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ABSTRACT. Branching problems ask how an irreducible representation of a group
decomposes when restricted to a subgroup. This exposition surveys new aspects
on branching problems of unitary representations of reductive Lie groups.

The first half is written from the representation theoretic viewpoint. After
an observation of wild feature of branching problems to non-compact subgroups
in a general setting, we introduce the notion of admissible restrictions as a good
framework that enjoys two properties: finiteness of multiplicities and discreteness
of spectrum. A criterion for admissible restrictions is presented, of which the idea
of proof stems from microlocal analysis and algebraic geometry. In this framework,
we present a finite multiplicity theorem. Furthermore, an exclusive law of discrete
spectrum is formulated for inductions and restrictions.

The second half deals with applications. Once we know the non-existence of
continuous spectrum in the restrictions, we could expect an algebraic approach
to branching problems. In this framework, new branching formulas have been re-
cently obtained in various settings, among which we present an example, namely,
a generalization of the Kostant-Schmid formula to non-compact subgroups. Fi-
nally, we mention some applications of discretely decomposable branching laws to
other fields of mathematics. The topics include
(1) topological properties of modular varieties in locally symmetric spaces,

(2) a construction of new discrete series representations for non-Riemannian non-
symmetric homogeneous spaces.

We end the exposition by a brief discussion on the mystery between tessella-
tion of non-Riemannian homogeneous spaces and branching problems of unitary
representations.
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§0. INTRODUCTION

In my opinion, one of the most fascinating features in representation theory
of Lie groups arises from the “outside”, namely, through various interactions
with different fields of mathematics and physics, including partial differential
equations, differential geometry, algebraic geometry, functional analysis, com-
binatorics, and number theory, etc. Furthermore, such interactions are still
growing actively and sometimes show up unexpectedly.

However, if we look at the “inside” of representation theory itself by forget-
ting interactions with other branches of mathematics, what remains as central
problems? From the view point of “analysis and synthesis”, we may emphasize

the following two problems:

Problem 1.
Understand irreducible representations.
Find and classify “smallest” objects.
Problem 2.
Decompose a given representation into irreducible ones.

How s a given representation built from “smallest” objects?

In traditional chemistry or physics of condensed matter, Problem 1 would
correspond to the “classification of atoms” [or elementary particles, - - - | (the level
depends on what we regard as “smallest”); while Problem 2 would correspond
to the “analysis and synthesis” of molecules [or of atoms, ---].

Let us consider Problems 1 and 2 for Lie groups and their representation
theory.

First, the “smallest objects” for Lie groups should be simple Lie groups such
as SL(n,R) and SU(p,q), and one dimensional Abelian Lie groups such as R
and S1. Simple Lie groups (or slightly more generally, reductive Lie groups) are
the groups that we shall deal with throughout this article. Simple Lie groups
were infinitesimally classified by E. Cartan (1894 for complex Lie groups, 1914
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for real Lie groups) after a pioneering work of Killing from 1888 to 1890. We
recall that semisimple Lie groups are locally isomorphic to the direct product
of simple Lie groups; reductive Lie groups are locally isomorphic to the direct
product of semisimple Lie groups and Abelian Lie groups.

Next, let us consider Problems 1 and 2 for “representations”. Then, the
smallest objects should be irreducible representations (we need to use an appro-
priate category of representations because there are subtle topological problems
in dealing with infinite dimensional representations). Problem 1 asks the clas-
sification of irreducible (unitary) representations, which contains the following

subproblems:

r - Construction of irreducible representations.
Finding a complete set of invariants of representations, so that they can

separate different irreducible representations from one another.

. - Understanding these invariants.

A classical example of invariants of representations 7 is the character Trace(r).
If 7 is infinite dimensional, then the character Trace(w) is no more a continuous
function on a group G in general. Harish-Chandra justified it as a distribution
for a suitable class of representations 7 (e.g. 7 is an irreducible unitary rep-
resentation of a reductive Lie group G). The asymptotic K-support ASk ()
and the associated variety V4 (m) are also useful invariants of representations of a
reductive Lie group G, which we shall explain and apply in branching problems
in §1 and §2, respectively.

The classification of irreducible unitary representations of simple Lie groups
has been a long-standing problem. More than half a century has past since a
pioneering work of Bargmann and the Gel’fand school in 1940s, and there has
been a large development by Vogan and some others, particularly in 1980s (we

refer to the textbook [26] by Knapp and Vogan for a guide of some recent liter-
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atures). The unitary dual has been classified for some groups such as GL(n,[F)
(F = R, C, H), however, has not been classified for some other groups such as
O(p,q) and Sp(n,R) (p,q,n = 3).

Second, let us consider Problem 2. We begin with some examples of the
decomposition of representations. They are closely related to classical mathe-
matical problems such as:

1) Spectral theory of unitary operators. This is equivalent to the irreducible
decomposition of a unitary representation of Z on a Hilbert space.
2) The theory of reduction of matrices to Jordan’s normal forms of matrices.

This corresponds to the decomposition of finite dimensional representations

of Z on C".

3) The Fourier transform. We may regard this as the irreducible decomposition

of the regular representation of the Abelian Lie group R on L?(R).

4) The Fourier series expansion. We may regard this as the irreducible decom-
position of the regular representation of the torus group S! on L?(S1).

All of the above examples correspond to the decompositions of representa-
tions of Abelian groups, Z, R and S!. How about non-Abelian groups, such as
SL(n,R)?

We consider two important settings where questions of decomposing repre-

sentations arise naturally: Let G be a group, and G’ its subgroup.

Problem 2-A (Decomposition of induction) Given an irreducible represen-
tation 7 of a subgroup G’, decompose the induced representation Indg, T into
irreducibles of G.

Problem 2-B (Decomposition of restriction) Given an irreducible repre-

sentation m of GG, decompose the restriction 7|g/ into irreducibles of a subgroup

G'.

For a compact GG, these two problems are related to each other by the Frobe-
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nius reciprocity. For a non-compact GG, we do not know a strong analog of the
Frobenius reciprocity, however, the comparison of these problems may help us to
get a feeling of the current status on them. (So, we shall compare these problems

occasionally in this article.)

Problem 2-A corresponds to the Plancherel type theorem for the homoge-
neous space G/G’ if 7 =1 (the one dimensional trivial representation), namely,
to find the formula of the irreducible decomposition of the regular representa-
tion L?(G/G’). For general 7, Problem 2-A deals with L?-harmonic analysis on

a G-equivariant vector bundle over the homogeneous space G/G’.

The formula of the irreducible decomposition in Problem 2-B is called a
branching law. The decomposition of the tensor product of two represen-
tations is an example of branching laws. Branching laws for certain groups arise

in quantum mechanics as a description of breaking symmetries.

In this paper, we shall focus on Problem 2-B, namely, on branching problems.
We are interested in the branching problem of the restriction m|g/ in a general
setting where both G and G’ are reductive Lie groups and = is an irreducible
unitary representation. This setting contains many important cases indeed but
is perhaps too general to expect strong results (at least, now). Our initial project
is to single out a nice category of branching problems, in which we could study
deeply and explicitly the restriction of unitary representations. For this purpose,
we shall observe some of major difficulties at present in branching problems in

a general setting (see §1.A).

In order to clarify our viewpoint of this article, we begin with an elementary
example of branching laws of finite dimensional representations: Let Clz,y, z] be
the polynomial ring of three variables. We write P for its subspace consisting of

homogeneous polynomials of degree k. For instance, dim¢ P3 = 10. We arrange
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elements of P; in the descending order of 2/ as follows:

(0.1)
Py = C{2%} + C{z2?,y2°} + C{z’z, zyz,y°2} + C{z?, 2%y, zy°, y°}
~ C{z3} + C{z,y} ® C{z*} + C{z?, zy,y*} ® C{z} + C{z®, 2%y, xy°, y°}.

Then, G := GL(3,C) acts on the left side of (0.1) naturally and irreducibly, and
so does G’ := GL(2,C) x GL(1,C) on each summand of the right side. Thus,
we can regard (0.1) as the branching law of the restriction of an irreducible
representation of G with respect to the subgroup G’.

Let us pin down the dimensions of (0.1), by forgetting explicit representation

spaces:

100=1+2+3+4
=(1x1)4+(1x2)+(1x3)+(1x4).

The second equality indicates that each irreducible representation of G’ occurs
with multiplicity free. We shall compare this formula with branching laws of
infinite dimensional representations (see (0.4), (0.5) and (0.6) below).

Next, consider the direct sum decomposition of the Hilbert space L?(S!) by

the Fourier series expansion:

(0.2) 12(5") = 270V, f(2) o {f(n) bnez.

NneEZL

Let G = SL(2,R). Then one can define an action of G on the left side of (0.2)

as an irreducible unitary representation (a principal series representation) by

ar + b

m(g) : L*(R) — L*(R), f(z) = ez +d| ™ f(caz—}—d

)
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a

b
where g7 = ( d) via the identification

(&

~ 6 6
L*(SY) 5 L*(R), F + |cos §|_1F(tan 5)

Then we may interpret (0.2) as a branching law when restricted from G =
SL(2,R) to G' = SO(2) (see [50], for detailed formulas).

Similarly, let us consider the direct integral decomposition of the Hilbert space
L?(R) by the Fourier transform:

(0.3) L*(R) ~ /}R CeV=¥2de  f(z) — f(&).

Then, we may interpret this formula as the branching law when restricted from
SL(2,R) to a unipotent subgroup G’ (consisting of strictly upper triangular
matrices) which is isomorphic to R. Namely, G acts on the left side L?(R) as an
irreducible unitary representation, and the subgroup G’ acts irreducibly on each
one dimensional representation Ce¥ ~1€% on the right side.

As a “coarse” information of (0.2) and (0.3), we pin down the multiplicities

and the dimensions of irreducible components, respectively as follows:

Dimensions Spectrum
(04) co=---+(1Ix1)+(Ix1)+(1x1)+--- (purely discrete)
(0.5) oo = /(1 x 1)d¢ (purely continuous)
R

Since our concern in this article is with non-Abelian and non-compact groups,

we need to deal mostly with infinite dimensional representations. Then, the
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feature of the dimension formula (0.4) will be loosely stated in the following

generalization:
(0.6) oo = -+ -+ (finite X 0o) + (finite X oo) + (finite X oco0) + - --

Here, the left side of (0.6) is controlled by G, and the right side indicates that
each irreducible (infinite dimensional) representation of G’ occurs discretely
with finite multiplicity. A branching formula with this feature will be called
a '-admissible restriction (see Definition 1.1).

