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Abstract

A new light is shed on “substitutes and complements” in the maximum weight circulation
problem with reference to the concepts of L-convexity and M-convexity in the theory of
discrete convex analysis. This provides us with a deeper understanding of the relationship

between convexity and submodularity in combinatorial optimization.
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1 Introduction

The relationship between convexity and submodularity has been discussed in the literature of combina-
torial optimization (see [1, 2, 3, 10]). In this paper, we address this issue with reference to “substitutes
and complements in network flows” discussed by Gale Politof [5], and show that the concepts of L-
convexity and M-convexity due to Murota [11, 12] help us better understand the relationship between
convexity and submodularity.

We consider a network flow problem. Let G = (V, A) be a directed graph with vertex set V' and
arc set A. For each arc a € A, we are given a nonnegative capacity c¢(a) for flow and a weight w(a)
per unit flow. The mazimum weight circulation problem is to find a flow & = (£{(a) | @ € A) that

maximizes the total weight - -, w(a){(a) subject to the capacity (feasibility) constraint:
0<¢(@)<cla) (acA)
and the conservation constraint:

Z{&(a) | a leaves v} — Z{tf(a) | a enters v} =0 (veV). (1.1)

We denote by F' the maximum weight of a feasible circulation, i.e.,
F=max{w ¢ | NéE =0, 0 <& <c}, (1.2)

where N¢ = 0 represents the conservation constraint (1.1).
Our concern here is how the weight ' depends on the problem parameters (w,c). Namely, we
are interested in the function F' = F(w,¢) in w € R and ¢ € R%{. We first look at convexity and

concavity.
Proposition 1. F' is conver in w and concave in c.

Proof. The function F' = F(w,c) given by (1.2) is the maximum of linear functions in w and hence
convex in w. By linear programming duality, we obtain an alternative expression F' = min{c'7 |
N'p+n>w, n> 0}, which shows the concavity of F in c. O

We next consider submodularity and supermodularity. A function f: R™ — R U {400} is said to

be submodular if

f@)+fly) > flavy + flxny)  (z,y € R"),

and supermodular if

f@)+fly) < flzvy) + flzny)  (z,y €RY),

where z V y and = A y are defined by

(xVy)(i) = max{z(i),y(i)}, (x Ay)(i) = min{z(i),y(i)} (1=1,2,...,n).



With economic terms of substitutes and complements we have the following correspondences:

f is submodular <= goods are substitutes,

f is supermodular <= goods are complements,

where f is interpreted as representing a utility function.

Two arcs are said to be “parallel” if every (undirected) simple cycle containing both of them
orients them in the opposite direction, and “series” if every (undirected) simple cycle containing both
of them orients them in the same direction. A set of arcs is said to be “parallel” if it consists of
pairwise “parallel” arcs, and “series” if it consists of pairwise “series” arcs. With notations wp =
(w(a) | a € P), cp = (c(a) | a € P), ws = (w(a) | a € S), and cs = (c(a) | a € S), the following
statements hold true.

Theorem 2 (Gale—Politof [5]). Let P be a “parallel” arc set and S a “series” arc set.
(i) F is submodular in wp and in cp.

(ii) F' is supermodular in wg and in cg.

See [6, 7, 8] for some extensions and generalizations of this result.

Combination of Proposition 1 and Theorem 2 yields that

Fis convex and submodular in wp,
F'is concave and submodular in cp, (1.3)

F'is convex and supermodular in wg,

Fis concave and supermodular in cg.

Thus all combinations of convexity/concavity and submodularity /supermodularity arise in our net-
work flow problem. This demonstrates that convexity and submodularity are mutually independent
properties.

Although convexity and submodularity are mutually independent, the combinations of convex-
ity /concavity and submodularity /supermodularity in (1.3) are not accidental phenomena but logical
consequences that can be explained in terms of L-convexity and M-convexity.

