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Abstract

We show irreducible decomposition formula for a certain class of
representations of Cuntz algebra by succeeding our previous work. The
complete reducibility of this class of representations is automatically
proved by their decomposition formulae.

1 Introduction

In ordinary theory of operator algebra, an irreducible decomposition of rep-
resentation is not studied so much because that decomposition is not unique
in general. In spite of such common sense, we can construct non trivial
decomposition theory of a class of representations of Cuntz algebra with
complete reducibility and uniqueness of irreducible decomposition.

In [8], we introduce a class of representations of Cuntz algebra with
parameter in a subset of the tensor space over a finite dimensional complex
vector space. It is a kind of generalization of permutative representation
with cycle by [5, 6, 7]. We have already shown uniqueness, irreducibility
and equivalence for this class of representations for “non periodic” case. We
review these results in Theorem 2.3. In this article, we show the uniqueness
of decomposition (Lemma 3.4) and the irreducible decomposition formula
about this class (Theorem 5.4). By this decomposition, the complete re-
ducibility of this class is automatically proved (Corollary 5.5).

2 Preliminaries

We review the symbol and known results in this section.
Put N ≥ 2. Let S(CN ) ≡ {z ∈ CN : ‖z‖ = 1} be the unit complex

sphere in CN and
TS(CN ) ≡

⋃
k≥1

S(CN )⊗k,
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S(CN )⊗k ≡
{
w(1) ⊗ · · · ⊗ w(k) ∈ (CN )⊗k : w(i) ∈ S(CN )

i = 1, . . . , k

}
.

Let ON be the Cuntz algebra with generators s1, . . . , sN which satisfy s∗i sj =
δijI and

∑N
i=1 sis

∗
i = I. For z = (z1, . . . , zN ) ∈ S(CN ), we denote

s(z) ≡ z1s1 + · · ·+ zNsN .

For w = w(1) ⊗ · · · ⊗ w(k) ∈ S(CN )⊗k, define

s(w) ≡ s(w(1)) · · · s(w(k)).

In this paper, a representation always means a unital ∗-representation.

Definition 2.1 (H, π,Ω) is the GP(= generalized permutative) representa-
tion of ON with cycle by w ∈ S(CN )⊗k if (H, π) is a cyclic representation
of ON with the cyclic unit vector Ω which satisfies the following equation:

π(s(w))Ω = Ω. (2.1)

We denote GP (w) ≡ (H, π,Ω). A unit vector Ω ∈ H which satisfies the
equation (2.1) is called the GP vector of (H, π) with respect to w. k is called
the length of cycle of (H, π,Ω).

A naive meaning of “cycle” is explained in a paragraph after Definition 3.3
in [8]. Correspondence with ordinary permutative representation in [5] is
explained in subsection 3.3 in [8] and subsection 7.1 in this article. The
generalization of “chain type” is treated in [9]. Examples are shown in sub-
section 4.4, 6.2 in [8] and section 6 in this article. The relation between
states and GP representations are shown in subsection 6.1 in [8] and sub-
section 7.5 in this article. In our paper, a symbol GP (w) means a property
of representation or a representation itself as the case may be.

In order to review our results in [8], we prepare some notions about
parameters in TS(CN ) and representations.

Definition 2.2 (i) w ∈ S(CN )⊗k is periodic if there is σ ∈ Zk\{id} such
that σ̂(w) = w where ·̂ is an action of the cyclic group Zk on (CN )⊗k

by transposition of tensor factors.

(ii) w ∈ S(CN )⊗k is non periodic if w is not periodic.

(iii) For w,w
′ ∈ TS(CN ), w ∼ w′ if there are k ≥ 1 and σ ∈ Zk such that

w,w
′ ∈ S(CN )⊗k and σ̂(w) = w

′
.
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(iv) For two representations (H1, π1) and (H2, π2) of ON , (H1, π1) ∼ (H2, π2)
means the unitary equivalence between (H1, π1) and (H2, π2).