The main theme of this paper is on admissible restrictions of unitary repre-
sentations, namely, on branching laws without continuous spectrum and with

discrete spectrum of finite multiplicity. We shall ask:

When does the restriction m|g: become G’-admissible?

This is the case if G’ is a maximal compact subgroup (a fundamental theorem
of Harish-Chandra; see Example 1.2). This is also often the case if 7 is a unitary
highest weight representation (see Definition 3.5). Here, among irreducible
unitary representations of a reductive group, unitary highest weight representa-
tions are rather special and have been studied extensively and understood best.
Typical examples are holomorphic discrete series representations (see §3.B). The
Segal-Shale-Weil representation splits into two irreducible representations of the
metaplectic group Mp(n,R) (the double covering group of the symplectic group
Sp(n,R)), and each of them is also a unitary highest weight representation.
These representations are infinite dimensional, but it turns out that they are
relatively “small” compared to non-highest weight representations. They have a
nature of “one-sided infinity” something like the half line [0, co) which has the
“bottom” 0. This is in contrast to a “both-sided infinity” (—oo,00). By this
one-sided property, unitary highest weight modules 7 tend to be discretely de-
composable when restricted to a subgroup (see Example 1.3, Theorem 3.6). We

note that the minimum element (such as 0 in [0, 00)) corresponds to a highest
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weight vector of 7, which may be interpreted as a vacuum vector in quantum
mechanics.

On the other hand, most of irreducible unitary representations are not “one-
sided”, namely, there are no highest weight vectors. In other words, unitary
highest weight representations are rather rare among the unitary dual G. What
shall we expect for the spectrum in the branching laws of “general” infinite
dimensional representations ? Does it happen that the restriction 7|g is G'-
admissible?

As we have seen the irreducible decomposition of the regular representation of
R on L?(R) in (0.3), branching laws usually contain continuous spectrum, when
restricted to non-compact subgroups. It is no wonder that most people did not
pay attention on the possibility of the non-existence of continuous spectrum in
the branching law of the restriction 7|/ in a general case where 7 is a non-highest
weight representation and G’ is non-compact.

In 1988, inspired by the theory of discontinuous groups for pseudo-Riemannian
homogeneous spaces (see [41], [84] for an exposition), I found explicit branching
laws of some (non-holomorphic) discrete series representations with respect to
non-compact subgroups. The branching laws are not very complicated and still
discretely decomposable, and I was curious about a mysterious phenomenon
of discrete decomposability even in such a general setting ([28]). My proof of
the branching laws was based on the theory of harmonic analysis on semisimple
symmetric spaces ([14], [68]) and vector bundles on them ([31]), and on algebraic
theory of Zuckerman-Vogan’s derived functor modules ([74], [75], [76]), both of
which developed largely in 1980s (see also the references in [26], [36]).

These new branching laws became the first breakthrough in our study of
discretely decomposable restrictions ([31], [35], [36], [37], [44], [49], [50]). We
shall explain its flavor in §4.D.5.

Different from our original methods in [28], we shall adopt in this article

the approach of [37] and [46] where global analysis on homogeneous spaces has a
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relatively small role. That is, we shall study discretely decomposable restrictions
as a problem inside representation theory (see §1, §2 and §3), and then apply
the theory of restrictions as a method to study global analysis on homogeneous
spaces (see §4.C).

This exposition is organized as follows. First, we formulate and give basic
results on discrete decomposable branching laws from an analytic aspect (§1) and
from an algebraic aspect (§2). Next, we explain some more results on discretely
decomposable restrictions, possible directions for further developments and new
perspectives of unitary representation theory relevant to branching problems in
§3. In the latter half of this paper, we give an outline of some applications
of discretely decomposable branching laws to other areas of mathematics. Most
results here have been developed in the last five years. The applications explained
in §4 range from number theory to discontinuous groups and to global analysis

on homogeneous spaces. Each application in §4 can be read independently.

§1. ANALYTIC THEORY OF ADMISSIBLE RESTRICTIONS

Throughout this paper, we shall assume that a reductive Lie group G is a
linear group or its finite covering. Without loss of generality, we shall assume
that a real reductive linear group G is realized as a closed subgroup of GL(N,R)
satisfying the following two conditions:

i) The number of connected components of G is at most finite.

ii) G is stable under the transpose operation of matrices (namely, 'G = G).

Here are classical examples of linear reductive Lie groups G-

G =GL(n,R), SL(n,R),O(p, ), U(p, q), Sp(p, 9), Sp(n, R),
SU*(2n),SO*(2n),GL(n,C), SL(n,C), SO(n,C), Sp(n,C).
Here, we note that GL(n,C) can be realized in GL(2n,R) such that it is stable

under the transpose operation of 2n X 2n matrices.

Suppose G is a linear reductive Lie group satisfying the above conditions (i)
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and (ii). We put
K :=GNO(N).

Then, K is a maximal compact subgroup of G. We write g, £ for the Lie algebras
of G, K, respectively. A reductive Lie group G is a semisimple Lie group if the
center of g is {0}.

Let G be the set of the (unitary) equivalence classes of irreducible unitary

representations of G. Then G is called the unitary dual of G.

1.A. Branching laws of unitary representations.

Given 7 € G and a subgroup G’ of GG, we consider the problem of finding the
branching law of the restriction 7|/, namely, the decomposition formula of 7
into irreducible representations of G’.

For compact GG, any irreducible unitary representation 7 is finite dimensional.
Then, the branching problem is theoretically solvable in the sense that any par-
ticular case can be done, because there exists an algorithm to obtain branching
laws, based on Weyl’s character formula. Of course, such an algorithm often
involves complicated combinatorial problems.

On the other hand, for the branching law 7| of an infinite dimensional
unitary representation m, even an algorithm has not been known in general if
G D G’ are (non-compact) reductive Lie groups.

As a matter of fact, branching laws of unitary representations of semisimple
Lie groups have not been studied systematically except for some special cases
(it is another thing that some of special cases are already rich and very interest-
ing). Here is an observation about difficulties to find branching laws of infinite
dimensional unitary representations.

1) Ifnme G is constructed as a usual induced representation (e.g. a principal
series representation), then by using the classical theory of Mackey ([58]) the
branching law is reduced to another (usually difficult) problem of harmonic

analysis, that is, to find the Plancherel-type theorem for a homogeneous space
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(see Problem 2-A). Only recently, the latter problem has been solved under the
assumption that the homogeneous space is a semisimple symmetric space! (see
[12], [68]). But, the homogeneous spaces arising from the branching problems
are usually much more general than semisimple symmetric spaces and the
Plancherel-type theorem for such spaces is far from being understood. (Even
its subproblem such as Problem 4.C.1 is very difficult.)

Some of irreducible unitary representations of semisimple Lie groups cannot
be realized as usual induced representations. Discrete series representations
are the case. In this case, there is no known general method to find branching
laws of the restriction 7|gs for non-compact G’. (We note that the Mackey
theory does not work in this case.)

Branching laws when restricted to non-compact subgroups often contain both
discrete and continuous spectrum. Usually, purely algebraic methods do not
work if continuous spectrum occurs.

To be worse, multiplicities of irreducible unitary representations of G’ oc-
curring in branching laws can be infinite even if G’ is a maximal reductive
subgroup of G (e.g. (G, G’) is a semisimple symmetric pair), as we paid much
attention in [28]. Infinite multiplicities in branching laws can happen even in
the decomposition of tensor product representations, that is, the restriction
with respect to a diagonally embedded group G in the direct product group
G1 x (1.

Fix a group G and its subgroup G’. By the Frobenius reciprocity, the fol-
lowing two problems are equivalent if G is compact:

i) To find branching laws of the restriction 7|g: for all 7 € G.
ii) To find irreducible decompositions of the induced representation Ind%, (7)

for all T € @7

Loosely, we might regard that the above two problems (i) and (ii) have com-

rreducible semisimple symmetric spaces were classified by M. Berger on the level of Lie

algebras [6].
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parable difficulties also for non-compact G’. If so, let us compare our current
knowledge on the problems (i) and (ii). As for (ii), very little has been studied
in the case dim7 = oo (see [28], §1.3), although there are some successful cases,
namely, where dim7 = 1 and (G,G’) is a symmetric pair, as we have already
mentioned. In summary, (ii) is still far from being solved because we need to deal
with all 7 € G’ which are mostly infinite dimensional representations. Likewise,
(i) is far from being solved in general. Thus, we believe it is reasonable to attack

branching problems (i) by limiting ourselves to more special and nicer cases.

1.B. Discretely decomposable restrictions as a “nice framework”.

As we have discussed so far, general branching problems involve too many,
and too much different type of difficulties when dealing with infinite dimensional

representations of reductive Lie groups.

So, our strategy is first to find a good framework among general branching
problems, and then to initiate deeper and detailed study in this framework. Such
a framework should cover at least some important cases of branching problems
where Mackey’s classical theory does not apply (e.g. 7 is a discrete series repre-

sentation of GG). Furthermore, the following nature is desirable:

a) The framework is rich in new interesting examples, which are also useful in

some applications.

b) In such a framework, we could find branching laws explicitly, or at least there

exists an algebraic algorithm to find branching laws.

From this viewpoint, the author proposed the following Definition 1.1 in [35]
and [37] with emphasis on the case of non-compact subgroups: Let G O G’
be reductive Lie groups, and 7 € G. We define the multiplicity of 7 € G’ in

the discrete spectrum of the restriction 7|g/ by the dimension of continuous
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G’-intertwining operators:
my(7) := dim Homg (7, 7| ).

Definition 1.1 (analytic definition of discretely decomposable restriction). We
say that the restriction 7| is G'-admissible if the restriction 7|gs splits into a
discrete direct sum of irreducible unitary representations of G’ and if m,. (1) < 0o
for any 7 € G’

If 7| is G'-admissible, then we have a unitary equivalence of G’-modules:

@
(1.1.1) 7|g =~ Z my(7)7 (a discrete direct sum of Hilbert spaces).

—_

TEG!
Here, Z@ denotes the Hilbert completion of an algebraic direct sum. In par-

ticular, the formula (1.1.1) means that there is no continuous spectrum in the
branching law of 7|g.

The significance of Definition 1.1 is that there are “new” examples. However,
we shall start with “old” examples of admissible restrictions.

