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Abstract

For any Cuntz-Krieger algebra OA, we construct embeddings of OA
into the Cuntz algebra O2 such that the generators of OA are written
as polynomials of those of O2.

1 Introduction

It is well known that there always exists a ∗-embedding of a C∗-algebra
which satisfies some conditions into the Cuntz algebra O2 by [3]. Although,
concrete method of construction of embedding is not known very well. We
construct embeddings of any Cuntz-Krieger algebra into O2 by concrete
polynomials in the following sense.

Let OA be the Cuntz-Krieger algebra by a matrix A.

Theorem 1.1 (Main theorem) Let N ≥ 2. For any N ×N -matrix A which
consists only 0 or 1, there exists a family {t1, . . . , tN} of elements in O2

such that

(i) they satisfy the relations of generators of OA, and

(ii) they are polynomials of generators s1, s2 of O2 and their conjugations
s∗1, s

∗
2.

We show this theorem in section 2( Theorem 2.4). Examples of these gen-
erators and the naturality of our construction are shown in section 3. In
order to construct generators of OA in O2, we prepare several notions in
this section.

For N ≥ 2, let MN ({0, 1}) be the set of all N ×N matrices such that
each element is 0 or 1. For A = (aij) ∈ MN ({0, 1}), OA is the Cuntz-
Krieger algebra by A if OA is a C∗-algebra which is universally generated by
generators s1, . . . , sN and they satisfy the following conditions ([2]):

s∗i si =
N∑
j=1

aijsjs
∗
j (i = 1, . . . , N),

N∑
i=1

sis
∗
i = I. (1.1)
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Specially, when aij = 1 for each i, j = 1, . . . , N , OA is the Cuntz algebra
ON .

Let M ≥ 2, a subset R ⊂ C and generators s1, . . . , sM of OM . Denote
subsets of OM

M(OM ) ≡
⋃

k+l≥1, k,l≥0

si1 · · · siks∗jl · · · s∗j1 ∈ OM :
iα, jβ = 1, . . . ,M,
α = 1, . . . , k,
β = 1, . . . , l,

 ,

OoM (R) ≡
⋃
n≥1

{
n∑
λ=1

bλxλ ∈ OM : xλ ∈M(OM ), bλ ∈ R, λ = 1, . . . , n

}
.

In this paper, any homomorphism and embedding are assumed unital. Gen-
erators of OA means always those which satisfies (1.1).

Definition 1.2 (i) An element in OoM (R) (M(OM )) is called a R-polynomial
(a monomial) in OM .

(ii) A ∗-homomorphism Φ : OA → OM is polynomial type over R (mono-
mial type) if Φ(t1), . . . ,Φ(tN ) are in OoM (R) (M(OM )) where t1, . . . , tN
are generators of OA.

(iii) A ∗-embedding Φ : OA ↪→ OM is polynomial type over R (monomial
type) if Φ is polynomial type over R(monomial type) as ∗-homomorphism.

(iv) OA is R-polynomially (monomially) embedded into OM if there ex-
ists ∗-embedding from OA into OM which is polynomial type over
R(monomial type).

(v) x1, . . . , xN are R-polynomial (monomial) generators of OA in OM if
x1, . . . , xN are in OoM (R) (M(OM )) and satisfy (1.1)

Remark 1.3 For a non commutative polynomial f ∈ C[x1, . . . , xM , y1, . . . , yM ],
it is natural to regard f(s1, . . . , sM , s

∗
1, . . . , s

∗
M ) as a polynomial in OM with

respect to generators s1, . . . , sM . But it is reasonable to regard an element
in OoM (R) as a polynomial in OM because such f(s1, . . . , sM , s

∗
1, . . . , s

∗
M ) is

always in O0
M (R) by the relations (1.1).

Specially, if R is a subring of C, then OoM (R) is a subalgebra of OM over
R. Furthermore if R is closed under complex conjugation, then OoM (R)
is a ∗-subalgebra of OM over R. Note OoM ≡ OoM (C) is dense in OM
and it is regarded as the (non commutative)polynomial ring of generators
s1, . . . , sM , s

∗
1, . . . , s

∗
M over C under relations of OM .
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In subsection 2.1 in [1], there are many polynomial embeddings among
Cuntz algebras. We review known embeddings associated our article from
[1].

