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1 Introduction

Combinatorial optimization problems with nonlinear objective functions have been dealt with
more often than before due to theoretical interest and needs of practical applications. Extensive
studies have been done for revealing the essence of the well-solvability in nonlinear combinatorial
optimization problems [1, 3, 5, 6, 7, 11, 12, 20]. By extracting combinatorial structures in well-
solved nonlinear combinatorial optimization problems, Murota [8, 9] introduced the concepts
of M-convexity and L-convexity for functions defined over the integer lattice; subsequently,
their variants called Mf-convexity and L-convexity were introduced by Murota-Shioura [13]
and by Fujishige-Murota [4], respectively. Applications of M-/L-convexity can be found in
mathematical economics with indivisible commodities [2, 17, 18], system analysis by mixed
polynomial matrices [10], etc. Recently, Murota-Shioura [14, 15] extended these concepts to
polyhedral convex functions and quadratic functions defined over the real space. In this paper,
we consider a further extension to more general convex functions defined over the real space.

The concepts of M-convexity and L-convexity are defined for polyhedral convex functions
and quadratic functions as follows. Let n be a positive integer, and put N = {1,2,... ,n}. A
polyhedral convex function (or quadratic function) f : R" — RU{+o00} is said to be M-convex
if dom f is nonempty and f satisfies (M-EXC):

(M-EXC) Vz,y € dom f, Vi € supp™ (x — y), 3j € supp (z — y), Jap > 0:
f@)+fy) = flz—al—x3) + fly+ali—x;)  (Vae(0.a), (L)

where

dom f ={z e R" | f(z) < o0},
supp® (¢ —y) ={i € N |z(i) > y(i)}, supp (z—y)={ie N |z() <y},

x(i) is the i-th component of a vector z € R" for i € N, and x; € {0,1}" is the i-th unit
vector for i € N. On the other hand, a polyhedral convex function (or quadratic function)
g:R" — R U {400} is said to be L-convex if dom g # () and g satisfies (LF1) and (LF2):

(LF1)  g(p) +g(q) 2 9(pAq)+g(pVaq) (Vp, q € dom g),
(LF2) 3r € R such that g(p+ A1) =g(p) + \r  (Vp € domg, VA € R),

where p A q,pV q € R™ are defined by

(p A q)(i) = min{p(i),q(i)}, (pV q)(i) = max{p(i),q(i)} (i € N),

and 1 € R” is the vector with all components equal to one.

To fully cover the well-solved nonlinear combinatorial optimization problems, it is desirable
to further extend these concepts to more general convex functions defined over the real space
on the basis of (M-EXC), and (LF1) and (LF2), respectively. It can be easily imagined that
the previous results of M-/L-convexity for polyhedral convex functions and quadratic functions



naturally extend to more general M-/L-convex functions. In particular, it is natural to imagine
that the conjugacy relationship holds for general M-convex and L-convex functions over the
real space, as in the cases of functions over the integer lattice [9, Th. 4.24], polyhedral convex
functions [14, Th. 5.1], and quadratic functions [15, Th. 3.1]. However, the proof cannot be
extended so directly to general M-/L-convex functions, but some technical difficulties such as
topological issues arise. By taking such technical difficulties into consideration, we define M-
convex and L-convex functions over the real space as closed proper convex functions satisfying
(M-EXC), and (LF1) and (LF2), respectively. The primary contribution of this paper is to
provide a rigorous proof of the following conjugacy relationship between general M-convex and
L-convex functions over the real space.

Theorem 1.1. For f : R" — R U {+oo} with dom f # (), define its conjugate function
f*:R" - RU {400} by

[*(p) = sup{(p,x) — f(x) [z € R"}  (peR"), (1.2)

where (p,xy = " | p(i)z(i).

(i) If f is M-convex, then f® is L-convex and (f*)® = f.

(i) If g is L-convez, then g* is M-convex and (¢*)® = g.

(iii) The mappings f — f* (f : M-convezx) and g — ¢* (g : L-convex) provide a one-to-one
correspondence between the classes of M-convexr and L-convex functions, and are the inverse of
each other.

We also show that a conjugate pair of M-convex and L-convex functions arise from the
minimum cost flow /tension problems.

The organization of this paper is as follows. Section 2 provides the precise definitions of
M-/M¢-convex and L-/Lf-convex functions, and shows various examples of these functions. The
conjugacy relationship between M- /L-convexity is proven in Section 3.

In this paper, we focus on the conjugacy relationship between M-convex and L-convex
functions. See [16] for other properties of M-convex and L-convex functions in continuous
variables.

