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Abstract

We consider a kind of generalization of permutative representa-
tion with cycle by Bratteli and Jorgensen. We show their properties,
existence, irreducibility and equivalence by using parameter of repre-
sentation.

1 Introduction

We define a class of representations of Cuntz algebra which is a kind of
generalization of permutative representation by [5, 6, 7]. Let N ≥ 2 and
s1, . . . , sN generators of Cuntz algebra ON . For an element

w = w(1) ⊗ · · · ⊗ w(k) ∈ (CN )⊗k,

‖w(j)‖ = 1, j = 1, . . . , k, k ≥ 1, let

s(w) ≡ s(w(1)) · · · s(w(k)), (1.1)

s(w(j)) ≡
N∑
i=1

w
(j)
i si.

We consider a cyclic representation (H, π) of ON with the cyclic vector Ω
which satisfies an eigen equation:

π(s(w))Ω = Ω. (1.2)

Our main results are 1)existence 2)uniqueness 3)equivalence 4)irreducibility
about this kind of representations. The remarkable points are followings:

(i) This class is completely reducible, and the uniqueness of irreducible
decomposition about this class holds. The uniqueness of irreducible
decomposition is very rare in the theory of operator algebra and it
has been already stated in [6, 7] for the case of ordinary permutative
representation.
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(ii) This representation is derived from the second class gauge transforma-
tion of representation of Cuntz algebra. Correct explanation about this
statement is shown in [10]. In subsection 3.2, we show such method
by constructing generalized permutative representation from ordinary
permutative representation. In this point of view, it is easy to under-
stand actions of several group on the set of representations of ON .

(iii) This class is properly larger than former class by [5, 6, 7] with “cycle”.
For example, the following example of representation of O2 is included
in neither the class of ordinary permutative representation nor that
which is rotated by U(2)-action on O2:

1√
2
π (s1(s1 + s2)) Ω = Ω (1.3)

where w ≡ ε1 ⊗ 1√
2
(ε1 + ε2) ∈ (C2)⊗2 in the equation (1.2), ε1, ε2

are the canonical basis of C2. The cyclic representation with the
cyclic vector Ω which satisfies equation (1.3) is unique up to unitary
equivalence and irreducible. This result is shown in subsection 3.3 and
6.2.

This paper is the first of our series of articles. In the succeeding papers
[8, 9, 10], we treat 1) periodic case and its irreducible decomposition, (the
notion of “periodicity” is explained in the next section), 2) the class of
generalization of the case of “chain” in [5, 6, 7], 3) the second class gauge
transformation of representation of Cuntz algebra.

2 Preparation

In this section, we prepare several notions and lemmata in order to consider
generalized permutative representation of Cuntz algebra. We consider a
semigroup which consists of all monomials of tensor algebra over a finite
dimensional Hilbert space. Our strategy is a characterization of a class of
representations with parameter by property of elements in the parameter
space.

Let Zk be the cyclic group of order k, k ≥ 1. Assume that Zk acts on a set
{1, . . . , k} of numbers and σ : {1, . . . , k} → {1, . . . , k} is the generator of Zk
which is defined by

σ(1) = 2, . . . , σ(k − 1) = k, σ(k) = 1. (2.1)
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We call σ the shift.
Let V be a Hilbert space over C and V ⊗k k-times tensor space of V

for k ≥ 1. For p ∈ Zk, define an operator

p̂ : V ⊗k → V ⊗k; p̂
(
v(1) ⊗ · · · ⊗ v(k)

)
≡ v(p(1)) ⊗ · · · ⊗ v(p(k)). (2.2)

Then ·̂ is a unitary action of cyclic group Zk on V ⊗k.
Fix N ≥ 2. Let

S(CN ) ≡ {z ∈ CN : ‖z‖ = 1}

be the unit complex sphere. Denote

TS(CN ) ≡
∐
k≥1

S(CN )⊗k,

S(CN )⊗k ≡
{
z(1) ⊗ · · · ⊗ z(k) ∈ (CN )⊗k : z(j) ∈ S(CN ),

j = 1, . . . , k

}
.

When w ∈ S(C)⊗k, we call k the length of w. Remark that the description
of w ∈ TS(CN ) by tensor product is not unique. For example w = (cw(1))⊗
w(2) = w(1) ⊗ (cw(2)).

TS(CN ) is a semigroup by the following operation:

TS(CN )× TS(CN ) 3 (x, y) 7−→ x⊗ y ∈ TS(CN ).

The action of Zk on (CN )⊗k in (2.2) induces an action of Zk on S(CN )⊗k ⊂
(CN )⊗k naturally. We denote id the unit of Zk.

Definition 2.1 (i) w ∈ S(CN )⊗k is periodic if there is p ∈ Zk \{id} such
that p̂(w) = w.

(ii) w ∈ S(CN )⊗k is non periodic if w is not periodic.

(iii) For w,w
′ ∈ S(CN )⊗k, w ∼ w′ if there is p ∈ Zk such that p̂(w) = w

′
.

We call ∼ the cyclic equivalence by Zk.

(iv) For w,w
′ ∈ TS(CN ), w ∼ w

′
if the lengths of w and w

′
coincide and

w ∼ w′.

Specially, if k = 1, then any element in S(CN ) is non periodic. w in (1.3) is
non periodic. For example, a set

SP (C2)⊗2 = {v ⊗ v ∈ S(C2)⊗2 : v ∈ S(C2)}
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is the set of all periodic elements in S(C2)⊗2.
Note that there is an action of U(1) ≡ {c ∈ C : |c| = 1} on S(CN )⊗k

by scalar multiple:

S(CN )⊗k 3 w 7−→ cw ∈ S(CN )⊗k (c ∈ U(1)).

Lemma 2.2 If w ∈ S(CN )⊗k is periodic, then cw is periodic for each c ∈ C,
|c| = 1.

Proof. Assume that w = z⊗l, l ≥ 2. Let ξ ≡ c1/l. Then cw = (ξz)⊗l.
Hence cw is periodic.

Note that S(CN )⊗k has a map < ·|· >: S(CN )⊗k × S(CN )⊗k → C which
is the restriction of the inner product of (CN )⊗k. Furthermore we use the
notion of orthogonality for S(CN )⊗k with respect to < ·|· >.

Lemma 2.3 For w,w
′ ∈ S(CN )⊗k, the followings are equivalent:

(i) There is c ∈ C such that w
′

= cw.

(ii) | < w|w′ > | = 1.

(iii) w and w
′

are linearly dependent in (CN )⊗k.

By this lemma, we can use a notion of linearly dependence for TS(CN ).

Lemma 2.4 Let w,w
′ ∈ S(CN )⊗k. Then the following equivalence holds:

< w|w′ >= 1 ⇔ w = w
′
.

Proof. By Lemma 2.3, < w|w′ >= 1 ⇔ there is c ∈ C such that w = cw
′

and c = 1 ⇔ w = w
′
.

Proposition 2.5 (i) If w is non periodic, then

| < w|p̂(w) > | < 1 (p ∈ Zk \ {id}).

(ii) If w ∈ S(CN )⊗k and v ∈ S(CN )⊗l are non periodic and l 6= k, then

| < w⊗l|v⊗k > | < 1.

(iii) If w, v ∈ S(CN )⊗k satisfy | < w|v > | < 1, then

| < w⊗l|v⊗l > | < 1 (l ≥ 1).
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The proof of Proposition 2.5 is shown in Appendix A.

Note: For the aim of our theory, we consider the quotient space S(CN )⊗k/∼
as the set of invariants of representations of ON in subsection 6.3. An
element of S(CN )⊗k/ ∼ is regarded as a set of elements in S(CN ) which
has a cyclic order. In our theory, TS(CN ) has two roles. The first is
a parameter space of a class of representations of Cuntz algebra which is
defined in section 3. The second is that some subset of TS(CN ) is an index
set of some complete orthonormal basis of representation of Cuntz algebra
which is treated in section 4. This accidental coincidence is interesting.
Although we do not know that reason. On the other hand, the theory in [5],
the corresponded object with TS(CN ) is

{εJ ∈ TS(CN ) : J ∈ {1, . . . , N}k, k ≥ 1}.

where {εi}Ni=1 is the canonical basis of CN and εJ ≡ εi1 ⊗ · · · ⊗ εik when
J = (i1, . . . , ik). This correspondence is explained in subsection 3.3.

3 GP representation with cycle

In this paper, a word “representation” always means a unital ∗-representation.

3.1 Definition of generalized permutative representation with
cycle

Let N ≥ 2 and ON the Cuntz algebra with generators s1, . . . , sN which
satisfy the following relations

s∗i sj = δijI,
N∑
i=1

sis
∗
i = I. (3.1)

Recall an equation (1.1) for w = w(1)⊗· · ·⊗w(k) ∈ S(CN )⊗k. We summarize
the simple formulae about s(w) here.

s(w)∗ = s(w(k))∗ · · · s(w(1))∗ (3.2)

If {εi}Ni=1 is the canonical orthonormal basis of CN , then

s(εJ) = si1 · · · sik (3.3)
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when εJ ≡ εi1 ⊗ · · · ⊗ εik and J = (i1, . . . , ik) ∈ {1, . . . , N}k, k ≥ 1. We
often write sJ as s(εJ). Then

s∗J = s(εJ)∗ = s∗ik · · · s
∗
i1 .

Specially, si = s(εi), i = 1, . . . , N . If w,w
′ ∈ S(CN )⊗k, then

s(w)∗s(w
′
) =< w|w′ > I. (3.4)

In general,
s(w)s(v) = s(w ⊗ v) (3.5)

for w, v ∈ TS(CN ). Let Iso(ON ) ≡ {x ∈ ON : x∗x = I} be the semigroup
of all isometries in ON .

Lemma 3.1 A map s : TS(CN ) → Iso(ON ) is an injective semigroup ho-
momorphism.

Proof. Since (3.5), s is a homomorphism of semigroup. Let w,w
′ ∈ TS(CN ).

