Polynomial embedding of the Cuntz-Krieger algebra into the Cuntz algebra

Katsunori Kawamura Research Institute for Mathematical Sciences Kyoto University, Kyoto 606-8502, Japan

Abstract

For any Cuntz-Krieger algebra \mathcal{O}_A , we construct embeddings of \mathcal{O}_A into the Cuntz algebra \mathcal{O}_2 such that the generators of \mathcal{O}_A are written as polynomials of those of \mathcal{O}_2 .

1 Introduction

It is well known that there always exists a *-embedding of a C*-algebra which satisfies some conditions into the Cuntz algebra \mathcal{O}_2 by [3]. Although, concrete method of construction of embedding is not known very well. We construct embeddings of any Cuntz-Krieger algebra into \mathcal{O}_2 by concrete polynomials in the following sense.

Let \mathcal{O}_A be the Cuntz-Krieger algebra by a matrix A.

Theorem 1.1 (Main theorem) Let $N \ge 2$. For any $N \times N$ -matrix A which consists only 0 or 1, there exists a family $\{t_1, \ldots, t_N\}$ of elements in \mathcal{O}_2 such that

- (i) they satisfy the relations of generators of \mathcal{O}_A , and
- (ii) they are polynomials of generators s₁, s₂ of O₂ and their conjugations s^{*}₁, s^{*}₂.

We show this theorem in section 2(Theorem 2.4). Examples of these generators and the naturality of our construction are shown in section 3. In order to construct generators of \mathcal{O}_A in \mathcal{O}_2 , we prepare several notions in this section.

For $N \geq 2$, let $M_N(\{0,1\})$ be the set of all $N \times N$ matrices such that each element is 0 or 1. For $A = (a_{ij}) \in M_N(\{0,1\})$, \mathcal{O}_A is the Cuntz-Krieger algebra by A if \mathcal{O}_A is a C*-algebra which is universally generated by generators s_1, \ldots, s_N and they satisfy the following conditions ([2]):

$$s_i^* s_i = \sum_{j=1}^N a_{ij} s_j s_j^* \quad (i = 1, \dots, N), \quad \sum_{i=1}^N s_i s_i^* = I.$$
 (1.1)

Specially, when $a_{ij} = 1$ for each i, j = 1, ..., N, \mathcal{O}_A is the Cuntz algebra \mathcal{O}_N .

Let $M \geq 2$, a subset $R \subset \mathbf{C}$ and generators s_1, \ldots, s_M of \mathcal{O}_M . Denote subsets of \mathcal{O}_M

$$\mathcal{M}(\mathcal{O}_M) \equiv \bigcup_{k+l \ge 1, \, k, l \ge 0} \left\{ s_{i_1} \cdots s_{i_k} s_{j_l}^* \cdots s_{j_1}^* \in \mathcal{O}_M : \begin{array}{c} i_\alpha, j_\beta = 1, \dots, M, \\ \alpha = 1, \dots, k, \\ \beta = 1, \dots, l, \end{array} \right\},$$
$$\mathcal{O}_M^o(R) \equiv \bigcup_{n \ge 1} \left\{ \sum_{\lambda=1}^n b_\lambda x_\lambda \in \mathcal{O}_M : x_\lambda \in \mathcal{M}(\mathcal{O}_M), \, b_\lambda \in R, \, \lambda = 1, \dots, n \right\}.$$

In this paper, any homomorphism and embedding are assumed unital. Generators of \mathcal{O}_A means always those which satisfies (1.1).