2 M-convex and L-convex Functions over the Real Space

2.1 Definitions of M-convex and L-convex Functions

Let f: R" — R U {+oo} be a function. A function f is said to be convez if its epigraph
{(z,a) e R" xR | a > f(x)} is a convex set. A convex function f with f > —oo is said to
be proper if dom f # (), and closed if its epigraph is a closed set. We denote by arg min f the
set of minimizers of f, i.e., argmin f = {x € R" | f(z) < f(y) (Yy € R™)}, which can be an
empty set. Note that for a closed proper convex function f, any level set {x € R"™ | f(z) < n}
(n € R) is a closed set, and arg min f # ) if dom f is bounded.



We call a function f: R" — R U {400} M-convez if it is closed proper convex and satisfies
(M-EXC). The effective domain dom f of an M-convex function f is contained in a hyperplane
{x e R" | x(N) =r} for some r € R, where z(N) = > | z(i).

Proposition 2.1. If f is M-convex, then x(N) = y(N) for all x,y € dom f.

Proof. To the contrary assume x(N) > y(N) for some z,y € dom f. Put
S={zeR"|zAy<z<aVy, f(2) <max{f(z), f(y)}},

which is a bounded closed set. Let x.,y, € S minimize the value ||z, — y.||1 among all pairs
of vectors in S with z,.(N) = z(N) and y.(N) = y(N). The property (M-EXC) for x, and y.
implies

f@) + fy) = fl@e —alxi = x5)) + [y + ol — x5))

for some i € suppt(z, — yx), J € supp”(z. — y.), and a sufficiently small o > 0. Putting
T=xz.—a(x; —x;) and ¥ = y. + a(x; — x;j), we have T € S or g € S, a contradiction to the
choice of x, and y. since ||T — y.||1 < ||z« — yul|1 and ||z« — 7|1 < ||zx — ysl|1- O

Hence, an M-convex function loses no information other than r» when projected onto an
(n — 1)-dimensional space. We call a function f : R" — R U {400} M"-convex if the function
f:R"! — RU{+oco} defined by

~ | flz) (xeR"* 2,41 €R, 241 = —2(N)),
F(@, 2n41) = { +0o  (otherwise)

is M-convex.

On the other hand, we call a function g : R" — R U {+00} L-convez if g is a closed proper
convex function satisfying (LF1) and (LF2). Due to the property (LF2), an L-convex function
loses no information other than r when restricted to a hyperplane {p € R" | p(i) = 0} for any
i € N. We call a function g : R® — RU{+oco} Li-conver if the function g : R"* — RU{+o00}
defined by

9, pn+1) = 9(p —pual) (p€eR", ppy1 € R)

is L-convex.
We denote by M,, (resp. L,,) the class of M-convex (resp. L-convex) functions in n variables:

M, = {f]|f:R"— RU{+oo}, M-convex},
L, = {g9|g:R" —=RU{+0}, L-convex}.
We define M% and £} to be the classes of M*-convex and L-convex functions, respectively. As
is obvious from the definitions, M¥-convex (resp. Lf-convex) function is essentially equivalent to
M-convex (resp. L-convex) function, whereas the class of M*-convex (resp. L*-convex) functions

contains that of M-convex (resp. L-convex) functions as a proper subclass. These relationships
can be summarized as

My C M~ My, L, CLY >~ L,



2.2 Examples

M-/M?-convex and L-/Lf-convex functions have rich examples [11, 12, 14, 15].

Example 2.2 (affine functions). For py € R™ and § € R, the function f: R" — RU{+o0}
given by f(x) = (po,x) + 3 (z € dom f) is M-convex or M"-convex according as dom f = {z €
R" | z(N) = 0} or dom f = R™. For zyp € R" and v € R, the function g : R" — RU {400}
given by g(p) = (p,z0) + v (p € R") is L-convex as well as L-convex. O

We denote by C! the class of univariate closed proper convex functions, i.e.,
C'={p:R—RU{+00} | ¢: closed proper convex}.
Recall that the conjugate function f* of a function f is defined by (1.2).
Example 2.3. For ¢,9 € C', the functions f,g: R*> — R U {+oco} given by

o - {20 2

9(p(1).p(2)) = ¥(1)-p2) ((p(1).p(2)) € R?)

are M-convex and L-convex, respectively. Moreover, if ¢ and i are conjugate to each other,
then f and g are conjugate to each other. O

Example 2.4 (separable-convex functions). Let f; € C! (i € N) be a family of univariate
convex functions. The function f: R" — R U {400} defined by

f@) =3 L) (@eR)

is M-convex as well as L*-convex. The restriction of f to the hyperplane {z € R™ | 2(N) = 0}
is M-convex if its effective domain is nonempty.
For functions g;; € C' indexed by i,j € N, the function g : R" — R U {400} defined by

9= > 95(j) —p(@)  (peR")

i=1 j=1
is L-convex with » = 0 in (LF2) if dom g # 0. O
Example 2.5 (quadratic functions). Let A = (a(i,j))};-; € R™" be a symmetric matrix.