Lemma 1.4 (i) For each N ≥ 2, ON can be monomially embedded into
O2.

(ii) For each M ∈ {(N−1)k+1 : k ≥ 1}, OM can be monomially embedded
into ON .

Proof. (i) Let s1, s2 be generators of O2. The case N = 2 is trivial. Assume
N ≥ 3. Put 

t1 ≡ s1,

ti ≡ (s2)i−1s1 (i = 2, . . . , N − 1),

tN ≡ (s2)N−1.

(1.2)

Then t1, . . . , tN satisfy relations of generators of ON and they belong to
M(O2).
(ii) Let s1, . . . , sN be generators of ON . The case M = N is trivial. Assume
that M = (N − 1)k + 1, k ≥ 2. Put

ti ≡ si (i = 1, . . . , N − 1),

t(N−1)l+i ≡ (sN )lsi

(
l = 1, . . . , k − 1,
i = 1, . . . , N − 1

)
,

tM ≡ (sN )k.

(1.3)

Then t1, . . . , tM satisfy relations of generators of OM and they belong to
M(ON ).

Corollary 1.5 For each n ≥ 1, there exists a monomial embedding of O2n+1

into O3.

Note that the choice of polynomial embedding of ON into O2 is not
unique. For example, we have the followings: An embedding of O4 into O2:

t1 ≡ s1, t2 ≡ s2s2, t3 ≡ s2s1s2, t4 ≡ s2s1s1. (1.4)
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An embedding of O5 into O2:

t1 ≡ s1s1, t2 ≡ s1s2s1, t3 ≡ s1s2s2, t4 ≡ s2s1, t5 ≡ s2s2. (1.5)

We illustrate our construction of embeddings among Cuntz algebras in
Lemma 1.4 (i). Assume that O2 is represented on a Hilbert space H. Then
we have an orthogonal decomposition {Hi}Ni=1 of H by

H1 ≡ s1H, H2 ≡ s2s1H, . . . ,HN−1 ≡ sN−2
2 s1H, HN ≡ sN−1

2 H.

H

H1 K1

H1 H2 K2

H1 H2 · · · HN

⇓

⇓

⇓

⇓

...

where

Ki ≡

 i⊕
j=1

Hj

⊥ (i = 1, . . . , N − 1).

2 Construction of polynomial generators of OA in
OM

We prepare several tools associated with a matrix A.
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Fix A = (aij) ∈MN ({0, 1}). Put

Bi ≡ { j ∈ {1, . . . , N} : aij = 1 } , Mi ≡
N∑
j=1

aij ,

qi : Bi → {1, . . . ,Mi}; qi(j) ≡ #{k ∈ Bi : k ≤ j}

for i = 1, . . . , N . Note that qi is bijective for each i = 1, . . . , N .

Definition 2.1 {(Mi, qi, Bi)}Ni=1 is called the (canonical)A-coordinate. {Mi}Ni=1

is called the set of row sums of A.

Lemma 2.2 Let A = (aij) ∈MN ({0, 1}) and {(Mi, qi, Bi)}Ni=1 the A-coordinate.
Assume that a unital C∗-algebra B satisfies the following condition:

B contains ON and OMi for each i = 1, . . . , N when Mi ≥ 2 as
C∗-subalgebras with common unit.

(2.1)

Let {s1, . . . , sN} be generators of ON and {ti,j : j = 1, . . . ,Mi} those of OMi

for i = 1, . . . , N as elements in B, respectively. Specially, we put O1 = CI
and ti,1 = I when Mi = 1. Under these assumptions, put

xi ≡
N∑
j=1

aijsiti,qi(j)s
∗
j . (2.2)

Then {xi}Ni=1 satisfies the condition (1.1) with respect to A.

Proof. Denote

Fi ≡
N∑
j=1

aijti,qi(j)s
∗
j (i = 1, . . . , N).