The concepts of M-convex and L-convex functions are introduced by Murota [11, 12] (see also
[13, 14]), aiming to identify the well-behaved structure in (nonlinear) combinatorial optimization.
These concepts were originally introduced for functions over the integer lattice; subsequently, their vari-
ants called Mi-convexity and Li-convexity were introduced by Murota—Shioura [15] and by Fujishige—
Murota [4], respectively. Recently, Murota—Shioura [16] extended these concepts to polyhedral convex
functions defined over the real space.

A polyhedral convex function f : R™ — R U {400} is said to be M-convex if dom f # @) and f
satisfies (M-EXC):

(M-EXC) Vz,y € dom f, Vi € supp™ (x — y), 3j € supp™ (z — y), Jag > O:

f@)+ fly) > fle—alxi—x;j) +fy+alxi—x;)) (Vo€ [0,a0]),

where



dom f = {z € R"| f(z) < +o0},
supp* (z) = {i | 2(i) > 0}, supp~(x) = {i | #(i) <0} (€ R"),
Xi € {0,1}": the i-th unit vector (i = 1,2,... ,n),
0,0 ={a€eR|0<a< o}

A polyhedral convex function f : R® — RU{+00} is said to be M¥-convex if the function f: R"xR —
R U {+0oc} defined by

Tl 20) = fx) ((z,x0) e R" xR, xo=— Y1 x(i)),
’ +oo  (otherwise)

is M-convex. On the other hand, a polyhedral convex function g : R" — R U {400} is said to be
L-convex if dom g # () and g satisfies (LF1) and (LF2):

(LF1) g is submodular,
(LF2) 3r € R such that g(p+ A1) = g(p) + \r (Vp e R", A € R);

it is called Li-convex if the function § : R* x R — R U {400} defined by

9(p,po) =g —pol)  ((p,po) € R" x R)

is L-convex.
The main aim of this paper is to show that the function F' defined by (1.2) is endowed with

Lb-convexity and M?-convexity, as follows. The proof is given in Section 2.

Theorem 3. Let P be a “parallel” arc set and S a “series” arc set.
(i) F is LE-convex in wp and MP-concave in cp.

(ii) F is Mf-convex in wg and LF-concave in cs.

In general, Li-convexity implies submodularity by definition, whereas M"-convexity implies super-
modularity [16, Theorem 4.24].

Theorem 4.
(i) An Lf-convex function is submodular.

(ii) An MP-convex function is supermodular.

Accordingly, Li-concavity implies supermodularity and M¥-concavity submodularity. With the aid
of these general results on Li-convex and M%-convex functions, Theorem 3 above provides us with a

somewhat deeper understanding of (1.3). Namely, it is understood that

Fis Li-convex, hence convex and submodular, in wp,
F is Mi-concave, hence concave and submodular, in c¢p,
F is Mi-convex, hence convex and supermodular, in wg,

Fis Li-concave, hence concave and supermodular, in cg.

It is left for future research to consider the results of [6, 7, 8] from the viewpoint of discrete convexity.



2 Proofs

This section gives the proof of Theorem 3. We start with basic properties of “parallel” and “series”
arc sets that we use in the proof. Let us call 7 : A — {0,£1} a circuit if 7 = 0 and the set

supp™ (m) Usupp™ () forms a simple cycle.

Proposition 5. Let w be a circuit.
(i) |suppT(m) N P| <1 and |supp~(7) N P| <1 for a “parallel” arc set P.
(i) |suppt () N S| =0 or [supp~(7) N S| =0 for a “series” arc set S.

Proposition 6. Let S be a “series” arc set, and w1 and s be circuits. If supp™ (m1)Nsupp™ (m)NS #
(0, there exists a circuit w such that supp™(7) C supp™(m1) U supp™(ms), supp (7w) C supp (m1) U
supp ™~ (m2), and supp™ (w) NS = (supp™ (71) Usupp™(mg)) N S.