- **Definition 1.2** (i) An element in $\mathcal{O}_M^o(R)$ ($\mathcal{M}(\mathcal{O}_M)$) is called a *R*-polynomial (a monomial) in \mathcal{O}_M .
 - (ii) $A *-homomorphism \Phi : \mathcal{O}_A \to \mathcal{O}_M$ is polynomial type over R (monomial type) if $\Phi(t_1), \ldots, \Phi(t_N)$ are in $\mathcal{O}_M^o(R)$ ($\mathcal{M}(\mathcal{O}_M)$) where t_1, \ldots, t_N are generators of \mathcal{O}_A .
- (iii) $A \ast$ -embedding $\Phi : \mathcal{O}_A \hookrightarrow \mathcal{O}_M$ is polynomial type over R (monomial type) if Φ is polynomial type over R(monomial type) as \ast -homomorphism.
- (iv) \mathcal{O}_A is *R*-polynomially (monomially) embedded into \mathcal{O}_M if there exists *-embedding from \mathcal{O}_A into \mathcal{O}_M which is polynomial type over R(monomial type).
- (v) x_1, \ldots, x_N are *R*-polynomial (monomial) generators of \mathcal{O}_A in \mathcal{O}_M if x_1, \ldots, x_N are in $\mathcal{O}_M^o(R)$ ($\mathcal{M}(\mathcal{O}_M)$) and satisfy (1.1)

Remark 1.3 For a non commutative polynomial $f \in \mathbf{C}[x_1, \ldots, x_M, y_1, \ldots, y_M]$, it is natural to regard $f(s_1, \ldots, s_M, s_1^*, \ldots, s_M^*)$ as a polynomial in \mathcal{O}_M with respect to generators s_1, \ldots, s_M . But it is reasonable to regard an element in $\mathcal{O}_M^o(R)$ as a polynomial in \mathcal{O}_M because such $f(s_1, \ldots, s_M, s_1^*, \ldots, s_M^*)$ is always in $\mathcal{O}_M^0(R)$ by the relations (1.1).

Specially, if R is a subring of \mathbf{C} , then $\mathcal{O}_M^o(R)$ is a subalgebra of \mathcal{O}_M over R. Furthermore if R is closed under complex conjugation, then $\mathcal{O}_M^o(R)$ is a *-subalgebra of \mathcal{O}_M over R. Note $\mathcal{O}_M^o \equiv \mathcal{O}_M^o(\mathbf{C})$ is dense in \mathcal{O}_M and it is regarded as the (non commutative)polynomial ring of generators $s_1, \ldots, s_M, s_1^*, \ldots, s_M^*$ over \mathbf{C} under relations of \mathcal{O}_M .

In subsection 2.1 in [1], there are many polynomial embeddings among Cuntz algebras. We review known embeddings associated our article from [1].

Lemma 1.4 (i) For each $N \ge 2$, \mathcal{O}_N can be monomially embedded into \mathcal{O}_2 .

(ii) For each $M \in \{(N-1)k+1 : k \ge 1\}$, \mathcal{O}_M can be monomially embedded into \mathcal{O}_N .

Proof. (i) Let s_1, s_2 be generators of \mathcal{O}_2 . The case N = 2 is trivial. Assume $N \ge 3$. Put

$$\begin{cases} t_1 \equiv s_1, \\ t_i \equiv (s_2)^{i-1} s_1 \quad (i = 2, \dots, N-1), \\ t_N \equiv (s_2)^{N-1}. \end{cases}$$
(1.2)

Then t_1, \ldots, t_N satisfy relations of generators of \mathcal{O}_N and they belong to $\mathcal{M}(\mathcal{O}_2)$.

(ii) Let s_1, \ldots, s_N be generators of \mathcal{O}_N . The case M = N is trivial. Assume that $M = (N-1)k + 1, k \ge 2$. Put

$$\begin{aligned} t_i &\equiv s_i \qquad (i = 1, \dots, N - 1), \\ t_{(N-1)l+i} &\equiv (s_N)^l s_i \qquad \left(\begin{array}{c} l = 1, \dots, k - 1, \\ i = 1, \dots, N - 1 \end{array}\right), \\ t_M &\equiv (s_N)^k. \end{aligned}$$
 (1.3)

Then t_1, \ldots, t_M satisfy relations of generators of \mathcal{O}_M and they belong to $\mathcal{M}(\mathcal{O}_N)$.