Define a quadratic function f : R" — R by f(z) = (1/2)2* Az (x € R"). Then, f is Mb-convex
if and only if

x'a; > min{z"a; | j € supp (7)} (Vz € R", Vi € supp™(z)),

where a; denotes the i-th column of A for i € N. The function f is Li-convex if and only if

n

a(i,j) <0 (Vi,j €N, i#j), > a(i,j)>0 (VjeN).

i=1



Example 2.6 (minimum cost flow/tension problems). M-/L-convex functions arise from
the minimum cost flow/tension problems with nonlinear cost functions.

Let G = (V, A) be a directed graph with a specified vertex subset 7' C V. Suppose that we
are given a family of convex functions f, € C' (a € A), each of which represents the cost of flow
on arc a. A vector ¢ € R4 is called a flow, and the boundary 0¢ € RV of a flow ¢ is given by

0€(v) = Z{&(a) | arc a leaves v} — Z{ﬁ(a) | arc a enters v} (veV).

Then, the minimum cost of a flow that realizes a supply/demand vector z € R’ is represented
by a function f: R? — R U {400} defined as

flz) = igf{z fa(&(a)) | (0€)(v) = —z(v) (v € T), (9€)(v) =0 (v e V\T)}.
acA
On the other hand, suppose that we are given another family of convex functions g, € C*
(a € A), each of which represents the cost of tension on arc a. Any vector p € RV is called a
potential, and the coboundary §p € R# of a potential p is defined by ép(a) = p(u) — p(v) for
a = (u,v) € A. Then, the minimum cost of a tension that realizes a potential vector p € R is
represented by a function g : RT — R U {£oco} defined as

9(p) = iglﬁf{z 9a(n(a)) [ n(a) = =dp(a) (a € A), p(v) = p(v) (v e T)}.
" aeA
It can be shown that both f and g are closed proper convex if f(z¢) and g(py) are finite for
some zo € R” and py € R”, which is a direct extension of the results in Iri [5] and Rockafellar

[20] for the case of |T'| = 2. These functions, however, are equipped with different combinatorial
structures; f is M-convex and g is L-convex, as follows.

Theorem 2.7. If f, and g, are conjugate to each other for all a € A, then f and g are M-
convex and L-convex, respectively, and conjugate to each other, where it is assumed that at least
one of the following conditions holds:

(a) —oo < f(zg) < +00 for some o € RT,

(b) —oco < g(po) < 400 for some py € RT,

(¢) f(zo) < +00,9(po) < +00 for some xg € R, py € RT.

We first prove the closedness of f and g and the conjugacy relationship. For this, we use

the following duality theorem for the minimum cost flow/tension problems.

Theorem 2.8 (cf. [20, Sec. 8H]). Let G = (V, A) be a directed graph with a specified vertex
subset T C V. Also, let fo, g9, € Ct (a € A) and f,, g, € C' (v € T) be conjugate pairs of closed
convex functions. Then, we have

. (9€)(v) = ~2(v) (v T),
E?E{;fa(g(a)) + ;fv(x(“)) ‘ (B (v) =0 (e V\T) }

= swp{ = S anln(a) = X (50 | a(a) = 07(0) (a € )}

P acA veTl

unless inf = 400 and sup = —oo.



Lemma 2.9. Let x € R" and p € R".
(i) f(z) = g°(x) if f(x) < +00 or g(po) < +00 for some py € RT.
(i) g(p) = f*(p) if g(p) < 400 or f(xg) < +oo for some xy € RT.

Proof. To prove (i), consider functions f,,g, € C' (v € T') given as

0 a=z(v)),

) { (a = 2(v))

+oo (a # z(v)),

for the given # € RY. The functions f, and g, are conjugate to each other for each v € T. If
f(z) < 400 or g(py) < +oo for some py € RT, then Theorem 2.8 implies that

o (0 (v) = —z(v) (veT),
flx) = inf {Zfa(f(a)) + D fula()) ‘ (0§)(v) =0 (veV\T) }

90(8) = x(v)8 (B€R)

acA veT
- { S h)ew) = 3 galna)) \ n(a) = —35(a) (a € A)}
P veT a€A

= sup{(p.z) —g(p) [P ER"} = g°(x).
The proof for (ii) is similar to that for (i) and therefore omitted. O
We see from Lemma 2.9 that three conditions (a), (b), and (c) are equivalent to each other.
Hence, Lemma 2.9 implies that if one of these conditions holds, then both f and g are closed
proper convex functions with f = ¢*, g = f°.
We then prove the M-convexity of f and the L-convexity of g.

