Z,Xa



and [E],x C (L?)x C [E]} y is a Gel'fand triple.

Let 0;c be the Giteaur derivative in the direction of &, so-called Hida
derivative and 9f g be the adjoint operator. In addition, let 0, p be the
difference operator, given by 0 pp(x) = @(x + 0t) — ¢(x), ¢ € [E], p, and
Op p be the adjoint operator. Then it can be shown that 9 x is a continuous
linear operator from [E],, x into itself and Of x is a continuous linear operator
from [EJ; x into itself.

It is known that the Brownian motion B(t) is represented by

B(t) = IlG(l[O,t]) ift>0 )
_IlG(l[t,o]) if t <0.

Similarly, the compensated Poisson process is given by

P s
Pt)—t= ki SW]) ?f t=0 (3.4)
—]1 (1[t,0]) if t <O.

Since characteristic functions 1y, and 1. are elements of H, B(t) and
P(t) —t are in (L?)g and (L?)p, respectively. Hence we obtain Ug®:U;" =
B(t) and Up®,Up" = P(t) —t.

On the other hand, the distributional derivative of B(t) with respect
to t, so-called Gaussian white noise B(t), has the form B(t) = I¢(5;) for
each t € R. Similarly, the Poisson white noise P(t) has the expression
P(t) — 1 = IFP(&) for each t € R. In those cases, since & is in E*, B(t)
and P(t) — 1 belong to [E]* 5 and [E]* p, respectively (A function u will be
chosen in the proof of Theorem 4.5). Thus, we get the relationship between
the vector @t and classical Gaussian and Poisson white noises as follows.
This is the partial answer to the question brought up in the end of Section
2.

Propos.ition 3.1. The following equalities hold
(1) Ugd?tUél = B(t),
(2) UpdUp' = P(t) — 1.

Next, since u € C, 15 satisfies (G3), the exponential function qbg( () €

[E]y x for any £ € Er. Hence the Sx-transform can be extended to a
continuous linear functional on [E]’ , as follows.

Definition 3.2 (Sx-transform). For @ € [E]} y, Sx-transform is defined
by

where ((-,-)) is the bilinear pairing of [E];  and [Ely,x.

This transform plays essential role to study connections between classical
and quantum white noises.



Example 3.3. The Gel'fand triple [E], x C (L?)x C [E];, x becomes

(1) the Hida-Kubo-Takenaka space [19][20][23] if X = G and u(r) = €", and
the Ito-Kubo space [13] if X = P and u(r) = ¢€",

(2) the Kondratiev-Streit space [17] if X = G and u(r) = exp[(1 + ﬁ)rﬁ]
for0< B <1,

(3) the Cochran-Kuo-Sengupta (CKS) space of Bell numbers with degree
k if X = G and u*(r) = expy(r)/exp;(0), where exp,(r) is the k-th iter-
ated exponential function [8]. Consult papers [3][4][5][6][8] for more general
construction of CKS space and [2][18] for more details on Bell numbers.

Remark 3.4. We exclude the case of the Kondratiev-Streit space of § =1
[15]. It is because the function u(r) = exp[2,/r] does not satisfy Equation
(2.1). Hence the exponential functions (3.1)(3.2) do not make sense for
¢ € Ec with 2[£], > 1, so that J and Sx-transforms of generalized functions
are defined only for { € E¢ with 2[¢], < 1.

4 Characterization Theorems and Quantum White
Noises

Now we come to the characterization of [E]}, x associated with px, X =
G, P, in a single statement. The proof is almost the same as that in [7], but
it is under (G1)(G2)*(G3) only with pug. The condition (G2)* is given in
Appendix A.

Theorem 4.1. Lel a measure ux on E* be given. Suppose u € Cy 1/
satisfies conditions (G1)(G2)(G3). Then a C-valued function F' on Ec is
the Sx -transform of a generalized function in [E]Z,X if and only if it satisfies
the conditions:

(a) For any &,m € Ec, the function F(z§ 4+ n) is an entire holomorphic
function of z € C.

(b) There exist constants K,a,p > 0 such that

|F(€)| < Ku*(al¢/2)Y?, Ve € Ee.

Remark 4.2. Theorem 4.1 was first proved by Potthoff-Streit [25] in case
of X = G and u*(r) = e". It was extended to the case of X = G and
u*(r) = exp[(1 — B)rﬁ] by Kondratiev-Streit [16][17]. Moreover, Cochran
et al. [8] proved the case when X = G and the growth condition (b) is
determined by the exponential generating function Gy (r) = > %r”. Asai
et al. [4][6][7] minimized conditions on sequences {a(n)} of positive real
numbers in such a way that the theorem holds.