The following Harish-Chandra’s theorem is fundamental in representation the-
ory of reductive Lie groups, which has enabled us to study unitary representa-
tions by purely algebraic methods (so called the theory of (g¢, K)-modules or

Harish-Chandra modules). This theorem may be regarded as a special example
of Definition 1.1 (the case G' = K):

Example 1.2 (Harish-Chandra [17], see also [78], Theorem 3.4.1). For any

m € G, the restriction 7|k is K-admissible?.

2This property is usually called “admissible”. The terminology in Definition 1.1 is named
after it.
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In Introduction, we have seen an example of branching laws which is given
by the Fourier series expansion (see (0.2)). This is a special case of Example 1.2
applied to (G, K) = (SL(2,R), SO(2)) (multiplicity is free in this case).

The theta-correspondence plays an important role in number theory of
automorphic forms. The following result due to Howe [20] presents another

example of G’-admissible restrictions, where G’ is non-compact:

Example 1.3 (discrete decomposability in the theta-correspondence). Let G
be the metaplectic group Mp(n,R). Suppose that (G,G’) is a reductive dual
pair, namely, G’ = GG} is a reductive subgroup in G such that G| and G, are
mutually the centralizer of the other in G. If G} or G is compact and if 7 is
the Segal-Shale-Weil representation of G, then the restriction 7|g: decomposes
discretely with multiplicity free, in particular, it is G’-admissible. The branching
laws produce a lot of irreducible unitary highest weight representations (see

Kashiwara-Vergne [24], for example, for some explicit branching laws).

In Definition 1.1, we have formulated analytically the condition that there
is no continuous spectrum in the branching law. We shall also formulate the
notion of “discrete decomposability” algebraically in terms of (gc, K)-modules
(Definition 2.3). There is a slight difference between these two definitions of dis-
crete decomposable restrictions, especially, we allow the multiplicity to be infinite
in our definition of algebraic discrete decomposability in §2. Then, the study of

this difference gives rise to a finite multiplicity theorem ([49], see Theorem 3.2
in §3.A):

“discreteness (in the spectrum) = finiteness (of multiplicity)”

for the restriction of discrete series representations with respect to semisimple
symmetric pairs (see also Conjecture 3.4 in §3.A in a more general setting).
So far, we have given two examples of G’-admissible restrictions, namely, Ex-

amples 1.2 and 1.3. In both cases, we made strong assumptions: in Example 1.2
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G’ is compact; while in Example 1.3 7 has a non-zero highest weight vector (we
called this property “one-sided infinity” in Introduction; such representations
are very special among @)

Our formulation (Definition 1.1) was intended to seek for new settings where
the branching law 7|g: is G’-admissible, beyond Examples 1.2 and 1.3. The
criterion below (see Theorem 1.5) assures that there are quite rich examples of G'-
admissible restrictions 7|g: even though G’ is non-compact and 7 is not a highest
weight representation. Thus, a number of branching problems in this framework
are newly obtained, which should to be accessible by purely algebraic methods.
Examples of explicit (discretely decomposable) branching laws of discrete series
representations (or more generally, Zuckerman-Vogan derived functor modules
Ag4(A)) have been found with respect to symmetric pairs such as (O(p, q), O(p —
r,q) x O(r)), (O(2p,2q),U(p,q)) and so on, in this new “nice” framework (see
[35] Part I, [37]).

1.C. A sufficient condition for discretely decomposable restrictions.

Let G be a real reductive linear group. For simplicity, we assume that G is
connected. Then, a maximal compact subgroup K of GG is also connected. Since
K is compact, any irreducible unitary representation of K is finite dimensional.
As usual, we write K for the set of equivalence classes of irreducible unitary
representations of K. Let € be the Lie algebra of K, and take a maximal Abelian
subspace t of &. We fix a positive system AT(¢,t). Then K is identified with
the set of dominant integral weights by the Cartan-Weyl highest weight theory.
Hereafter, K will be regarded as a subset of /—1t*.

Definition 1.4 (asymptotic K-support [25]). For 7 € @, we define two subsets
of v/—1t* as follows:

Suppg (7) := {r € K : Homg (7, 7|x) # {0}},
ASk () := Supp g (7)00.
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Here, for a subset S of the Euclidean space, the limit cone Soco (see [23]) is a

closed cone defined by:

Soo = { li_)m €nYn : Yn € S, €, — 0}.

The closed cone ASk () is called the asymptotic K -support of the representation

.

Let G D G’ be a pair of reductive Lie groups in the sense that both G and
G’ satisfy the conditions (i) and (ii) stated at the beginning of §1. Then, the
adjoint representation Ad : G — GL(g) is completely reducible when restricted
to G'. If we set K’ := K NG’, then K’ is a maximal compact subgroup of G'.

Example.

1) For (G,G) = (GL(n,C),GL(n,R)), we have (K, K') = (U(n),0(n)).

2) For (G,G") = (GL(n,C),U(p,q)), we have (K,K') = (U(n),U(p) x U(q)).
Here, p + q¢ = n.

We write g, ¥ for the Lie algebras of G', K’, respectively. We fix a K-invariant
inner product on . With respect to this inner product, we define (#)+ as the
orthogonal complement of ¢ in €. We also identify t* with t, and then regard t*
as a subspace of €. In particular, we can regard ASk (7) as a subset of v/—1¢.

Here is a sufficient condition for the restriction 7|g to be G’-admissible:

Theorem 1.5 (a sufficient condition for G’-admissible restriction; [44]). Let
G D G’ be a pair of reductive Lie groups, and 7 € G. If

(1.5.1) ASk (m) N vV—1Ad(K)(¥)*+ = {0},

then the restriction 7|k is K'-admissible. In particular, the restriction |g

is G'-admissible, namely, m|g decomposes discretely with finite multiplicities
(Definition 1.1).
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Assumption (1.5.1) is obviously satisfied if ASx (7) = {0} or if Ad(K) (€)1 =
{0}. First of all, let us explain these two special cases in Example 1.6 and

Example 1.7, respectively.

Example 1.6. If G’ = K, then ¥ = ¢ and therefore (¥)- = {0}. Hence, we
have

Ad(K)(¥)* = {0},

(In fact, it is easy to see that Ad(K)(¥)t = {0} if and only if G’ D K.) Then,
Assumption (1.5.1) is automatically fulfilled for any 7 € G. The conclusion
of Theorem 1.5 in this special case is the admissibility theorem due to Harish-

Chandra as stated in Example 1.2.
Example 1.7. For 7 € @, we have
ASk (m) = {0} if and only if dim7 < oc.

Thus, if dim7 < oo then Assumption (1.5.1) is obviously satisfied for any sub-
group G'. The conclusion of Theorem 1.5 in this special case follows also from an

easy complete reducibility result of finite dimensional unitary representations.

Here is a non-trivial example of Theorem 1.5:

Example 1.8. Let (G,G") = (U(2,2),Sp(1,1)). We note that the pair (G, G’) is
locally isomorphic to (S x SO(4,2),50(4,1)). There are 18 series of irreducible
unitary representations of G with regular and integral infinitesimal character
by a result of Salamanca Riba. Among 18 series, 6 can be realized in closed
subspaces of L2(G), namely, they are Harish-Chandra’s discrete series represen-
tations. Among 18 series, there are 12 series (containing 2 discrete series) of
irreducible unitary representations of G that satisfy the condition (1.5.1) (see
[37] for details). In particular, there is no continuous spectrum in the branch-
ing laws of the restriction 7|g: if ™ belongs to these 12 series. Conversely, the

remaining 18 — 12 = 6 series of irreducible unitary representations of G are not
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algebraically discretely decomposable (Definition 2.3) when restricted to G’ (see
[49]).

For some important representations 7 such as discrete series representations,
we can compute ASgk () in terms of the root data [44]. See [42] for a knack of
actual computations to apply Theorem 1.5.

The converse direction of Theorem 1.5 will be discussed in §2.B.

The idea of the proof of Theorem 1.5 is to capture the existence of continuous
spectrum as a “size® of infinite dimensional representations”, by looking at the
asymptotic behavior of K-types. In [44], this was carried out by extending
the work of Kashiwara-Vergne and Howe in the 70s on the microlocal study of
characters of representations. Here, the asymptotic K-support ASk(7) plays
a role of “size” of m by means of the wave front set of the character Trace(r).
Before finding a general method in [44], we took a different and more algebraic
approach in proving the G’-admissibility of the restriction 7|gs in a special case
where 7 is a Zuckerman-Vogan derived functor module. See [31], Proposition
4.1.3 in the case where K’ is of the form of the direct product K| x Kj; see
also [37], Theorem 1.5 in the case where (G,G’) is a semisimple symmetric pair.
Gross and Wallach [16] also studied G’-admissible restrictions in the case where
K’ is of the form K] x K}, especially when K] ~ SU(2).

In §2 below, we shall reformulate Definition 1.1 in terms of (gc¢, K)-modules,
and obtain a necessary condition for the discrete decomposability. Namely, we
introduce the notion of infinitesimally discrete decomposability of the re-
striction (see Definition 2.3), and estimate the size of infinite dimensional rep-
resentations by their associate varieties [77], which originally arose from the D-

module theory. If the restriction 7| is discretely decomposable, then we may

3The representation space is an infinite dimensional, separable Hilbert space, which is
unique as a topological vector space. However, the size of representations may be “different” if
we take group actions into account. Associated varieties (in §2) and their dimensions (Gel’fand-
Kirillov dimensions) are also useful to measure ‘size’ of representations.
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consider analogous notion of (gc, K )-modules & la Harish-Chandra and Lepowski
in a more general setting, namely, an algebraic direct sum of infinite dimensional
representations (symbolically, a notion of (g¢, G')-modules).

We note that Theorem 1.5 gives not only a sufficient condition for the G'-
admissibility of the restriction m|g: but also for the infinitesimally discrete de-

composability of the restriction 7|g/, which is the object of §2.

§2. ALGEBRAIC THEORY OF DISCRETELY DECOMPOSABLE RESTRICTIONS

2.A. Algebraic reformulation of discrete decomposability.

Let us start with an example where there is only continuous spectrum in the
irreducible decomposition. As an opposite extremal case, this example (Example
2.1) serves us as a hint to find an algebraic definition of discretely decomposable

restrictions.

Example 2.1 (Wiener subspace). Let V be a subspace of L?(R). We say V is

R-invariant if V satisfies:
f(x —a) €V for any f(z) € V and any a € R.