(v) A data (H, {s1, . . . , sN}) means a representation of ON as a family
{s1, . . . , sN} of operators on H which satisfies the condition of gener-
ators of ON .

Specially, for w,w
′ ∈ TS(CN ), GP (w) ∼ GP (w

′
) means that two cyclic

representations of ON which have cyclic vectors satisfying condition (2.1)
with respect to w,w

′
are unitarily equivalent.

Theorem 2.3 ([8])

(i) (Existence) For any w ∈ TS(CN ), there exists GP (w), that is, there
exists a cyclic representation (H, π,Ω) of ON which satisfies condition
(2.1).

(ii) (Uniqueness and irreducibility) If w ∈ TS(CN ) is non periodic, then
GP (w) is unique up to unitary equivalence, and irreducible.

(iii) (Equivalence) For non periodic elements w,w
′ ∈ TS(CN ), GP (w) ∼

GP (w
′
) if and only if w ∼ w′.

Proof. (i) Proposition 3.4 in [8]. (ii) The uniqueness is in Proposition 5.4
in [8]. The irreducibility is in Proposition 5.5 in [8]. (iii) Proposition 5.11
in [8].

By Theorem 2.3 (ii), we can regard a symbol GP (w) as the representative
element of an equivalence class of irreducible representations of ON which
satisfies condition (2.1) with respect to non periodic w ∈ TS(CN ).

Note that our results in Theorem 2.3 (ii), (iii) are assumed the non-
periodicity with respect to parameter w ∈ TS(CN ). Our aims in this article
are the classification and the computation of GP representation GP (w) of
ON in the periodic case.

Lemma 2.4 Let (H, π,Ω) be the GP representation of ON by non periodic
w ∈ TS(CN ). If x ∈ H satisfies < x|Ω >= 0, then the following holds:

lim
m→∞

(π(s(w))∗)mx = 0.

Proof. See Lemma 5.2 in [8].
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3 Disjointness and uniqueness of decomposition of
GP representations

Before we show the decomposition formulae, we mention about general prop-
erties of GP representations of Cuntz algebra.

Lemma 3.1 Let (H, π) be a representation of ON . If there is the GP vector
Ω of (H, π) with respect to w ∈ TS(CN ), then there is a subrepresentation
V ⊂ H of ON such that (V, π|V ,Ω) is GP (w).

Proof. The subrepresentation V ≡ π(ON )Ω is cyclic and it satisfies the
condition (2.1) in Definition 2.1. Hence it is GP (w).

By Lemma 3.1, the existence of GP vector in a given representation of Cuntz
algebra always assures the existence of subrepresentation which is a GP rep-
resentation. From here, we consider the relation among GP representations
which are defined on a common Hilbert space.

Lemma 3.2 Let (H, π) be a representation of ON . Assume that there is
the GP vector Ω ∈ H with respect to non periodic w ∈ TS(CN ). If a vector
x ∈ H satisfies < x|Ω >6= 0, then Ω ∈ π(ON )x.

Proof. By assumption and Lemma 3.1, if put V ≡ π(ON )Ω, then (V, π|V ,Ω)
is the GP representation of ON by w. By assumption, we can denote

x = aΩ + y

where a ∈ C, and y ∈ H such that a 6= 0, < y|Ω >= 0. By Lemma 2.4,

lim
n→∞

{π(s(w))∗}n x = aΩ.

Hence Ω ∈ π(ON )x.