[(M-EXC) for f] Let z,y € dom f and u € supp™(z —y). For any € > 0 and z € {x,y}, there
exist £, € R* with

Y fal6(@) < () +e (9€:)(v) = —2(v) (vET), (9E:)(v) =0 (veV\T).
acA
By a standard augmenting path argument, there exist 7 : {0,+1}4 and v € supp (z—vy) (C T)
such that
supp™ () C supp™ (€, — &), supp™(7) C supp™ (& — &), OT = Xu — Xo,

where we can assume the following inequality with m = |A|, n = |V|:

min{|&;(a) = &y(a)| [ a € A, m(a) = £1} > {z(u) —y(u)}/m".
Putting ag = {z(u) — y(u)}/m", we have

fa(&(a) + am(a)) + fa(§y(a) — am(a) < fa(&e(a)) + fa(&y(a)) (a € [0, ao])
for all a € A. Hence follows that

J@—alxu—x0) + fy +alxu —x»))

< D {fulbula) + am(a) + ful(a) — am(a)}

a€A

< > {fal&l@) + fa(&a)} < fl@)+fy)+2e  (a€[0,a]).

a€A



Since € > 0 can be chosen arbitrarily and 7" is a finite set, there exists some v = v, satisfying

f@—alxu—xu) + fy+alx—x0) < fle)+ fly)  (ael0,a]),

implying (M-EXC) for f.
[L-convexity for g] Let p,q € dom g. For any ¢ > 0 there exist p,q € RY with

> 9u(—0p(a)) < g(p) + &, B(v) =p(v) (v E€T),

a€A

Y ga(=0dla)) < glg) +e, qv) =q(v) (v €T).

a€A
It holds that (p A q)(v) = (pAgq)(v), (PV q)(v) = (pV q)(v) for all v € T, and
9a(—=0(D A G)(a)) + ga(—=0(PV )(a)) < ga(—0D(a)) + ga(—dqla))  (a € A)
by convexity of g,. Hence follows that

gpA)+9pVa) < D gu(—EAD(@)+ D gu(—3(FV §)(a))

a€A acA
< D gu(=0p(a) + Y ga(—64(a)) < g(p) + g(q) + 2.
a€A a€A

Since € > 0 can be chosen arbitrarily, we have g(p) + g(q) > g(p A q) + g(p V q). The property
(LF2) for g is immediate from the equation 6(p + A1) = dp for p € RY and X € R. O

3 Proof of Conjugacy Relationship

In this section, we prove Theorem 1.1, the main result of this paper.
The conjugacy operation f — f* given by (1.2) induces a symmetric one-to-one correspon-
dence in the class of all closed proper convex functions on R”.

Theorem 3.1 ([19, Th. 12.2]). For a closed proper conver function f : R™ — R U {400},
its conjugate f*: R™ — R U {400} is also a closed proper convex function with f** = f.

By Theorem 3.1, it remains to show that “f € M,, = f* € £,” and “g € L, = ¢°* €
Mn-”

3.1 Proofof “fe M, = f*eL

We first show some useful properties.

Proposition 3.2. Let f: R* - R U {+o00} be a function in two variables with dom f # 0. If
f is supermodular, then its conjugate f*: R? — R U {+oo} is submodular.



Proof. 1t suffices to show

FrOu )+ PN W) < )+ PN ) (3.1)
for (A, ), (N, ') € R* with A > X and p > p/. We claim that
A+ pf — fla, B)] + [Na' +p/'B8 — f(o, B)] < fo(A 1) + f2 (N, 1) (32)

holds for any (a,3),(a/,3") € R? The inequality (3.1) is immediate from (3.2), since the
supremum of the left-hand side of (3.2) over (a, ) and (o, 3) coincides with the left-hand side
of (3.1).

We now prove (3.2). If @« > o' and § > ', we have f(a,3) + f(o/,3") > f(a,B') + f(/,3)
by the supermodularity of f, and therefore

LHS of (3.2) < [Aa+ /'3 — fla, )] + [Na' + pB — f(a,8)] < RHS of (3.2).
If a < o, we have \a + Nao' < Ao/ + Na and therefore
LHS of (3.2) < [Aa + /6 — f(a', ") + [Na+ pB — f(a,8)] < RHS of (3.2).
We can prove (3.2) similarly for the case g < 3. O

Proposition 3.3 ([19, Cor. 7.5.1]). Let f : R™ — R U {+oo} be a closed proper convex
function. For x € R" and y € dom f, we have

flz) =lm f(Az + (1 - A)y).