Corollary 1.5 For each $n \ge 1$, there exists a monomial embedding of \mathcal{O}_{2n+1} into \mathcal{O}_3 .

Note that the choice of polynomial embedding of \mathcal{O}_N into \mathcal{O}_2 is not unique. For example, we have the followings: An embedding of \mathcal{O}_4 into \mathcal{O}_2 :

$$t_1 \equiv s_1, \quad t_2 \equiv s_2 s_2, \quad t_3 \equiv s_2 s_1 s_2, \quad t_4 \equiv s_2 s_1 s_1.$$
 (1.4)

An embedding of \mathcal{O}_5 into \mathcal{O}_2 :

$$t_1 \equiv s_1 s_1, \quad t_2 \equiv s_1 s_2 s_1, \quad t_3 \equiv s_1 s_2 s_2, \quad t_4 \equiv s_2 s_1, \quad t_5 \equiv s_2 s_2.$$
 (1.5)

We illustrate our construction of embeddings among Cuntz algebras in Lemma 1.4 (i). Assume that \mathcal{O}_2 is represented on a Hilbert space \mathcal{H} . Then we have an orthogonal decomposition $\{\mathcal{H}_i\}_{i=1}^N$ of \mathcal{H} by

$$\mathcal{H}_1 \equiv s_1 \mathcal{H}, \quad \mathcal{H}_2 \equiv s_2 s_1 \mathcal{H}, \dots, \mathcal{H}_{N-1} \equiv s_2^{N-2} s_1 \mathcal{H}, \quad \mathcal{H}_N \equiv s_2^{N-1} \mathcal{H}.$$

where

$$\mathcal{K}_i \equiv \left(\bigoplus_{j=1}^i \mathcal{H}_j\right)^{\perp} \quad (i = 1, \dots, N-1).$$

We prepare several tools associated with a matrix A.

Fix $A = (a_{ij}) \in M_N(\{0, 1\})$. Put

$$B_{i} \equiv \{ j \in \{1, \dots, N\} : a_{ij} = 1 \}, \quad M_{i} \equiv \sum_{j=1}^{N} a_{ij},$$

$$q_i: B_i \to \{1, \dots, M_i\}; q_i(j) \equiv \#\{k \in B_i : k \le j\}$$

for i = 1, ..., N. Note that q_i is bijective for each i = 1, ..., N.

Definition 2.1 $\{(M_i, q_i, B_i)\}_{i=1}^N$ is called the (canonical)A-coordinate. $\{M_i\}_{i=1}^N$ is called the set of row sums of A.

Lemma 2.2 Let $A = (a_{ij}) \in M_N(\{0,1\})$ and $\{(M_i, q_i, B_i)\}_{i=1}^N$ the A-coordinate. Assume that a unital C^{*}-algebra \mathcal{B} satisfies the following condition:

 \mathcal{B} contains \mathcal{O}_N and \mathcal{O}_{M_i} for each i = 1, ..., N when $M_i \ge 2$ as C^{*}-subalgebras with common unit. (2.1)

Let $\{s_1, \ldots, s_N\}$ be generators of \mathcal{O}_N and $\{t_{i,j} : j = 1, \ldots, M_i\}$ those of \mathcal{O}_{M_i} for $i = 1, \ldots, N$ as elements in \mathcal{B} , respectively. Specially, we put $\mathcal{O}_1 = \mathbf{C}I$ and $t_{i,1} = I$ when $M_i = 1$. Under these assumptions, put

$$x_{i} \equiv \sum_{j=1}^{N} a_{ij} s_{i} t_{i,q_{i}(j)} s_{j}^{*}.$$
(2.2)

Then $\{x_i\}_{i=1}^N$ satisfies the condition (1.1) with respect to A.

