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Introduction

Let Y be a nonsingular projective curve over an algebraically closed field k and f : X → Y
a generically smooth semistable curve of genus g ≥ 2 with X nonsingular. Let ωX/Y denote

the relative dualizing sheaf of f . Relation between deg
(
f∗ωX/Y

)
and discriminant divisors

has been studied by many people. Here we consider the case of f hyperelliptic, i.e., the case
where there exists a Y -automorphism ι inducing the hyperelliptic involution on the geometric
generic fiber. Then for each node x of type 0 in a fiber, we can assign a non-negative integer,
called the subtype, to x or the pair {x, ι(x)} (c.f. [CH] or §§ 1.2 for the definitions). Let
δi(X/Y ) denote the number of the nodes of type i, ξ0(X/Y ) the number of nodes of subtype
0 and let ξj(X/Y ) denote the number of pairs of nodes {x, ι(x)} of subtype j > 0, in all the
fibers. Cornalba and Harris proved in [CH] an equality

(8g + 4) deg
(
f∗ωX/Y

)
= gξ0(X/Y ) +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj(X/Y ) +

[ g2 ]∑
i=1

4i(g − i)δi(X/Y )

in case of k = C, which we call Cornalba-Harris equality. It is the final result on the relation
between the Hodge class and the discriminants for hyperelliptic curves in char(k) = 0.
Without the assumption of char(k) = 0, the following results have been obtained.

(1) If char(k) 6= 2, then Cornalba-Harris equality holds: Kausz in [Ka].
(2) In any characteristic, an inequality

(8g + 4) deg
(
f∗ωX/Y

)
≥ gξ0(X/Y ) +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj(X/Y ) +

[ g2 ]∑
i=1

4i(g − i)δi(X/Y )

can be shown: the author in [Y].
(3) A bound from the both side

gδ(X/Y ) ≤ (8g + 4) deg
(
f∗ωX/Y

)
≤ g2δ(X/Y )

can be shown in char(k) > 0, where δ(X/Y ) :=
∑[g/2]

i=0 δi(X/Y ): Maugeais in [Ma].

In this article, we shall show that Cornalba-Harris equality holds true in any characteristic—
even in char(k) = 2. That will be the last result on this problem for hyperelliptic curves.

Before dealing with the equality in positive characteristic, let us recall the proof over C
in [CH]. Let Ig,C be the moduli of stable hyperelliptic curves of genus g over C and Ig,C the
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open dense subset consisting of smooth hyperelliptic curves. (They did not make clear what
it is, but we shall give the precise definition later.) We denote by ∆i the locus of curves
with nodes of type i, and by Ξj that of curves with nodes of subtype j. They are Cartier
divisors, and let δi and ξj denote the classes of ∆i and Ξj respectively. If f : X → Y is a
semistable hyperelliptic curve as at the beginning, then δi(X/Y ) and ξj(X/Y ) are the degree
of the pull-back of δi and ξj respectively by the Y -valued point Y → Ig,C corresponding to
f . Taking account that to give a stable hyperelliptic curve is the same as to give a tree
of smooth rational curves and its 2g + 2 smooth points modulo some group action, they
compared Ig,C with the moduli of (2g + 2)-pointed stable curves of genus 0 via the moduli
of admissible double coverings, and claimed that

(a) Pic(Ig,C) is torsion, and
(b) the boundary components ∆i for 1 ≤ i ≤ [g/2] and Ξj for 0 ≤ i ≤ [(g − 1)/2] are

irreducible.

The Hodge class λ is, accordingly, a linear combination of the classes δi’s and ξj’s up to
torsion:

λ ≡ a1δ1 + · · ·+ a[g/2]δ[g/2] + b0ξ0 + · · ·+ b[(g−1)/2]ξ[(g−1)/2]

for some a1, . . . , a[g/2], b0, . . . , b[(g−1)/2] ∈ Q. Finally, they determined the coefficients using
semistable hyperelliptic curves over a projective curve such that the configuration of their
fibers is known and that their Hodge classes can be effectively calculated. (Such ones are
constructed in the appendix of [Mo].)

How is it different in positive characteristic? It seems Cornalba-Harris equality can be
shown by the same method if char(k) 6= 2, and it can be actually done in all but finitely
many characteristics. In the case of characteristic 2, however, the situation is different—wild
ramification prevents us from relating a hyperelliptic curve with a pointed stable curve of
genus 0 easily.

Thus the argument in characteristic 0 does not seem work well, but we can use the
result itself—we can specialize the result in characteristic 0 to obtain the result in posi-
tive characteristic. To explain what that indicates, let R be a discrete valuation ring and
f : X → Spec(R) a flat morphism of finite type, where we assume X is a normal scheme
for simplicity. Let L be an invertible sheaf on X trivial on the generic fiber. Then we can
write L = O(D) where D is a Cartier divisor supported in the special fiber Xs. Hence if Xs
is irreducible and reduced, then D = mXs for some m ∈ Z, and thus we can conclude that
L is trivial on X . That is the idea that we would like to employ. We shall construct an
algebraic stack Ig over Z that is a compactification of the moduli of smooth hyperelliptic
curves such that the specialization to any characteristic is irreducible (and automatically
generically reduced), and define invertible sheaves on it corresponding to the classes δi’s and
ξj’s. A result of Cornalba and Harris says that a certain non-trivial linear combination of
the Hodge class, δi’s and ξj’s is trivial in characteristic 0. Thus we can conclude that it is
trivial in any characteristic by the specialization argument as above.