For a measurable set E of R, we write L?(E) for the closed subspace of L*(R),
consisting of all L2-functions supported on E. Then, the image of the Fourier
transform of L2(E), denoted by F(L?(E)), is a closed R-invariant subspace. Con-
versely, it is known that any closed R-invariant subspace is of the form F(L?(E))
for some measurable set E. Then, given any non-zero closed R-invariant subspace

V', there exists an infinite decreasing sequence of closed R-invariant subspaces

Vi

(to see this, it is enough to take a sequence of measurable sets E; of E such
that £ 2 F; 2 Ey 2 ---, and then to define V; := F(L?(E;))). This property

is equivalent to the fact that there is no discrete spectrum in the irreducible
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decomposition of the regular representation L?(R) of R. (Of course, the latter
property follows also from the irreducible decomposition of L?(R) by means of

the Fourier transform (see (0.3)).

In summary, Example 2.1 relates the non-existence of discrete spectrum with
the existence of an infinite decreasing sequence of invariant subspaces. Next,
we shall relate the non-existence of continuous spectrum with the existence
of an infinite increasing sequence of invariant subspaces. Here is an algebraic

formulation:

Definition 2.2 ([49], Definition 1.1). Let g be a Lie algebra, and X a g-module.
We say the g-module X is discretely decomposable if there is an increasing se-

quence of g-submodules:

XOCX1CX2C"'

such that the following two properties are satisfied:
(22.1) X =U>_gXm.
(2.2.2) Each X,, is of finite length as a g-module.
We note that irreducible representations of a finite dimensional Lie algebra are
usually infinite dimensional. In the above definition, we have infinite dimensional

modules X,,, in mind.

Let (m,H) be an irreducible unitary representation of G, and X a subspace of
the Hilbert space H consisting of K-finite vectors. Then, X is dense in H, and
has the g-module structure (the differential representation), in addition to the
K-module structure. The above gc U K-module (mg, X) is called the underlying
(gc, K)-module of .

Next, let G D G’ be a pair of reductive Lie groups so that K/ := KNG’ is a
maximal compact subgroup of G’. We apply Definition 2.2 to the restriction to

G'.
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Definition 2.3 (algebraic definition of discretely decomposable restriction). Let
m€G. We say that the restriction 7|g is g'-discretely decomposable or infinites-
imally discretely decomposable if the underlying (gc, K)-module 7x is discretely

decomposable as a g’-module in the sense of Definition 2.2.

It might look strange at a first glance that Definition 2.2 gives the notion of

“discrete decomposition”. In fact, the terminology is named after the following;:

Theorem 2.4 (characterization of infinitesimally discretely decomposable re-
striction; [49]). Let (G,G’) be a pair of reductive Lie groups, m an irreducible
unitary representation of G, and (nx,X) its underlying (gc, K)-module. Then
the following three conditions on the triple (G, G', ) are equivalent:

1) The restriction w|g is infinitesimally discretely decomposable (Definition
ii) The (gc, K)-module (mx,X) is isomorphic to an algebraic direct sum of

irreducible (g¢, K')-modules (discrete branching law ):

(2.4.1) X ~ @nW(Y) Y (an algebraic direct sum).
Y

Here, the sum is taken over all irreducible (g¢, K')-modules Y, and
ny(Y) := dimHomy g (Y, X)

1s the multiplicity of Y occurring in X.

iii) There ezists an irreducible (g, K')-module Y such that

Homyg, x)(Y; X) # {0},

We note that the multiplicity n,(Y) may be and may not be infinite in The-
orem 2.4. The point of the condition (iii) is that only a single representation Y
is used (for this, we have assumed that = is irreducible).

Moreover, the following theorem holds:
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Theorem 2.5 (infinitesimal = Hilbert discrete decomposition). If the restric-
tion T|g of ™ € G is infinitesimally discretely decomposable, then we have the

following equality for any T € G
(2.5.1) dimHom g oy (7k', 7K ) = dim Home (7, 7|r).

We put m(7) by (2.5.1). Then, the restriction 7|q: of the unitary representation

7 is decomposed into irreducibles of G' without continuous spectrum:

2]
T|gr =~ Z m(7)T  (a discrete direct sum of Hilbert spaces).
TEé\’

We note that the right-hand side of (2.5.1) is the dimension of continuous
G'-intertwining operators, while no topology is specified in the left-hand side of

(2.5.1). In general, we have
the left-hand side of (2.5.1) < the right-hand side of (2.5.1)

without the assumption of infinitesimally discrete decomposability.

We should keep in mind that we have not imposed the condition n,(Y) < oo
in the definition of infinitesimally discrete decomposability (Definition 2.3), while
we imposed the finiteness of the multiplicities in the definition of G’-admissible
restriction (Definition 1.1). As we have pointed out in [49], [50] (see also §1.B),
the multiplicities tend to be finite if the restriction has no continuous spectrum
(see Theorem 3.2 and Conjecture 3.4 in §3.A for a precise formulation).

The next (easy) example follows immediately from the equivalent definitions
of infinitesimally discrete decomposability (Theorem 2.4). We note that G’ = {e}

is allowed in the example below.

Example 2.6. If G’ is a compact subgroup, then the restriction 7|g- is infinites-

imally discretely decomposable for any = € G.
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2.B. A necessary condition for discretely decomposable restrictions
— an approach by associated varieties.

Loosely, the associated variety of a g-module 7 is an algebraic variety that
approximates the representation m by means of the graded ring gr U(gc). Since
grU(gc) is isomorphic to a polynomial ring, one can use a standard technique
of algebraic geometry. It turns out that associated varieties are useful for the
study of infinitesimally discretely decomposable restrictions ([35] Part II, [49]).

Let us recall briefly the definition of associated varieties of g-modules (see a
treatise of Vogan [77] for more details). Let X be a finitely generated module
(over C) of a Lie algebra g. The associated variety of X, denoted by V4(X), is
defined similarly to the characteristic varieties of D-modules as follows (see [9]).
Let gc be the complexification of g. Then, X becomes a U(gc)-module by the

universality of the enveloping algebra U(gc). Take a natural filtration

C = Uo(gc) C Uir(gc) C Ua(gc) C -

of U(gc) (corresponding to degrees of partial differential operators). Let Xy be
a finite dimensional subspace of X that generates X as a U(gc)-module and we
put X, := U,(gc) - Xo- Then Xy C X; C X C --- gives a filtration of X such
that U;(gc)X; C X;4;. We note that X = J,, X,,. We put

grU(ge) == P Un(ac)/Un-1(ac),  grX =P Xn/Xn 1.

Then, the graded module gr X carries naturally a gr U(gc)-module structure.
The grU(gc)-module, gr X, is regarded as an approximation of the U(gc)-
module X. The enveloping algebra U(gc) is a non-commutative algebra pro-
vided g is non-commutative, while the graded ring gr U(gc) is isomorphic to the
symmetric algebra S(gc) by the Poincaré-Birkhoff-Witt theorem, and then is
isomorphic to the polynomial algebra over g¢. In particular, gr U(gc) is commu-

tative. The characteristic variety of an S(gc)-module gr X is called the associated
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variety of X, and will be written as V4(X). That is,
Ve(X) :={A€gr:f(A)=0 forany f € Anng (4. (gr X)}

where Anng, ;7(4.)(gr X) is the annihilator ideal of gr X.
So far, X is just a finitely generated module of the Lie algebra of g. From
now, let (mx,X) be the underlying (gc, K)-module of an irreducible unitary

representation 7 of a reductive Lie group G. Then we have:

Theorem 2.7 (Vogan, [77]). The associated variety Vy(X) is a Kc-invariant

algebraic variety contained in the nilpotent cone of g¢.. Furthermore, V4(X) C

(gc/tc)”

Here we recall that the nilpotent cone of g¢ is the algebraic variety that is
identified with the closed subset

{X € gc : ad X is nilpotent}
under the isomorphism g¢ ~ g¢. Suppose G’ is a subgroup of G. Let
Prg g - g(?: — (géC)*
be the projection dual to the inclusion of Lie algebras g < gc. Here is a lower

estimate of the associated varieties of irreducible summands in the branching

law:

Theorem 2.8 (associated varieties of irreducible summands, [49]). Suppose that
there 1s an irreducible (g¢, K')-module Y such that Homy g (Y,X) # {0}.

Then, the following inclusive relation holds:

(2.8.1) DTy (Ve(X)) C Vg (Y).

To see the meaning of Theorem 2.8, let us consider the simplest case, that is,
the case where Y is finite dimensional. Then, it follows from the definition of an

associated variety that

Ve (Y) = {0}.
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Consequently, (2.8.1) is equivalent to

Vy(X) C (gc/8c)™

Now, we divide into two cases in the following example: G’ is compact or non-

compact.

Example 2.9. 1) If G’ is compact, then obviously there exists a finite dimen-
sional irreducible (g¢, K')-module Y satisfying Hom g, (Y, X) # {0}. In par-

ticular, if G’ = K, then we have

Ve(X) C (gc/tc)” ~ pc

by Theorem 2.8. This result was proved previously by Vogan (see Theorem 2.7).
2) Suppose G is a simple Lie group. If G’ is non-compact, then

prg—)g’ (Ad(K(C)U) 7é {0}

for any non-zero nilpotent element v € pc. If dim X = oo, then V4(X) # {0},
and in particular, V4 (X) contains Ad(K¢)v for some non-zero nilpotent element
v in pc. Hence, pry_, . (V4(X)) # {0}. Therefore, it follows from Theorem 2.8
that

Hom(g s (¥, X) = {0}

for any finite dimensional irreducible (g¢, K')-module Y. See also [49], Corol-

lary 3.9 for a relation to Moore’s ergodicity theorem [62].

The following criterion ([49], Corollary 3.4) is useful and is readily deduced

from Theorem 2.8.