Proof. Suppose a € (supp™(mz) \ supp™(m)) N S. By elementary graph argument we can find a
circuit 7' such that supp™(7’) C supp™(m1) U supp™(m2), supp (') C supp (m1) U supp ™ (m2), and
suppt(7') NS D (supp™(m1) N S) U {a}. Repeating this we can find 7. O

The main technical tool in the proof is the conformal decomposition (see, e.g., [9, 17]) of a circulation

&, which is a representation of & as a positive sum of circuits conformal to &, i.e.,

§ = Z/Biﬂ'ia
i=1
where 3; > 0 and 7; : A — {0,41} is a circuit with supp™(m;) C supp™(€) and supp™(m;) C supp™(€)
fori=1,2,... ,m.
2.1 Proof of L*-convexity in wp

Li-convexity of F in wp is equivalent to submodularity of F(w — woxp,c) in (wp,wp), which in turn

is equivalent to

F(w + Axa,¢) + F(w + pxp, ¢) > F(w,c) + F(w + Axq + X, €), (2.1)
F(w + Axa,c) + F(w — puxp,c) > F(w,c) + F(w + Axq — pxp, ) (2.2)

for a,b € P with a # b and A, u € R, where xp € {0, 1} denotes the characteristic vector of P C A.
To show (2.1) let & and & be optimal circulations for w and w + Axq + pxs- We can establish (2.1)

by constructing feasible circulations &, and &, such that
Cat&=6+E  Méala) — ()] + plép(b) — €()] > 0, (2.3)
since this implies
(w4 Axa) "o + (w + pxp) 6 = wE+ (w + Axa + 1x0) "€,

of which the left-hand side is bounded by F'(w 4+ Axq,c¢) + F(w + pyp, ¢) and the right-hand side is
equal to F(w,c) + F(w + Axa + pxp, ¢). If £(a) < &(a), we can take &, = € and & = £ to meet (2.3).



If £(b) < £(b), we can take &, = € and & = £ to meet (2.3). Otherwise, we make use of the conformal
decomposition € — & = Y"1 | B;m;. Since a € supp™ (€ — £) we may assume 7;(a) =1 fori =1,2,... ¢
and m;(a) =0fori=¢+1,04+2,... ,m. We have m;(b) =0 for i = 1,2,... ,¢ by Proposition 5 (i),
since P is “parallel” and {a,b} C suppT (€ —&). Then &, = € + Zle Bimi and & = £+ > 1%, Bim
are feasible circulations that satisfy (2.3).

To show (2.2) let € and € be optimal circulations for w and w + Ay, — pxp. We can establish (2.2)
by constructing feasible circulations &, and &p such that

Catlp =648 Nl = E@]+pul) ] &)=Y &p(a)] 20 (2.4)
a'eP a’epP
since this implies
(w+ Axa) "€ + (w — pxp) ép > w'E+ (w+ Axa — pxp) "€

If £(a) < £(a), we can take & = & and &p = € to meet (2.4). Otherwise we use the conformal
decomposition £ — & = 3" B, in which we assume m;(a) =1 for i = 1,2,... ,¢ and m;(a) = 0 for
i=0+1,0+4+2,... ,m. Since P is “paralle]” we have |supp (m;) N P| < 1 by Proposition 5 (i), and

hence »°,cpmi(a’) > 0 for i = 1,2,... ,£. Therefore, & = & + Zle Bimi and Ep = £+ D00, Bim
are feasible circulations with the properties in (2.4).