Assume that s(w) = s(w
′
) and w ∈ S(CN )⊗k, w

′ ∈ S(CN )⊗l. We can as-
sume that k ≥ l without loss of generality. Then

I =< w|w > I = s(w)∗s(w) = s(w)∗s(w
′
). (3.6)

If k > l, then r.h.s. of (3.6) equals to s(w
′′
)∗ where w

′′ ∈ S(CN )⊗(k−l) is
a suitable element. This equality never holds. Hence k = l. Then r.h.s. of
(3.6) equals to < w|w′ > I. Hence < w|w′ >= 1. By Lemma 2.4, w = w

′
.

Therefore s is injective.

In this way, we have a family of isometries in ON which are parameterized
by TS(CN ). By this parameterization, we define a representation of ON by
w ∈ TS(CN ) as follows.

Definition 3.2 (H, π,Ω) is the GP(= generalized permutative) representa-
tion of ON with cycle by w ∈ S(CN )⊗k if (H, π) is a cyclic representation
of ON with the cyclic unit vector Ω which satisfies the following equation:

π(s(w))Ω = Ω. (3.7)

We denote GP (w) ≡ (H, π,Ω). The equation (3.7), π(s(w)), and vector Ω
are called GP equation, GP operator and GP vector, respectively. k is called
the length of cycle of (H, π,Ω).

The assumption of ‖Ω‖ = 1 is used in section 4.
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Definition 3.3 (i) A representation (H, π) of ON is GP(= generalized
permutative) with cycle if there are w ∈ TS(CN ) and a (cyclic)vector
Ω ∈ H such that (H, π,Ω) = GP (w), that is, they satisfy the condition
(3.7).

(ii) For w,w
′ ∈ TS(CN ), GP (w) ∼ GP (w

′
) if when GP (w) = (H, π,Ω)

and GP (w
′
) = (H′ , π′ ,Ω′), then (H, π) and (H′ , π′) are unitarily

equivalent.

(iii) For a representation (H, π) of ON and w ∈ TS(CN ), (H, π) � GP (w)
if there is Ω ∈ H such that π(s(w)) and Ω satisfy (3.7).

Note that there is no assumption of cyclicity for Ω in Definition 3.3 (iii).
We identify π(si) and si from here when there is no confusion. By

using this convention, we often use s(w)Ω = Ω instead of the equation (3.7).
The notion of “cycle” is taken from [5].

A naive meaning of cycle is the following relation between vectors and
operators: for w = w(1) ⊗ · · · ⊗ w(k) ∈ S(CN )⊗k,

Ω
s(w(k))7−→ s(w(k))Ω
s(w(k−1))7−→ s(w(k−1))s(w(k))Ω

s(w(k−2))7−→ · · · s(w
(2))7−→

(
s(w(2)) · · · s(w(k))

)
Ω

s(w(1))7−→
(
s(w(1)) · · · s(w(k))

)
Ω

= s
(
w(1) ⊗ · · · ⊗ w(k)

)
Ω ( by (3.5))

= s(w)Ω
= Ω ( by (3.7)).

In this way, a couple of families which consist same number of operators and
vectors is a “cycle”.

Remark that a representation π of ON on a Hilbert space H is one-to-
one corresponded to a family of operators {t1, . . . , tN} on H which satisfies
the relations (3.1) by the relation

ti = π(si) (i = 1, . . . , N). (3.8)

Therefore we often identify a representation π ofON and a family {t1, . . . , tN}
of operators in this paper. For example, we often use the symbol for the GP
representation (H, {t1, . . . , tN},Ω) instead of (H, π,Ω) in the sense of (3.8).

Note: In [6, 7], they treat the free semigroup and its algebra in order to
consider representations of Cuntz algebra. On the other hand, TS(CN ) itself
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is not a free semigroup because the phase factor of tensor decomposition
of w ∈ S(CN )⊗k brings a freedom of description of w. A subsemigroup{
εI : I ∈ {1, . . . , N}k, k ≥ 1

}
of TS(CN ) is the free semigroup.

3.2 Existence of GP representation

Fix N ≥ 2. We show the existence of GP (w) by any w ∈ TS(CN ). The
proof is given by constructing a concrete representation of ON on l2(N).

Proposition 3.4 For each w ∈ TS(CN ), there exists the GP representation
of ON by w.

Proof. Fix w ∈ S(CN )⊗k. We construct the GP representation by w.
Assume that w = w(1) ⊗ · · · ⊗ w(k), w(j) ∈ S(CN ), j = 1, . . . , k. Let
f = {fi}Ni=1 be a branching function system ([5]) on N which is defined by

fi : N→ N (i = 1, . . . , N),

f1(n) =


σ−1(n) (1 ≤ n ≤ k),

N(n− 1) + 1 (n ≥ k + 1),

fi(n) =


(N − 1)(n− 1) + i− 1 + k (1 ≤ n ≤ k),

N(n− 1) + i (n ≥ k + 1)

where 2 ≤ i ≤ N and σ ∈ Zk is a shift in (2.1). This function system is
represented as follows:

n f1(n) f2(n) · · · fN (n)
1 k k + 1 · · · k +N − 1
2 1 k +N · · · k + 2N − 2
...

...
...

...
...
...

...
k − 1 k − 2 N(k − 2) + 3 · · · N(k − 1) + 1
k k − 1 N(k − 1) + 2 · · · Nk

k + 1 Nk + 1 Nk + 2 · · · N(k + 1)
...

...
...

...
...
...

...

Note that the value of f1 is quite different in other fi, i = 2, . . . , N on
1 ≤ n ≤ k. We can check easily the following properties:

fi is injective, fi(N) ∩ fj(N) = ∅ (i 6= j),
N∐
i=1

fi(N) = N. (3.9)
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By the column of f1(n) in the above tabular,

fk1 (1) = 1 (3.10)

where fk1 ≡ f1 ◦ · · · ◦ f1︸ ︷︷ ︸
k

. The permutative representation (l2(N), π) of ON

by f is defined by

π(si)en = efi(n) (i = 1, . . . , N, n ∈ N).

Note that (l2(N), π) is not irreducible when k ≥ 2 ([5]). (l2(N), π) satisfies

π(s1)en = eσ−1(n) (1 ≤ n ≤ k).

By the equation (3.10),
π(s1)ke1 = e1.

Denote ti ≡ π(si).
Choose a family {g(n)}kn=1 ⊂ U(N) of unitary matrices which satisfy

gj1(n) = w
(σ−1(n))
j (j = 1, . . . , N, n = 1, . . . , k)

where w(n)
j is the j-th component of vector w(n) ∈ S(CN ), j = 1, . . . , N .

Rewrite {si}Ni=1 a family of operators on l2(N) which is defined by

sien ≡


N∑
j=1

g∗ji(n)tjen (1 ≤ n ≤ k),

tien (n ≥ k + 1)

for i = 1, . . . , N . Then {si}Ni=1 satisfies the relation (3.1). Hence (l2(N), {si}Ni=1)
is a new representation of ON . From this, we have

tien ≡


N∑
j=1

gji(n)sjen (1 ≤ n ≤ k),

sien (n ≥ k + 1)
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for i = 1, . . . , N . Since t1en = eσ−1(n), 1 ≤ n ≤ k,

eσ−1(n) = t1en

=
N∑
j=1

gj1(n)sjen

=
N∑
j=1

w
(σ−1(n))
j sjen

= s
(
w(σ−1(n))

)
en.

Hence s(w(n))eσ(n) = en for 1 ≤ n ≤ k. From this,

s(w)e1 = s(w(1)) · · · s(w(k))eσ(k)

= s(w(1)) · · · s(w(k−1))ek
= s(w(1)) · · · s(w(k−1))eσ(k−1)

= · · ·
= s(w(1))e2

= s(w(1))eσ(1)

= e1.

Therefore s(w)e1 = e1. Hence a representation (l2(N), {s1, . . . , sN}) satis-
fies the equation (3.7) with respect to w for Ω = e1. We finish to construct
the GP representation (l2(N), {s1, . . . , sN}, e1) of ON by w.

Note: The proof of existence of GP representation is the method of the
second class gauge transformation of representations of Cuntz algebra. The
relation between (3.7) and the second class gauge transformation of repre-
sentation is explained in the next paper [10].

3.3 Relation with permutative representation

We show the relation between GP representation and ordinary permutative
representation by [5].

Let {εi}Ni=1 be the canonical orthonormal basis of CN . If w = εI ≡
εi1⊗· · ·⊗εik ∈ S(CN )⊗k for I = (i1, . . . , ik), then the equation (3.7) becomes

π(sI)Ω = Ω.
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where sI ≡ si1 · · · sik . On the other hand, the permutative representation
(l2(N), πf ) with cycle by [5] is given by a branching function system f =
{fi}Ni=1, that is, f is a family which satisfies (3.9). Furthermore the condition
of cycle is corresponded to the relation for an element n0 ∈ N

fI(n0) = n0

where fI = fi1 ◦· · ·◦fik when I = (i1, . . . , ik). Let {en}n∈N be the canonical
basis of l2(N) and Ω ≡ en0 ∈ l2(N). By definition of the permutative
representation

πf (sI)Ω = πf (si1) · · ·πf (sik)en0

= efI(n0)

= en0

= Ω.

Hence (l2(N), πf ,Ω) is the GP representation of ON by w = εI . Conse-
quently, any ordinary permutative representation with cycle is included in
the class of GP representation with cycle.

We show the case of chain [5, 6, 7] and decomposition of them in the
succeeding paper [8, 9]. The structure of basis and action of generator of
ON on them are discussed in subsection 4.4.

4 Structure and canonical basis of GP representa-
tion

We construct the basis of the representation space of GP representation by
the canonical way here. In the original definition of permutative represen-
tation [5], it is defined by using a branching function system and the action
of ON on a complete orthonormal basis(=CONB) of a Hilbert space. In
this sense, it is assumed that the existence of such CONB to define a per-
mutative representation. On the other hand, our definition of generalized
permutative representation is not assumed the existence of such suitable
CONB at the statement of definition. It is shown that such CONB is auto-
matically derived from the equation (3.7). Such CONB is divided into two
kinds, “cycle” and “tree”. This is an analogy that a graph which consists
of vertices = CONB, and edges = operators, looks like trees on roots which
are cyclicly connected each other. The meaning of this analogy is cleared in
the following subsections.
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4.1 Construction of cycle basis

Let w ∈ S(CN )⊗k. Fix a tensor decomposition of w:

w = w(1) ⊗ · · · ⊗ w(k) (4.1)

for w(j) ∈ S(CN ), j = 1, . . . , k. Let

wj ≡ σ̂j−1(w) (j = 1, . . . , k).