The most important and essential part in our way is the irreducibility of the specialization
of Ig to characteristic 2. It is non-trivial at all, but Maugeais has recently proved in [Ma] that
a stable hyperelliptic curve can be a special fiber of a generically smooth stable hyperelliptic
curve over an equicharacteristic discrete valuation ring. What we have to do is quite clear
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now: to define Ig and invertible sheaves δi’s and ξj’s precisely and apply the specialization
argument to an algebraic stack carefully.

This article is organized as follows. In the first two sections, we shall carry out what we
have just explained. In the last section Appendix, we shall give remark on the moduli of
stable hyperelliptic curves and the relation of it with Ig defined in Section 1.

Notation and convention. (1) We mean by “genus” the arithmetic genus. For a 1-
dimensional projective scheme X over a field, we denote by pa(X) its arithmetic
genus.

(2) A prestable curve of genus g over S is a proper flat morphism f : C → S such that
any geometric fiber is a reduced connected scheme of dimension 1 and with at most
ordinary double point as singularities. A stable (resp. semistable) curve of genus g
is a prestable curve of genus g ≥ 2 such that a smooth rational component of its
geometric fiber meets other irreducible components at no less that three (resp. two)
points.

(3) The algebraic stack means the Artin or Deligne-Mumford algebraic stack. See [LM]
for algebraic stacks.

(4) We denote by Mg the moduli stack of stable curves of genus g, and by Zg the
universal curve over Mg. They are well-known to be Deligne-Mumford algebraic
stacks.

1. Definitions and the statement

1.1. Compactification of the moduli of hyperelliptic curves. Let us begin with basic
definitions.

Definition 1.1. Let C be a (semi)stable curve over an algebraically closed field k and ιC
a k-automorphism of C. We call the pair (C, ιC) a (semi)stable hyperelliptic curve over
k if there exist a discrete valuation ring R with the residue field k, a (semi)stable curve
C → SpecR and an R-automorphism ιC of C satisfying the following conditions.

(a) The geometric generic fiber is a smooth hyperelliptic curve and ιC is its hyperelliptic
involution.

(b) The specialization of the pair (C → SpecR, ιC) coincides with (C, ιC).

A smooth hyperelliptic curve in the usual sense is of course a stable hyperelliptic curve in
our sense.

Remark 1.2. In the case of char(k) 6= 2, it is well-known that (C, ιC) is hyperelliptic if and
only if ord(ιC) = 2 and C/〈ιC〉 is a prestable curve of genus 0. We shall show that it holds
even in char(k) = 2 in Appendix.

Definition 1.3. Let f : C → S be a (semi)stable curve and ιC an S-automorphism of C.
We call the pair (f, ιC) a (semi)stable hyperelliptic curve over S if the restriction of (f, ιC)
to any geometric fiber is a (semi)stable hyperelliptic curve.

The moduli stack Ig of smooth hyperelliptic curves of genus g can be realized as a closed
substack of the moduli stack of smooth curves (c.f [LL]). We want a compactification of
Ig of which boundary consists of stable hyperelliptic curves. Let AutMg

(
Zg
)

be a category

as follows: the objects are the pairs (f : C → S, σ) of stable curve f of genus g and an
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S-automorphism of C, and a morphism from (f : C1 → S1, σ1) to (f : C2 → S2, σ2) is a
cartesian diagram

C1
φ−−−→ C2

f1

y yf2

S1 −−−→ S2

compatible with the automorphisms, namely σ2 ◦ φ = φ ◦ σ1. Then there exists a canonical
morphism AutMg

(
Zg
)
→Mg, which is well-known to be finite and unramified, and hence it

is a Deligne-Mumford algebraic stack proper over Z. Now let us embed Ig into AutMg

(
Zg
)

via the hyperelliptic involution and let Ig be the stack theoretic closure of Ig in AutMg

(
Zg
)
.

Then, Ig is a Deligne-Mumford algebraic stack proper over Z and each S-valued point of Ig
gives a stable hyperelliptic curve of genus g.

Remark 1.4. Over Z[1/2], let us consider the moduli stack Hg of stable hyperelliptic curves
of genus g, which is a substack of AutMg

(
Zg
)
. Let (f : C → Spec(R), ι) be an object of

AutMg

(
Zg
)

with R a discrete valuation ring. Taking the quotient by 〈ι〉 is compatible with

base-change, for 2 is a unit over Z[1/2]. Therefore, taking account of Remark 1.2, we see
that being hyperelliptic is a property stable under both specialization and generalization.
That implies Hg is an open and closed substack, containing Ig as an open dense substack.
Accordingly, Ig is a closed substack of Hg containing the same open dense substack. But
it is known that Hg is smooth (c.f. [E]), hence Ig = Hg. Thus, Ig is, at least over Z[1/2],
the moduli stack of stable hyperelliptic curves. In Appendix, we shall realize, over Z, the
moduli stack Hg of hyperelliptic curves as a connected component of AutMg

(
Zg
)

and see

(Hg)red = Ig.