2.2 Proof of M!-concavity in cp

M!-convexity of a function f : R® — RU{+00} is characterized by the following property [16, Theorem
4.21]:

(M!-EXC) Vz,y € dom f, Vi € supp™t(z — y), 3j € supp ™ (z — y) U {0}, Japy > 0:
f@)+ fy) = fle—alxi —x;) + fly+ ol —x;)  (Va€[0,a0)),
where xo = 0 by convention. We prove the M¥-concavity of F in ¢p by establishing (Mi-EXC) for —F
as a function in cp. In our notation this reads as follows:
Let c1,c2 € R4 be capacities with ci(a’) = ca(d’) for all @’ € A\ P. For each a €
supp™(c; — cg), there exist b € supp~(c; — c2) U {0} and a positive number aq such that

F(wacl) + F(waCQ) < F(wacl - a(Xa - Xb)) + F(waCQ + a(Xa - Xb)) (VO& € [OaOZOD'

Let & and & be optimal circulations for ¢; and co, respectively. We shall find g > 0 and b €
supp~ (¢1 — c2) U {0} such that, for any « € [0, ag], there exist circulations &] and &, such that

g+&=6+&, 0<& <ca—alxa—x), 0<E& <co+alXa— Xp)- (2.5)

If &1(a) < c1(a), we can take ag = c1(a) — &1(a), b =0, & = & and & = & to meet (2.5). Suppose
&1(a) = c1(a). We have & (a) = c1(a) > ca(a) > &2(a). Let m be a circuit such that a € supp™(r) C
supp™ (&1 — &) and supp™(7) C supp~ (& — &2). Since P is “parallel” and a € supp™(w), we have
supp™ (w) N P = {a} and |supp~(7) N P| < 1 by Proposition 5 (i). If [supp~(7) N P| = 1, define b by
{b} = supp~ (7)) N P; otherwise put b = 0. We can take o > 0 such that ag < [£1(a’) — &2(a’)] for all
a’ € supp™ (7) Usupp™ (7). Then & = & — am and & = & + ar satisfy (2.5) if a € [0, ag].



2.3 Proof of M!-convexity in wg

We prove the M convexity of I in wg by establishing (Mh—EXC). In our notation this reads as follows:

Let wi,ws € RA be weight vectors with wi(a’) = wy(a’) for all @’ € A\ S. For each
a € supp™ (wy — wa), there exist b € supp™ (w1 — w2) U {0} and a positive number aq such
that

F(wy,c) + F(wa, ¢) > F(wr — a(xa — Xp),¢) + Fwa + a(Xa — X)) (Vo € [0, ag)).

Let & and & be optimal circulations for w; and ws, respectively, with &£ (a) minimum and &(a)

maximuin.

Proposition 7. There exists ag > 0 such that & is optimal for w1 — ax, and & is optimal for

wy + axq for all a € [0, ap].

Proof. For any circuit 7 such that m(a) = —1 and 0 < & + 7 < ¢ for some S > 0, we have
wi (€1 + Br) < wi& by the choice of £1. Let o > 0 be the minimum of —wi 7 over all such circuits
7. Then &; is optimal for w; — ay, for all a € [0, a1], since (w1 — ax,)* (€1 + Bm) < (w1 — axq) ¢ for
any 8 > 0 and circuit 7 such that 0 < & + 7 < e. Similarly, let ay > 0 be the minimum of —wg
over all circuits 7 such that w(a) = 1 and 0 < & + B < ¢ for some § > 0. Then & is optimal for

wa + arxg for all o € [0, ap]. Put o = min(av, az). O
If £1(a) > &(a), we can take b = 0 in (M*-EXC), since

F(wy, ) + F(ws, ¢) = wi & +w; &
> (wl - O‘Xa)Tgl + (7~U2 + aXa)T£2 = F(wl — OXa, C) + F(w2 + aXa; C),

where the last equality is by Proposition 7. In what follows we assume &;(a) < &2(a).
By Proposition 5 (ii), we can impose further conditions on &; and &> that, for each b € S\ {a},
£1(b) is maximum among all optimal &; for wy with & (a) minimum, and &3(b) is minimum among all

optimal & for we with &s(a) maximum.

Proposition 8. There exists ag > 0 such that & is optimal for w1 — a(xe, — xp) and & is optimal for
wa + a(xa — xp) for all b€ S\ {a} and for all a € [0, ap].