Proposition 3.4. Let f: R™ — RU {400} be a closed proper convex function satisfying the
property:

(PO) Vz,y € dom f with = >y, Vi € supp* (z — ), Jag > 0:
f@)+fly) = flz—axi) + fly+axi)  (a€l0,a)).
Then, f satisfies the supermodular inequality:
f@)+ fy) < fleny)+ flavy) (2,9 eR). (3-3)

In particular, an MP-convex function satisfies the supermodular inequality (3.3).

Proof. Note that an Mi-convex function satisfies the property (P0). Hence, it suffices to show
the former claim only.
We first prove that (P0) implies the following stronger property:

(P1) Vx,y € dom f with x >y, Vi € supp™ (z — y):

f@)+ f(y) = fle = A=) —y@ixa) + [y + {2() —y(@O)xa)-  (34)



Put @ = z(i) — y(¢), and define functions ¢,, ¢, : [0,a] = RU {400} by

pu(@) = flz —axi), ¢yla) = fly+{a—apxi) (aec(0,al).

Claim 1. Let a € [0,a].
(i) If v, (a) < 400, then ¢, ((a +@)/2) < +o0.
(i) If ¢, () < +o0, then ¢, (a/2) < +oo.

[Proof of Claim 1]  We prove (i) only, where we may assume a < @. Put ¥ =z — ay; and

a, =sup{B | f(@—Bxi) + fly+06xi) < f@)+ fy)}

Assume, to the contrary, that a. < {a@ — a}/2 (= {Z(i) — y(¢)}/2). By Proposition 3.3, we
have f(Z —a.xi) + fly+a.xi) < f(@) + f(y). Put T =7 — a.xi, ¥y = y+ a.xi. Then, we have
i € supp™ (Z — y). Hence, the property (P0) for  and y implies that there exists a sufficiently
small # > 0 satisfying

f@) + ) = [(@) + Fy) =2 (@ = Bxi) + [y + Bxa),

a contradiction to the choice of ... Hence, we have a, > {@—a}/2, from which ¢, ((a+@)/2) <
+oo follows. [End of Claim 1]

We also define a function ¢ : [0,a] — RU{£o0} by ¢(a) = p.(a)—yy(a) (a € [0,a]). Since
¢, and ¢, are closed convex functions with ¢, (0) < 400, ¢, (@) < 400, we have @ (o) < +00
(0 £ Va < @) and ¢y(a) < +oo (0 < Vo < @) by Claim 1. This property, together with
Proposition 3.3 for ¢, and ¢,, implies that ¢ is continuous in the interval {a | 0 < o < @},
and ¢(0) = lim, o (), p(@) = limyz ¢(a). To prove (3.4), it suffices to show that p(a) is
nonincreasing on [0, @], which follows from Claim 2 below:

Claim 2. ¢/'(;1) <0, ¢'(a;—1) >0 (0 < Va < @).

[Proof of Claim 2] It is noted that the values ¢'(a;+1) = ¢} (a; £1) — ¢ (a; £1) are well-
defined for all @ with 0 < a < @. We here prove ¢'(a;1) < 0 only since ¢'(a;—1) > 0
can be proven similarly. Put 2’ = z — ayx; and y5 = y + {@ — a — 0}x; for & > 0. Then,
we have i € supp™ (2’ — ). By (P0), there exists some 8y > 0 such that f(z') + f(v}) >
f(@" = Bxi) + f(ys + Bxi) (V8 € [0, Bo]), implying ¢} (a;1) < —¢p) (o + d;—1). Hence follows
@, (a; 1) < —limsjo @) (a + ;1) = ¢ (a; 1). [End of Claim 2]

We finally prove the supermodularity of f by using the property (P1). The proof is by
induction on the cardinality of the sets supp™(z —y) and supp ™ (z —vy). If |[supp™ (z —y)| < 1 or
|supp~(z—y)| < 1, then (3.3) follows immediately from (P1). Hence, we consider the case when
|suppt(z—y)| > 1 and |supp~(z—y)| > 1. We may assume 2 Ay, zVy € dom f, since otherwise
(3.3) holds immediately. Let ¢ € supp™(z —y). Then, we have (x Ay)+{z(i) —y(i)} x; € dom f
by (P1), and the induction assumption implies

fy) = flxAy) < fly+{z0) —y@)Ixi) — f((x Ay) +{2() —y(@)}xi) < flzVy) = f(z)
0



We now assume f € M,, and show f* € L,. Put r = z(NN) with some = € dom f, which is
independent of the choice of by Proposition 2.1. For p € dom f® and A € R, we have

ff(p+ A1) = sup{(p+ A\1,z) — f(x) | z € dom f}
— up{(p.x) — f(x) |z € dom f} £ Ae(N) = f*(p) + Ar

implying (LF2) for f°.