Then xi = siFi and the followings hold:

F ∗i Fi =
N∑
j=1

aijsjs
∗
j , FiF

∗
i =

N∑
j=1

aijti,qi(j)t
∗
i,qi(j)

= I (i = 1, . . . , N).

We show the condition (1.1) by direct computation.

x∗ixi = F ∗i s
∗
i siFi =

N∑
j=1

aijsjs
∗
j , xix

∗
i = siFiF

∗
i s
∗
i = sis

∗
i
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for each i = 1, . . . , N . Hence we have the condition (1.1):

x∗ixi =
N∑
j=1

aijxjx
∗
j ,

N∑
i=1

xix
∗
i = I.

Note that Lemma 2.2 holds when the choice of qi are replaced as any bijection
from Bi to {1, . . . ,Mi} for each i = 1, . . . , N , too.

Corollary 2.3 Let N ≥ 2. For A ∈MN ({0, 1}) and the set {Mi}Ni=1 of row
sums of A, there exists a ∗-homomorphism from OA to B if B is a unital
C∗-algebra which satisfies (2.1).

Proof. By Lemma 2.2, it holds immediately.

Let Zn≥0 ≡ {n ∈ Z : n ≥ 0} be the set of all non-negative integers. Recall
the definition of properties of embeddings in Definition 1.2.

Theorem 2.4 For any A ∈ MN ({0, 1}), there exists a Zn≥0-polynomial
homomorphism from OA to O2. Specially if OA is simple, then there exists
a Zn≥0-polynomial embedding of OA into O2.

Proof. For any M ≥ 2, there exists Zn≥0-polynomial embedding of OM
into O2 by Lemma 1.4 (i). Furthermore O2 satisfies (2.1) in Lemma 2.2
such that si, ti,j in (2.2) are written as monomials of O2. Since the form of
xi in (2.2), x1, . . . , xN are written by Zn≥0-polynomials in O2. Therefore
the first statement holds. Specially, if OA is simple, this homomorphism is
injective automatically. Hence the second statement follows.

Theorem 1.1 is shown by the above theorem. The embedding in Theorem
2.4 depends on the choice of embeddings of OM into O2.

Corollary 2.5 Let A ∈MN ({0, 1}), the set {Mi}Ni=1 of row sums of A and
M ≥ 2.

(i) If there is the following inclusion {N,Mi : i = 1, . . . , N} ⊂ {(M −
1)k + 1 : k ≥ 0}, then there exists a Zn≥0-polynomial homomorphism
from OA to OM .

(ii) Assume that Mi and N are odd for each i = 1, . . . , N . Then there
exists a Zn≥0-polynomial homomorphism from OA to O3.
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Proof. (i) It follows from Corollary 2.3, the form of generators in (2.2)
and Lemma 1.4 (ii). (ii) By Corollary 1.5, O3 satisfies the condition in (i)
with respect to all odd number N,Mi, i = 1, . . . , N . Hence there are Zn≥0-
polynomial generators of OA in O3.

We illustrate our construction of embeddings as a decomposition of
Hilbert space by partial isometries, where we assume that B in Lemma 2.2 is
represented on an infinite dimensional Hilbert space H. Fix A ∈MN ({0, 1})
and {Mi}Ni=1 is the set of row sums of A.

(i) At first, decompose a Hilbert space H into N -parts R1, . . . , RN as infi-
nite dimensional Hilbert subspaces of H. This is the role of s∗1, . . . , s

∗
N

in (2.2).

(ii) Next, choose Mi-number of components from R1, . . . , RN by the rule
associated with a matrix A and make a new subspace Di of H for each
i = 1, . . . , N , respectively. This process is executed by ti,qi(j) and the
sum in (2.2).

(iii) At the end, we maps Di into Ri by si for i = 1, . . . , N in (2.2), respec-
tively.

By these procedure, we have a partial isometry xi : Di → Ri in (2.2) for
i = 1, . . . , N .