Lemma 3.3 (Disjointness) Let (H, π) be a representation of ON . Assume
that M ≥ 1 and there are GP vectors Ω1, . . . ,ΩM of (H, π) with respect to
non periodic parameters w1, . . . , wM ∈ TS(CN ), respectively. If w1, . . . , wM
are mutually inequivalent each other, then there is a subrepresentation (V, π|V )
of (H, π) such that

(V, π|V ) ∼
M⊕
i=1

GP (wi).
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Proof. If M = 1, then it holds by Lemma 3.1. Assume that M ≥ 2. By
Lemma 3.1, there is a subrepresentation (Vi, π|Vi ,Ωi) in H which is GP (wi)
for each i = 1, . . . ,M . Since wi is non periodic, GP (wi) is irreducible by
Theorem 2.3 (ii). By assumption, wi 6∼ wj , hence π|Vi 6∼ π|Vj by Theorem
2.3 (iii) when i 6= j. If Vi∩Vj 6= {0} for i 6= j, then its intersection generates
both Vi and Vj by π(ON ). Hence Vi = Vj and (Vi, π|Vi) = (Vj , π|Vj ). This
is contradiction. Hence Vi ∩ Vj = {0} when i 6= j. Therefore a subspace
V ≡

⊕M
i=1 Vi satisfies the condition of the statement.

By Lemma 3.3, the inequivalence of parameters induces the disjointness of
associated GP representations automatically.

Lemma 3.4 (Uniqueness of irreducible decomposition) Let (H, π) be a rep-
resentation of ON . If there is a family {wi}Mi=1 of non periodic elements in
TS(CN ) such that (H, π) ∼

⊕M
i=1GP (wi), then this decomposition is unique

up to unitary equivalence.

Proof. Let {Vi : i = 1, . . . ,M} be an orthogonal family of subspaces of H
such that (Vi, π|Vi) is a subrepresentation of ON which is unitarily equivalent
to GP (wi) for i = 1, . . . ,M , respectively. Then there is an orthonormal fam-
ily {Ωi : i = 1, . . . ,M} of vectors inH such that Ωi ∈ Vi and π(s(wi))Ωi = Ωi

for i = 1, . . . ,M .
Assume thatH =

⊕
λ∈Λ V

′
λ is another irreducible decomposition. Then

there is λ ∈ Λ such that there is xλ ∈ V
′
λ and < Ωi|xλ >6= 0. By Lemma 3.2,

Ωi ∈ π(ON )xλ = V
′
λ. Hence V

′
λ = Vi. In this way, we have λi ∈ Λ such that

V
′
λi

= Vi for each i = 1, . . . ,M . Therefore (V
′
λi
, π|

V
′
i
) ∼ (Vi, π|Vi). Automat-

ically, we have a numbering Λ = {λi : i = 1, . . . ,M} and V
′
λ1
⊕ · · · ⊕ V ′λM =

V1 ⊕ · · · ⊕ VM . Hence we finish to show the uniqueness of decomposition.

Corollary 3.5 Let (H, π) be a representation of ON . If there are two fam-
ilies {wj}Mj=1 and {vl}M

′

l=1 of non periodic elements in TS(CN ) such that

(H, π) ∼
⊕M

j=1GP (wj) and (H, π) ∼
⊕M

′

l=1GP (vl), then M = M
′

and there
is σ ∈ SM such that wσ(i) ∼ vi for each i = 1, . . . ,M .

Proof. Note that {wj}Mj=1 and {vl}M
′

l=1 arise two irreducible decompositions
by Theorem 2.3 (ii). By Lemma 3.4, M = M

′
and there is σ ∈ SM such

that GP (vi) ∼ GP (wσ(i)) for each i = 1, . . . ,M . By Theorem 2.3 (iii),
wσ(i) ∼ vi for each i = 1, . . . ,M .
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4 Degeneracy of periodic cycle

For a given w ∈ TS(CN ), we always have a representation GP (w) by Theo-
rem 2.3 (i). Although, the uniqueness of GP (w) does not always hold when
w is periodic. In order to classify GP (w) for periodic w, we introduce a new
parameter here.

Denote

TSP (CN ) ≡ {w ∈ TS(CN ) : w is periodic },

TSNP (CN ) ≡ {w ∈ TS(CN ) : w is non periodic }.