For example,

w1 = w, w2 = w(2) ⊗ · · · ⊗ w(k) ⊗ w(1).

Let GP (w) = (H, {s1, . . . , sN},Ω) be the GP representation of ON by w.
By definition, s(w)Ω = Ω. Let

ej ≡ s(w(j)) · · · s(w(k))Ω (j = 1, . . . , k). (4.2)

Since s(w(j)) is an isometry for each j = 1, . . . , k and ‖Ω‖ = 1, ‖ej‖ = 1 for
each j = 1, . . . , k. Note that there is a freedom of the choice of phase factor
of tensor decomposition (4.1). Hence (4.2) depends on the choice of phase
of tensor factor w(i), i = 1, . . . , k. We check this freedom at several stages
in our paper.

Lemma 4.1 (i) s(w(j−1))ej = ej−1 for j = 2, . . . , k and s(w(k))e1 = ek.

(ii) s(wj)ej = ej for j = 1, . . . , k.

(iii) s(w(j))∗Ω =< w(j)|w(1) > e2.

(iv) If v ∈ S(CN )⊗a, 0 < a < k, then there is c ∈ C such that

s(v)∗Ω = c · ea+1.

(v) If v ∈ S(CN )⊗(lk+a), l ≥ 1, 0 ≤ a < k, then there is c ∈ C such that

s(v)∗Ω = c · ea+1.

Proof.
(i)

s(w(j−1))ej = s(w(j−1))
(
s(w(j)) · · · s(w(k))Ω

)
= s(w(j−1))s(w(j)) · · · s(w(k))Ω
= ej−1,

s(w(k))e1 = s(w(k))Ω
= ek.
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(ii)

s(wj)ej =
(
s(w(j)) · · · s(w(k))s(w(1)) · · · s(w(j−1))

) (
s(w(j)) · · · s(w(k))Ω

)
= s(w(j)) · · · s(w(k))

(
s(w(1)) · · · s(w(k))

)
Ω

= s(w(j)) · · · s(w(k))Ω
= ej .

(iii)
s(w(j))∗Ω = s(w(j))∗s(w)Ω

= < w(j)|w(1) > s(w(2) ⊗ · · · ⊗ w(k))Ω
= < w(j)|w(1) > e2.

(iv)
s(v)∗Ω = s(v(1) ⊗ · · · ⊗ v(a))∗Ω

= s(v(a))∗ · · · s(v(1))∗Ω
= s(v(a))∗ · · · s(v(2))∗e2 ( by (iii) )
= · · ·
= s(v(a))∗ea
= ea+1

for each a = 1, . . . , k − 1.
(v) If a = 0, then s(v)∗Ω =< v|w⊗l > Ω = ce1 where c ≡< v|w⊗l >. Assume
that 1 ≤ a ≤ k − 1. Decompose v = v1 ⊗ v2 such that v1 ∈ S(CN )⊗lm and
v2 ∈ S(CN )⊗a.

s(v)∗Ω = < v1|w⊗l > s(v2)∗Ω
= < w(j)|w(1) > c

′
ea+1 ( by (iv) )

= cea+1

where c ≡< w(j)|w(1) > c
′
.

Note e1 =
(
s(w(1)) · · · s(w(k))

)
Ω = s(w)Ω = Ω.

Corollary 4.2 (i) s(w(j))eσ(j) = ej for j = 1, . . . , k.

(ii) If (H, {s1, . . . , sN},Ω) is the GP representation of ON by w ∈ S(CN )⊗k,
then for each p ∈ Zk, there is a cyclic vector Ω

′ ∈ H such that
s(p̂(w))Ω

′
= Ω

′
.

Proof. (i) This follows from Lemma 4.1 (i). (ii) When j = 1, it is trivial.
For p ∈ Zk \ {id}, let j ≡ p(1) ∈ {2, . . . , k}. By definition of ej in Lemma
4.1 (ii),

s(w(1)) · · · s(w(j−1))ej = Ω.
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If Ω
′ ≡ ej , then Ω ∈ π(ON )Ω

′
and

s(p̂(w))Ω
′

= s(wj)ej = ej = Ω
′
.

Hence Ω
′

is cyclic, too. Hence (H, {s1, . . . , sN},Ω
′
) satisfies the condition of

the GP representation of ON by p̂(w).

Proposition 4.3 (Cyclic symmetry of GP representation) If (H, π,Ω) is
the GP representation of ON by w ∈ S(CN )⊗k, then for each p ∈ Zk, there
is Ω

′ ∈ H such that (H, π,Ω′) is the GP representation of ON by p̂(w), too.

Proof. Assume that (H, π,Ω) is the GP representation of ON by w ∈
S(CN )⊗k. Fix p ∈ Zk. By Lemma 4.2 (ii), there is a cyclic vector Ω

′ ∈ H
such that (H, π,Ω′) satisfies the condition (3.7) with respect to p̂(w), too.
Hence (H, π,Ω′) is the GP representation of ON by p̂(w) ∈ S(CN )⊗k, too.

Recall Definition 3.3.

Corollary 4.4 Let w ∈ S(CN )⊗k. If a representation (H, π) of ON is
GP (w), then (H, π) is GP (p̂(w)) for each p ∈ Zk, too.

The equivalence of two GP representations is discussed in subsection 5.3.

So far, we do not assume the non periodicity of w. From now, we treat only
non periodic case. We treat about the periodic case in the succeeding our
paper.

Lemma 4.5 If w ∈ S(CN )⊗k is non periodic, then

< ej |ej′ >= δjj′ (j, j
′

= 1, . . . , k).

Proof.
< ej |ej′ >= < s(wj)ej |s(wj′ )ej′ >

= < ej |s(wj)∗s(wj′ )ej′ >
= < wj |wj′ >< ej |ej′ > ( by (3.4)).

Hence
< ej |ej′ >=< wj |wj′ >< ej |ej′ > .

If < ej |ej′ >6= 0, then < wj |wj′ >= 1. From this, if | < wj |wj′ > | < 1,
then < ej |ej′ >= 0. On the other hand, if j 6= j

′
, then | < wj |wj′ > | < 1

by Proposition 2.5 (i). Therefore < ej |ej′ >= 0 when j 6= j
′
.
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Definition 4.6 For a non periodic element w ∈ S(CN )⊗k and its tensor de-
composition {w(j)}kj=1 ⊂ S(CN ), {ej}kj=1 is called the cycle basis of GP (w)
with respect to {w(j)}kj=1.

By definition of cycle basis, if {w(j)}kj=1 and {v(j)}kj=1 are two tensor de-
compositions of w, then associated cycle basis of them are equal up to phase
factor. In this sense, the cycle basis of GP (w) is canonically defined from w
with phase freedom.

Note: The orthogonality of cycle basis is automatically induced from the
equation (3.7) and the relations (3.1). This shows the importance of condi-
tion (3.7) for representation of ON .

Lemma 4.7 Let w ∈ S(CN )⊗k and (H, {s1, . . . , sN},Ω) the GP represen-
tation of ON by w. Fix {w(i)}ki=1 the tensor decomposition of w Assume
that {ei}ki=1 the cycle basis of w with respect to {w(i)}ki=1.

If w
′ ∈ S(CN )⊗(kn+a), n ≥ 0 and 0 ≤ a < k, then

s(w
′
)∗Ω =< w

′ |φn,a > ea+1

where φn,a ∈ S(CN )⊗(kn+a) which is defined by

φn,a ≡


w⊗n (a = 0)

w⊗n ⊗ w(1) ⊗ · · · ⊗ w(a) (0 < a < k).

Proof. By (3.7), (s(w))nΩ = (s(w))n−1Ω = · · · = Ω. If 0 < a < k, then

s(φn,a)ea+1 = s(w⊗n ⊗ w(1) ⊗ · · · ⊗ w(a))s(w(a+1)) · · · s(w(k))Ω
= s(w⊗n)s(w)Ω
= (s(w))nΩ ( by (3.5) )
= Ω.

The case a = 0 follows from the last equality in the above. Hence

s(φn,a)ea+1 = Ω. (4.3)

By (4.3) and (3.4),

s(w
′
)∗Ω = s(w

′
)∗ (s(φn,a)ea+1)

=
(
s(w

′
)∗s(φn,a)

)
ea+1

= < w
′ |φn,a > ea+1.
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Note that the right hand side in the equation of Lemma 4.7 is independent
in the choice of tensor decomposition of w.

Let
Vw ≡ Lin < {ej : j = 1, . . . , k} > .

Then Vw is a subspace of H and its definition is independent in the difference
of phase factor of cycle basis of GP (w).

Lemma 4.8 For each I ∈
⋃
k≥1{1, . . . , N}k, s∗IVw ⊂ Vw.

Proof. Note
s∗Iej = s(εI)∗

(
s(w(j)) · · · s(w(k))Ω

)
.

If l ≡ |I| < k − j + 1, then

s∗Iej = < εI |w(j) ⊗ · · · ⊗ w(j+l−1) > s(w(j+l)) · · · s(w(k))Ω
= < εI |w(j) ⊗ · · · ⊗ w(j+l−1) > ej+l
∈ Vw.

If |I| = k − j + 1, then

s∗Iej =< εI |w(j) ⊗ · · · ⊗ w(k) > Ω ∈ Vw.

If l ≡ |I| > k − j + 1, let I1 = (i1, . . . , ik) and I2 = (ik+1, . . . , il). Then

s∗Iej = s(εI1 ⊗ εI2)∗s(w(j) ⊗ · · · ⊗ w(k))Ω.
= s(εI2)∗s(εI1)∗s(w(j) ⊗ · · · ⊗ w(k))Ω.
= < εI1 |w(j) ⊗ · · · ⊗ w(k) > s(εI2)∗Ω.

By Lemma 4.7, s(εI2)∗Ω ∈ Vw. Hence

s∗Iej =< εI1 |w(j) ⊗ · · · ⊗ w(k) > s(εI2)∗Ω ∈ Vw.