R1 RNRjq q q q q q

Di Rj

R1 RNRiq q q q q q
⇓

⇓ ( when aij = 1)

=
⊕

j:aij=1
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3 Examples

Example 3.1 Assume that A = (aij) ∈ MN ({0, 1}) satisfies aij = 1 for
each i, j = 1, . . . , N . In this case, OA ∼= ON . Then the A-coordinate
{(Mi, qi, Bi)}Ni=1 is given by (Mi, qi, Bi) = (N, id{1,...,N}, {1, . . . , N}) for each
i = 1, . . . , N . By Corollary 2.5 (i), we obtain an embedding of ON into ON .
That is, this is an endomorphism of ON .

Let s1, . . . , sN be generators of ON . Hence uj ≡ ti,j = sj for i, j =
1, . . . , N . Hence Zn≥0-polynomial embedding of ON ∼= OA into ON is given
by

xi =
N∑
j=1

aijuiti,qi(j)u
∗
j =

N∑
j=1

sisjs
∗
j = si (i = 1, . . . , N).

Therefore this embedding is the identity map on ON . In this sense, the
method of construction of embeddings by Corollary 2.5 is natural.

Example 3.2 If A =
(

1 1
1 0

)
, then M1 = 2, M2 = 1, B1 = {1, 2}, B2 =

{1}, q1 = id{1,2} and q2 = id{1}. Let s1, s2 be generators of O2. Put

ui = si, t1,i = si (i = 1, 2), t2,1 = I.

Then we have the well known following embedding of OA into O2:

x1 = s1, x2 = s2s
∗
1.

This correspondence is invertible. Hence OA ∼= O2.

Example 3.3 We show cases of matrices in p 268, [2]. For a matrix

A1 =

 0 0 1
1 0 1
1 1 1

 ,
consider the embedding of OA1 into O2. Let s1, s2 be generators of O2.
(Mi)3

i=1 = (1, 2, 3), (Bi)3
i=1 = ({3}, {1, 3}, {1, 2, 3}), q1(3) = 1, q2(1) = 1,

q2(3) = 2, q3 = id. u1 = s1, u2 = s2s1, u3 = s2
2. From these preparations,

x1 = u1u
∗
3 = s1s

∗
2s
∗
2,

x2 = u2(s1u
∗
1 + s2u

∗
3) = s2s1(s1s

∗
1 + s2s

∗
2s
∗
2),

x3 = u3 = s2
2.

(3.1)
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Note OA1
∼= O4. In fact,

v1 ≡ x1x3, v2 ≡ x3, v3 ≡ x2x3, v4 ≡ x2x1x3 (3.2)

satisfy the relations of generators of O4. On the contrary

x1 = v1v
∗
2, x2 = v4v

∗
1 + v3v

∗
2, x3 = v2.

This shows (3.2) is an isomorphism from OA1 to O4. If we denote ψ, ϕc, φ
as homomorphisms in (1.4), (3.1), (3.2), respectively, then ψ ◦ φ = ϕc.

In the same way, we have the followings:

A2 =

 0 1 1
1 0 1
1 1 1

 ;



x1 = s1(s1s
∗
1s
∗
2 + s2s

∗
2s
∗
2) = s1s

∗
2,

x2 = s2s1(s1s
∗
1 + s2s

∗
2s
∗
2),

x3 = s2
2,

(3.3)

A3 =

 0 1 1
1 0 1
1 1 0

 ;



x1 = s1s
∗
2,

x2 = s2s1(s1s
∗
1 + s2s

∗
2s
∗
2),

x3 = s2
2(s1s

∗
1 + s2s

∗
1s
∗
2),

(3.4)

A4 =

 1 0 1
0 1 1
1 1 1

 ;



x1 = s1(s1s
∗
1 + s2s

∗
2s
∗
2),

x2 = s2s1(s1s
∗
1s
∗
2 + s2s

∗
2s
∗
2) = s2s1s

∗
2,

x3 = s2
2.

(3.5)

Note that OA2
∼= O5 ⊗M2(C). In fact, for x1, x2, x3 in (3.3), put t1, . . . , t5

by 

t1 = x1x2x1x
∗
1 + x2x1,

t2 = x1x2x3x1x
∗
1 + x2x3x1,

t3 = x1x2x3x
∗
1 + x2x3x

∗
1x1,

t4 = x1x3x1x
∗
1 + x3x1,

t5 = x1x3x
∗
1 + x3x

∗
1x1.