Then

TS(CN ) = TSP (CN ) t TSNP (CN ), (4.1)

TSP (CN ) = {w⊗k : w ∈ TS(CN ), k ≥ 2}
= {w⊗k : w ∈ TSNP (CN ), k ≥ 2} (4.2)

where v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸
k

. Particularly, S(CN ) ⊂ TSNP (CN ). The ambigu-

ity of GP representation of periodic case occurs because the period number
of parameter degenerates in the level of representation in general. We show
this meaning in the following.

Definition 4.1 Let (H, π,Ω) be GP (v⊗p) for v ∈ TSNP (CN ) and p ≥ 1.

(i) A complex subspace W (H, π,Ω) ≡ Lin < {π(s(v))lΩ ∈ H : l =
0, . . . , p− 1} > is called the period subspace of H.

(ii) (H, π,Ω) is degenerate if dimW (H, π,Ω) < p.

(iii) dimW (H, π,Ω) is called the proper period of (H, π,Ω).

Lemma 4.2 Under assumption and notation in Definition 4.1, the follow-
ings hold:

(i) 1 ≤ dimW (H, π,Ω) ≤ p.

(ii) π(s(v))|W (H,π,Ω) is a unitary from W (H, π,Ω) to W (H, π,Ω).

(iii) π(s(v))p|W (H,π,Ω) is the identity operator on W (H, π,Ω).
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(iv) If p = 1, then (H, π,Ω) is always non degenerate.

Proof. (i) By definition of W (H, π,Ω), it holds. (ii) π(s(v)) is an isometry
onH for any v ∈ TS(CN ). By definition ofW (H, π,Ω), π(s(v))W (H, π,Ω) ⊂
W (H, π,Ω). Hence π(s(v)) is an isometry on W (H, π,Ω), too. Because of
(i), π(s(v)) is a unitary automatically. (iii) Since π(s(v))pΩ = π(s(v⊗p))Ω =
Ω, π(s(v))p(π(s(v))lΩ) = π(s(v))p+lΩ = π(s(v))lΩ for each l = 0, . . . , p −
1. Hence π(s(v))p is the identity on W (H, π,Ω). (iv) By definition of
W (H, π,Ω), dimW (H, π,Ω) = 1 when p = 1.

Lemma 4.3 Let (H, π,Ω) be GP (v⊗p) for p ≥ 2. If the proper period of
(H, π,Ω) is q, then the period subspace of (H, π,Ω) is spanned by eigen
vectors Ω1, . . . ,Ωq of π(s(v)) with mutually different eigen values ξ1, . . . , ξq
in {e2π

√
−1l/p : l = 0, . . . , p− 1}.

Proof. Let W be the period subspace of (H, π,Ω). We identify π(si) and
si for i = 1, . . . , N here. Assume dimW = q. Then a family {s(v)lΩ}q−1

l=0

of vectors is linearly independent in W . By Lemma 4.2, an operator A ≡
s(v)|W is an action of Zp on W . Therefore W is decomposed into (one-
dimensional) irreducible representations W1, . . . ,Wq of Zp. Choose hi ∈Wi,
hi 6= 0 for i = 1, . . . , q. Then there is ξi ∈ C such that Ahi = ξihi for each
i = 1, . . . , q. A representation W of Zp is cyclic if and only if any component
in the irreducible decomposition of W has multiplicity 1. Hence ξ1, . . . , ξq
are mutually different. By definition of A,

s(v)hi = Ahi = ξihi (i = 1, . . . , q).

By Lemma 4.2 (ii), |ξi| = 1. By Lemma 4.2 (iii), ξi ∈ {e2π
√
−1l/p : l =

0, . . . , p− 1} for each i = 1, . . . , q.

Lemma 4.4 If p ≥ 2 and v ∈ TSNP (CN ), then for each 1 ≤ q ≤ p, there
exists (H, π,Ω) which is GP (v⊗p) with the proper period q.