Corollary 4.9

ONVw = Lin < {sIΩ, Ω : I ∈ {1, . . . , N}k, k ≥ 1} > (4.4)

where the overline means the clousure in H.
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Proof. Denote K the set in the right hand side of (4.4). By definition (4.2)
of the cycle basis ej , ej ∈ K. Hence Vw ⊂ K. By Lemma 4.8,

sIs
∗
JVw ∈ sIVw ⊂ sIK ⊂ K

for each I, J . Since Lin < {sIs∗J : |I|+ |J | ≥ 1} > is a dense ∗- subalgebra of
ON , ONVw ⊂ K. On the other hand, by the definition of GP representation
(H, {s1, . . . , sN},Ω), H is cyclic with respect to Ω. Hence

ONVw ⊂ K ⊂ H = ONΩ.

Hence ONVw = K.

Corollary 4.10 H = Lin < {sIΩ, Ω : I ∈ {1, . . . , N}k, k ≥ 1} >.

¿From this, we can consider the GP representation space as the right
hand side in the statement in Corollary 4.10. The characteristic property of
generalized permutative representation with cycle is the existence of a finite
dimensional subspace Vw. In the case of “chain” in [5], there is no such Vw
which satisfies the property in Lemma 4.8. In the analogy of tree and root,
then Vw is associated with root.

4.2 Property of cycle basis

Assume that w ∈ S(CN )⊗k is non periodic, {w(j)}kj=1 is a tensor decomposi-
tion of w and {ej}kj=1 is the cycle basis of GP (w) with respect to {w(j)}kj=1.

For j ∈ {1, . . . , k}, let

Nj(w) ≡ {z ∈ S(CN ) :< z|w(j) >= 0}. (4.5)

Lemma 4.11 Let j, j
′

= 1, . . . , k.

(i) If j 6= j
′
, then

< s(z)ej |ej′ >= 0

for each z ∈ Nσ−1(j)(w).

(ii) If j 6= j
′
, then

< s(v)s(z)ej |ej′ >= 0

for each v ∈ TS(CN ) and z ∈ Nσ−1(j)(w).
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(iii) If j 6= j
′
, then

< s(v)s(z)ej |s(z
′
)ej′ >= 0

for each v ∈ TS(CN ), z ∈ Nσ−1(j)(w) and z
′ ∈ Nσ−1(j′ )(w).

(iv) If j 6= j
′
, then

< s(v)s(z)ej |s(v
′
)s(z

′
)ej′ >= 0

for each v, v
′ ∈ TS(CN ), z ∈ Nσ−1(j)(w) and z

′ ∈ Nσ−1(j′ )(w).

Proof.
(i) By Corollary 4.2 (i),

< s(z)ej |ej′ >= < s(z)ej |s(w(j
′
))eσ(j

′
) >

= < z|w(j
′
) >< ej |eσ(j′ ) > ( by (3.4))

= < z|w(j
′
) > δj,σ(j′ ).

If j = σ(j
′
), then < z|w(j

′
) >=< z|w(σ−1(j)) >= 0 by choice of z. Hence

< s(z)ej |ej′ >= 0.
(ii) Assume that v ∈ S(CN )⊗(kn+a), n ≥ 0 and 0 ≤ a < k. Let

y ≡ w⊗n ⊗ w(j
′
) ⊗ w(σ(j

′
)) ⊗ · · · ⊗ w(σa−1(j

′
)).

Note “the length of v” = “the length of y”. Then s(y)eσa(j′ ) = ej′ . Hence

< s(v)s(z)ej |ej′ >= < s(v)s(z)ej |s(y)eσa(j′ ) >

= < v|y >< s(z)ej |eσa(j′ ) >

By (i), if j 6= σa(j
′
), then < s(z)ej |eσa(j′ ) >= 0. Hence < s(v)s(z)ej |ej′ >=

0.
Assume that j = σa(j

′
). Then

< s(v)s(z)ej |ej′ >= < v|y >< s(z)ej |ej >
= < v|y >< s(z)ej |s(wj)eσ(j) >

= < v|y >< z|w(j) >< ej |eσ(j) >

= < v|y >< z|w(j) > δj,σ(j)

= 0.

by Corollary 4.2 (i). Hence < s(v)s(z)ej |ej′ >= 0.
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(iii) Assume that v ∈ S(CN )⊗l, l ≥ 1. If l = 1, then

< s(v)s(z)ej |s(z
′
)ej′ >= < v|z′ >< s(z)ej |ej′ >

= 0

by (i).
Assume l ≥ 2 and choose v1, v2 such that v = v1⊗ v2 and v1 ∈ S(CN ).

Then

< s(v)s(z)ej |s(z
′
)ej′ >= < v1|z

′
>< s(v2)s(z)ej |ej′ >

= 0

by (ii).
(iv) Assume that v ∈ S(CN )⊗l, v

′ ∈ S(CN )⊗l
′
, l, l

′ ≥ 1. We can assume
that l ≥ l′ without loss of generality.

If l − l′ = 0, then

< s(v)s(z)ej |s(v
′
)s(z

′
)ej′ >= < v ⊗ z|v′ ⊗ z′ >< ej |ej′ >

= 0.

Assume l − l′ ≥ 1 and choose v1, v2 such that v = v1 ⊗ v2 and v1 ∈
S(CN )⊗l

′
. Then

< s(v)s(z)ej |s(v
′
)s(z

′
)ej′ >= < v1|v

′
>< s(v2)s(z)ej |s(z

′
)ej′ >

= 0

by (iii).

Assume that w ∈ S(CN )⊗k is non periodic. ForGP (w) = (H, {s1, . . . , sN},Ω),
define a family of subspaces of H by

Tj(w) ≡ Lin < {s(v)s(z)ej , s(z)ej , ej : v ∈ TS(CN ), z ∈ Nσ−1(j)(w)} >.

for j = 1, . . . , k.

Theorem 4.12 If H is the GP representation of ON by non periodic w ∈
S(CN )⊗k, then the following decomposition holds:

H =
k⊕
j=1

Tj(w).
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Proof. By Lemma 4.11, {Tj(w)}kj=1 are mutually orthogonal. Hence

k⊕
j=1

Tj(w) ⊂ H.

On the other hand, by Corollary 4.9 and 4.10,

H = ONVw

=
k⊕
j=1

Lin < {sIej , ej : I ∈ {1, . . . , N}k, k ≥ 1} >.

⊂
k⊕
j=1

Tj(w).

Hence H =
⊕k

j=1 Tj(w).

Note that a decomposition in Theorem 4.12 is independent in the choice of
tensor decomposition in (4.1).

4.3 Tree subspace of GP representation

Assume that w ∈ S(CN )⊗k is non periodic and we use symbols Tj(w),
j = 1, . . . , k, Nj(w) in subsection 4.2. We consider Tj(w), j = 1, . . . , k.

Lemma 4.13 Fix j ∈ {1, . . . , k}.

(i) < s(z)ej |ej >= 0 for z ∈ Nσ−1(j)(w).

(ii) < s(v)s(z)ej |ej >= 0 for z ∈ Nσ−1(j)(w) and v ∈ TS(CN ).

(iii) < s(v)s(z)ej |s(z
′
)ej >= 0 for z, z

′ ∈ Nσ−1(j)(w) and v ∈ TS(CN ).

(iv) < s(v)s(z)ej |s(v
′
)s(z

′
)ej >= 0 for z, z

′ ∈ Nσ−1(j)(w) when v ∈ TS(CN )
and v

′ ∈ TS(CN ) are different in length.

Proof.
(i) By Corollary 4.2 (i),

< s(z)ej |ej >= < s(z)ej |s(w(j))eσ(j) >

= < z|w(j) >< ej |eσ(j) >

= 0.
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(ii) Assume that v ∈ S(CN )⊗l.
If l = 1, then

< s(v)s(z)ej |ej >= < v|w(j) >< s(z)ej |eσ(j) >

= 0

by Corollary 4.2 (i) and Lemma 4.11 (i). If l ≥ 2, then choose v1, v2 such
that v = v1 ⊗ v2 and v1 ∈ S(CN ). Then

< s(v)s(z)ej |ej >= < v1|w(j) >< s(v2)s(z)ej |eσ(j) >

= 0

by Corollary 4.2 (i) and Lemma 4.11 (ii).
(iii) Assume that v ∈ S(CN )⊗l. If l = 1, then

< s(v)s(z)ej |s(z
′
)ej >= < v|z′ >< s(z)ej |ej >

= 0

by (i). If l ≥ 2, then choose v1, v2 such that v = v1 ⊗ v2 and v1 ∈ S(CN ).
Then

< s(v)s(z)ej |s(z
′
)ej >= < v1|z

′
>< s(v2)s(z)ej |ej >

= 0

by (ii).
(iv) Assume that v ∈ S(CN )⊗l and v

′ ∈ S(CN )⊗l
′
. We can assume that

l > l
′

without loss of generality. If l − l′ = 1, then

< s(v)s(z)ej |s(v
′
)s(z

′
)ej >= < v|v′ ⊗ z′ >< s(z)ej |ej >

= 0

by (i). If l − l
′ ≥ 2, then choose v1, v2 such that v = v1 ⊗ v2 and v1 ∈

S(CN )⊗l
′
. Then

< s(v)s(z)ej |s(v
′
)s(z

′
)ej >= < v1|v

′
>< s(v2)s(z)ej |s(z

′
)ej >

= 0

by (iii).

Theorem 4.14 For each j = 1, . . . , k, we have the following decomposition:

Tj(w) =
⊕
l≥0

F (l)
j (w)
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where

F (0)
j (w) ≡ Cej ,

F (1)
j (w) ≡ Lin < {s(z)ej : z ∈ Nσ−1(j)(w)} >,

F (l)
j (w) ≡ Lin < {s(v)s(z)ej : z ∈ Nσ−1(j)(w), v ∈ S(CN )⊗(l−1)} >

for l ≥ 2 and the infinite direct sum means the clousure of algebraic direct
sum in H.