(3.6)
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Then t1, . . . , t5 satisfy the relations of O5. Furthermore [ti, x1] = 0 = [t∗i , x1]
for each i = 1, . . . , 5. Hence C∗ < {t1, . . . , t5, x1} >∼= O5 ⊗M2(C). On the
contrary,

x2 = x∗1x1(t1x∗1 + (t2x∗1 + t3)x∗3), x3 = x∗1x1t4.

Hence C∗ < {t1, . . . , t5, x1} >= C∗ < {x1, x2, x3} >= ϕ
′
c(OA2) where ϕ

′
c is

the embedding which is defined in (3.3). Since OA2 is simple, we have the
isomorphism from OA2 to O5 ⊗M2(C).

Define a map φ
′

: O5 → ϕ
′
c(OA2) ⊂ O2 by (3.6). If ρ, ψ

′
are the

canonical endomorphism of O2 and the embedding in (1.5) respectively,
then ρ ◦ ψ′ = φ

′
.

Example 3.4 Put A = (aij) ∈ MN ({0, 1}) by aij = 0 (i < j), aij = 1 (i ≥
j). The A-coordinate {(Mi, qi, Bi)}Ni=1 is given by Mi = i, Bi = {1, . . . , i},
qi = idBi for each i = 1, . . . , N . Then

t1,1 = I, tj,j = sj−1
2 (2 ≤ j ≤ N),

tj,i = si−1
2 s1 (2 ≤ j ≤ N, i = 1, . . . , j − 1),

xj = tN,j

 j∑
i=1

tj,it
∗
N,i

 .
Hence 

x1 = s1s
∗
1,

x2 = s2s1(s1s
∗
1 + s2s

∗
1s
∗
2),

x3 = s2
2s1(s1s

∗
1 + s2s1s

∗
1s
∗
2 + s2

2s
∗
1(s∗2)2),

...
...

xN−1 = sN−2
2 s1(s1s

∗
1 + · · ·+ sN−2

2 s∗1(s∗2)N−2),

xN = sN−1
2 .
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For example, the case N = 4,

A =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ;



x1 = s1s
∗
1,

x2 = s2s1(s1s
∗
1 + s2s

∗
1s
∗
2),

x3 = s2
2s1(s1s

∗
1 + s2s1s

∗
1s
∗
2 + s2

2s
∗
1(s∗2)2),

x4 = s3
2.

Example 3.5 Assume that N ≥ 3 and put A = (aij) ∈MN ({0, 1}) by

aNN = 0 and aij = 1 when (i, j) 6= (N,N).

Then Mi = N , Bi = B ≡ {1, . . . , N}, qi = idB for i = 1, . . . , N − 1,
MN = N − 1, BN = {1, . . . , N − 1}, qN = idBN . Let s1, s2 be generators of
O2. Put

u1 ≡ s1, u2 ≡ s2s1, u3 ≡ s2s2s1, . . . , uN−1 ≡ sN−2
2 s1, uN ≡ sN−1

2 ,

ti,j ≡ uj (i = 1, . . . , N − 1, j = 1, . . . , N),

tN,j ≡ uj (j = 1, . . . , N − 2), tN,N−1 ≡ sN−2
2 .

Note u1, . . . , uN are generators of ON and tN,1, . . . , tN,N−1 are those of
ON−1. Then

xi = ui = si−1
2 s1 (i = 1, . . . , N − 1),

xN = uN

N−2∑
j=1

tN,jt
∗
N,j + tN,N−1u

∗
N−1



= sN−1
2

N−2∑
j=1

sj−1
2 s1s

∗
1(s∗2)j−1 + sN−2

2 s∗1(s∗2)N−2


where we use 0-th power s0

i ≡ I for i = 1, . . . , N . Hence

x1 = s1, x2 = s2s1, . . . , xN−1 = sN−2
2 s1, xN = sN−1

2 FN

where

FN ≡
N−2∑
j=1

sj−1
2 s1s

∗
1(s∗2)j−1 + sN−2

2 s∗1(s∗2)N−2.
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For example, if N = 3, then

A =

 1 1 1
1 1 1
1 1 0

 ;



x1 = s1,

x2 = s2s1,

x3 = s1s
∗
1 + s3

2s
∗
1s
∗
2.