Proof. We construct them concretely. If q = 1, then GP (ξv) satisfies the
condition of GP (v⊗p) for each number ξ ∈ C such that ξp = 1.

Assume that q ≥ 2. Choose a subset {ξi}qi=1 ⊂ {e2π
√
−1l/p : l =

0, . . . , p−1} which consists of q-mutually different elements. Prepare a family
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{(Vi, πi,Ωi)}qi=1 of GP representations with respect to a family {ξiv}qi=1 of
parameters. Put

H ≡ V1 ⊕ · · · ⊕ Vq, Ω ≡ 1
√
q

q∑
i=1

Ωi ∈ H, π ≡ π1 ⊕ · · · ⊕ πq.

Then π(s(v⊗p))Ω = π(s(v))pΩ = Ω and dimW = q for W ≡ Lin <
{π(s(v))lΩ}p−1

l=0 >. Note that vectors ((ξi)k)
q
k=1 and ((ξj)k)

q
k=1 in Cq are

linearly independent when i 6= j. Hence Ω, π(s(v))Ω, . . ., π(s(v))q−1Ω ∈
Lin < {Ωi : i = 1, . . . , q} > are linearly independent in H. From this,
Ω1, . . . ,Ωq ∈ Lin < {π(s(v))i−1Ω : i = 1, . . . , q} >. Therefore Ωi ∈ π(ON )Ω
for each i = 1, . . . , q. Hence

Vi = πi(ON )Ωi ⊂ π(ON )Ω

for each i = 1, . . . , q. Therefore π(ON )Ω = H and (H, π,Ω) is cyclic. Since
(H, π,Ω) satisfies condition (2.1) with respect to v⊗p and the proper period
of (H, π,Ω) is q, we obtain (H, π,Ω) in the statement.

By Lemma 4.4, GP (v⊗p) is not unique when p ≥ 2. Hence we classify
representations which satisfy the condition of GP (v⊗p) in the next section.

5 Irreducible decomposition of GP representation

For p ≥ 2 and v ∈ TSNP (CN ), we classify GP (v⊗p) and show decomposition
formulae. In order to classify periodic case, we introduce new symbols.

Definition 5.1 A representation (H, π,Ω) of ON is GP (v⊗p; q) if (H, π,Ω)
is GP (v⊗p) which has the proper period q.

Lemma 5.2 For each 1 ≤ q ≤ p, there exists GP (v⊗p; q).

Proof. By Lemma 4.4, it holds.

Theorem 5.3 Let p ≥ 2 and 1 ≤ q ≤ p. If (H, π,Ω) is GP (v⊗p; q) for
v ∈ TSNP (CN ), then there is a subset {ξi}qi=1 ⊂ {e2π

√
−1l/p : l = 0, . . . , p−1}

such that ξi 6= ξj when i 6= j and the following equivalence holds:

(H, π) ∼
q⊕
i=1

GP (ξiv).
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Proof. By Lemma 4.3, there are eigen vectors Ω1, . . . ,Ωq of π(s(v)) in H
with mutually different eigen values η1, . . . , ηq, respectively where we nor-
malize them as ‖Ωi‖ = 1 for i = 1, . . . , q. Hence if we let wi ≡ ηiv for
i = 1, . . . , q, then the following equations hold:

π(s(wi))Ωi = ηiπ(s(v))Ωi = ηi(ηiΩi) = Ωi (i = 1, . . . , q).

By assumption, wi is non periodic for each i = 1, . . . , q. Furthermore {wi}qi=1

are mutually inequivalent in TS(CN ). By Lemma 3.3, there is a subrepre-
sentation (V, π|V ) of (H, π) such that

(V, π|V ) ∼
q⊕
i=1

GP (wi) ∼
q⊕
i=1

GP (ηiv) ∼
q⊕
i=1

GP (ξiv) (5.1)

where ξi ≡ ηi ∈ {e2π
√
−1l/p : l = 0, . . . , p− 1} for i = 1, . . . , q. On the other

hand, Ω ∈ Lin < {Ω1, . . . ,Ωq} >⊂ V by definition of Ωi in Lemma 4.3. By
assumption, Ω is a cyclic vector of a representation (H, π). Therefore

H = π(ON )Ω ⊂ V ⊂ H. (5.2)

By (5.1) and (5.2),

H = V ∼
q⊕
i=1

GP (ξiv).