Proof. By Lemma 4.13,
{
F (l)
j (w) : l ≥ 0

}
are mutually orthogonal. Hence

the direct sum decomposition makes sense in Tj(w). Furthermore Tj(w)
consists of

{
F (l)
j (w) : l ≥ 0

}
by definition of Tj(w).

Note
s(z)F (0)

j (w) ⊂ F (1)
j (w) ( z ∈ Nσ−1(j)(w) ),

siF (l)
j (w) ⊂ F (l+1)

j (w) (i = 1, . . . , N, l ≥ 1)

for each j = 1, . . . , k.

Theorem 4.15 Let GP (w) = (H, {s1, . . . , sN},Ω) for non periodic w ∈
S(CN )⊗k. Then the following decomposition holds:

H =
k⊕
j=1

⊕
l≥0

F (l)
j (w),

F (l+1)
j (w) =

N⊕
m=1

smF (l)
j (w) ∼= CN ⊗F (l)

j (w) (l ≥ 1),

F (1)
j (w) ∼= Nσ−1(j)(w)⊗F (0)

j (w) ∼= CN−1 ⊗F (0)
j (w)

for j = 1, . . . , k. Furthermore

s(w(j))F (0)
σ(j)(w) = F (0)

j (w) (j = 1, . . . , k).

Proof. By combining Theorem 4.12 and 4.14, we have the first formula.
The second follows from definition of F (l)

j (w) and orthogonality of si and sj
when i 6= j. The third follows from definition of F (1)

j (w). The last formula
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follows by Corollary 4.2 (i).

We use this decomposition in subsection 4.4.
The following illustration is the decomposition in Theorem 4.15:

- -

� �

6

·····

·····

' $

& %

x

x

F (1)
j (w)

F (2)
j (w)

x x
x x

6

··
·

F (0)
j (w)

Nσ−1(j)(w)⊗

Lin<{s1,...,sN}>⊗

F (0)
j+1(w) F (0)

j−1(w)

F (0)
1 (w)

F (0)
k (w) F (0)

2 (w)

s(w(j−1))s(w(j))

s(w(1))s(w(k))

cycle
part

tree
part





Note: By definition of F (l)
j (w), the decomposition in Theorem 4.15 is in-

dependent in the choice of tensor decomposition of w. It is remarkable that
only one equation (3.7) induces a direct sum decomposition of the represen-
tation space and the meaning of decomposition is clear as the statement in
Theorem 4.15.
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4.4 Construction of tree basis

The aim of this subsection is to construct a complete orthonormal basis
of the GP representation by non periodic w ∈ TS(CN ) according to the
direct sum decomposition in Theorem 4.15. Our strategy is to construct an
orthonormal basis of F (l)

j (w) for each j = 1, . . . , k, l ≥ 0. By definition of

F (l)
j (w), it seems that the structure of H is similar to the full Fock space

over CN . The precise answer of this analogy is obtained by showing the
form of basis of H from here.

Assume that w ∈ S(CN )⊗k is non periodic, GP (w) = (H, {s1, . . . , sN},Ω)
and {ej}kj=1 is the cycle basis of GP (w) with respect to a tensor decompo-
sition {w(j)}kj=1 in Definition 4.6.

Fix j ∈ {1, . . . , k}. For a component w(j), choose an orthogonal family
{w(j)[l] : l = 1, . . . , N} in S(CN ) such that w(j)[1] = w(j). By definition,
{w(j)[l] : l = 2, . . . , N} ⊂ Nj(w) in (4.5).

Define a subset Λ(w) of TS(CN ) by

Λ(w) ≡
k∐
j=1

∐
m≥0

Λ(m)
j (w)

where

Λ(0)
j (w) ≡

{
w(j) ⊗ · · · ⊗ w(k)

}
,

Λ(1)
1 (w) ≡

{
w(k)[l] : l = 2, . . . , N

}
,

Λ(1)
j (w) ≡

{
w(j−1)[l]⊗ w(j) ⊗ · · · ⊗ w(k) : l = 2, . . . , N

}
(j = 2, . . . , k),

Λ(m)
j (w) ≡

{
εI ⊗ x : x ∈ Λ(1)

j (w), I ∈ {1, . . . , N}m−1
}

for m ≥ 2 where {εi : i = 1, . . . , N} is the canonical basis of CN and εI ≡
εi1 ⊗ · · · ⊗ εim when I = (i1, . . . , im) ∈ {1, . . . , N}m. Specially, Λ(0)

1 = {w}.
The cardinality of these sets are followings

#Λ(0)
j (w) = 1,

#Λ(1)
j (w) = N − 1,

#Λ(m)
j (w) = (N − 1)Nm−1
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for m ≥ 2 and j = 1, . . . , k.
Define a family {ex ∈ H : x ∈ Λ(w)} of unit vectors in H by

ex ≡ s(x)Ω (x ∈ Λ(w)).

We distinguish {ex : x ∈ Λ(w)} and the cycle basis in (4.2) by the kind of
suffix.

Proposition 4.16 For non periodic w ∈ TS(CN ), {ex ∈ H : x ∈ Λ(w)} is
a complete orthonormal basis of the GP representation of ON by w.

Proof. Note

{ ex : x ∈ Λ(w) } =
k∐
j=1

∐
m≥0

{
ex : x ∈ Λ(m)

j (w)
}
. (4.6)

By definition (4.2) of cycle basis, {ex : x ∈ Λ(0)
j (w)} = {ej} ⊂ F (0)

j (w).
Since {w(j)[l] : l = 2, . . . , k} ⊂ Nj(w) by (4.5),{

ex : x ∈ Λ(1)
j (w)

}
=
{
s(w(σ−1(j))[l])ej : l = 2, . . . , N

}
⊂ F (1)

j (w). (4.7)

Furthermore{
ex : x ∈ Λ(m)

j (w)
}

=

{
sIs(w(σ−1(j))[l])ej :

l = 2, . . . , N,
I ∈ {1, . . . , N}m−1

}
⊂ F (m)

j (w)

for each m ≥ 2 and j = 1, . . . , k.
By Theorem 4.15, a decomposition (4.6) is a decomposition of orthog-

onal families of vectors in H. It is sufficient to show that orthogonality of
vectors in each family {ex : x ∈ Λ(m)

j (w)}.
When m = 0: {ex : x ∈ Λ(0)

j (w)} is a one-point set. Hence there is
nothing to show about this case.

When m = 1: For l, l
′

= 2, . . . , N ,

< s(w(j)[l])Ω | s(w(j)[l
′
])Ω >=< w(j)[l] |w(j)[l

′
] >= δl,l′ .

By (4.7) {ex : x ∈ Λ(1)
j (w)} is an orthogonal family.

When m ≥ 2: For I, I
′ ∈ {1, . . . , N}m−1 and l, l

′
= 2, . . . , N ,

< sIs(w(j)[l])Ω | sI′s(w
(j)[l

′
])Ω >= δI,I′ δl,l′ .
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Hence {ex : x ∈ Λ(m)
j (w)} is an orthogonal family, too. By comparing the

number of elements in Λ(m)
j (w) and the dimension of F (m)

j (w), {ex : x ∈
Λ(m)
j (w)} is a basis of F (m)

j (w). We have

Lin < {ex : x ∈ Λ(m)
j (w)} >= F (m)

j (w). (4.8)

By Theorem 4.15, an orthogonal family {ex : x ∈ Λ(w)} is complete.

We illustrate this basis by the following figure:
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@
@
@

�
�
�
�
�

@
@@I

�
���' $x

x x

x x

· · · · ·
· · · · ·

ej

s(w(j−1)[2])ej s(w(j−1)[N ])ej

ej+1 ej−1

s(w(j−1)[1])=s(w(j−1))s(w(j)[1])=s(w(j))

s(w(j−1)[N ])s(w(j−1)[2])

Recall Corollary 4.2 (i). In this figure, a vertex and an edge mean a vector
and an operator on the representation space, respectively.

We check the action of ON on this basis. If m ≥ 1, then

siex = sis(x)Ω = s(εi ⊗ x)Ω = eεi⊗x (4.9)

for i = 1, . . . , N , x ∈ Λ(m)
j (w). Hence si moves tree basis to tree basis except

cycle. This action is similar to ordinary permutive representation ([5]). The
case m = 0 is complicated rather than that of m 6= 0. Define a family
{g(n)}kn=1 of unitaries in U(N) by

gij(n) ≡ w(σ−1(n))
i [j] (i, j = 1, . . . , N, n = 1, . . . , k).

Then

g(n) =


w

(σ−1(n))
1 [1] · · · w

(σ−1(n))
1 [N ]

w
(σ−1(n))
2 [1] · · · w

(σ−1(n))
2 [N ]

...
...
...
...

...
w

(σ−1(n))
N [1] · · · w

(σ−1(n))
N [N ]


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for n = 1, . . . , k. By choice of {w(σ−1(n))[l] }Nl=1, g(n) is a unitary matrix.
By this,

s(w(n)[i]) =
N∑
j=1

w
(n)
j [i]sj =

N∑
j=1

gji(σ(n))sj = αg(σ(n))(si)

for i, j = 1, . . . , N, n = 1, . . . , k where α is the natural U(N) action on ON .
Hence

si = αg(σ(n))∗

(
s(w(n)[i])

)
.

By using this equation, compute action of si:

siexσ(m)
= siew(m)⊗···⊗w(k)

= sis(w(m) ⊗ · · · ⊗ w(k))Ω
= siem

= αg(m)∗

(
s(w(σ−1(m))[i])

)
em

=
N∑
j=1

(g(m)∗)jis(w(σ−1(m))[j])em

= g(m)i1s(w
(σ−1(m))[1])em +

N∑
j=2

g(m)ijs(w
(σ−1(m))[j])em

= g(m)i1eσ−1(m)

+
N∑
j=2

g(m)ijs(w
(σ−1(m))[j]⊗ w(m) ⊗ · · · ⊗ w(k))Ω

= w
(σ−1(m))
i exm +

N∑
j=2

w
(σ−1(m))
i [j]s(yj,m)Ω

= w
(σ−1(m))
i exm +

N∑
j=2

w
(σ−1(m))
i [j]eyj,m

where

x1 ≡ w(k), xm ≡ w(σ−1(m)) ⊗ · · · ⊗ w(k),

(4.10)
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yj,1 ≡ w(k)[j], yj,m ≡ w(σ−1(m))[j]⊗ w(m) ⊗ · · · ⊗ w(k)

for j = 2, . . . , N, m = 2, . . . , k. Note

xm ∈ Λ(0)
σ−1(m)(w), yj,m ∈ Λ(1)

σ−1(m)(w)

for m = 1, . . . , k and j = 1, . . . , N .