Similarly, the characterization of [E], x associated with px, X = G, P,
is stated below in a single statement. The proof is almost the same as that
in [7], but it is under (G1)(G2)*(G3) only with pg .

Theorem 4.3. Lel a measure ux on E* be given. Suppose u € Cy /9
satisfies conditions (G1)(G2)(G3). Then a C-valued function F on Ec is
the Sx-transform of a test function in [El, x if and only if it satisfies the
conditions:

(a) For any §,m € Ec, the function F(z§ +n) is an entire holomorphic
function of z € C.

(b)’ For any constants a,p > 0, there exists a constant K >0 such that

|F(€)| < Ku(alé]2,)?, Ve € Ec.

Remark 4.4. Theorem 4.3 was proved by Kuo et al. [21] in case of X = G and

u(r) = e". It was extended to the case of X = G and u(r) = exp[(l—i—ﬂ)rﬁ]
by Kondratiev-Streit [17]. Moreover, Asai et al. [3] proved the case when
X = G and the growth condition (b)’ is determined by the exponential
generating function G/,(r) = > mr”. Asai et al. [4][6][7] minimized
conditions on sequences {a(n)} of positive real numbers in such a way that
the theorem holds.

In the next Theorem 4.5, the exponential functions (vectors) given by
Equations (3.1) (3.2) will play essential roles to characterize the type of
white noise. Before stating and proving this theorem, let us point out that
the multiplication operator by B(t) has the expression [19],

B(t)- = 0y¢ + 016, (4.1)
and the multiplication operator by P(t) has the form [13],
P(t) = 8t,P + 8213 + 8;P8t,P + 1. (42)

Remember that 0; x and 0] y are the operators in the stage of Schridinger
representation. On the other hand, a; and a; are the operators in the stage
of Fock space representation.

Theorem 4.5. (1) The quantum Gaussian white noise a;+a; can be realized

as a classical Gaussian white noise B(t) in (E)%,.

(2) The quantum Poisson white noise a; + aj + ayas + I can be realized as

a classical Poisson white noise P(t) in (E)%.

Proof. First, we consider the Gaussian case X = G. For any £,n € FEp,

(J(ac + af)e(©))(n) = (((ar + a)e(§). e(n)))
= (£(t) +n())e®™. (4.3)

10



On the other hand, by Equation (4.1), we have

(SeB(6)6€) (1) = (Sadrc + 0;c1¢¢) (n)
= {([Buc + 0 6lo¢ - 05
= (1) + n(1)eem. (4.4)

Due to Equations (4.3)(4.4), we have Ug(ay +a,’f)U5% — B(t), where B(t) is
considered as a multiplication operator. In fact, (SgB(t))(§) = (6, &) = £(t)
satisfies the condition (b) with u(r) = exp(r) in Theorem 4.1. Hence we get
B(t) € (E){:- Therefore, we have finished to prove our first assertion.

Next consider the Poisson case X = P. For any &, € Fr,

(J(at + af + afar + D)e(€))(n) = (((ar + af + ajar + De(£), e(n)) ).
= (E(t) + n(t) + n(t)E(L) + 1)l (4.5)

Note that the function n€ above makes sense as a member of Fg¢ due to
(H4). On the other hand, by Equation (4.2), we have

(SPP(t)éf’g)(U) = (Sp[O:,p + 3ZP + 8;:Pat,P + 1]455)(77)
= (([Bep + 0 p + 0 pOLp + 110F  0y)) p
= (£(t) +n(t) +n(®)E(E) + 1)esm., (4.6)

By Equations (4.5)(4.6), we have Up(a: + af +aja; + nuyt = P(t), where
P(t) is considered as a multiplication operator. In fact, (SpP(t))(§) =
(0¢,€)+1 = &(t)+1 satisfies the condition (b) with u(r) = exp(r) in Theorem
4.1. Hence we get P(t) € (E)%. Thus we have proved the second claim. []

Therefore, the quantum Gaussian white noise a; + aj and the quantum
Poisson white noise a; +aj +aja; + I are realized on the common generalized
function space I'y(Fc)* with u(r) = €". To get such beautiful realizations
of white noises on Fock space, the choice of exponential functions is one of
essential points. Consult the explanation in the end of Appendix A to make
this point clearer.

A Relationships with the Work by Gannoun et al.
(9]

In the rest of this paper, we shall discuss some of similarities and differences
between our papers [6][7] and Gannoun et al. [9] (GHOR for simplicity).
We refer the readers to consult the papers [4][6]]7] for more technical and
delicate differences, which will not be mentioned in this paper.