Hence the statement holds.

Theorem 5.4 (Decomposition formula) Assume that (H, π,Ω) is GP (v⊗p)
for v ∈ TSNP (CN ) and p ≥ 2. Then there exists 1 ≤ q ≤ p and a subset
{ξi}qi=1 ⊂ {e2π

√
−1l/p : l = 0, . . . , p−1} uniquely such that the following irre-

ducible decomposition holds and this decomposition is unique up to unitary
equivalence:

(H, π) ∼
q⊕
i=1

GP (ξiv).

Proof. Let q be the proper period of (H, π,Ω). Then (H, π,Ω) isGP (v⊗p; q).
By Theorem 5.3, the irreducible decomposition holds. The uniqueness holds
by Lemma 3.4.

Corollary 5.5 (i) (Complete reducibility) The GP representation of ON
with cycle which is defined in Definition 2.1 is completely reducible.
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(ii) Let v ∈ TSNP (CN ) and p ≥ 2. Assume that (Hi, πi,Ωi) is GP (v⊗p; qi)
for i = 1, 2, respectively. If q1 6= q2, then (H1, π1) 6∼ (H2, π2).

(iii) Irreducible decomposition of GP representation with cycle is closed in
GP representations with cycle, too.

Proof.
(i) By (4.1), it is sufficient to consider two cases w ∈ TSNP (CN ) and w ∈
TSP (CN ) about GP (w). When w ∈ TSNP (CN ), GP (w) is irreducible by
Theorem 2.3 (ii). Hence the statement holds in this case. Assume that
w ∈ TSP (CN ). By (4.2), we can write w = v⊗p for v ∈ TSNP (CN ) and
p ≥ 2. By Theorem 5.4, this case is completely reducible, too.
(ii) By Theorem 5.4 and Corollary 3.5, the statement holds by comparing
the components of decompositions.
(iii) By Theorem 5.4, it holds.

Corollary 5.6 Assume that v ∈ TSNP (CN ) and p ≥ 2.

(i) Let (H, π,Ω) be GP (v⊗p; 1). Then there is ξ ∈ C such that ξp = 1 and
(H, π,Ω) is GP (ξv).

(ii) GP (v⊗p; 1) is irreducible.

(iii) There are just pCq = p!
q!(p−q)! number of inequivalent representations of

ON which are GP (v⊗p; q) for 1 ≤ q ≤ p.

(iv) If GP (v⊗p) does not degenerate, then

GP (v⊗p) = GP (v)⊕GP (ξv)⊕GP (ξ2v)⊕ · · · ⊕GP (ξp−1v)

where ξ ≡ e2π
√
−1/p.

(v) GP (v⊗p; p) is unique up to unitary equivalence.

6 Example

Let {εi : i = 1, . . . , N} be the canonical basis of CN and {en : n ∈ N} that
of l2(N), too where N = {1, 2, 3, . . . , }.

Example 6.1 Let ξ ≡ e2π
√
−1/p and η ≡ e2π

√
−1/q for positive integers p and

q. If p and q are prime each other, then GP (ξε1)⊕GP (ηε1) ∼ GP (ε⊗pq1 ; 2).
This equivalence holds on ON for any N ≥ 2.
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Example 6.2 Let (l2(N), πS) be the standard representation of ON which
is defined by πS(si)en ≡ eN(n−1)+i for n ≥ 1 and i = 1, . . . , N . Let γz :
ON → ON be the so-called gauge action for z ∈ U(1) on ON which is
defined by γz(si) ≡ zsi for i = 1, . . . , N . Then the following holds:

p⊕
i=1

(
l2(N), πS ◦

(
γξp

)i−1
)
∼ GP (ε⊗p1 ; p)

where ξp ≡ e2π
√
−1/p for p ≥ 1. This shows that suitable combination of GP

representations is cyclic, too. In this way, GP representations are related to
the group action on ON . We treat this study in [10].