1.2. Boundary classes. Let C be a semistable curve over an algebraically closed field.
Recall that for any node x ∈ C, we can assign a non-negative integer, called the type of x, in
the following way: if the partial normalization Cx of C at x is connected, then the type of x
is 0, and otherwise, the type is the minimum of the arithmetic genera of the two connected
components of it. It is well-known that the locus of stable curves with a node of type i gives
a class, or an invertible sheaf δi, on Mg. We denote by the same symbol the pull-back of δi
via the canonical morphism Ig →Mg.

Let (C, ι) be a semistable hyperelliptic curve over an algebraically closed field. Then, each
singular point x ∈ C of type 0 has one of the following property.

(a) x is fixed by ι. Then x is an intersection point of two branches of one irreducible
component, and the partial normalization of C at x is connected. In this case, we
say x is of subtype 0.

(b) x is not fixed by ι. Then the partial normalization of C at {x, ι(x)} consists of two
connected components of genus, say, j and g − j − 1 (1 ≤ j ≤ [(g − 1)/2]). In this
case, we say {x, ι(x)} is of subtype j, or x is of subtype j by abuse of words. Note
that if C is stable, then a pair of subtype 0 does not appear.

We would like to define invertible sheaves ξj on Ig that is, roughly speaking, the sheaf of
rational functions that may have a pole at the locus of stable hyperelliptic curves with pairs
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of nodes of subtype j. Over C, the deformation theory of stable hyperelliptic curves of genus
g is equivalent to that of 2g + 2-pointed stable curves of genus 0, and it is known that it is
smooth and the locus of stable curve with nodes is a divisor. Therefore, we could define ξj’s
as a divisor class on Ig,C without being nervous (c.f. [CH]). In our case, however, we do not
have enough information on the geometry of Ig in characteristic 2 and cannot easily defined
them as the class of locuses. We shall define such boundary classes directly by giving for
any stable hyperelliptic curve (f : C → S, ι), an invertible sheaf ξj,S on S which is functorial
with respect to base-change.

Now let us begin with preliminary lemmas. For a stable hyperelliptic curve f : C → S,
we put Sing(f) := {x ∈ C | f is not smooth at x}.
Lemma 1.5. Let (f : C → S, ι) be a stable hyperelliptic curve. Then, the subset Sing(f) ∩
(idC , ι)

−1(∆) is open and closed in Sing(f), where ∆ is the diagonal of C ×S C.

Proof. The closedness is trivial. Now, we claim that the compliment E is proper over S. We
use the valuation criterion, so that assume that S = SpecR, where R is a discrete valuation
ring, and further we are to have a section σ : S → C such that σ(η) ∈ E, where η is the
generic point of S. Then, the reduced closed subscheme T := σ(S) ∪ ι(σ(S)) is finite and
flat over S of degree 2. Taking account that Sing(f)→ S is unramified in addition, we find
that T is étale over S. Therefore σ(s) 6= ι(σ(s)), where s is the closed point of S, and hence
σ(s) ∈ E.

Lemma 1.6. Let f : X → S be a flat morphism and let Y be a closed subscheme of X flat
over S. Then, the blow-up of X along Y is flat over S.

Proof. Since X and Y are flat over S, the ideal sheaf IY of Y is flat over OS, and hence an
OS-algebra A := OX ⊕ IY ⊕ IY 2 ⊕ · · · is also flat. Therefore, Proj(A) is flat over S.

Let N be the open and closed subset of Sing(f) defined by

N := {x ∈ C | the geometric point x̄ is a node of type 0 in Cf(x̄)},
and put N0 := N ∩ (idC , ι)

−1(∆), which is an open and closed subset of N by Lemma 1.5.
Next we put N+ := N \N0, which we regard as a reduced subscheme. We will decompose

N+ into open and closed subsets as follows. If we pull f back to N+ by res(f) : N+ → S,
we obtain a nowhere smooth stable curve g : C ′ → N+ and two sections arising from the

inclusion N+ → C and the composite morphism N+ ⊂ C
ι−→ C. Let Ñ+ be the union of that

two sections, which is a disjoint union, and let g̃ : C̃ ′ → N+ be the blow-up of g : C ′ → N+

along Ñ+. Then each fiber C̃ ′y of g̃ is the blow-up of C̃ ′y at the two points Ñ+,y. It consists
of two prestable curves, and by virtue of Lemma 1.6, the arithmetic genera of them are
constant over each connected component of N+. Therefore, the subset Nj defined by

Nj :=

{
x ∈ N+

∣∣∣∣ C̃ ′f(x̄) has exactly two connected component
which are of genus j and of g − j − 1

}
is open and closed. Thus we have a decomposition

N = N0 qN1 q · · · qN[(g−1)/2]

with N0, N1, . . . , N[(g−1)/2] open and closed.
Now for any stable hyperelliptic curve f : C → S, we define subsheaves of the relative

dualizing sheaf ωf in the following inductive way. (Ωf )−1 := Ωf , where Ωf is the sheaf of
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Kähler differentials on C over S. Suppose that (Ωf )j−1 is defined, the sheaf (Ωf )j is defined
by

(Ωf )j =

{
(Ωf )j−1 on C \Nj,

ωf around Nj.