Proof. Denote

$$F_i \equiv \sum_{j=1}^{N} a_{ij} t_{i,q_i(j)} s_j^* \quad (i = 1, \dots, N).$$

Then $x_i = s_i F_i$ and the followings hold:

$$F_i^* F_i = \sum_{j=1}^N a_{ij} s_j s_j^*, \quad F_i F_i^* = \sum_{j=1}^N a_{ij} t_{i,q_i(j)} t_{i,q_i(j)}^* = I \quad (i = 1, \dots, N).$$

We show the condition (1.1) by direct computation.

$$x_i^* x_i = F_i^* s_i^* s_i F_i = \sum_{j=1}^N a_{ij} s_j s_j^*, \quad x_i x_i^* = s_i F_i F_i^* s_i^* = s_i s_i^*$$

for each i = 1, ..., N. Hence we have the condition (1.1):

$$x_i^* x_i = \sum_{j=1}^N a_{ij} x_j x_j^*, \quad \sum_{i=1}^N x_i x_i^* = I.$$

T

Note that Lemma 2.2 holds when the choice of q_i are replaced as any bijection from B_i to $\{1, \ldots, M_i\}$ for each $i = 1, \ldots, N$, too.

Corollary 2.3 Let $N \ge 2$. For $A \in M_N(\{0,1\})$ and the set $\{M_i\}_{i=1}^N$ of row sums of A, there exists a *-homomorphism from \mathcal{O}_A to \mathcal{B} if \mathcal{B} is a unital C^* -algebra which satisfies (2.1).

Proof. By Lemma 2.2, it holds immediately.

Let $\mathbf{Z}_{n\geq 0} \equiv \{n \in \mathbf{Z} : n \geq 0\}$ be the set of all non-negative integers. Recall the definition of properties of embeddings in Definition 1.2.

Theorem 2.4 For any $A \in M_N(\{0,1\})$, there exists a $\mathbb{Z}_{n\geq 0}$ -polynomial homomorphism from \mathcal{O}_A to \mathcal{O}_2 . Specially if \mathcal{O}_A is simple, then there exists a $\mathbb{Z}_{n\geq 0}$ -polynomial embedding of \mathcal{O}_A into \mathcal{O}_2 .

Proof. For any $M \geq 2$, there exists $\mathbf{Z}_{n\geq 0}$ -polynomial embedding of \mathcal{O}_M into \mathcal{O}_2 by Lemma 1.4 (i). Furthermore \mathcal{O}_2 satisfies (2.1) in Lemma 2.2 such that $s_i, t_{i,j}$ in (2.2) are written as monomials of \mathcal{O}_2 . Since the form of x_i in (2.2), x_1, \ldots, x_N are written by $\mathbf{Z}_{n\geq 0}$ -polynomials in \mathcal{O}_2 . Therefore the first statement holds. Specially, if \mathcal{O}_A is simple, this homomorphism is injective automatically. Hence the second statement follows.

Theorem 1.1 is shown by the above theorem. The embedding in Theorem 2.4 depends on the choice of embeddings of \mathcal{O}_M into \mathcal{O}_2 .

Corollary 2.5 Let $A \in M_N(\{0,1\})$, the set $\{M_i\}_{i=1}^N$ of row sums of A and $M \ge 2$.

- (i) If there is the following inclusion {N, M_i : i = 1,..., N} ⊂ {(M 1)k + 1 : k ≥ 0}, then there exists a Z_{n≥0}-polynomial homomorphism from O_A to O_M.
- (ii) Assume that M_i and N are odd for each i = 1,...,N. Then there exists a Z_{n≥0}-polynomial homomorphism from O_A to O₃.

Proof. (i) It follows from Corollary 2.3, the form of generators in (2.2) and Lemma 1.4 (ii). (ii) By Corollary 1.5, \mathcal{O}_3 satisfies the condition in (i) with respect to all odd number $N, M_i, i = 1, \ldots, N$. Hence there are $\mathbf{Z}_{n\geq 0}$ -polynomial generators of \mathcal{O}_A in \mathcal{O}_3 .