Theorem 2.10 (a necessary condition for discretely decomposable restrictions).
Let (g, X) be the underlying (gc, K)-module of m € G. If the restriction 7| is
infinitesimally discretely decomposable, then pr,_, . (V4(X)) is contained in the

nilpotent cone of (g¢)*.
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2.C. Three more theorems on discretely decomposable restrictions.
In this subsection, we state three direct consequences of Theorem 2.10.
We recall an obvious fact that the restriction to a compact subgroup is always

discretely decomposable (Example 2.6). For example:

Example 2.11 (the restriction which is always discretely decomposable). Let
(G,G") = (SL(n,C),SU(n)). Then, the restriction |g' is infinitesimally dis-

cretely decomposable for any irreducible unitary representation mw of G.
Theorem 2.10 leads us to an opposite extremal case:

Theorem 2.12 (the restriction which is never discretely decomposable). Let
(G,G") = (SL(n,C),SL(n,R)). Then, the restriction 7|g' is not infinitesimally
discretely decomposable for any irreducible unitary representation w of G except
for m = 1.

So, with regard to infinitesimally discrete decomposability, two real forms
SU(n) and SL(n,R) of SL(n,C) have completely different feature. Other real
forms such as SU(p,n—p) (1 < p < n-—1) are intermediate. A real form of G’ of
a complex reductive Lie group G is called normal or split if rank G = R-rank G’.
For example, SL(n,R) is a normal real form of SL(n,C), while SU(p,n — p) is
not a normal real form except for the case (p,n) = (1,2).

Combining Theorem 2.10 with the following lemma:

pry_, . (Ad(Kc)v) contains a non-zero semisimple element for
any non-zero nilpotent element v € pc if G’ is a normal real form

of a complex reductive Lie group G,

we can generalize Theorem 2.12 as follows (see [49], Theorem 8.1):

Theorem 2.13 (the restriction is never discretely decomposable). Let G be a

complex reductive Lie group, and G’ its normal real form. Then, the restriction
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7|g: is not infinitesimally discretely decomposable for any infinite dimensional

irreducible unitary representation m of G.

A second application of Theorem 2.10 deals with the relation between the
discreteness in the induced representation (discrete series representation) and
the discreteness in the restriction (discrete decomposable restriction). It turns

out that they cannot stand together for symmetric pairs. Here is a statement:

Theorem 2.14 (the exclusive law of discrete spectrum for the restriction and
the induction). Let (G,G’) be an irreducible symmetric pair such that G is non-
compact. Let m € G. Then both (i) and (i) cannot occur simultaneously.

i) The restriction |q: is infinitesimally discretely decomposable .

ii) m is a discrete series representation for the homogeneous space G/G' (i.e.

Homg(m, L*(G/G")) # {0}).

We refer to [49] for the proof. At a first glance, this result might look strange,
but it is another thing that one might expect as a Frobenius reciprocity-type
theorem for infinite dimensional representations.

Here is a very special example of Theorem 2.14.

Example 2.15. Let (G,G’) be a Riemannian symmetric pair, namely, G’ is a
maximal compact subgroup K. Then, we recall the following two well-known
results:
1) The restriction 7|k is infinitesimally discretely decomposable for any m € G.
2) (Harish-Chandra, Helgason) There is no discrete series representation for the
Riemannian symmetric space G/K (see §4.C for the definition of discrete series
representations for a homogeneous space).

(1) is obvious (see Example 2.6), but (2) is non-trivial. (2) is equivalent to
the fact that discrete series representations for the group manifold G do not
have (non-zero) K-fixed vectors. The point here is that Theorem 2.14 asserts a

non-trivial implication (1) = (2).
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As a simplest case of Example 2.15, let us consider the setting
(G, K) = (SL(2,R), SO(2)).

Then, (1) corresponds to the discreteness of the Fourier series expansion (e.g.
(0.2) in §0), and (2) means the fact that the Laplace-Bertram operator on the
Poincaré upper half plane has no L?-spectrum. Thus, even for SL(2,R), Theo-
rem 2.14 gives a new relationship between these two results.

Our proof of Theorem 2.14 uses the estimate of the associated varieties for
infinitesimally discretely decomposable restrictions (Theorem 2.8). A more di-
rect approach to Theorem 2.8 would be preferable, which might give a better

understanding of this mysterious relation.

Another aspect of Theorem 2.14 is that it clarifies a representation theoretic
background for the following antithesis between vanishing and non-vanishing
theorems of modular symbols in arithmetic quotients of Riemannian symmetric
spaces induced from the morphism I'"\G' /K’ — I'\G/K (see §4.B for details):
1) A non-vanishing theorem [73] due to Tong and Wang (some twisted case)
by using a discrete series representation 7w for a semisimple symmetric space
G/G'. (Discrete spectrum in the induction.)

2) A vanishing theorem [52] due to Kobayashi and Oda by using the discrete
decomposability of the restriction 7|g: (cf. Theorem 1.5). (Discrete decom-

posability of the restriction.)

A third application of Theorem 2.10 is about the comparison of irreducible
constituents of the restriction 7|g/. As we shall mention in Remark 2.17, an

analogous result fails if there exists continuous spectrum in the branching law.

Theorem 2.16 (irreducible summands have the same associated varieties). Let
X be an irreducible (gc, K)-module. For any irreducible (g¢, K')-modules Y1 and
Y5 such that

Hom(g&,K')(Y}7X) 7 {0} (.7 = 172)7
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their associated varieties are the same:

(2.16.1) Vg (Y1) = Vg (Ya).

Remark 2.17. If the branching law contains continuous spectrum, then repre-
sentations of different Gel’fand-Kirillov dimensions may occur in the restric-
tion 7|g as discrete spectrum. For example, the Plancherel theorem for the
semisimple symmetric space Sp(n,R)/GL(n,R) is equivalent to the decomposi-
tion of the tensor product of two degenerate principal series representations of
Sp(n,R) with suitable parameters by the Mackey theory (for example, see [36],
Proposition 6.1). In particular, this is a special case of branching laws. On the
other hand, by using the Flensted-Jensen construction ([14]), one can prove that
there exist discrete series representations for the semisimple symmetric space
Sp(n,R)/GL(n,R) with different associated varieties. Hence, (2.16.1) fails. In

other words, we have given a counter example of the following wrong statement:

False “Theorem” 2.16'. Let 7 € G. If 1y, € G satisfy

Homg (75, 7lgr) # {0} (5 =1,2),

then
Vg’ (Yl) = Vg’ (Y2)7

where Y; (j = 1,2) are the underlying (g¢, K')-modules of ;.

§3. NEW ASPECT OF REPRESENTATION
THEORY RELATED TO BRANCHING PROBLEMS

It turns out that there exist fairly rich examples of discretely decomposable
restrictions owing to the criterion in Theorem 1.5. Consequently, many branching
problems arise, to which much attention has not been paid before, and on which
we can now expect a deeper and explicit study by algebraic methods.

In this section, we shall explain briefly some of recent topics related to discrete

branching laws.



32 TOSHIYUKI KOBAYASHI

3.A. Finite multiplicity conjecture.

Conjecture 3.1 (Wallach, see [79]). Let (G,G’) be a semisimple symmetric

pair. If m is a discrete series representation for G, then
(3.1.1) dim Homg/ (7, 7|qr) < oo for any 7 € G

For example, the admissibility theorem of Harish-Chandra (Example 1.2) as-
serts that Conjecture 3.1 holds if G’ is compact. On the other hand, if G’ is
compact, then the restriction 7| is obviously infinitesimally discretely decom-
posable. It is proved in [49] that (3.1.1) still holds by assuming only the condition

that 7| is infinitesimally discretely decomposable :

Theorem 3.2 (discreteness = finite multiplicity). Let (G, G’) be a semisimple
symmetric pair. For any Zuckerman-Vogan derived functor (gc, K)-module* X
(more precisely, cohomologically induced from a finite dimensional representation
in the good range of parameters), and for any irreducible

(g, K')-module Y, we have
dimHom(g{C,K,)(Y, X) < 0.

Since the underlying (gc, K )-module of any discrete series representation  is
expressed as a Zuckerman-Vogan derived functor module, we have the following

corollary:

Corollary 3.3 (a proof of Conjecture 3.1 in the discrete decomposable case).
If the restriction 7| is infinitesimally discretely decomposable, Conjecture 3.1

18 true.

Remark (infinite multiplicity). Even if (G,G’) is a semisimple symmetric pair,

the multiplicity of discrete spectrum in the restriction m|g: can be infinite,

4These representations are algebraic analog of a generalized Borel-Weil-Bott theorem on
(possibly non-compact) complex homogeneous manifolds (see §3.D). They are often denoted by
Ag(X). See [26], [75] for an algebraic explanation, and [36] for a survey of geometric approach
due to Schmid and Wong.
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namely,

dim Homg (7, 7|/) = 0o for some 7 € G’ and 7 € G.

This can happen if the branching law of the restriction 7|g contains continuous
spectrum. Different from the result due to Corwin-Greenleaf in the case of
nilpotent Lie groups, the situation of semisimple Lie groups is more delicate.

For instance, we proved in [50] that there is an example of (G, G’, 7) such that
dim Homg: (11, 7|g) = oo for some 71 € @,
0 <dim Homg (72, 7|gr) < oo for some 1o € a,

where 7 is an irreducible unitary representation of SO(5,C) and G’ = SO(3,2).

Building on Theorem 3.2, we proposed the following conjecture:

Conjecture 3.4 (see [50], Conjecture C). Let (G, G") be a semisimple symmet-
ric pair, and ™ € G. If the restriction |g: is infinitesimally discretely decom-

posable, then
dim Homg: (7, m|gr) < 0o for any 7 € G’
As we saw in (2.5.1), this conjecture also implies
dimHom g g (Y,7x) < oo  for any irreducible (g¢, K’)-module Y.

To end this subsection, we would like to mention an analytic aspect of Corollary
3.3: If one realizes the representation 7 in a geometric way, then Corollary 3.3
may give rise to an example of the following phenomenon: “In a system of
non-holonomic partial differential equations, local solutions are possibly infinite

dimensional, but global solutions are possibly finite dimensional.”®

51t is remarkable the dimension of the space of global solutions on a non-compact manifold
becomes finite in this case. The relation between the dimension of global solutions and the
underlying geometry might be interesting to study, as is Atiyah-Singer’s index theorem for
elliptic differential operators on compact manifolds.
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3.B. A generalization of the Kostant-Schmid formula to semisimple
symmetric pairs.

In the framework of discretely decomposable restrictions, an algebraic ap-
proach could work effectively in branching problems. Furthermore, if the mul-
tiplicity is free, then one could expect a simple and detailed study of branching
laws. In this subsection, we shall explain such examples. More precisely, in the
setting below (especially, (G, G’) is a semisimple symmetric pair), it turns out
that the branching law is discrete by Theorem 1.5, and that the multiplicity of
each irreducible representation is free owing to the multiplicity-one theorem in
[47]. In particular, the restriction 7|g is G’-admissible. Then, we shall give a
new explicit branching law that generalizes the Kostant-Schmid formula [71] to
the setting of non-compact subgroups. This subsection is taken from [47].