Proof. For any circuit 7 such that w(a) — w(b) = —1 for some b € S\ {a} and 0 < & + B < ¢ for
some (3 > 0, we have wi (£ + A7) < wi & by the choice of &. Let a; > 0 be the minimum of —w{ =
over all such circuits 7. Then &; is optimal for w; — a(x, — xp) for all a € [0, ay]. Similarly, let ag > 0
be the minimum of —wJ 7 over all circuits m such that n(a) — 7(b) = 1 for some b € S\ {a} and
0 < & + pr < ¢ for some f > 0. Then & is optimal for wy + a(x, — xp) for all & € [0, as]. Put

ap = min(aq, a9). O



Proposition 8 implies that for all b € S\ {a} we have

F(wlvc) + F(wg,C) - F(wl - a(Xa - Xb)ac) - F(w2 + a(Xa - Xb)vc)
= wi & +wy & — (w1 — alxa — xp)) €1 — (w2 + alxa — xp)) &2
= (&2(b) — £1(b)) — (&2(a) — &1(a))]. (2.6)

We want to find b € supp™ (w; — ws) for which (2.6) is nonnegative.
We make use of the conformal decomposition & — &1 = Y ;" Bim. Since S is “series” we may

assume, by Proposition 6, that

a € supp™ (1) NS Csupp™ (mp) NS C -+ Csupp™ (mg) N S
and m;(a) =0 for i =0+ 1,0+ 2,... ,m; then supp~(m;) NS =0 fori =1,2,... L.
Proposition 9. There exists b € (supp™ (m1) N'S) Nsupp™ (wy — ws).

Proof. We have wifm < 0, since & is optimal for wi; and 0 < & + Bim < ¢. Similarly, we have

—wgm < 0. Hence

0> (wy —wy)Tm =) (wi(b) ~wad))m(d) = D> (wi(b) — wa(b)).

beS besuppt(m)NS

Since wi(a) —wa(a) > 0 in this summation, we must have w1 (b) — w2 (b) < 0 for some b € supp™ (1) N
S. O

For b € (supp™(m) N S) Nsupp (w; — wy) in Proposition 9, we have
l m 4
&)= &) => B+ > Bimild) =Y B = &(a) — &ila),
i=1 i=t+1 i=1

which shows the nonnegativity of (2.6).

2.4 Proof of Li-concavity in cg

Li-concavity of F' in cg is equivalent to supermodularity of F(w,c—coxs) in (cs, c), which in turn is

equivalent to

F(w, ¢+ Axa) + F(w,c + pxp) < F(w, ¢) + F(w, ¢+ Axa + pxs), (2.7)
F(w,c+ Axa) + F(w,c — pxs) < F(w,c) + F(w,c+ Axq — pxs) (2.8)

for a,b € S with a # b and A, u € R, where yg € {0,1}# denotes the characteristic vector of S C A.
To show (2.7) let &, and &, be optimal circulations for ¢+ Ay, and ¢+ pyp. We can establish (2.7)

by constructing circulations ¢ and & such that

E+E=Ci+& 0<E<c, 0<E<c+ Ao+ (2.9)



If £4(a) < c(a), we can take € = &, and € = &, to meet (2.9). If &(b) < c(b), we can take & = &, and
& =&, to meet (2.9). Otherwise, we have &,(a) > c(a) > &(a) and &,(b) < ¢(b) < &(b), and therefore
a € suppT (&, — &) and b € supp (&, — &). We make use of the conformal decomposition &, — &, =
>t Bimi, where we assume 7;(a) =1 fori=1,2,... ,fand m;(a) =0 for i = +1,0+2,... ,m. We
have 7;(b) = 0 for i = 1,2,... ,¢ by Proposition 5 (ii), since S is “series” and a € supp™' (&, — &) and
besupp (& —&). Then & =&, — Zle Bim; and € = &, + Zle Bim; satisfy (2.9).