We illustrate our construction of embeddings as a decomposition of Hilbert space by partial isometries, where we assume that \mathcal{B} in Lemma 2.2 is represented on an infinite dimensional Hilbert space \mathcal{H} . Fix $A \in M_N(\{0,1\})$ and $\{M_i\}_{i=1}^N$ is the set of row sums of A.

- (i) At first, decompose a Hilbert space H into N-parts R₁,..., R_N as infinite dimensional Hilbert subspaces of H. This is the role of s^{*}₁,..., s^{*}_N in (2.2).
- (ii) Next, choose M_i -number of components from R_1, \ldots, R_N by the rule associated with a matrix A and make a new subspace D_i of \mathcal{H} for each $i = 1, \ldots, N$, respectively. This process is executed by $t_{i,q_i(j)}$ and the sum in (2.2).
- (iii) At the end, we maps D_i into R_i by s_i for i = 1, ..., N in (2.2), respectively.

By these procedure, we have a partial isometry $x_i : D_i \to R_i$ in (2.2) for i = 1, ..., N.

$$R_1$$
 · · · R_j · · · R_N

п

$$\Downarrow$$
 (when $a_{ij} = 1$)

$$D_i \qquad \qquad = \bigoplus_{j:a_{ij}=1} \qquad \qquad R_j$$

∜

$$R_1$$
 · · · R_i · · · R_N

3 Examples

Example 3.1 Assume that $A = (a_{ij}) \in M_N(\{0,1\})$ satisfies $a_{ij} = 1$ for each i, j = 1, ..., N. In this case, $\mathcal{O}_A \cong \mathcal{O}_N$. Then the A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$ is given by $(M_i, q_i, B_i) = (N, id_{\{1,...,N\}}, \{1,...,N\})$ for each i = 1, ..., N. By Corollary 2.5 (i), we obtain an embedding of \mathcal{O}_N into \mathcal{O}_N . That is, this is an endomorphism of \mathcal{O}_N .

Let s_1, \ldots, s_N be generators of \mathcal{O}_N . Hence $u_j \equiv t_{i,j} = s_j$ for $i, j = 1, \ldots, N$. Hence $\mathbf{Z}_{n \geq 0}$ -polynomial embedding of $\mathcal{O}_N \cong \mathcal{O}_A$ into \mathcal{O}_N is given by

$$x_i = \sum_{j=1}^N a_{ij} u_i t_{i,q_i(j)} u_j^* = \sum_{j=1}^N s_i s_j s_j^* = s_i \quad (i = 1, \dots, N).$$

Therefore this embedding is the identity map on \mathcal{O}_N . In this sense, the method of construction of embeddings by Corollary 2.5 is natural.

Example 3.2 If $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, then $M_1 = 2$, $M_2 = 1$, $B_1 = \{1, 2\}$, $B_2 = \{1\}$, $q_1 = id_{\{1,2\}}$ and $q_2 = id_{\{1\}}$. Let s_1, s_2 be generators of \mathcal{O}_2 . Put

 $u_i = s_i, \quad t_{1,i} = s_i \quad (i = 1, 2), \quad t_{2,1} = I.$

Then we have the well known following embedding of \mathcal{O}_A into \mathcal{O}_2 :

$$x_1 = s_1, \quad x_2 = s_2 s_1^*.$$

This correspondence is invertible. Hence $\mathcal{O}_A \cong \mathcal{O}_2$.