This (Ωf )j is functorial, i.e., for any cartesian diagram

C2
α−−−→ C1

f2

y yf1

S2 −−−→ S1

we have a canonical isomorphism α∗(Ωf1)j ∼= (Ωf2)j. Since S-valued points of Ig are stable
hyperelliptic curves, we have thus defined coherent sheaves Ωj’s on Ig by Ωj(f) := (Ωf )j.

Now we define invertible sheaves on Ig by

ξj := det(Rf∗(Ω)j)⊗ det(Rf∗(Ω)j−1)−1

(c.f. [KM] for “det”). If f : C → S is smooth over all points of S of depth 0, then
Supp(f∗((Ωf )j/(Ωf )j−1)) has depth ≥ 1 for any j (c.f. [Kn]), and hence we have ξj ∼=
OS(Divf∗((Ωf )j/(Ωf )j−1)). In particular, if f : X → Y is a semistable hyperelliptic curve
of genus g as in the introduction, and if h : Y → Ig is the corresponding morphism, then
ξj(X/Y ) = deg(h∗ξj). Thus they are the boundary classes that we desire.

1.3. The statement and an application. For any stable curve f : C → S of genus g, we
have a canonical invertible sheaf det (f∗ωf ), called the Hodge class, and hence we have an
invertible sheaf λ on Ig corresponding to the Hodge class. Now we can propose our main
result, where we employ additive notation instead of ⊗:

Theorem 1.7. The invertible sheaf

(8g + 4)λ−

gξ0 +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj +

[ g2 ]∑
i=1

4i(g − i)δi


on Ig is torsion in Pic

(
Ig
)
.

The proof of Theorem 1.7 will be given in the next section. As an immediate corollary,
we have the result:

Corollary 1.8 (Cornalba-Harris equality in char(k) ≥ 0). Let Y be a nonsingular projective
curve over an algebraically closed field k and f : X → Y a generically smooth semistable
hyperelliptic curve of genus g ≥ 2 with X nonsingular. Then we have an equality

(8g + 4) deg
(
f∗ωX/Y

)
= gξ0(X/Y ) +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj(X/Y ) +

[ g2 ]∑
i=1

4i(g − i)δi(X/Y ).

Here we give an easy application. Szpiro’s result [Sz, Proposition 3] says deg
(
f∗ωX/Y

)
> 0

unless f is isotrivial in any characteristic. Hence we have the following result that is well-
known in char(k) 6= 2.
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Corollary 1.9 (char(k) ≥ 0). Let Y be a projective curve over an algebraically closed field
k. Then any proper smooth curve f : X → Y of genus g ≥ 2 with hyperelliptic geometric
generic fiber is isotrivial.

2. The proof

In this section, we give proof of Theorem 1.7 following the idea explained in the intro-
duction. First we prepare some basic results concerning algebraic stacks and their invertible
sheaves.

Lemma 2.1. Let X be an algebraic stack, S a noetherian integral scheme and f : X → S
a flat morphism of finite type. Let L be an invertible sheaf on X of which restriction on the
generic fiber of f is trivial. Then, there exists an open dense subscheme U of S such that L
is trivial on f−1(U).

Proof. Let Xη be the generic fiber of f and let φ : OXη → L|Xη be an isomorphism. Let us
take an atlas π : Z → X of finite type and put g := f ◦ π. Since g is flat and S is integral,
OZ and π∗L are subsheaves of OZη and π∗L|Zη respectively, and since g is also of finite type,
we can extend π∗(φ) to be an isomorphism ψ over an open subscheme W with Zη ⊂ W .
Since g is of finite type and S is noetherian, g(Z \W ) is a constructible set, and it does not

contain the generic point. Therefore U := S \ g(Z \W ) is an open dense subset of S with
g−1(U) ⊂ W . Since the isomorphism ψ satisfies the cocycle condition over the generic fiber,
it also does over g−1(U). Thus this isomorphism descends and we have the trivialization of
L over f−1(U).

Lemma 2.2. Let X be an algebraic stack, S a connected regular noetherian scheme of
dimension 1 and f : X → S a flat morphism of finite type. Let L be an invertible sheaf on X
which is trivial on the generic fiber. Suppose that the fibers of f is irreducible and generically
reduced. Then, there exists an invertible sheaf M on S with L = f ∗M .

Proof. By Lemma 2.1, there exists a finite subsets B of closed point of S such that L is trivial
over V := f−1(S \ B), hence let φ : OV → L|V be an isomorphism. Let us take an atlas
π : Z → X with g := f ◦π of finite type. Then we have an isomorphism of invertible sheaves
φ̃ := π∗(φ) over W := π−1(V). Since g is flat and of finite type, for any s ∈ B there exists

a non-negative integer ns such that φ̃ extends to a homomorphism ψ̃ : OZ → (π∗L)(nsZs).
Note that it descends to a homomorphism ψ : OX → L(nsXs). Now we take such ns’s to be

minimal. It is enough to show that ψ̃ is an isomorphism, but since it is between invertible
sheaves, enough just to show it surjective, so that, we may assume that S is the spectrum
of a complete discrete valuation ring A with algebraically closed residue field and that Z is
normal.