Lemma 4.17 Under the assumption in Proposition 4.16 and symbols (4.10),
the following equation holds:

siexσ(m)
= w

(σ−1(m))
i exm +

N∑
j=2

w
(σ−1(m))
i [j]eyj,m

for m = 1, . . . , k and i = 1, . . . , N .

Corollary 4.18 (Ordinary cycle basis notation) Under the assumption in
Proposition 4.16, the following equation holds:

siem = w
(σ−1(m))
i eσ−1(m) +

N∑
j=2

w
(σ−1(m))
i [j]s(w(σ−1(m))[j])em

for m = 1, . . . , k and j = 1, . . . , N .

By Lemma 4.17, the action of generators of ON on the cycle basis is clarified.
For si action, the first term in the right hand side is a cycle basis, again.
On the other hand, other term is in F (1)

i (w) and this is “outside” cycle. By

checking matrix element of g(m), it is known that
(
w̄

(σ−1(m))
i [l]

)N
l=1
∈ CN is

a unit vector. Hence it seems that an operator si is arisen from a branching

function system([5]) with weight
(
w̄

(σ−1(m))
i [l]

)N
l=1

. In this point of view, GP
representation is regarded as a permutative representation by “a quantum
branching function system”.

Note: The definition of the basis in Proposition 4.16 depends on the choice
of orthonormal families

{
{w(n)[l] : l = 1, . . . , N} : n = 1, . . . , k

}
. Although,

the choice of these families is independent in GP representation by w. In the
same way, the formula in Lemma 4.17 is determined by only the choice of
w and orthonormal families. Conversely, if we define a family {s1, . . . , sN}
of operators on a Hilbert space H by Lemma 4.17 and equations (4.9), then
we have a representation of ON . This style of definition of representation is
a generalization of permutative representation ([5]).
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5 Uniqueness, irreducibility and equivalence

5.1 Uniqueness of GP representation

Lemma 5.1 Let (H, {s1, . . . , sN},Ω) be the GP representation of ON by
non periodic w ∈ S(CN )⊗k and {ex : x ∈ Λ(w)} the canonical basis in
Proposition 4.16. For x ∈ Λ(w) ∩ S(CN )⊗a, there are m ∈ N and c ∈ C
such that

(s(w)∗)m+Mex =


c · e1 (a ≡ 0 mod k),

c · (< w|wj >)Mej

(
a 6≡ 0 mod k
j ≡ k − a+ 1 mod k

)
for each M ≥ 1

Proof.
If x ∈ Λ(w) ∩ S(CN )⊗a, 0 < a < k, then let m ≡ 1 and j ≡ k − a+ 1.

(s(w)∗)mex = s(w)∗s(x)Ω
= < w(1) ⊗ · · · ⊗ w(a)|x > s(w(a+1) ⊗ · · · ⊗ w(k))∗Ω
= c

′
< w(1) ⊗ · · · ⊗ w(a)|x > ek−a+1

= c · ej

by Lemma 4.1 (iv). Hence

(s(w)∗)m+Mex = c · (s(w)∗)Mej = c· < w|wj >M ej

for each M ≥ 1.
If x ∈ Λ(w) ∩ S(CN )⊗lk, l ≥ 1, then let m ≡ l

(s(w)∗)mex = s(w⊗l)∗(s(x)Ω)
= < w⊗l|x > Ω (5.1)
= ce1

where c ≡< w⊗l|x >.
If x ∈ Λ(w) ∩ S(CN )⊗(lk+a), 0 < a < k and l ≥ 1, then let m ≡ l + 1

and j ≡ k − a+ 1. Then

(s(w)∗)mex = s(w⊗l ⊗ w)∗(s(x)Ω)
= < φl,a|x > s(w(a+1) ⊗ · · · ⊗ w(k))∗Ω
= < φl,a|x > c

′
ek−a+1 ( by Lemma 4.1 (iv) )

= cej
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where φl,a is in Lemma 4.7 and c ≡< φl,a|x > c
′
. Hence

(s(w)∗)m+Mex = c · (s(w)∗)Mej = c· < w|wj >M ej

for each M ≥ 1.

Lemma 5.2 Let (H, {s1, . . . , sN},Ω) be the GP representation of ON by
non periodic w ∈ S(CN )⊗k. If v ∈ H satisfies < v|Ω >= 0, then

lim
m→∞

(s(w)∗)mv = 0.

Proof. Any cycle and tree basis are written as

ez = s(z)Ω

for z ∈ Λ(w) by Proposition 4.16. It is sufficient to consider the case v =
s(z)Ω. By Lemma 5.1, if z ∈ S(CN )⊗(lk+a), 0 < a < k, then

lim
m→∞

(s(w)∗)mv = lim
M→∞

(s(w)∗)m+Ms(z)Ω

= lim
M→∞

c < w|wk−a+1 >
M ek−a+1

= 0.

because if k−a+1 6= 1, then | < w|wk−a+1 > | < 1. Therefore it is sufficient
to consider the case z ∈ S(CN )⊗lk, l ≥ 1.

(s(w)∗)lez = s(w⊗l)∗(s(z)Ω)
= < w⊗l|z > Ω

=


< w|z > Ω (l = 1),

< w⊗(l−1)|z1 >< w|z2 > Ω (l ≥ 2)
(5.2)

where z = z1 ⊗ z2, z1 ∈ S(CN )⊗(l−1) and z2 ∈ S(CN ) when l ≥ 2. If l = 1,
then

z ∈ S(CN )⊗k ∩ Λ(w) \ {w}

=



w(1)[n]⊗ w(2) ⊗ · · · ⊗ w(k),

εi ⊗ w(2)[n]⊗ w(3) ⊗ · · · ⊗ w(k),
...

ε(i1,...,ik−2) ⊗ w(k−1)[n]⊗ w(k),

ε(i1,...,ik−1) ⊗ w(k)[n]

:
n = 2, . . . , N,
ij = 1, . . . , N
j = 1, . . . , k − 1


.
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where we remove w ∈ S(CN )⊗k∩Λ(w) under assumption of this Lemma. By
5.2, (s(w)∗)lez = 0 because < w|z >= 0 by choice of w(i)[n], n = 2, . . . , N .
If l ≥ 2, z2 is in S(CN )⊗k ∩ Λ(w) \ {w} by definition of Λ(w). Therefore
(s(w)∗)lez = 0, too. Hence

lim
m→∞

(s(w)∗)mv = lim
M→∞

(s(w)∗)M (s(w)∗)lez

= 0.

Corollary 5.3 (Uniqueness of GP vector) Assume that (H, π) is a repre-
sentation of ON . If Ω,Ω

′ ∈ H are cyclic vectors by π(ON ) and satisfy the
condition (3.7) with respect to common non periodic w ∈ S(CN )⊗k, then
there is c ∈ C such that Ω = cΩ

′
.

Proof. We identify π(si) and si here. We can denote

Ω
′

= cΩ + y, < Ω|y >= 0, c ∈ C.

By assumption, s(w)Ω
′

= Ω
′
. Hence s(w)∗Ω

′
= Ω

′
and

(s(w)∗)nΩ
′

= Ω
′

(n ≥ 1).

By Lemma 5.2,

Ω
′

= lim
n→∞

(s(w)∗)nΩ
′

= lim
n→∞

c(s(w)∗)nΩ + lim
n→∞

(s(w)∗)ny

= cΩ + 0.

Hence Ω
′

= cΩ.

Recall the equivalence of GP representations in Definition 3.3 (ii).

Proposition 5.4 (Uniqueness of GP representation) If w ∈ TS(CN ) is
non periodic, then any two GP representations of ON by w are equivalent
each other.
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Proof. Assume that both (H, π,Ω) and (H′ , π′ ,Ω′) are GP representations
by w. Fix orthonormal families {w(j)[l] : l = 1, . . . , N}, j = 1, . . . , k, which
is taken in Proposition 4.16 with respect to w. By Proposition 4.16, there are
complete orthonormal bases (=CONB) {π(s(x))Ω : x ∈ Λ(w)}, {π′(s(x))Ω

′
:

x ∈ Λ(w)} of H and H′ , respectively. Define a unitary

U : H → H′ ; Uπ(s(x))Ω ≡ π′(s(x))Ω
′

(x ∈ Λ(w)).

Then U is well defined because U maps CONB in H to that in H′ . Note
the set Λ(w) of indexes is independent in the choice of representation.

If x ∈ Λ(w) \
∐k
j=1 Λ(0)

j (w), then

Uπ(si)U∗π
′
(s(x))Ω

′
= Uπ(si)π(s(x))Ω
= Uπ(sis(x))Ω
= Uπ(s(εi)s(x))Ω
= Uπ(s(εi ⊗ x))Ω
= π

′
(s(εi ⊗ x))Ω

′

= π
′
(si)π

′
(s(x))Ω

′
.

where we use (4.9). Hence Uπ(si)U∗ = π
′
(si), i = 1, . . . , N on

(
⊕kj=1F

(0)
j (w)

)⊥
.

If x ∈ Λ(0)
j (w), j = 1, . . . , k, then

Uπ(si)U∗π
′
(s(x))Ω

′
= Uπ(s(εi ⊗ x))Ω

= U

(∑
m

amπ(s(ym))Ω

)

=
∑
m

amUπ(s(ym))Ω

=
∑
m

amπ
′
(s(ym))Ω

′

= π
′
(s(εi ⊗ x))Ω

′

= π
′
(si)π

′
(s(x))Ω

′

where am ∈ C and ym ∈ Λ(w) are determined by

π(si)π(s(x))Ω =
∑
m

amπ(s(ym))Ω

in Lemma 4.17.
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Hence Uπ(si)U∗ = π
′
(si) for each i = 1, . . . , N . Therefore π and π

′

are equivalent.