Example 6.3 For a unitary matrix g ≡
(
a b
c d

)
∈ U(2), a representation

(l2(N), {s1, s2}) of O2 which is defined by

s1e1 ≡ ae2 + ce3, s1e2 ≡ e1, s2e1 ≡ be2 + de3, s2e2 ≡ e4,

s1en ≡ e2n−1, s2en ≡ e2n (n ≥ 3)

satisfies
s1(αs1 + βs2)e1 = e1

for
(
α γ
β δ

)
≡ g−1 ∈ U(2). Hence this representation is GP (w) for w ≡

ε1⊗ (αε1 + βε2). If αβ 6= 0, then this representation does not belong to the
class of representation by [5, 6, 7]. β 6= 0 if and only if w is non periodic if
and only if GP (w) is irreducible. If β = 0, then |α| = 1 and the following
equivalence holds:

GP ((α1/2ε1)⊗2; 2) ∼ GP (α1/2ε1)⊕GP (−α1/2ε1).

Note that this representation is determined by only (α, β) ∈ C2, |α|2+|β|2 =
1 up to unitary equivalence. Furthermore for each two elements in S(C2),
associated representations are inequivalent each other. In this sense, S(C2)
is a parameter space of unitary equivalence classes of representations of O2.
This structure is shown in [10] in more detail.

7 Application

7.1 Permutative representation with cycle

A class of representations in [5, 6, 7] with cycle is a subclass of GP repre-
sentations with cycle (see subsection 3.3 in [8], too). It is corresponded to a
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family
{zεI ∈ TS(CN ) : z ∈ U(1), I ∈ {1, . . . , N}k, k ≥ 1}

of parameters where εI ≡ εi1 ⊗ · · · ⊗ εik for I = (i1, . . . , ik). In [1, 4], the
symbol GP (zεI) is denoted by Rep(I; z̄). Hence our decomposition formula
in Theorem 5.4 holds about them, too. For example, when p ≥ 2, in the
case of non degenerate proper period does not degenerate decomposed as
follows:

GP (zε⊗pI ; p) = GP ((z1/pεI)⊗p; p) ∼
p⊕
j=1

GP (ξj−1
p · z1/pεI)

where I ∈ {1, . . . , N}k is a non periodic multi index. Note that a term in
the right hand side GP (ξj−1

p · z1/pεI) means an irreducible representation
(H, {s1, . . . , sN}) which satisfies

sIΩ = ξj−1
p · z1/pΩ

for suitable non zero vector Ω where sI ≡ s(εI).

7.2 Spectrum of Cuntz algebra

Let SpecON be the set of all unitary equivalence classes of irreducible rep-
resentations of ON . We treat relation between non periodic case of GP
representation and SpecON in subsection 6.3 in [8].

If GP (w) is irreducible for w ∈ TSP (CN ), GP (w) is equivalent to
GP (v) for some v ∈ TSNP (CN ). Hence the following equality holds:

{GP (w) : w ∈ TS(CN ), GP (w) is irreducible }/∼

= {GP (w) : w ∈ TSNP (CN )}/∼ .

Therefore the subset of SpecON associated with GP representation with
cycle is arisen from only TSNP (CN ). Chain case is treated in [9].