First, the basic equalities are

u(r) = XV yr(r) = 27T

11



where 0*(s) = sup,~o{st —0(t)} is adopted in GHOR. In the following table
we give the correspondence between our G-conditions and their #-conditions.

u 0
. logu(r) . 0(r)
Crarz | g = =0 Lk
(G1) 714121%u(7“) =1
(G1)* | w is increasing and u(0) =1 | @ is increasing and 6(0) =0
1

(G2) lim sup o u(r) < oo

r—o00 T

1 0

(G2)* lim log u(r) < 00 lim Q < 0

r—00 r r—oo T
(G3) u is (log, x?)-convex 0 is convex

Assume that u € C ;5 satisfies (G1)(G2)(G3) conditions. For p > 0,
let A, ., consist of all functions ¢ on E, ¢ satisfying the conditions:

(a) ¢ is an analytic function on EJ .

(b) There exists a constant C' > 0 such that

()| < Cu(lz? )2, Vo€ By

For each ¢ € A, ., we define

ol ap, = sup lo(@)lu(lel2,) "2 (A.1)
a:GE;’\C
Then A, is a Banach space with norm || - [|4,,. Let A, be the projective

limit of {A,.;p > 0} and A}, be the dual space of A,. This construction
is motivated by the analytic extension of test functions in Gaussian white
noise theory done by Lee [22] (See also [14][20]). This direct construction is
useful to characterize generalized measures [1][5][20][22], for example.

GHOR defined the same intrinsic topology as (A.1), independently, and
proved the topological equivalence between A, and I'y(Ec) for u € C4 ;)9
satisfying (G1)*(G2)*(G3). On the other hand, Asai et al. examined the
equivalence between A, and [E], ¢ for u € C} ; /5 satisfying (G1)(G2)*(G3).
Actually, (G2)* is slightly stronger than (G2). However, (G2) is strong
enough to guarantee that the nuclear spaces I',(Ec) and [E], x are the
subspaces of I'(Hg) and (L?)x, respectively. Moreover, although (G1) is
weaker than (G1)*, by Lemma 3.1 in [7] we can construct an equivalent
function satisfying (G1)* even if we begin with (G1). Thus we have the
following Theorem A.l under slightly weaker assumptions on wu.

12



Theorem A.1. Suppose u € C, )y satisfies conditions (G1)(G2)(G3).
Then the families of norms {|| - |[puip > 0} and {| - ||4,.;p > 0} are equiv-
alent.

In [4][7], not only the general construction of spaces, but also the mini-
mal conditions on u are examined to carry out white noise operator theory.
This consideration is quite important to discuss the continuity of various
operators, Wick products and so on. See also [2][18][23]. This matter is
not addressed in the paper by GHOR. We emphasize again that GHOR
concerned topological equivalences among various spaces of test and gener-
alized functions in terms of different representation spaces. Therefore, one
cannot find the answers to our questions (Q1)(Q2) in GHOR because these
matters are not consequences of topological aspects.

The following diagram shows relations with several triples and horizontal
arrows indicate continous inclusions.

Iw(Ec) = Fy(Ec) —— I'(Hc) —— Tu(Ec)* = Fy(Ec)" = Go(EY)
le le le
[Eu,x — (L*)x — [E]; x

| | |

Aw=Fg(Er) —— K=Fock(Hc) —— Al =Fg(EL)" = Gp-(Ec)

where Fock(Hc) denotes the holomorphic function’s realization of I'(H)
and notations containing 6 were used by GHOR. Moreover, = means a
topological equivalence. The mappings Ux and Sx are unitary. The first
row is the Gel’fand triple in terms of the Fock space representation, the
second row is of the Schridinger representation and the third row is of the
Segal-Bargmann representation.

The Laplace transform £ is used in GHOR. We know the following re-

lationships between our Sg, Sp-transforms and L:

Sa0(§) = exp(~51€R)£0(0).  Sp(e—1) —exp(- [

RrR

(50~ 1)dt) £o(¢)

¢ € Eg for & € [E]}((F,) € Tw(Ec)*). In this situation [12] Sp is an

u
isomorphism from (L?)p onto a reproducing kernel Hilbert space with kernel

explet —1,e"—1), &,neE.

This reproducing kernel Hilbert space is different from K. So if the set of
exponential functions

{exp [<x,g> /R(ef@) _ 1)dt] ’ £ E}
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is taken to determine the isomorphism between T'(H) and (L?)p, it can be
proved that the quantum Poisson white noise a; + af + aja; + [ is realized
on I'y(Ec)* with u(r) = exple” — 1]. Hence the Laplace transform £ is not
appropriate to represent quantum Gaussian and Poisson white noises on the
common Fock space 'y (FEc)* with u(r) =e".
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