5.2 Irreducibility

Proposition 5.5 If w ∈ S(CN )⊗k is non periodic, then the GP represen-
tation of ON by w is irreducible.

Proof. Let (H, {s1, . . . , sN},Ω) be the GP representation by w. Let v ∈ H,
v 6= 0. It is sufficient to show that the cyclic vector Ω is obtained from v by
action of ON .

BecauseH is cyclic, there is x ∈ ON such that < xΩ|v > 6= 0. Therefore
we can assume that < Ω|v >= 1 by replacing v and x∗v and normalizing it.
Denote

v = Ω + y, < Ω|y >= 0.

By Lemma 5.2,

lim
n→∞

(s(w)∗)nv = lim
n→∞

(s(w)∗)nΩ + lim
n→∞

(s(w)∗)ny

= Ω.

Hence
Ω ∈ ONv.

Therefore (H, {s1, . . . , sN}) is irreducible.

In [5], the non periodicity is necessary and sufficient condition of irre-
ducibility of permutative representation. Although, in Definition 3.2, there
is an irreducible case for periodic case, too. This difference occurs because
of that of definition of permutative representation and GP representation.
Under some additional condition, such necessary and sufficient condition
holds. We explain the periodic case in the succeeding our paper [8].

5.3 Equivalence of GP representation

For two representations (H1, π1) and (H2, π2) of ON , (H1, π1) ∼ (H2, π2)
means that (H1, π1) and (H2, π2) are unitarily equivalent.

Lemma 5.6 Assume that (H, π) and (H′ , π′) are representations of ON and
there are x ∈ ON and Ω

′ ∈ H′ such that π
′
(x)Ω

′
= Ω

′
. If (H, π) ∼ (H′ , π′),

then π(x) has eigen value 1.

33



Proof. Denote ti ≡ π(si) and t
′
i ≡ π

′
(si) for i = 1, . . . , N . If they are

equivalent, then there is a unitary U : H → H′ such that

UtiU
∗ = t

′
i (i = 1, . . . , N).

If x ∈ ON and Ω
′ ∈ H′ satisfy π

′
(x)Ω

′
= Ω

′
, then a vector Ω ≡ U∗Ω

′ ∈ H
satisfies

π(x)Ω = U∗π
′
(x)UU∗Ω

′

= U∗π
′
(x)Ω

′

= U∗Ω
′

= Ω.

Hence π(x) has an eigen vector Ω with eigen value 1.

Corollary 5.7 Let (H, π) and (H′ , π′) be representations of ON and x ∈
ON . Assume that π(x) has an eigen vector on H. If there is no eigen vector
of π

′
(x) on H′, then (H, π) 6∼ (H′ , π′).

Recall the notation ∼ in TS(CN ) and GP (w) for w ∈ TS(CN ) in
Definition 2.1 and 3.2.

Lemma 5.8 Let w, v ∈ TS(CN ) be non periodic. If w ∼ v, then GP (w) ∼
GP (v).

Proof. Let (H, π,Ω) and (H′ , π′ ,Ω′) be GP (w) and GP (v), respectively.
Assume that w ∈ S(CN )⊗k. If w ∼ v then, there is p ∈ Zk such that
v = p̂(w). By Proposition 4.3, there is Ω

′′ ∈ H such that (H, π,Ω′′) is
GP (p̂(w)) = GP (v). Hence both (H, π,Ω′′) and (H′ , π′ ,Ω′) are GP (v). By
Proposition 5.4, (H, π) and (H′ , π′) are equivalent. Hence GP (w) ∼ GP (v).

Lemma 5.9 Assume that v, w ∈ TS(CN ) are non periodic and v 6∼ w. Let
(H, {s1, . . . , sN}) be a representation of ON . If Ω,Ω

′ ∈ H satisfy s(w)Ω = Ω
and s(v)Ω

′
= Ω

′
, then < Ω|Ω′ >= 0.

Proof. Assume that w ∈ S(CN )⊗k and v ∈ S(CN )⊗l. If k 6= l, then

< Ω|Ω′ >=< s(w)lΩ|s(v)kΩ
′
>=< w⊗l|v⊗k >< Ω|Ω′ > .

By Proposition 2.5 (iii), | < w⊗l|v⊗k > | < 1. Hence < Ω|Ω′ >= 0.
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Assume that k = l. If | < w|v > | < 1, < Ω|Ω′ >= 0 by the same
argument in the above.

If | < w|v > | = 1, then we can denote v = cw for c ∈ C, c 6= 1. Then

s(v)Ω = cs(w)Ω = cΩ.

Hence Ω and Ω
′

are eigen vectors of s(v) which have different eigen values
each other. Hence < Ω|Ω′ >= 0.

Lemma 5.10 Assume that v, w ∈ TS(CN ) are non periodic. If v 6∼ w,
then GP (w) 6∼ GP (v).

Proof. Assume that w 6∼ v. By assumption and Proposition 5.5, both
GP (w) and GP (v) are irreducible. We can assume that GP (w) and GP (v)
are represented on the common separable infinite dimensional Hilbert space
H without loss of generality because ON is a separable infinite dimensional
C∗-algebra. Hence we can denote

GP (w) = (H, {s1, . . . , sN},Ω), GP (v) = (H, {t1, . . . , tN},Ω
′
). (5.3)

We assume thatGP (w) ∼ GP (v) and imply contradiction. If GP (w) ∼
GP (v), then we can assume that ti = si for each i = 1, . . . , N in (5.3) by
Proposition 5.4.

Therefore we can denote

GP (w) = (H, {s1, . . . , sN},Ω), GP (v) = (H, {s1, . . . , sN},Ω
′
).

Note
s(w)Ω = Ω, s(v)Ω

′
= Ω

′
(5.4)

by Definition 3.2. By the canonical basis of GP (w), we can denote

Ω
′

=
k∑
i=1

aiei + y

where e1 = Ω and y ∈ H such that < ei|y >= 0 for each i = 1, . . . , k,
aj ∈ C. Since w 6∼ v, wj = σ̂j−1(w) 6∼ v for j = 1, . . . , k. Note ej is GP
vector for s(wj). By Lemma 5.9, < Ω

′ |ej >= 0. Hence Ω
′

= y. Therefore

Ω ∈
(
⊕kj=1F

(0)
j (w)

)⊥
. By the canonical basis, there is the smallest m ≥ 1

such that u ∈ F (m)
j (w) and < u|Ω′ >6= 0. Then

Ω
′ ∈

⊕
m′≥m

k⊕
j=1

F (m
′
)

j (w).
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On the other hand

s(v)Ω
′

=
N∑
i=1

visiΩ
′ ∈

⊕
m′≥m+1

k⊕
j=1

F (m
′
)

j (w)

by (4.9). Hence s(v)Ω
′ 6= Ω

′
. This is contradiction. Hence GP (w) 6∼ GP (v).

By combining Lemma 5.8 and 5.10, we have the following statement.

Proposition 5.11 (Equivalence of GP representation with cycle) Let w, v ∈
TS(CN ) be non periodic. There is the following equivalence:

GP (w) ∼ GP (v) ⇔ w ∼ v.

6 Application

6.1 GP state

In usual theory of operator algebra, the notion of state is often treated
rather than representation of algebra. We show the relation between GP
representation and state of Cuntz algebra.

Proposition 6.1 (Representation and state) Let w ∈ S(CN )⊗k be non pe-
riodic.

The GP representation of ON by w is equivalent to the GNS represen-
tation by a state ρ of ON which satisfies the following equation:

ρ(sIs∗J) =


w(I) · w(J) (|I| − |J | = 0 mod k),

0 (otherwise)
(6.1)

for each I, J ∈
⋃
m≥0{1, . . . , N}m where

w(I) ≡
m∏
j=1

w
(σj−1(1))
ij

for I = (i1, . . . , im) ∈ {1, . . . , N}m, m ≥ 1, σ is the shift in Zk under the
following convention:

sIs
∗
J =


s∗J (I = ∅),

sI (J = ∅),

wI = 1 (I = ∅).
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Proof. Let (H, π,Ω) be the GP representation by w ∈ S(CN )⊗k. By Propo-
sition 5.5, (H, π,Ω) is irreducible. Hence any vector state of π(ON ) on H is
pure. Therefore the GNS representation of any pure state associated with
vector state on H is irreducible and unitarily equivalent to (H, π,Ω). A state
ρ on ON is uniquely determined by the condition (6.1) because it is densely
defined on ON .

Put
ρ ≡< Ω|π(·)Ω > .

It is sufficient to show that ρ satisfies the condition (6.1).
Assume that |I| = kn+a and |J | = kn

′
+a

′
, n, n

′ ≥ 0 and 0 ≤ a, a′ < k.
By Lemma 4.7,

ρ(sIs∗J) = < Ω|π(sIs∗J)Ω >
= < π(s∗I)Ω|π(s∗J)Ω >

=
〈
< εI |φn,a > ea+1

∣∣∣< εJ |φn′ ,a′ > ea′+1

〉
= < εI |φn,a > < εJ |φn′ ,a′ >< ea+1|ea′+1 >

where we use symbol φn,a in Lemma 4.7. When a 6= 0,

< εI |φn,a >=
(
< εi1 |w(1) >< εi2 |w(2) > · · · < εik |w(k) >

)
×
(
< εik+1

|w(1) >< εik+2
|w(2) > · · · < εi2k |w(k) >

)
× · · ·
×
(
< εi(n−1)k+1

|w(1) >< εi(n−1)k+2
|w(2) > · · · < εink |w(k) >

)
× < εink+1

|w(1) >< εink+2
|w(2) > · · · < εink+a

|w(a) >

= w
(1)
i1
· · ·w(k)

ik
× w(1)

ik+1
· · ·w(k)

i2k
× · · · × w(1)

i(n−1)k+1
· · ·w(k)

ink

×w(1)
ink+1

· · ·w(a)
ink+a

= w(I).