Let Zs,1, . . . , Zs,l be the irreducible components of the special fiber Zs. The irreducibility
and generic reducedness of the special fiber of X implies that we can take Z◦s,1, . . . , Z

◦
s,l such

that

(a) Z◦s,i is an open dense subset of Zs,i,
(b) Z◦s,1, . . . , Z

◦
s,l is contained in the smooth locus of g, and

(c) π
(
Z◦s,1

)
= · · · = π

(
Z◦s,l
)
, which we denote by Xs◦.

Since the special fiber is reduced and ns is taken to be minimal, ψ̃ is an isomorphism over
one of Z◦s,1, . . . , Z

◦
s,l, say Z◦s,1. On the other hand, we can take, for any x : {s} → Xs◦, a
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section σ : S → X with σ(s) = x, and moreover, can take a section σi : S → Z for any

1 ≤ i ≤ l such that σi(s) ∈ Z◦s,i and π ◦σi = σ. Then, σ1
∗(ψ̃) is an isomorphism, so is σ∗(ψ),

and hence σi
∗(ψ̃) is an isomorphism for any i. That implies that the Weil divisor determined

by ψ̃ is trivial and hence ψ̃ is an isomorphism.

Now we are ready for proving it. Let us look at the fibers of Ig → SpecZ. It is well-known
that it is smooth and has geometrically connected fibers over Z[1/2] (c.f. Remark 1.4). How
about over the prime (2)? By [L], Ig → SpecZ has irreducible geometric fibers, and by
[LL], it is smooth, even over (2). On the other hand, Maugeais proved in [Ma] the following
important result. (If char(k) 6= 2, it had been well-known. Maugeais’ contribution is the
case of char(k) = 2.)

Theorem 2.3 (Corollaire 53 in [Ma]). Let k be an algebraically closed field and C → k
a stable hyperelliptic curve. Then there exist an equicharacteristic discrete valuation ring
R of which residue field is k and a curve C → Spec(R) of which generic fiber is smooth
hyperelliptic curve and of which special fiber coincides with C.

That tells us for any algebraically closed field k with char(k) = 2, the open substack
Ig ⊗ k is dense in Ig ⊗ k. Thus, in summary, we find that the morphism Ig → SpecZ has
geometrically irreducible and generically reduced fibers. By [CH], we know that

(8g + 4)λ−

gξ0 +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj +

[ g2 ]∑
i=1

4i(g − i)δi

 ,

where we employ the additive notation instead of ⊗, is torsion on the generic fiber of Ig,
hence by Lemma 2.2, it is torsion whole on Ig. Thus we obtain Theorem 1.7.

Appendix. The moduli of stable hyperelliptic curves

In this appendix, we shall construct the moduli stack Hg of stable hyperelliptic curves
genus g over Z, as an open and closed substack of AutMg

(
Zg
)
. Further, we consider Theo-

rem 1.7 on Hg.

A.1. Quotient of prestable curves over a discrete valuation ring by a finite group.
The purpose of this subsection is to give technical remarks on the quotient of prestable curves
over a discrete valuation ring by a finite group. They may be well-known facts, though the
author does not know complete references.

For a ring A with a group G-action, we denote by AG the ring of G-invariants of A. For
a while, let R be a complete discrete valuation ring.

Lemma A.1 (c.f. Claim 3.1 of [GM]). Let G be a finite subset of AutR(R[[x]]). Then, we
have R[[x]]G = R[[z]], where z =

∏
g∈G g(x).

Proof. (Same proof as that of [GM, Claim 3.1].) By virtue of [B], we can see that R[[x]] is a
free R[[z]]-module with a basis {1, x, . . . , xs−1}, where s := |G|. On the other hand, taking
account of [Q(R[[x]]) : Q(R[[x]]G)] = s, we have Q(R[[x]]G) = Q(R[[z]]), where Q(∗) denotes
the quotient field. Since R[[x]]G is integral over R[[z]] that is integrally closed, they coincide
with each other.
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Let us consider the case where G is a finite subgroup of AutR(A) with A = R[[x, y]]/(xy).
We can naturally regard A as a subring of B := R[[x]] × R[[y]] and G as a subgroup of
AutR(B). Put

H := {g ∈ G | g(R[[x]]× {0}) = R[[x]]× {0}},

which is a normal subgroup of index 1 or 2.

Lemma A.2. Let A, G and H be as above.

(1) If G 6= H, then AG = R[[z]] for some z ∈ xA+ yA.
(2) If G = H, then AG = R[[z, w]]/(zw) for some z ∈ xA and w ∈ yA.

Proof. The subgroup H acts on the subrings R[[x]] and R[[y]] of B and we have

BG =
(
(R[[x]]H ×R[[y]]H

)G/H
.

Lemma A.1 tells us R[[x]]H = R[[z]] and R[[y]]H = R[[w]] for some z ∈ xR[[x]] and w ∈
yR[[y]].

If G/H has a non-trivial element ι, then it gives an isomorphism between R[[x]]H and
R[[y]]H , and R[[y]]H = R[[ι(z)]]. Therefore, we have(

R[[x]]H ×R[[y]]H
)G/H

= {(f, ι(f)) ∈ R[[z]]×R[[ι(z)]]} ∼= R[[z]].