To show (2.8) let &, and &g be optimal circulations for ¢+ Ay, and ¢— pxs. We can establish (2.8)

by constructing circulations ¢ and € such that

E+E=¢+&, 0<E<c, 0<E<c+Axa— pxs (2.10)

If £,(a) < c(a), we can take £ = £, and € = £ to meet (2.10). Otherwise, we have &,(a) > c(a) > £s(a),
and therefore a € supp™ (&, — £s). We use the conformal decomposition &, — &g = > v, Bim. Since S

is “series” we may assume by Proposition 6 that
a €supp™ (1) NS Csupp™ (m2) NS C -+ Csupp™(m) NS

and m;(a) = 0 for i = £+ 1,0+ 2,... ,m; then supp () NS = 0 for ¢ = 1,2,...,¢. Noting
Zf 1 Bi = &ala) —Es(a) > €,(a) — c(a), let k be the smallest integer with Zle B;i > &ala) — c(a) and
define 3 = [&,(a) — c(a)] — Y5-)' ;. Then € = &, — Y1} Bim; — B/, andE Es + 20t Bimi + B'm
satisfy (2.10), since £(a) = &u(a) = 375 ;= B = c(a )aﬁ( ) = &s(a)+ X150 B+ B = &s(a) +ala) —
c(a) < c(a) + X — p, and, for any b € supp™(m) N S, we have

S

k—1 ¢
&) = £s<b>+Zﬂm< )+ 8 =¢s(b) +Zﬂm + 1> Bi+&s(a) — c(a)]
] i=k

= b) + Z Bimi(b)] + Es(a) — ca) < &a(b) +Es(a) — cla) < ¢(b) — p.

This completes the proof of Theorem 3.

References

[1] P. Favati and F. Tardella, Convexity in nonlinear integer programming, Ricerca Operativa 53
(1990) 3-44.

[2] A. Frank, An algorithm for submodular functions on graphs, Annals of Discrete Mathematics 16
(1982) 97-120.

[3] S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathematics 47 (North-
Holland, Amsterdam, 1991).

[4] S. Fujishige and K. Murota, Notes on L-/M-convex functions and the separation theorems,
Math. Programming 88 (2000) 129-146.



[5]

(6]

7]

[17]

D. Gale and T. Politof, Substitutes and complements in networks flow problems, Discrete Appl.
Math. 3 (1981) 175-186.

A. Gautier and F. Granot, Ripples, complements, and substitutes in singly constrained

monotropic parametric network flow problems, Networks 24 (1994) 285-296.

A. Gautier and F. Granot, Ripples, complements, and substitutes in generalized flows, Naval Res.
Logist. 43 (1996) 1-21.

F. Granot and A. F. Veinott, Jr., Substitutes, complements and ripples in network flows, Math.
Oper. Res. 10 (1985) 471 497.

M. Iri, Network Flow, Transportation and Scheduling ~ Theory and Algorithms (Academic Press,
New York, 1969).

L. Lovész, Submodular functions and convexity, in: A. Bachem, M. Grotschel, and B. Korte,
eds., Mathematical Programming — the State of the Art (Springer, Berlin, 1983) 235-257.

K. Murota, Convexity and Steinitz’s exchange property, Adv. Math. 124 (1996) 272-311.
K. Murota, Discrete convex analysis, Math. Programming 83 (1998) 313-371.

K. Murota, Discrete Convex Analysis: An Introduction (Kyoritsu Publ. Co., Tokyo, 2001). [In

Japanese]

K. Murota, Discrete Convex Analysis (Society for Industrial and Applied Mathematics, Philadel-
phia, 2003, to appear).

K. Murota and A. Shioura, M-convex function on generalized polymatroid, Math. Oper. Res. 24
(1999) 95-105.

K. Murota and A. Shioura, Extension of M-convexity and L-convexity to polyhedral convex
functions, Adv. Appl. Math. 25 (2000) 352—427.

R. T. Rockafellar, Network Flows and Monotropic Optimization (Wiley, New York, 1984).