To prove the submodularity (LF1) for f®, we first assume that dom f is bounded. Since
dom f* = R", the submodularity of f* is equivalent to the local submodularity (see, e.g., [14,
Th. 4.27]):

I+ 2x) + [P (p+uxg) = f2(p) + 20+ Axi + px;5), (3.5)

where p € R", 7,j € N are distinct indices, and A, 1 are nonnegative reals. We fix p € R", and
define functions g, f : R? — R U {400} by

g p) =fp+Iai+nx;) (A\peR),

fla, B) = mf{f(z) = (p,x) | x € dom f, x(i) = a, 2(j) = B} (o, f € R).

Claim. fsatisﬁes the property (P0) in Proposition 3.4.

[Proof of Claim| We may assume p = 0 since f(x) — (p,x) is also M-convex as a function in
x. It suffices to show that for any (o, 5), (¢/, 5') € dom f with a > o’ and 8 > /', there exists
09 > 0 satisfying

fla.B)+ f(e.8) = fla=26,8)+ f(a' +0.8) (V5 €[0,0]).

Since f is a closed proper convex function with bounded effective domain, there exist =, z’ €

dom [ satisfying z(i) = a, 2(j) = 8, f(a,8) = f(x), and 2'(i) = o', &'(j) = B, (e, 8) =
f(z"), respectively. Since i € suppt(z — z’), (M-EXC) for f implies that there exist k €
supp (z — z’) and &y > 0 satisfying

fla.B)+ f(d,B) = [flx)+ f(z')

> fle =006 —xk) + f@" +0(xi — xx))
> fla=06,8)+ f(a'+6,8) (V6 €[0,8]),
where it is noted that k # j since j € supp™ (z — /). [End of Claim)]

Hence, J?is supermodular by Proposition 3.4. Since g = (f)', the function g is submodular
by Proposition 3.2, implying the inequality (3.5). This concludes the proof of (LF1) for f*®
when dom f is bounded.

Finally, we consider the case when dom f is unbounded. For a fixed vector g € dom f, we
define f : R® - RU {400} (k=1,2,...) by

Fulz) = { f(@) (x € R, |2(i) — wo(i)] <k for all i € N),

+o0o  (otherwise).
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Since fr € M,, and dom fj is bounded, f? fulfills (LF1). Hence, for any p,q € dom f* we have

fro)+ g = lim {fi(p) + fr (@)}
> I {fipAg)+ Vet =[PAd)+ Ve

3.2 Proofof “ge L, — ¢g* € M,

We will use the following characterizations of M-convex functions. Define
Fle; ) =lim{f(z+alx; —xi) = f(2)}/a (¢ €domf, i,j&N).
(M-EXC;) Va,y € dom f, Vi € supp™ (x — y), 3j € supp™(x — y):

f@)+f(y) = fle—ali—x) + fly +ala —x;) (Vo€ [0, {z(d) —y(2)}/2t]),

where t = |supp~(z — y)]|.
(M-EXC') Vz,y € dom f, Vi € supp™(z — y), Ij € supp™(z — y):

f'(@;5,4) < +oo, f'(y11.5) < +oo, and f'(z;5,9) + f'(y;4,5) < 0.
Theorem 3.5. For a closed proper convex function f : R" — RU {4+oc0}, (M-EXC) <=
(M-EXC;) < (M-EXC’).

Since the implications “(M-EXCy) = (M-EXC)” and “(M-EXC) = (M-EXC")” are ob-
vious, we prove below the reverse implications.

Proof. [(M-EXC) = (M-EXCy)] Let xg,yo € dom f, and i € supp™ (xg—yo). Put supp~(zo—
yo) = {Jj1,J2,--- ,Je}- For h=1,2, ... t, we recursively define a function ¢, : R — RU{+4o0},
ap € R, and xp,,y, € R"™ by

on(a) = f(zn1 —alxi — Xg)) + fyn—1 +alxi —x5)) (@ €R),
an = supf{a | pn(a) < ea(0), a <minfzn 1(4) — yn-1(4), yn-10jn) — zn-1(jn)]/2},
Tp = Th—1 — ah(Xi - th)a Yn = Yn—1+ ah(Xi - th)-