Taking account that G is acting on A, we can see that the constant term of ι(f) coincides with
that of f , and hence the above ring BG is contained in A. Accordingly, we have AG ∼= R[[z]].

If G = H, then BG = R[[z]] × R[[w]]. Since for (f, g) ∈ R[[z]] × R[[w]] living in A is the
same as f(0) = g(0), we have AG = R[[z, w]]/(zw).

Now we can obtain the following proposition. It is stated in [Sa] in the case where f is
generically smooth.

Proposition A.3. Let R be a discrete valuation ring and f : C → S := Spec(R) a flat
morphism of finite type. Suppose that each geometric fiber is reduced curve and has at
most ordinary double points as singularities. Let G be a finite subgroup of AutS(C). Then
C/G → S is also a flat morphism of finite type such that any geometric fiber is a reduced
curve and has at most ordinary double points as singularities.

Proof. We may assume that R is complete and that its residue field is algebraically closed.
If C◦ is the open subscheme of normal points of X, then C◦/G → S is a curve with the
required property by virtue of [Sa]. Hence we only have to look at C/G → S around the
image of a non-normal point.

Let x be a non-normal closed point of C. Then the completion ÔC,x of the local ring at x

is R-isomorphic to R[[u, v]]/(uv). Since ÔC/G,π(x)
∼= (ÔC,x)Gx , where π(x) is the image of x

by the quotient, it follows from Lemma A.2.

The following corollary is an immediate consequence.

Corollary A.4. With the same notation as above, suppose f prestable. Then g : C/G→ S
is a prestable curve.
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A.2. Automorphisms of order 2 and 2-admissible coverings. Let X and Y be pre-
stable curves over an algebraically closed field k of characteristic p > 0. We call a finite
k-morphism π : X → Y of degree p over any irreducible component of Y , a p-covering. Let
ι be a k-automorphism of order p of a semistable curve X and suppose that Y := X/〈ι〉 is
a prestable curve of genus 0. If ι acts on an irreducible component Z of X trivially, then
Z ∼= P

1
k. Let us define a finite surjective morphism φ : Y → Y , which is the identity set-

theoretically, characterized by the following condition: if 〈ι〉 acts trivially on an irreducible
component Z, then res(φ) : Z → Z is the relative Frobenius morphism, i.e., the morphism
given by t 7→ tp for a coordinate t, and otherwise, it is the identity. Then π := φ ◦ q is a
p-covering, which we call the standard p-covering arising from ι.

Here we recall the notion of the conductor (c.f. [Ma]). Let π : X → Y be a p-covering
of irreducible curves, y ∈ Y a regular point over which π is ramified. Suppose that there
exists an open subset U ⊂ Y such that π−1(U) → U is a G-torsor, where G is Z/pZ or a
local additive group scheme αp over k of length p. We define integer m(y) as follows. If
G = Z/pZ, then m(y) is the Hasse conductor of the extension OY,y → OX,x, where x ∈ X is
the point over y. If G = αp, then m(y) = −(1 + ordy(du)) where u is a regular function on
U corresponding to the torsor.

Maugeais introduced in [Ma] the notion of p-admissible covering. It consists of suitable
data

(
π : X → Y, {(GZ , uZ)}Z∈Irr(Y )

)
, where π : X → Y is a p-covering, GZ is a certain

group scheme and uZ is a rational function on Z. We do not recall the precise definition
here, but remark that

(
π : X → Y, {(GZ , uZ)}Z∈Irr(Y )

)
as follows is a p-admissible covering:

the data consisting of

(a) a p-covering π : X → Y ,
(b) for each irreducible component Z of Y , a pair (GZ , uZ), where GZ is a group scheme

Z/pZ or αp and uZ is a rational function on Z,

with the following property.

(1) π−1(Yreg) = Xreg, where ∗reg indicates the regular locus.
(2) For each irreducible component Z of Y , there exists an open subset UZ of Z such that

π−1(UZ)→ UZ is a GZ-torsor defined by uZ , i.e., if UZ = Spec(B), it is a GZ-torsor
given by {

B[z]/(zp − z − u) if GZ = Z/pZ

B[z]/(zp − u) if GZ = αp.

(3) Let y be a node that is an intersection point of two irreducible components Z0 and
Z1 of Y , and suppose #π−1(y) = 1. Then mZ0(y) +mZ1(y) = 0, where mZi(y) is the
conductor m of π−1(Zi)→ Zi at y defined above.

Note that our notation is a little different from that in [Ma], where the conductor is defined
for a critical point.

Before proposing the result that we would like to show in this subsection, let us fix our
terminology. We call an irreducible component E of a prestable curve X̃ a (−i)-curve for
i = 1, 2 if E ∼= P

1
k and exactly i nodes of X̃ lie on E. We call a morphism of prestable curves

ρ : X̃ → X a contraction if E is an irreducible component of X̃ such that res(ρ) : E → ρ(E)
is not an isomorphism, then it is an (−i)-curve (i = 1, 2) and ρ(E) is a point. It is well-known
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that if E is a (−2)-curve of a prestable X̃, then we can contract E to a node x and obtain
another prestable curve X. From the viewpoint of X, X̃ is a prestable curve obtained by
replacing a node x with P1

k in a suitable way. We call that modification to obtain X̃ from
X the inverse contraction at x, and call that E an exceptional curve over x.