Throughout this subsection, let G be a non-compact simple Lie group of

Hermitian type. This means that GG is a Lie group locally isomorphic to one of
SU(p7 q)7 SO(’I?,, 2)7 Sp(na R): SO* (277')) E6(—14)a E7(—25)-

Then, the complexified Lie algebra gc := g ®r C is decomposed into irreducible

modules under the adjoint action of K as follows:
gc=tc@dptop.
Let t be a maximal Abelian subspace of £, and fix a positive system A7 (€, ).

Definition 3.5 (unitary highest weight representation). Let (r,V) € G. We say
(7, V) is an irreducible unitary highest weight representation, if Ve £ {0},

where we put

V' := the set of smooth vectors of V,

V= {veV®:dn(X)v=0 forany X € p*}.

Then, K acts on V?" because Ad(K) stabilizes p*. It turns out that V?" is
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irreducible as a K-module. Furthermore, an irreducible highest weight represen-
tation (m, V) of G is determined uniquely by the K-module structure on Ve
We write V¢ (1) for the irreducible highest weight representation (7, V) of G, if
p € v/—1t* is a highest weight of the K-module VP" with respect to the positive
system AT (g,t). We use this notation also for other Lie groups G’ of Hermitian
type.

We say that V is of scalar type if dim VP = 1. If the highest weight repre-
sentation V is realized in a closed subspace of L?(G), we say V is a holomorphic
discrete series representation. Holomorphic discrete series representations were
discovered in an early stage of unitary representation theory by Harish-Chandra
and have been best-understood among discrete series representations of G.

Suppose an involution 7 € Aut(G) stabilizes K and acts holomorphically on

the Hermitian symmetric space G/K. We define a subgroup of G by
G":={g€eG:79=g}.

Analogous notation V7 will be applied to denote the set of fixed points of 7 if 7

acts on a vector space V. We define the subgroup
G = G,

by the connected component of G™ containing the identity. Then G’ is a reductive

subgroup, and (G, G’) forms a semisimple symmetric pair. For example, the pairs

(Sp(n,R),U(p, q)) and (Sp(n,R), Sp(p, R) x Sp(q,R)) (p+ ¢ = n) are the cases.
Let

{V17V27"‘7Vk}

be a maximal set of strongly orthogonal roots in A((p*)~7,t"). Then one can

show
k = R-rank G/G7,

the real rank of a semisimple symmetric space G/G”, or equivalently, that of

G/G'. For example, k = min(p, q) if (G,G") = (Sp(n,R), Sp(p,R) x Sp(q,R)).
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Theorem 3.6 (a generalization of the Kostant-Schmid formula; [47]). In the
above setting, let VO (u) € G be a holomorphic discrete series representation

of scalar type. Then we have the following branching law of the restriction

VE ()l :

k

(3.6.1) VeWla~ S Ve =Y a5y,

a1>>ap>0 j=1
a; EN

where the right side is a discrete direct sum of irreducible unitary representations

of G'.

In the above theorem, if G’ is non-compact, then each V' (%) is infinite di-
mensional.
Theorem 3.6 includes the following known results as special cases:
i) The formula due to Hua(classical)-Kostant(unpublished)-Schmid [71] cor-
responds to the case where G’ is a maximal compact group K. Then VX (x)
is finite dimensional.

ii) G’ is non-compact. Some special cases have been known, including the
cases G = SU(2,2), SU(2,1). See, for example, Jakobsen and Vergne
([22]) and Xie ([79]).

3.C. Unipotent representations and discrete branching laws.

There is another special case where the restriction has been studied exten-
sively, that is, the local theta-correspondence (cf. Example 1.3). Then the
restriction 7|g concerns with the case where 7 is the Segal-Shale-Weil represen-
tation of the metaplectic group G = Mp(n,R) and (G,G’) is a reductive dual
pair. The Weil representation is an example of the minimal unipotent represen-
tation of the split group G of type C. The study of branching laws of unipotent
representations of other groups has been studied in the last decade. Some explicit

branching laws of unipotent representations include:
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o) G is of type D, due to Kobayashi and Orsted (discretely decomposable
branching laws, 1991). See also [53], [88] for a more general case with

continuous spectrum.

e) G is an exceptional group with real rank 4, due to Gross and Wallach

(discretely decomposable branching law, [16]),

e) G is of type E, due to J-S. Li (discretely decomposable branching law,
[57])-

As above, these branching laws have been studied mainly in the case where

they are discretely decomposable. Here are some advantages of discrete decom-

positions:

(3.C.1) From the view point of finding explicit branching laws, branching laws
are less difficult to find, if there is no continuous spectrum, because one can use
algebraic techniques.

(3.C.2) From the view point of the study of G (smaller group), discrete spec-
trum is useful because it gives an explicit construction of irreducible unitary
representations of the subgroup G'.

(3.C.3) From the view point of the study of @ (larger group), discrete branching
laws give a clue to study representations of G in terms of G’ (e.g. a special

case G' = K gives a theory of (gc, K)-modules).

The study of branching laws of unipotent representations are still in an early
stage, and there seems a large room for further developments. For example, the
following directions of research may be considered:

a) A finer study of unipotent representations by means of branching laws (see
(3.C.3)).

b) Construction of singular unitary representations as irreducible summands
(see (3.C.2)).

c) Global analysis on manifolds (especially, on homogeneous spaces) arising

from branching laws of unipotent representations (e.g. [88]).
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d) Combinatorial problems arising from algebraic study of discretely branching

laws (cf. (3.C.1)).

3.D. Representations as a quantization of elliptic orbits and discrete
branching laws.

An elliptic orbitis an adjoint orbit of G through an element X such that ad(X)
is diagonalizable with purely imaginary eigenvalues. Any elliptic orbit carries a
G-invariant pseudo-Kéahler structure, and its “geometric quantization” gives an
irreducible unitary representation of (G, as was suggested by the Kirillov-Kostant
orbit method, and as was proved by Schmid and Wong combined with algebraic
results due to Vogan, Wallach and Zuckerman, under certain regular and inte-
gral conditions of X. We note that its Harish-Chandra module is expressed as
Zuckerman-Vogan’s derived functor (gc¢, K)-modules (sometimes, called A4(),
see [26]).

In the previous exposition [36], we gave a survey on the construction of these
representations in details from the view points of geometric quantization and
discussed the discrete decomposability of the restriction to subgroups.

We also wrote in [35], Part I and in [37], some explicit branching laws of
(small) discrete series and some more general representations A4(\) for classical

symmetric pairs (G, G’) such as
(G,G') = (50(p,q), SO(m) x SO(p — m, q)), (O(2p, 2q), U (p, )

in the framework of G’-admissible restrictions. So we do not repeat here.

Let us just mention some new progress after [36] was written. By using
Theorem 1.5 and Theorem 2.10, one have now a necessary and sufficient
condition for the restriction 7|g to be infinitesimally discretely decomposable if
7 is Zuckerman-Vogan’s derived functor module. This was proved in [49], which
strengthens the result in the previous exposition ([36], Theorem 6.5).

Discretely decomposability of the restriction of Zuckerman-Vogan’s derived

functor modules are particularly important in applications in §4.B and §4.C
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below.

§4. APPLICATIONS OF ADMISSIBLE RESTRICTIONS

4.A. Branching laws and geometry.

Historically, branching problems of unitary representations have been moti-
vated, not only by representation theory itself, but also by other fields, for in-
stance, mathematical description of breaking symmetries in quantum mechanics,
theta correspondence in automorphic forms and so on.

In this section, we shall discuss new interactions between branching problems
and related fields, which have been discovered in 1990s, especially, connected

with discrete branching laws. The following principle was advocated in [37]:

If representations help in the understanding of objects,
so do branching laws of representations in that of morphisms.

By simplifying settings for the exposition here, this principle may be explained

as follows. First, without group actions, let us consider the correspondences:
geometry of X & function space I'(X)
map f:Y —->X <& pullback f*:T(X)—T(Y).

Next, let G’ be a subgroup of G. Suppose that G acts on X and G’ on Y so

that f is G’-equivariant. Then, the above correspondences are enriched by group

actions:

geometry of G-space X & representation of G on I'(X)
G'-equivariant map f : Y — X < restriction of the representation I'(X) to G’
+ G'-intertwining map f* : I'(X) — T'(Y).
Thus, the knowledge of the restriction of representations of G to G’ should be

transferred to some information on the original map f.
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In this section, we shall illustrate this principle without technical details in the
settings where restrictions of unitary representations appear in a somewhat un-
expected way. We shall also try to explain how and why discretely decomposable

restrictions play a crucial role there.

4.B. A vanishing theorem for modular varieties.

In this subsection, we explain an application of our criterion for discretely
decomposable restrictions (Theorem 1.5) to a differential geometric problem on
modular varieties. Roughly speaking, a modular symbol is the homology class in
a locally Riemannian symmetric space (sometimes called a Clifford-Klein form)
determined by the cycle induced by a subgroup. For example, a geodesic cycle

in a closed Riemann surface with genus > 2 represents a modular symbol.

More generally, we consider the following setting:

G’ C G': a pair of connected linear reductive Lie groups,
K’ € K: maximal compact subgroups of G’ C G, respectively,

I C T : cocompact torsion-free discrete subgroups of G’ C G, respectively,
such that K/ = KNG’ and IV =T'N G’. Then, both of the double cosets
X :=T'\G/K and Y :=T"\G'/K'

are compact, orientable, locally Riemannian symmetric spaces. The inclusion

G’ — @ induces a natural map:
LY — X.

The image ¢(Y) is called a modular variety. It is totally geodesic in the Rie-

mannian manifold X because the subgroup G’ is reductive in G. We put
m =dimY (= dimG'/K').

Then, the fundamental class [Y] generates the homology group H,,(Y;Z) of



BRANCHING PROBLEMS OF UNITARY REPRESENTATIONS 41

degree m. Consider the induced homomorphism of homology groups of degree
m:
te : Hn(Y3Z) — Hp (X5 Z).

The modular symbol is defined to be the image ¢.[Y] € H,,,(X;Z) (see Ash-Borel
[2]). Though its definition is simple, the understanding of modular symbols is
usually difficult.