7.3 Classification of endomorphisms of Cuntz algebra

In [11], we classify a class of unital ∗-endomorphisms of Cuntz algebra by
computing the branching rule of them on permutative representations. For
example an endomorphism ρ of O2 which is defined by

ρ(s1) ≡ s1s2s
∗
1 + s1s1s

∗
2,

ρ(s2) ≡ s2

(7.1)
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arises a transformation of representations of O2 as

(H, π) 7→ (H, π ◦ ρ). (7.2)

By this transformation, we get information about ρ. We denote ρ in (7.1)
by ψ12. If ρ

′
is an endomorphism of O2 which is unitarily equivalent to ρ in

O2, then its branching rule equals to that of ρ. Hence the branching rule is
an invariant of equivalence class of endomorphisms. We show the branching
rule of ψ12 without proof.

Branching rule of ρ = ψ12
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In this figure, each vertex means a permutative representation of O2 and a
directed edge means an action of ψ12. For example, (1;±1)◦ρ ∼ (12) where
(1;±1) ≡ GP (±ε1) and (12) ≡ GP (ε1⊗ ε2). In general, the right hand side
in (7.2) is decomposed into direct sum of irreducible representations. For
example, a vertex with label (2;±1) means a representation which satisfies
GP condition s2Ω± = ±Ω±, and the figure shows the following branching of
ψ12 on (2;±1):

(2;±1)ψ12 ∼ (2;±1)⊕ (1;±1).

ψ12 is irreducible, that is, (ψ12(O2))
′
∩ O2 = CI, and not automorphism of

O2. In this way, we have computed branchings of many endomorphisms in
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[11]. The origin of this class of endomorphisms of Cuntz algebra was brought
by N.Nakanishi. He found an endomorphism of O3 by only combinatrix
method for sake of pure mathematical interest. It is the following:

t1 ≡ s1s2s
∗
3 + s2s3s

∗
1 + s3s1s

∗
2,

t2 ≡ s2s1s
∗
3 + s3s2s

∗
1 + s1s3s

∗
2,

t3 ≡ s1s1s
∗
1 + s2s2s

∗
2 + s3s3s

∗
3.

(7.3)

It is easy to show that t1, t2, t3 satisfy relations of generators of O3. We
illustrate the figure of the branching rule of an endomorphism by Nakanishi
(7.3) on permutative representations of O3 without proof:
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Branching rule of an endomorphism by Nakanishi

This endomorphism (7.3) is irreducible and not automorphism of O3, too.

7.4 Representation of Fermion algebra

In [1, 2, 3, 4], we apply our decomposition theory of representations of Cuntz
algebra on its U(1)-fixed point subalgebra OU(1)

N . Fortunately, permutative
representations are completely reducible on OU(1)

N , too. Specially, OU(1)
2 is

isomorphic to algebra of fermions, so-called CAR algebra. We have many
decomposition formulae for representations of Fermion algebra.

For example, the restriction of ψ12 in (7.1) on CAR ≡ OU(1)
2 is an

endomorphism of CAR, too. The branching rule of ψ12|CAR is given as
follows:
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Branching rule of ψ12|CAR
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In the above figure, each vertex means an equivalence class of irreducible
representations of CAR. For example a symbol [1] means GP (ε1)|CAR.
By U(1)-invariance of CAR algebra in O2, GP (ε1)|CAR = GP (−ε1)|CAR.
Furthermore the cyclic symmetry of permutative representation ofO2 breaks
on CAR algebra and the following branching happens:

GP (ε1 ⊗ ε2)|CAR = [12] + [21]

where [12] 6= [21] as equivalence classes of irreducible representations of
CAR.

7.5 State

In [8], we show the relation between pure states and GP representations with
cycle for non periodic parameters in the sense of GNS representation. On the
other hand, in [4], we consider a state on direct sum of two irreducible GP
representations. This case brings a representation of OU(1)

2 which is not type
I in general. It includes Araki-Woods factor as special case. In this point of
view, there are problems to determine the type of GNS representation of a
state on reducible GP representation.

Acknowledgement: We would like to thank Prof.Nakanishi for giving an
excellent application of GP representation by finding a nice endomorphism.
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