In the rest of this subsection, we shall give proof of the following result. (It makes sense
in any characteristic, but we deal with the case of char(k) = 2 only.)

Proposition A.5. Let X be a semistable curve over k and ι a k-automorphism of X of
order 2. Then the following statements are equivalent:

(a) (X, ι) is a semistable hyperelliptic curve.
(b) There exist a prestable curve Y of genus 0 and a 2-covering π : X → Y with the fol-

lowing property: there exists a morphism g : X/〈ι〉 → Y such that g is a factorization
of π through X → X/〈ι〉 and is a homeomorphism.

(c) X/〈ι〉 is a prestable curve of genus 0.
(d) There exists a 2-admissible covering π̃ : X̃ → Ỹ with pa(Ỹ ) = 0 such that there

exist a 2-covering π : X → Y that factors through the quotient X → X/〈ι〉, and
contractions ρ : X̃ → X and ρ′ : Ỹ → Y with π ◦ ρ = ρ′ ◦ π̃.

Proof. It is shown in [Ma] that (d) implies (a) (c.f. [Ma, Corollary 43, Theorem 49 and
Proposition 50]), and it is immediate that (a) implies (b) from the definition. Assume (b).
Since X/〈ι〉 and Y are prestable curve and g is a homeomorphism, we have pa(X/〈ι〉) =
pa(Y ) = 0. It only remains to show (c) implies (d), which we do in several steps.

Step 1. Let X0 be the inverse contraction of X at those ι-fixed nodes around which ι acts
as an exchange of the branches. Then we can naturally make ι act on X0 in order 2, so that
X0 does not have an ι-fixed node around which ι acts as the exchange of the branches, and
Y0 := X0/〈ι〉 is a prestable curve of genus 0. Now let π0 : X0 → Y0 be a standard 2-covering.
Note that (π0)−1(Y0,reg) = X0,reg.

Step 2. Let us look at π0 : X0 → Y0. For each irreducible component Z of Y0, we have
one and only one case:

(a) π0 is separable over Z, and only one irreducible component lies over it. We denote
the set of such irreducible components by Isep.

(b) π0 is an inseparable over Z. We denote the set of such irreducible components by
Iins.

(c) (π0)−1(Z) consists of two irreducible components. In this case, it is a disjoint union
of two P1’s. We denote the set of such irreducible components by Iet.

For each Z ∈ Iins, fix a closed point ∞ ∈ Z. Then, over Z \ {∞}, π0 can be regarded as an
α2-torsor given by

k[t]→ k[s, t]/(s2 − t).
Thus, we are in the following situation:

(a) Over Z ∈ Isep, π0 is a Z/2Z-torsor except at the critical values. The conductor at
each critical value is a positive odd number.

(b) Over Z ∈ Iins, π0 is an α2-torsor except at ∞, corresponding to the form dt, where
t is an affine coordinate of Z \ {∞}. In particular, the conductor at each point of
Z \ {∞} is −1.

(c) Over Z ∈ Iet, π0 is a trivial Z/2Z-torsor.
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Step 3. We shall modify π0 so that it satisfies the conditions on the conductors at nodes.
Let y ∈ Y0 be a node and let Z0 and Z1 be the irreducible components with Z0 ∩ Z1 = {y}.

If π0 is étale over y or mZ0(y) +mZ1(y) = 0, we do not perform any modification there.
Otherwise, let x ∈ X0 the node over y. Let Y0,x (resp. X0,y) be the inverse contraction of

Y0 (resp. X0) at y (resp. x) and let Ey (resp. Ex) be the exceptional curve. Let yi (resp.
xi) be the intersection of Zi and Ey (resp. (π0)−1(Zi) and Ey). We fix the coordinate of Ey
(resp. Ex) so that the coordinate of yi (resp. xi) as a point on Ey (resp. Ex), is i (= 0, 1).
Here we use the following lemma.

Lemma A.6 (char(k) = 2). For any odd integers m0 and m1, there exists a 2-covering
π : P1

k → P
1
k such that π(x) = x for x = 0, 1,∞, and that it has an α2-torsor structure

generically corresponding to the form du, where u is a rational function on P1
k with

div(u) = m0[0] +m1[1]− (m0 +m1)[∞].

Proof. Let t be an inhomogeneous coordinate of P1
k and u a rational function as above. Let

π′ : E → P
1
k be the finite morphism from a smooth projective curve E generically defined

by k[t] → k[t, s]/(s2 − u). It is an α2-torsor generically corresponding to du. Since π is
inseparable of degree 2, E is isomorphic to P1

k. Finally, fixing the isomorphism φ : P1
k → E

so that φ(i) = i (i = 0, 1,∞) and putting π := π′ ◦ φ, we obtain our assertion.

Let πx,y : Ex → Ey be the covering in Lemma A.6 for mi = mZi(y). Using that, we
construct a 2-covering X0,x → Y0,y from π0, that is, it coincides with π0 except over Ey and
coincides with above πx,y over Ey. By the construction, if yi is a node of Y0,y sitting on Zi
and Ey, then mZi(yi) +mEy(yi) = 0.