Example 3.3 We show cases of matrices in p 268, [2]. For a matrix

$$A_1 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

consider the embedding of \mathcal{O}_{A_1} into \mathcal{O}_2 . Let s_1, s_2 be generators of \mathcal{O}_2 . $(M_i)_{i=1}^3 = (1, 2, 3), (B_i)_{i=1}^3 = (\{3\}, \{1, 3\}, \{1, 2, 3\}), q_1(3) = 1, q_2(1) = 1, q_2(3) = 2, q_3 = id. u_1 = s_1, u_2 = s_2s_1, u_3 = s_2^2$. From these preparations,

$$\begin{cases} x_1 = u_1 u_3^* = s_1 s_2^* s_2^*, \\ x_2 = u_2 (s_1 u_1^* + s_2 u_3^*) = s_2 s_1 (s_1 s_1^* + s_2 s_2^* s_2^*), \\ x_3 = u_3 = s_2^2. \end{cases}$$
(3.1)

Note $\mathcal{O}_{A_1} \cong \mathcal{O}_4$. In fact,

$$v_1 \equiv x_1 x_3, \quad v_2 \equiv x_3, \quad v_3 \equiv x_2 x_3, \quad v_4 \equiv x_2 x_1 x_3$$
 (3.2)

satisfy the relations of generators of \mathcal{O}_4 . On the contrary

$$x_1 = v_1 v_2^*, \quad x_2 = v_4 v_1^* + v_3 v_2^*, \quad x_3 = v_2.$$

This shows (3.2) is an isomorphism from \mathcal{O}_{A_1} to \mathcal{O}_4 . If we denote ψ , φ_c , ϕ as homomorphisms in (1.4), (3.1), (3.2), respectively, then $\psi \circ \phi = \varphi_c$.

In the same way, we have the followings:

$$A_{2} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}; \begin{cases} x_{1} = s_{1}(s_{1}s_{1}^{*}s_{2}^{*} + s_{2}s_{2}^{*}s_{2}^{*}) = s_{1}s_{2}^{*}, \\ x_{2} = s_{2}s_{1}(s_{1}s_{1}^{*} + s_{2}s_{2}^{*}s_{2}^{*}), \\ x_{3} = s_{2}^{2}, \end{cases}$$
(3.3)
$$A_{3} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}; \begin{cases} x_{1} = s_{1}s_{2}^{*}, \\ x_{2} = s_{2}s_{1}(s_{1}s_{1}^{*} + s_{2}s_{2}^{*}s_{2}^{*}), \\ x_{3} = s_{2}^{2}(s_{1}s_{1}^{*} + s_{2}s_{1}^{*}s_{2}^{*}), \\ x_{3} = s_{2}^{2}(s_{1}s_{1}^{*} + s_{2}s_{2}^{*}s_{2}^{*}), \\ x_{4} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}; \begin{cases} x_{1} = s_{1}(s_{1}s_{1}^{*} + s_{2}s_{2}^{*}s_{2}^{*}), \\ x_{2} = s_{2}s_{1}(s_{1}s_{1}^{*}s_{2}^{*} + s_{2}s_{2}^{*}s_{2}^{*}), \\ x_{2} = s_{2}s_{1}(s_{1}s_{1}^{*}s_{2}^{*} + s_{2}s_{2}^{*}s_{2}^{*}) = s_{2}s_{1}s_{2}^{*}, \\ x_{3} = s_{2}^{2}. \end{cases}$$
(3.5)

Note that $\mathcal{O}_{A_2} \cong \mathcal{O}_5 \otimes M_2(\mathbf{C})$. In fact, for x_1, x_2, x_3 in (3.3), put t_1, \ldots, t_5 by

$$\begin{cases} t_1 = x_1 x_2 x_1 x_1^* + x_2 x_1, \\ t_2 = x_1 x_2 x_3 x_1 x_1^* + x_2 x_3 x_1, \\ t_3 = x_1 x_2 x_3 x_1^* + x_2 x_3 x_1^* x_1, \\ t_4 = x_1 x_3 x_1 x_1^* + x_3 x_1, \\ t_5 = x_1 x_3 x_1^* + x_3 x_1^* x_1. \end{cases}$$
(3.6)