Since each ¢y, is closed proper convex, Proposition 3.3 implies
T, yn € dom f, fzn) + f(yn) < f(@n-1) + flyn—1) (R=1,2,....1). (3.6)

Assume, to the contrary, that S _ oy < {xo(i) — yo(4)}/2. Since i € supp™(z; — y:), there
exist some j, € supp (z: — y:) C supp (2o — yo) and a sufficiently small a > 0 such that

(o) + flye) = floe —alxi — x5,)) + fye + alxi — x5,))- (3.7)

Putting 75, = x, — a(x; — X;,) and Ty = 2 — a(x; — X, ), we have
zp(k) = min{z,(k), z.(k)}, T4(k) = max{z(k), x:(k)} (Vk e N\ {i}).
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Therefore, Proposition 3.4 implies

flan = alxi = xa)) + fx) < fon) + [l —alh = xa))- (3.8)

Similarly, we have

Flyn 4+ alxi —x5.)) + Flye) < flyn) + flye+ alxi — x5,))- (3.9)

From (3.7), (3.8), and (3.9) follows f(zr, —a(xi — Xj,)) + [(yn +a(xi — x;,)) < f(@n) + f(yn),
a contradiction to the definition of @, and y;,. Hence, we have S0 aj, = {zo(i) — yo(i)}/2.
Let s be the index with oy = max{ay, | 1 < h < t}. For a € [0, a;], we have

{flxz—alxi—x5) —f@)}+{fly+alxi—x5) — )}
< {f(xs1 —alxi —x5,) — f(@s-1)} + {f(ys—1 +alxi —x5.)) — flys-1)} < 0,

where the first inequality is by Proposition 3.4 and the second by (3.6) and convexity of f.
This shows (M-EXC;) for f since oy > {x(7) — y(i)}/2t.

(M-EXC’) = (M-EXC)] Let z,y € dom f and i € supp™(z — y). We prove that there
exist some j € supp~ (z — y) and ap > 0 satisfying

[z —alxi—x5):7,0) + f(y+aly—x5)474) <0 (Va € [0, ag)), (3.10)

which, together with convexity of f, yields the desired inequality (1.1).
Put z. = x — |J|Bx: + Bxs and y. = y + |J|Bxi — Bxs with a sufficiently small 5 > 0 and

J={jesupp (z—y)| f(z;4,1) < +oo, f'(y;i,7) < +o0}.

By the convexity of dom f, we have z., y. € dom f. By (M-EXC’) applied to z.,y. and
i € supp™(z. — y.), there exists jo € supp™ (2. — yi) with f'(z.;70,7) + f'(y«; 4, Jo) < 0. Since
f'(x4; Jo, 1) < +o00, we have z’ = z,.+a(x;,—x;) € dom f for some o > 0. Since jo € supp™ (2’ —
x) and supp~ (2’ —x) = {i}, the property (M-EXC’) for dom f implies z + o/(x;, — x:) € dom f
for a sufficiently small o/ > 0, from which f'(z;jo,i) < +oo follows. Similarly, we have
I (y;1,Jo) < +oo. Hence, jo € J.

The inequality f'(z.;7o,1) + f'(y«; 4, o) < 0, together with the convexity of f, implies

fi(@s34, jo) + f'(ysi oo ) > 0. (3.11)

For a € [0, 3/2], we put z, = & — a(x; — Xj,) € dom f and y, =y + a(x; — Xj,) € dom f. The
property (M-EXC’) implies

f'(24, o) + [/ (24 Jo, 1) <0 (3.12)
since jo € supp™ (. — x4) and supp ™ (z. — z,) = {i}. Similarly, we have

I (Yai 4, 30) + [/ (s Jo,3) < 0. (3.13)
From (3.11), (3.12), and (3.13) follows (3.10) with j = jy and oy = /2. O
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For z € R", we define a function g[—z] : R" — R U {400} by g[—z|(p) = g(p) — (p,x)
(p € R™).

Lemma 3.6. Let g € L,,, and z,y € R™ be vectors with arg min g[—z] # () and arg min g[—y| #
0. Then, for any i € supp™(x — y), there exists j € supp (x — y) such that

p(j) —p(i) < q(j) —q(i) (Vp € argmin g[—z], Vg € arg min g[—y]). (3.14)

Proof. First we note that z(NN) = y(INV) = r, where r € R is the value in (LF2) for g. It is easy
to see that we have

p, gD =pAq, pVqe D, peD, Ne R=p+A1eD

for D = argmin g[—z| and D = arg min g[—y|. Therefore, the inequality (3.14) can be rewritten
as p(j) < q(j) (Vp € Ds, Vg € Dy), where

D, = {pe€R"|pe€argming[—z], p(i) =0},
D, = {peR"|peargming[—y], p(i) =0}.