When a = 0,

< εI |φn,0 >=< εI |w⊗kn >=< εi1,...,ik |w > · · · < εi(n−1)k+1,...,ink |w >= w(I).
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Hence < εI |φn,a >= w(I) for each n ≥ 0 and 0 ≤ a < k. Therefore

ρ(sIs∗J) = < εI |φn,a > < εJ |φn′ ,a′ >< ea+1|ea′+1 >

= w(I) · w(J) · δa,a′

=


w(I) · w(J) (a− a′ = 0),

0 (otherwise),

=


w(I) · w(J) (|I| − |J |′ = 0 mod k),

0 (otherwise).

We call the GP state of ON by w a state which is defined by (6.1).

Corollary 6.2 Let N ≥ 2 and w ∈ S(CN )⊗k. Assume that ρw is a state of
ON which satisfies the condition (6.1).

(i) If w is non periodic, then ρw is pure.

(ii) Assume that w,w
′

are non periodic. Then the GNS reprsentations
associated with ρw and ρw′ are equivalent if and only if w ∼ w′.

(iii) If k = 1, then ρw is always pure.

(iv) If k = 1, then for any two w,w
′
, associated GNS representations by

ρw and ρw′ are inequivalent when w 6= w
′
.

In this way, we obtain many concrete pure states of ON from non periodic
w ∈ TS(CN ).

6.2 Example

Example 6.3 (i) Recall an example which is defined by an equation (1.3)
in section 1. By Proposition 5.5, the GP representation in (1.3) is irre-
ducible because w ∈ S(C2)⊗2 in (1.3) is non periodic. Since any per-
mutative representation of O2 with cycle is given by the case w = εI ,
I ∈ {1, 2}k, (1.3) is not equivalent to any permutative representation
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with cycle by Proposition 5.11. Furthermore, if αg is a natural auto-
morphism of O2 associated with g = (gij) ∈ U(2), then the permuta-
tive representation GP (εI) associated with εI is changed to GP (v) by
αg as following v ∈ S(CN )⊗k:

v = v(1) ⊗ · · · ⊗ v(k),

v(j) = g∗1ijε1 + g∗2ijε2 (j = 1, . . . , k)

when I = (i1, . . . , ik). Since (1.3) has the length 2, it is sufficient to
consider the case

v = v(1) ⊗ v(2),

v(1) = g∗1i1ε1 + g∗2i1ε2, v(2) = g∗1i2ε1 + g∗2i2ε2

for I = (i1, i2). If w in (1.3) and v are equivalent, then g∗21 = 0 or
g∗22 = 0. Then

g∗ =
(
c1 0
0 c2

)
or
(

0 c1

c2 0

)
.

Hence v is one of the followings:

aε1 ⊗ ε1, aε1 ⊗ ε2, aε2 ⊗ ε1, aε2 ⊗ ε2

where a ∈ U(1). Hence v is not equivalent to w. Therefore, GP (w) is
not equivalent to any permutative representation with cycle which is
rotated U(2)-action by Proposition 5.11.

(ii) Because any w ∈ S(CN ) is non periodic, a cyclic representation of ON
with the cyclic vector Ω which satisfies s(w)Ω = Ω is irreducible by
Proposition 5.5. Because any two different elements in S(CN ) are not
equivalent, GP representations associated with them are not equivalent
each other by Proposition 5.11.

(iii) For k ≥ 1, a cyclic representation of ON with the cyclic vector Ω which
satisfies

(s1 + s2)(s1 + ξs2)(s1 + ξ2s2) · · · (s1 + ξk−1s2)Ω = 2k/2Ω

is irreducible where ξ ≡ e2π
√
−1/k.
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6.3 Spectrum of ON
We summarize our result by the word “spectrum” of ON . Let SpecON be
the set of all unitary equivalence classes of irreducible representations of ON ,
that is

SpecON ≡ IrrRepON/∼ .

On the other hand, denote

TSP (CN ) ≡ {w ∈ TS(CN ) : w is periodic }.

Then
TSP (CN ) =

{
v⊗k ∈ TS(CN ) : v ∈ TS(CN ), k ≥ 2

}
.

For example, ε1⊗ ε1, ε1⊗ ε1⊗ ε1, ε1⊗ ε2⊗ ε1⊗ ε2, ε1⊗ ε1⊗ ε2⊗ ε1⊗ ε1⊗ ε2

are in TSP (CN ). If TSNP (CN ) is the set of all non periodic elements in
TS(CN ), then

TSNP (CN ) = TS(CN ) \ TSP (CN )

by definition of non periodicity. Recall the equivalence relation∼ on TS(CN )
in Definition 2.1 (iv).

Theorem 6.4 There is an injective map

G̃P : TSNP (CN )/∼ ↪→ SpecON .

Proof. For w ∈ TSNP (CN ), GP (w) is irreducible by Proposition 5.5.
Hence we have a map

GP : TSNP (CN )→ IrrRepON

where we do not distinguish the cyclic vector in GP (w). From this map, we
have the natural map

ĜP : TSNP (CN ) → IrrRepON/∼ = SpecON .

By Proposition 5.11, this map is well defined on the quotient space TSNP (CN )/∼.
In this way, we have an injective map

G̃P : TSNP (CN )/∼ ↪→ SpecON .

Here we try to explain a part of TSNP (C) by using geometric re-
alization. Because any element in S(CN ) is non periodic and any two

40



different elements in S(CN ) are inequivalent, we can identify S(CN ) and
SNP (CN )/∼ ≡

(
S(CN ) ∩ TSNP (CN )

)
/∼. Hence G̃P ([w]) and GP (w)

can be identified for each w ∈ S(CN ). Therefore S(CN ) can be regarded
as a (complex)sphere which consists of spectrums of ON . In other word,
S(CN ) is embedded into SpecON .

Although, this can be obtained from ordinary permutative representa-
tions ([5]) by rotation of U(N). Furthermore by U(N) action on SpecON ,
S(CN ) is an orbit of spectrums. {ε1} ×

(
S(CN ) \ {ε1}

)
is regarded as a

subset of SpecON in the similar reason.
This study is shown in succeeding our paper([10]).

Note: In this paper, we don’t treat the case “chain”. Hence there are many
elements in the spectrum of ON except TSNP (CN )/∼. Our ultimate aim
is to describe any element in SpecON by this way.

6.4 Other topics

There are several applications of permutative representation in quantum
field theory [1, 2, 3, 4]. By restricting permutative representation of O2 on
CAR ≡ OU(1)

2 , we have many formulae of representation of CAR and its
irreducible decomposition formulae.

Furthermore we have a class of endomorphisms of Cuntz algebra by
combinatrix method. In order to analyze them, the permutative represen-
tation and its theory are useful. We treat this work in the succeeding our
papar.

Appendix

A Lemmata

Lemma A.1 If w = w(1) ⊗ · · · ⊗ w(k), v = v(1) ⊗ · · · ⊗ v(k) ∈ S(CN )⊗k

are linearly dependent, then w(i) and v(i) are linearly dependent for each
i = 1, . . . , k, too.

Proof. If v and w are linearly dependent, then there is c ∈ C, |c| = 1, such
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that v = cw because ‖v‖ = 1 = ‖w‖. On the other hand,

1 = | < w|v > |
= | < w(1) ⊗ · · · ⊗ w(k)|v(1) ⊗ · · · ⊗ v(k) > |

=

∣∣∣∣∣
k∏
i=1

< w(i)|v(i) >

∣∣∣∣∣
=

k∏
i=1

∣∣∣< w(i)|v(i) >
∣∣∣ .

Because
| < w(i)|v(i) > | ≤ ‖w(i)‖ ‖v(i)‖ = 1,

| < w(i)|v(i) > | = 1. Hence w(i) and v(i) are linearly dependent for each
i = 1, . . . , k.

Lemma A.2 If w ∈ S(CN )⊗k is non periodic, then p̂(w) and w are linearly
independent for each p ∈ Zk \ {id}.

Proof. Assume that p̂(w) and w are linearly dependent. By Lemma, A.1,
w(i) and w(p(i)) are linearly dependent for i = 1, . . . , k. Let ci ∈ C by

w(p(i)) = ciw
(i) (i = 1, . . . , k).

If p is a generator of Zk, then there are {di}ki=1 such that

w(i) = diw
(1).

Hence
w = (d1 · dk)(w(1))⊗k.

Therefore w is periodic. This is contradiction.
Assume that there is 0 < m < k such that pm = id. Let M ≡ k/m.

Then
w = (c

′
)M
(
w(1) ⊗ · · · ⊗ w(m)

)⊗M
where c

′ ≡ c1 · · · cm. From this, w is periodic. This is contradiction.

Lemma A.3 If w ∈ S(CN )⊗k and v ∈ S(CN )⊗l are non periodic and l 6= k,
then w⊗l and v⊗k are linearly independent in (CN )⊗lk.
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Proof. We can assume that l > k without loss of generality. Then we can
denote l = nk + a, 0 ≤ a < k, n ≥ 1. Denote w = w(1) ⊗ · · · ⊗ w(k),
v = v(1)⊗ · · ·⊗ v(l). If they are linearly dependent, then there is c ∈ C such
that

w⊗l = cv⊗k.

From this, there are {cm} ⊂ C such that

w(σm(1)) = cm+1v
(ηm(1)) (0 ≤ m ≤ kl − 1)

where σ and η are shifts of Zk and Zl, respectively. Note

v(j) = c̄jw
(σj−1(1)) (j = 1, . . . , l). (A.1)

For 0 ≤ n′ ≤ n− 1,

v(n
′
k+i) = c̄n′k+iw

(σn
′
k+i−1(1))

= c̄n′k+iw
(σi−1(1)) ( by σk = id)

= cic̄n′k+iv
(i) ( by (A.1)).

Therefore for m = 1, . . . , kl, i = 1, . . . , k, there is c
′ ∈ C such that

v(m) = c
′
v(i) m = i mod k.

Hence v is periodic. This is contradiction. Therefore v and w are linearly
independent.

Lemma A.4 If v, w ∈ S(CN )⊗k are linearly independent, then v⊗l and w⊗l

are linearly independent, too for each l ≥ 2.

Proof. If they are linearly dependent, then there is c ∈ C such that

w⊗l = cv⊗l.

c =< v⊗l|w⊗l >= (< v|w >)l.

Hence
| < v|w > | = 1.

Therefore v and w are linearly dependent. This is contradiction.
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