Then t_1, \ldots, t_5 satisfy the relations of \mathcal{O}_5 . Furthermore $[t_i, x_1] = 0 = [t_i^*, x_1]$ for each $i = 1, \ldots, 5$. Hence $C^* < \{t_1, \ldots, t_5, x_1\} \ge \mathcal{O}_5 \otimes M_2(\mathbf{C})$. On the contrary,

$$x_2 = x_1^* x_1 (t_1 x_1^* + (t_2 x_1^* + t_3) x_3^*), \quad x_3 = x_1^* x_1 t_4.$$

Hence $C^* < \{t_1, \ldots, t_5, x_1\} >= C^* < \{x_1, x_2, x_3\} >= \varphi'_c(\mathcal{O}_{A_2})$ where φ'_c is the embedding which is defined in (3.3). Since \mathcal{O}_{A_2} is simple, we have the isomorphism from \mathcal{O}_{A_2} to $\mathcal{O}_5 \otimes M_2(\mathbf{C})$.

isomorphism from \mathcal{O}_{A_2} to $\mathcal{O}_5 \otimes M_2(\mathbf{C})$. Define a map $\phi' : \mathcal{O}_5 \to \varphi'_c(\mathcal{O}_{A_2}) \subset \mathcal{O}_2$ by (3.6). If ρ, ψ' are the canonical endomorphism of \mathcal{O}_2 and the embedding in (1.5) respectively, then $\rho \circ \psi' = \phi'$.

Example 3.4 Put $A = (a_{ij}) \in M_N(\{0,1\})$ by $a_{ij} = 0$ (i < j), $a_{ij} = 1$ $(i \ge j)$. The A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^N$ is given by $M_i = i, B_i = \{1, \ldots, i\}, q_i = id_{B_i}$ for each $i = 1, \ldots, N$. Then

$$t_{1,1} = I, \quad t_{j,j} = s_2^{j-1} \quad (2 \le j \le N),$$

$$t_{j,i} = s_2^{i-1} s_1 \quad (2 \le j \le N, \ i = 1, \dots, j-1)$$

$$x_j = t_{N,j} \left(\sum_{i=1}^j t_{j,i} t_{N,i}^*\right).$$

Hence

$$x_{1} = s_{1}s_{1}^{*},$$

$$x_{2} = s_{2}s_{1}(s_{1}s_{1}^{*} + s_{2}s_{1}^{*}s_{2}^{*}),$$

$$x_{3} = s_{2}^{2}s_{1}(s_{1}s_{1}^{*} + s_{2}s_{1}s_{1}^{*}s_{2}^{*} + s_{2}^{2}s_{1}^{*}(s_{2}^{*})^{2}),$$

$$\vdots$$

$$x_{N-1} = s_{2}^{N-2}s_{1}(s_{1}s_{1}^{*} + \dots + s_{2}^{N-2}s_{1}^{*}(s_{2}^{*})^{N-2}),$$

$$x_{N} = s_{2}^{N-1}.$$

For example, the case N = 4,

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}; \quad \begin{cases} x_1 = s_1 s_1^*, \\ x_2 = s_2 s_1 (s_1 s_1^* + s_2 s_1^* s_2^*), \\ x_3 = s_2^2 s_1 (s_1 s_1^* + s_2 s_1 s_1^* s_2^* + s_2^2 s_1^* (s_2^*)^2), \\ x_4 = s_2^3. \end{cases}$$

Example 3.5 Assume that $N \ge 3$ and put $A = (a_{ij}) \in M_N(\{0,1\})$ by

$$a_{NN} = 0$$
 and $a_{ij} = 1$ when $(i, j) \neq (N, N)$.