In order to see how the discrete decomposability of the restriction G | G’ (see
§1, §2) affects a topological property of modular varieties, we consider a special

example where

(G,G') = (S00(2n,2), SOo(2n,1)).

Then, dimG’'/K’ = 2n, and the modular symbol +,[Y] is an element of the
homology group of degree 2n, of a 4n-dimensional locally Riemannian symmetric
space

X =T\S0y(2n,2)/(SO(2n) x SO(2)),

of which the universal covering is the bounded symmetric domain of type IV.
In particular, X is a Kahler manifold. Since X is compact and orientable, we
can regard the modular symbol as an element M(Y') of the cohomology group
H?"(X;C) via the Poincaré duality. Let

MPA(Y) € HP(X;C)

be its Hodge component of type (p,q) such that p + ¢ = 2n. Then, since X is

Kahler, we have

Thus, the Hodge components {MP9(Y) : p+ q=2n} give a finer structure

of modular symbols. Takayuki Oda conjectured a vanishing theorem of the
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middle Hodge component M™"(Y), from a view point of automorphic forms
(see [66]). This conjecture has been solved in [52] by using our criterion of

discrete decomposable restrictions (Theorem 1.5).

Theorem 4.1 (Hodge component of the modular symbol). There ezists a uni-

versal element n in the cohomology group H™™(X;C), such that

volume of Y

MY =

volume of X T

Here, “universal” means that the element n is given in terms of Lie algebras
explicitly, and does not depend on I'. In particular, n is contained in the image

of the canonical map
H™"(g,K;C) - H*"(X,C).

Theorem 4.1 follows from a general vanishing theorem [52] of modular symbols
for a pair (G, G’) of reductive groups. The key point there is that the integration
of a harmonic form w over Y becomes zero if w comes from an infinite dimen-
sional irreducible unitary representation 7w of G such that the restriction 7| is
discretely decomposable. Then, for the latter condition, we can use a criterion

given in Theorem 1.5.

More precisely, what we need in the above special case is the following rep-
resentation theoretic result: the restriction m|x is K'-admissible for any 7 € G
if H»"(g,K;7mk) # 0. This statement follows from an easy computation of
Theorem 1.5.

Instead of an explanation of further technical details, we mention a flavor
of the proof by the following diagram that compares relevant results where the
discreteness of spectrum plays an important role in the understanding of

topology in other settings (See [42] for more details).
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Discreteness of spectrum |=| Geometry < Function spaces

(representations)
X: compact Riemannian manifold |= Hodge theory

Laplacian A x has only discrete

spectrum in L?(X) topology < harmonic forms

| refinement

L*(T\G) is decomposed _|™| Matsushima-Murakami formula
into a discrete direct sum of G 8], [61] (1960s)
(Gel’fand-Piateski-Shapiro, [15])

|} (object = morphism)

Criterion for discrete decomposable |=| Vanishing theorem

restrictions of A4(A) to subgroups of a modular symbol
(Kobayashi, [44]) (Kobayashi-Oda, [52])

Here, Matsushima-Murakami’s formula describes the cohomology groups of a
locally Riemannian symmetric space in a representation theoretic way (study of
objects), and Oda-Kobayashi’s vanishing theorem concerns with maps between

locally Riemannian symmetric spaces (study of morphisms).

4.C. Application to non-commutative harmonic analysis
—construction of new discrete series representations
for non-symmetric spaces.
Suppose a homogeneous space G/H carries a G-invariant Borel measure. This

is the case if (G, H) is a pair of reductive Lie groups in the sense that G is a
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reductive Lie group and H is a closed subgroup which is reductive in G. Then
we have a natural unitary representation of G on the Hilbert space L?(G/H).
We say 7 is a discrete series representation for G/H, if m € G is realized in a
closed subspace of L?(G/H), equivalently, if the space of continuous intertwining
operators Homg (7, L?(G/H)) # {0}. Harish-Chandra’s discrete series represen-
tation 7 is the case where H = {e}. A discrete series representation corresponds
to a discrete spectrum in the Plancherel formula, namely, the irreducible decom-

position of the unitary representation L?*(G/H).

Discrete series representations are regarded as realizations of irreducible rep-
resentations, through which infinite dimensional representation theory interacts
lively with global analysis. Discrete series representations are not only a funda-
mental object in non-commutative harmonic analysis, but also play important

roles in the following topics.

(1) Construction of tempered series representations. Plancherel theorems for
group manifolds and semisimple symmetric spaces are known by Harish-
Chandra, Delorme, van den Ban, Oshima, Schlichtkrull and others. The
support of the Plancherel formula consists of tempered representations
which are obtained as the cuspidal parabolic induction of discrete series
representations for smaller symmetric spaces ([12], [18], [68]).

(2) Topology of locally Riemannian symmetric spaces (e.g. a non-vanishing
theorem of modular symbol due to Tong and Wang [73]).

(3) Obstruction of the injectivity of LP-Pompeiu problem in integral ge-
ometry; see [11] for simply connected solvable Lie groups; see [72] for
SL(2,R); see [45], Theorem 1.2.17 for general reductive Lie groups and
their homogeneous spaces.

(4) A part of “isolated” irreducible unitary representations in the Fell topol-

ogy (for example, [70]).

4.C.1. A current status on discrete series representations.
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As the above observation indicates, the following is one of fundamental prob-

lems in non-commutative harmonic analysis:

Problem 4.C.1.
1) Find a condition on the pair of groups (G, H) such that there exists a discrete
series representation for the homogeneous space G/H .

2) If exist, construct and classify discrete series representations for G/ H.

These problems have not been solved in the general setting where (G, H) is a
pair of real reductive Lie groups. Here are some special cases where answers are
known:

i) The case where G/H is a semisimple Lie group, namely, H = {e}. (Discrete
series representations exist if and only if rank G = rank K. All discrete series
representations are classified by Harish-Chandra. Geometric constructions of dis-
crete series representations were studied by Atiyah, Hotta, Langlands, Okamoto,
Parthasarathy, Schmid and others. Algebraic constructions were also studied by
Enright, Vogan, Wallach, Zuckerman and others.

ii) The case where G/H is a semisimple symmetric space. Discrete series rep-
resentations exist if and only if rank G/H = rank K/(H N K). They are con-
structed by Flensted-Jensen and Oshima-Matsuki. The classification has been
almost done, but certain subtle problems such as non-vanishing conditions and
multiplicity-one conjecture have not been completed at least in the literature.

The group case (i) can be regarded as a special case of (ii) by putting (G, H) =
(G1 x G1,diag G1). We refer to a survey [36], §4 and the references therein for
(i) and (ii), and for more general results (e.g. vector bundle cases).

4.C.2. Relation to the discrete branching law.

The known methods used in (i) or (ii) are powerful on the one hand, but
they valid only in limited cases on the other hand, namely, only for semisimple
symmetric spaces. For instance, one of the key methods for the analysis on

symmetric spaces is the Flensted-Jensen duality [14], which can be defined only
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when G/H is a symmetric space. Consequently, we need to a completely new
machinery for the analysis on a more general homogeneous space.

To construct new discrete series representations, our idea here is based on the
restriction of unitary representations. We will explain a rough idea of how the

proof goes (see [37] and [46] for precise formulation and some concrete examples):
Step a) Suppose G/H is a homogeneous space, on which we want to construct

discrete series representations. We embed G/H into a larger space G / H for
which harmonic analysis is well-understood (e.g. G / H is a group manifold or a
symmetric space):

.:G/H — G/H.

Then, we consider the pullback of functions (or possibly, after taking finitely

many normal derivatives):

C®(G/H) = C®(G/H), [~ fou

Step b) Take an irreducible G-representation 7 in C°°(C~¥ / H ) and pick up a

function f on G / H that belongs to a representation space of 7. We expand the
restriction ¢* f into irreducible components (say, (:*f) for A € G) as represen-
tations of the subgroup G according to the branching law of the restriction 7|g,
and then estimate the asymptotic behavior of each component (.* f), along the
submanifold G/H at infinity (see [46]).

Step ¢) Find the asymptotic behavior of the measure on G/H, and compare the

asymptotic behavior of measures at infinity between G/H and G/H (see [43]).

If the image of ¢ is a generic orbit (e.g. a principal type orbit in the sense of

Richardson), we do not need the steps (b) and (c), and we can construct discrete
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series representations by an elementary argument (this case was previously car-
ried out for some special homogeneous spaces [21], [35], [37], [56]). For instance,
by this approach, one can reduce the classification problem of discrete series rep-
resentations of some non-symmetric spherical homogeneous spaces G/H, such

as

G/H = SU(n +1,n)/Sp(n,R), G2(R)/SL(3,R),- --

to that of discrete spectrum of some branching laws of discrete series representa-
tions of a (larger) space G/H ([37]). However, it often happens that non-generic
orbits give more interesting examples (in other words, some homogeneous spaces
G/H can be embedded into G / H only as non-generic orbits, and then the steps
(b) and (c) become necessary.

In the step (b), if the branching law is discretely decomposable when re-
stricted from G to G, then one can prove that the asymptotic behavior of each
irreducible component (.* f)x has a nice decay inherited from that of the func-
tion f (see [46], §3). Consequently, if f satisfies an appropriate asymptotic decay
on G/H, then each non-zero irreducible component (¢*f), generates a discrete
series representation for G/H. We remark that the assumption of discrete de-
composability is crucial because such a nice decay cannot be expected if 7|g
contains continuous spectrum.

Let us give a few comments on the step (c). We note that a reductive homo-
geneous space G/H does not always have a polar coordinate (for a special G/H
such as a symmetric space, there is a polar coordinate G = K AH and accord-
ingly we have an integration formula on G/H essentially on the Abelian group
A). The absence of polar coordinates causes difficulties in describing explicitly
the asymptotic behavior of the G-invariant measure on G/H at infinity. The
idea of [47] for the step (c) for a non-symmetric space G/H is to avoid working
on the pseudo-Riemannian manifold G/H (right coset space) itself, but to lift

it to a larger dimensional non-homogeneous space K X (p/p N h) where we can
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employ a comparison theorem of negatively curved Riemannian manifold K\G
(left coset space).
By using the steps (a), (b) and (c), we can prove that there exist infinitely

many discrete series representations on homogeneous spaces such as:
G/H = Sp(2n,R)/(Sp(ng,C) x GL(n1,C) x --- x GL(ng, C)),

where (ng,n1,---,ng) is an arbitrary partition of n. We note that the above

G/H is a symmetric space if and only if
ny=ng=---=ni =0,

in the above example. The existence of discrete series representations were pre-
viously known by Flensted-Jensen [14] only in this special case.