Example 3.6 We show an example of Corollary 2.5 (ii) when N = 5. Put

A =


1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
1 0 1 0 1
1 0 1 0 1

 .

Then the A-coordinate {(Mi, qi, Bi)}5i=1 becomes as follows:

(Mi)5
i=1 = (3, 3, 5, 3, 3),

(Bi)5
i=1 = ({1, 2, 3}, {1, 2, 3}, {1, 2, 3, 4, 5}, {1, 3, 5}, {1, 3, 5}) ,

q1 = q2 = id{1,2,3}, q3 = id{1,2,3,4,5}, q4(2n−1) = n (n = 1, 2, 3), q5 = q4.

Let s1, s2, s3 be generators of O3. Define

ti,1 ≡ s1, ti,1 ≡ s2, ti,1 ≡ s3 (i = 1, 2, 4, 5),

t3,1 ≡ s1, t3,2 ≡ s2, t3,3 ≡ s3s1, t3,4 ≡ s3s2, t3,5 ≡ s3s3,

ui ≡ t3,i (i = 1, . . . , 5).

Under these preparations, define generators of OA by

xi =
5∑
j=1

aijuiti,qi(j)u
∗
j (i = 1, 2, 3, 4, 5).

Then we have 

x1 = s1 (s1s
∗
1 + s2s

∗
2 + s3s1s

∗
3) ,

x2 = s2 (s1s
∗
1 + s2s

∗
2 + s3s1s

∗
3) ,

x3 = s3s1,

x4 = s3s2 (s1s
∗
1 + s2s1s

∗
3 + s3s3s

∗
3) ,

x5 = s3s3 (s1s
∗
1 + s2s1s

∗
3 + s3s3s

∗
3) .
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In this case, we have a polynomial ∗-homomorphism from OA to O3 with
coefficient 1.

Example 3.7 Let A ∈M7({0, 1}) be

A =



0 1 0 1 0 1 1
1 0 1 0 1 1 0
1 1 1 1 1 1 1
1 1 1 1 0 0 0
1 1 1 1 1 1 1
0 0 0 1 1 1 1
1 0 0 0 0 0 0


.

Then the A-coordinate {(Mi, qi, Bi)}7i=1 becomes as follows:

(Mi)7
i=1 = (4, 4, 7, 4, 7, 4, 1),

(Bi)7
i=1 =

(
{2, 4, 6, 7}, {1, 3, 5, 6}, {1, . . . , 7}, {1, 2, 3, 4},
{1, . . . , 7}, {4, 5, 6, 7}, {1}

)
and {qi}7i=1 is taken as Definition 2.1. Since {Mi}7i=1 = {1, 4, 7} ⊂ {3k +
1 : k ≥ 0}, there is a homomorphism from OA to O4. Let s1, . . . , s4 be
generators of O4. Put

ui ≡ si (i = 1, 2, 3), u3+i ≡ s4si (i = 1, 2, 3, 4).

Then polynomial generators of OA in O4 are given as follows:

x1 = s1(s1s
∗
2 + s2s

∗
1s
∗
4 + s3s

∗
3s
∗
4 + s4(s∗4)2),

x2 = s2(s1s
∗
1 + s2s

∗
3 + s3s2s

∗
4 + s4(s∗4)2),

x3 = s3,

x4 = s4s1(s1s
∗
1 + s2s

∗
2 + s3s

∗
3 + s4s

∗
1s
∗
4),

x5 = s4s2,

x6 = s4s3(s1s
∗
1s
∗
4 + s2s

∗
2s
∗
4 + s3s

∗
3s
∗
4 + s4(s∗4)2) = s4s3s

∗
4,

x7 = s2
4s1s

∗
1.

Acknowledgement: We would like to thank Prof.Matsumoto for his nice
explanation of Cuntz-Krieger algebra ([4]) for us.
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