Assume, to the contrary, that for any j € supp™ (x — y), there exists a pair of vectors p; € Dy,
¢; € D, such that p;(j) > ¢;(j). Putting

pe=\{pilicswp (-9}, ay=Nlay1j€supp (z—y)},

we havep, € D,, q, € D, and supp™ (z—y) C supp™ (p»—gy). We also put S* = supp™(p,—¢,),
A =min{p,(j) —qy(j) | j € ST} (> 0). Then, L-convexity of g implies

9(px) +9(ay)) = g(px — A1) +g(q,) + Ar
> g((pe — A1)V q,) +g((pe — A1) Agy) + Ar

= gllpe M)V )+ gle A (g + D). .15
Since
_ L [m)-A Ges)
emmvan = {0 G ey
D fal) ey Gesh,
wert ) = {0 G2
we have

((pz = A1)V gy, ) + (p A (qy + A1), y) — (P2, ) — (qy, Y)

=AY ) -2+ D {al) — peDHa() - y()}

JEST JEN\S+

> A {y() —=(i)}
jEST

> A ) ) —2()} = Ma() —y@)} > 0, (3.16)
veN\{i}
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where the inequalities follow from supp~(z —y) C S*. From (3.15) and (3.16) follows

gl=]((pe = A1)V qy) + g[=yl(px A (gy + A1) < g[=2](p2) + 9[-¥1(gy),
a contradiction to the fact that p, € arg min g[—2z], ¢, € arg min g[—y]. O

Let f: R" — RU {400} be a convex function and x € dom f. The subdifferential of f at
x, denoted by 0f(x), is defined as

of(xz) ={p e R" | f(y) > f(z)+ (p.y —z) (Vy € R")}.

For y € R", the directional derivative of f at x w.r.t. y is defined by
f(@y) =1im{f(z + ay) — f(2)} /e

Note that f'(z;j, 1) = f'(x; x5 — xa) for i, j € N.

Proposition 3.7 (cf. [19, Th. 23.4]). Let f : R” — R U {400} be a convex function with
dom f = {z € R" | (N) = r} for some r € R. Then, for any x € dom f we have f(x) # 0

and f'(z;y) =sup{(p.y) | p € Of(z)} (y € R").

We now assume g € £,, and show ¢* € M,,. It is easy to see that the conjugate function g°
satisfies dom ¢g* C {z € R" | () = r}, where r € R is the value in (LF2) for g. We firstly
consider the case when dom ¢* = {z € R" | 2(N) = r}. Let z,y € dom g® and 7 € supp™ (z—y).
Since arg min g[—z| = dg*(z) and arg min g[—y| = 0¢*(y) hold, it follows from Proposition 3.7
that arg min g[—x] # () and argmin g[—y] # (. By Lemma 3.6, there exists j € supp™(z — y)
satisfying (3.14), implying

(9°)(;5,9) + (9°) (v3 4, 4)
= sup{p(j) —p(i) | p € argmin g[—z|} + sup{q(i) — ¢(j) | ¢ € argming[—y|} <0,

where the equality is by Proposition 3.7. This shows (M-EXC’) for ¢g*, which, together with
Theorem 3.5, yields M-convexity of g°.

We then consider the general case. For fixed jo € N and ¢ € dom g with ¢(jy) = 0, we
define g : R® — RU {+0o0} (k=1,2,...) by

g(p) (peR", |p@i) —p(jo) —q(t)| < k for all i € N),
9(p) = { +00  (otherwise).

It can be easily shown that each gj is an L-convex function with dom gf = {x € R" | (N) =r}.
Therefore, the discussion above shows that each g is M-convex, and therefore satisfies (M-
EXCs) by Theorem 3.5. For x,y € dom ¢g* (C dom g}) and ¢ € supp™ (x — y), there exists some
Ji € supp (z —y) such that

@)+ i) = gr@ —alxi — x5.) +ory +alxi —x5))  (Ya € [0,{z(i) — y(i)}/2t])

14



with ¢ = |supp~(z — y)|. Since supp~(z — y) is a finite set, we may assume that j, = j.
(k=1,2,...) for some j, € supp (z —y). Then, for any a € [0,{z(i) — y(i)}/2t] we have

z)+ g2 (y)}
r—a(xi —x5.)) + gr(y+alx —x5.))}
= ¢ —alxi —x5.)) +9° (W +ali—x;.))

9*(x) +9°(y) = lim {g;(
> klim {ax(
Thus, (M-EXCj) holds for ¢g*, which shows M-convexity of ¢g* by Theorem 3.5.
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