It should be noted that the above approach deals with a family of homogeneous
spaces of G simultaneously, rather than a single homogeneous space alone. The
point here is that different homogeneous spaces of G can arise as G-orbits on

G / H. For instance, the above homogeneous space
G/H = Sp(2n,R)/(Sp(ng,C) x GL(n1,C) x --- x GL(ng,C)),

for an arbitrary partition

n=ng+---+ng

arises as a GG-orbit on
G/H = (Sp(2n,R) x Sp(2n,R))/ diag(Sp(2n, R))

(see [46]). Then we can “treat simultaneously” these homogeneous spaces by
using branching laws of unitary representations form G to G. For instance, this
explains a phenomenon that the same representations can occur as discrete series
representations on certain different homogeneous spaces.

The orbit decomposition G\G/H has been recently studied by Iida and Mat-
suki [60]. Their description is useful in finding how G/H is embedded into a
larger space G/H.
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The above approach gives not only new discrete series representations on non-
symmetric homogeneous spaces as stated, but also gives some new viewpoint
even for analysis on symmetric spaces, where there have been already exten-
sive works in the literature. For example, we can prove (without using serious
results on semisimple symmetric spaces) the following new geometric theorem, by
making use of the criterion of discretely decomposable restrictions (Theorem 1.5
and Theorem 2.4):

Theorem 4.2 (a necessary and sufficient condition for the existence of holo-
morphic discrete series representation on symmetric spaces). Suppose G/H is a
non-compact irreducible symmetric space. Then the following two conditions on
(G, H) are equivalent:

i) There exist unitary highest weight representations of G' that can be realized

as discrete series representations for G/H.
ii) H/(HNK) is a real form of the complex manifold G/ K.

Example 4.3. Let G/H = (SL(2,R) x SL(2,R))/diag(SL(2,R)). We put
D :={z € C: |z| < 1}, the unit disc. Then the natural embedding H/(HNK) —
G/K is realized as the following map:

D — D x D, zw (z,2).

In particular, H/(H N K) is a real form of G/K, that is, the geometric con-
dition (ii) is satisfied. Then, Theorem 4.2 gives a new explanation of the well-

known fact that there exist holomorphic discrete series representations of a group
manifold G/H ~ SL(2,R).

The result (i) = (ii) in Theorem 4.2 is new. The opposite direction (ii) = (i)
was previously proved by a completely different method (’Olafsson-Orsted [67]).

4.D. Discontinuous groups versus restrictions of unitary representa-

tions.

4.D.1. Discretely decomposable restrictions revisited.
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Let U(H) be the group of unitary operators on a Hilbert space H, and we
consider an irreducible unitary representation of G realized on H, namely, a

group homomorphism

m: G — U(H).

The restriction to a subgroup G’ of G is nothing but the composition of the

following group homomorphisms:
(4.4.1) G'c G5 UH).

If G’ is compact, then the restriction 7|g is always discretely decomposable.
We have seen in §1 that the restriction 7|g: can be discretely decomposable even
when G’ is non-compact. We may discuss the discrete decomposability of the

restriction 7|g: from the following viewpoint:

“In the infinite dimensional group U(H),
the image of a non-compact Lie group of G’
may behave as if it were a compact group.”

4.D.2. Properly discontinuous actions of discrete groups.
Let us consider a different setting. Let I' be a topological group acting con-

tinuously on a manifold M. We define a subset of I' by
Fstz{’yEF:’Y'SﬂS#@},

for a subset S of M. The action of I" on M is said to be proper [69] if I's is
compact for any compact subset S in M; properly discontinuous if I'g is finite
for any compact subset S in M. We note that I' acts properly discontinuously
if and only if I' is discrete and acts properly on M.

A typical example of properly discontinuous actions is the covering transfor-
mation of the fundamental group on the universal covering space. Conversely, if

a torsion-free discrete group I' acts on a manifold M properly discontinuously,
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then there is a natural manifold structure on the space of I'-orbits, denoted by
['\M, and the quotient map M — I'\ M becomes a covering map.

We observe that the action of I' on M is written as a homomorphism from
I" to the group Diffeo(M) of diffeomorphisms of M, or the group Homeo(M) of

homeomorphisms of M:
I' - Homeo(M).

The action of a finite group are always properly discontinuous. Then, again,

properly discontinuous actions may be discussed from the following viewpoint

“In the infinite dimensional group Homeo(M),
the image of a discrete group I'
may behave as if it were a compact (or finite) group. ”

4.D.3. Restriction of unitary representations and proper actions.

The above two cases are summarized as follows:

Actions of finite groups are obviously properly discontinuous. It can happen
that actions of infinite groups are still properly discontinuous, such as covering
transformations.

On the other hand, branching laws of compact groups are always discretely de-
composable, and it can happen that branching laws with respect to non-compact
subgroups are still discretely decomposable.

Comparing these two examples, one might ask the following question:

Question. Is there any relation between “discrete decomposability of branch-
g laws of unitary representations of Lie groups” and “properly discontinuous

actions of discrete groups”?

As a special case, let us consider the setting where a Lie group G acts transi-
tively on M. Let H be the isotropy subgroup at a point xy of M. Then we have
a natural homeomorphism G/H ~ M,gH ~ gzy. Then a discrete subgroup
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I' of G acts on M by the left translation. This means that we have a group

homomorphism:
(4.4.2) I' ¢ G — Diffeo(G/H).

We shall compare the two settings (4.4.1) and (4.4.2) below.

4.D.4. Criteria— discretely decomposable representations
and properly discontinuous actions.
Without proof and precise formulation, we give a brief summary of the fol-
lowing known criteria:
i) In the setting (4.4.1), a sufficient condition for the discrete decomposability of

the restriction 7|g was given in Theorem 1.5, roughly in the following form:
(the cone determined by G') N (the cone determined by 7) = {0}.

ii) In the setting (4.4.2) (with I' replaced by G’), a necessary and sufficient con-
dition for a reductive subgroup G’ on the homogeneous space G/H to act
properly was proved by the author in 1989 [27]:

(the linear subspace determined by G')
N (the linear subspace determined by H)
= {0} modulo the action of a finite group (Weyl group).

iii) In the setting (4.4.2), a necessary and sufficient condition for the action of
a discrete subgroup I' on the homogeneous manifold G/H to be properly
discontinuous is given in the following form:

{a subset determined by I'} N {a tube determined by H}

is relatively compact modulo the action of a finite group (Weyl group).

This criterion generalizes [27] and was proved independently by Benoist [4]
and Kobayashi [39].

4.D.5. Actions of discrete groups and branching laws
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of unitary representations.

In the previous subsection, (i) concerns with an analytic representation theory
(discreteness of spectrum), and (ii) and (iii) concern with topological problems
(proper actions). Accordingly, the objects and methods employed there are
completely different. However, the criteria themselves are apparently similar to

one another, and may suggest a relationship in the following diagram:

Properly discontinuous actions
of discrete groups

)

(iii) Discrete version:

Proper actions of connected Lie groups

1

(ii) Continuous version:

Discrete decomposable restrictions of
unitary representations of Lie groups

(i) Representation theory:

In fact, a first non-trivial example (see [28]) of the discrete branching laws of
the restriction 7|g/ (i.e. 7 is not a highest weight representation, and G’ is not
compact) was inspired by the above diagram (see also §0). More precisely, the
idea of [28] consists of the following four steps:

Step a) First, take a uniform lattice® T' for the semisimple symmetric space

6In contrast to Borel’s theorem [7] on the existence of a uniform lattice of an arbitrary
Riemannian symmetric space G/H, there does not always exist a uniform lattice for a non-
Riemannian homogeneous manifold (for example, a semisimple symmetric space). Even the
so-called Calabi-Markus phenomenon [10] occurs if H is non-compact. We refer to [41] for
an exposition to discontinuous groups on non-Riemannian homogeneous manifolds, developed
rapidly in the last decade.
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G/H (see [27] for the construction).

Step b) Take the Zariski closure of I' in G, for which we write G’.

Step ¢) Take a discrete series representation (€ G) for G/H (see [14] for the
construction).

Step d) Find branching laws of the restriction 7|g.

A simplest example is given in the following setting;:

G/H = SU(2,2)/U(2,1) (an open subset of P3C),
G’ = Sp(1,1) ~ Spin(4,1) (de Sitter group),
I is a uniform lattice of G' = Sp(1,1),

7 is a discrete series representation for G/ H.

We note that the above representation 7 has the Gel’fand-Kirillov dimension
5 and is not a highest weight representation. Then the restriction 7|gs turns out
to be discretely decomposable (see [36], Example 3.3). As we mentioned (see
Theorem 1.5), the discrete decomposability of the restriction was later formu-
lated in terms of representation theory, apart from the above setting on global
analysis on homogeneous spaces.

The above setting also gives an example of an interesting Riemannian struc-
ture g on a 6-dimensional simply connected manifold M = G/H: (M,g) is
a non-compact covering of a compact Riemannian manifold, and there exists
L?-eigenfunctions of the Laplace-Beltram operator (related problems have been
studied by Sunada [29], [64]).

With regard to Step (a), the following has been studied intensively in the last

decade:

Problem. “Does a pseudo-Riemannian homogeneous manifold admits a uni-

form lattice 27

Various approaches to this problem include the structural results of Lie groups,

a criterion of proper actions of non-compact Lie groups, cohomology groups of
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discrete groups, characteristic classes, symplectic geometry, ergodic theory, and
the restriction of unitary representations, etc. by Benoist, Corllette, Labourie,
Margulis, Oh, Ono, Witte, Zimmer and the author after a general theory [27] in
1989 (see [4], [5], [30], [32], [33], [34], [39], [41], [48], [59], [65], [80]). In particular,
a recent method due to Margulis [59] is based on the asymptotic behavior of
matrix coefficients of the restrictions of unitary representations, which should
merit further study, in the point that it might strengthen a tie between unitary
representations and discontinuous groups.

In the above diagram, the last |1 is just a guiding principle, and a rigorous
formulation is not known. It is mysterious to me if there is an intrinsic interac-
tion between properly discontinuous actions and branching problems of unitary

representations, especially discretely decomposable restrictions.
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