Now let π̃ : X̃ → Ỹ be the 2-covering obtained by the above modification at all such
nodes. Then, it has a structure of 2-admissible covering.

We would like to remark one thing. Proposition 38 in [Ma] for p = 2 says that (a) implies
(d), in which proof, it is essential that X is the specialization of a smooth projective curve of
characteristic 0 with an action of Z/2Z. In our proof, however, we can reach the conclusion
via combinatoric way from (c), which is a condition in terms of geometry over k.

A.3. The moduli stack of hyperelliptic curves. Let AutMg
(Zg)(2) be the full subcate-

gory of AutMg
(Zg) of which objects are the pairs of a stable curve and an automorphism of

order 2. It is a not only close but also open substack.
We shall show that the open substack AutMg

(Zg)(2)\Ig is closed. Let R be a discrete valu-

ation ring, and s (resp. η) the special (resp. generic) point of Spec(R). Let f : C → Spec(R)
be a stable curve of genus g and ι an R-automorphism such that the special fiber of (f, ι)
is a stable hyperelliptic curve. By Proposition A.5, we have pa(Cs/〈ιs〉) = 0. On the
other hand, (C/〈ι〉)s is a prestable curve by Corollary A.4. Since the canonical morphism
Cs/〈ιs〉 → (C/〈ι〉)s is a homeomorphism, we have pa((C/〈ι〉)s) = pa(Cs/〈ιs〉) = 0. Therefore
the generic fiber (C/〈ι〉)η is also of genus 0 by Corollary A.4. Hence, taking account of
(C/〈ι〉)η = Cη/〈ιη〉, we find that (Cη, ιη) is a stable hyperelliptic curve by virtue of Proposi-
tion A.5. That implies AutMg

(Zg)(2) \ Ig is stable under specialization, hence it is closed.

Now let Hg be the connected component of AutMg
(Zg)(2) containing Ig. Then we have

(Hg)red = Ig by the definition. Further, for any hyperelliptic curve (f : C → S, ι), which
is an object of AutMg

(Zg)(2), the hyperelliptic curve (f0 : C0 → S0, ι), where f0 is the
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restriction of S to its reduced structure, is an object of (Hg)red and hence (f : C → S, ι) is
an object of Hg. In summary we have the following theorem.

Theorem A.7. The moduli stack Hg of stable hyperelliptic curves of genus g exists, which
is a Deligne-Mumford algebraic stack proper over Z. It is an open and closed substack of
AutMg

(Zg), and (Hg)red = Ig.
The sheaves λ, δi’s and ξj’s in § 1 are also defined over Hg and so is the invertible sheaf

L := (8g + 4)λ−

gξ0 +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj +

[ g2 ]∑
i=1

4i(g − i)δi

 .

By Theorem 1.7, we can take a positive integer m such that L⊗m is trivial on Ig = (Hg)red.
Finally, we would like to conclude that it is torsion as an invertible sheaf on Hg, so that we
claim the following.

Lemma A.8. Let X be an algebraic stack, L an invertible sheaf on X and N a quasi-
coherent ideal sheaf such that N l = 0 for some l ∈ Z and that N is annihilated by an integer
a. Suppose that L is trivial on the closed substack X0 defined by N . Then L⊗a

e
is trivial for

some e ∈ Z.

Proof. Let π : X → X be an atlas and put Y := X ×X X. Let qi : Y → X be the i-th
projection (i = 1, 2), and q : Y → X the natural morphism. Put also X0 := X ×X X0, and
Y0 := X0 ×X0 X0. Since L is trivial on X0, we have an isomorphism φ : OX0 → L|X0 and
its pull-back π∗(φ). Let ψ : OX → π∗L be a lift of π∗(φ), which is an isomorphism. Then
the ratio q1

∗(ψ)/q2
∗(ψ) gives a unit function on Y , and since q1

∗(ψ) coincides with q2
∗(ψ)

on Y0, we can write q1
∗(ψ)/q2

∗(ψ) = 1 + ε over any affine open subscheme V of Y , where
ε ∈ (q|V )∗N . Therefore, we have, for a large integer e depending only on l and a,

q1
∗(ψ⊗a

e

)/q2
∗(ψ⊗a

e

) = (1 + ε)a
e

= 1.

That implies the isomorphism ψ⊗a
e

: OX → π∗L⊗a
e

descends to an isomorphism OX ∼= L⊗a
e
,

thus we have our assertion.

Since Hg is reduced over Z[1/2] (c.f. Remark 1.4), we can apply the above lemma to L⊗m

and obtain the following theorem.

Theorem A.9. The invertible sheaf

(8g + 4)λ−

gξ0 +

[ g−1
2 ]∑
j=1

2(j + 1)(g − j)ξj +

[ g2 ]∑
i=1

4i(g − i)δi


on Hg is torsion in Pic

(
Hg

)
.
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[Y] K. Yamaki, A direct proof of Moriwaki’s inequality for semistably fibered surfaces and its generaliza-

tion, to appear in J. Math. Kyoto. Univ.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: yamaki@kusm.kyoto-u.ac.jp