Then $M_i = N$, $B_i = B \equiv \{1, ..., N\}$, $q_i = id_B$ for i = 1, ..., N - 1, $M_N = N - 1$, $B_N = \{1, ..., N - 1\}$, $q_N = id_{B_N}$. Let s_1, s_2 be generators of \mathcal{O}_2 . Put

$$u_1 \equiv s_1, u_2 \equiv s_2 s_1, u_3 \equiv s_2 s_2 s_1, \dots, u_{N-1} \equiv s_2^{N-2} s_1, u_N \equiv s_2^{N-1},$$
$$t_{i,j} \equiv u_j \quad (i = 1, \dots, N-1, \ j = 1, \dots, N),$$
$$t_{N,j} \equiv u_j \quad (j = 1, \dots, N-2), \quad t_{N,N-1} \equiv s_2^{N-2}.$$

Note u_1, \ldots, u_N are generators of \mathcal{O}_N and $t_{N,1}, \ldots, t_{N,N-1}$ are those of \mathcal{O}_{N-1} . Then

$$x_{i} = u_{i} = s_{2}^{i-1} s_{1} \quad (i = 1, \dots, N-1),$$

$$x_{N} = u_{N} \left(\sum_{j=1}^{N-2} t_{N,j} t_{N,j}^{*} + t_{N,N-1} u_{N-1}^{*} \right)$$

$$= s_{2}^{N-1} \left(\sum_{j=1}^{N-2} s_{2}^{j-1} s_{1} s_{1}^{*} (s_{2}^{*})^{j-1} + s_{2}^{N-2} s_{1}^{*} (s_{2}^{*})^{N-2} \right)$$

where we use 0-th power $s_i^0 \equiv I$ for i = 1, ..., N. Hence

$$x_1 = s_1, \quad x_2 = s_2 s_1, \quad \dots, \quad x_{N-1} = s_2^{N-2} s_1, \quad x_N = s_2^{N-1} F_N$$

where

$$F_N \equiv \sum_{j=1}^{N-2} s_2^{j-1} s_1 s_1^* (s_2^*)^{j-1} + s_2^{N-2} s_1^* (s_2^*)^{N-2}.$$

For example, if N = 3, then

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}; \qquad \begin{cases} x_1 = s_1, \\ x_2 = s_2 s_1, \\ x_3 = s_1 s_1^* + s_2^3 s_1^* s_2^*. \end{cases}$$

Example 3.6 We show an example of Corollary 2.5 (ii) when N = 5. Put

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Then the A-coordinate $\{(M_i,q_i,B_i)\}_{i=1}^5$ becomes as follows:

$$\begin{array}{rl} (M_i)_{i=1}^5 = & (3,3,5,3,3), \\ & (B_i)_{i=1}^5 = & (\{1,2,3\},\{1,2,3\},\{1,2,3,4,5\},\{1,3,5\},\{1,3,5\})\,, \\ & q_1 = q_2 = id_{\{1,2,3\}}, \quad q_3 = id_{\{1,2,3,4,5\}}, \quad q_4(2n-1) = n \quad (n=1,2,3), \quad q_5 = q_4. \\ & \text{Let} \; s_1, s_2, s_3 \; \text{be generators of} \; \mathcal{O}_3. \; \text{Define} \end{array}$$

$$t_{i,1} \equiv s_1, \quad t_{i,1} \equiv s_2, \quad t_{i,1} \equiv s_3 \quad (i = 1, 2, 4, 5),$$

$$t_{3,1} \equiv s_1, \quad t_{3,2} \equiv s_2, \quad t_{3,3} \equiv s_3 s_1, \quad t_{3,4} \equiv s_3 s_2, \quad t_{3,5} \equiv s_3 s_3,$$

$$u_i \equiv t_{3,i} \quad (i = 1, \dots, 5).$$

Under these preparations, define generators of \mathcal{O}_A by

$$x_i = \sum_{j=1}^{5} a_{ij} u_i t_{i,q_i(j)} u_j^* \quad (i = 1, 2, 3, 4, 5).$$

Then we have

$$\begin{cases} x_1 = s_1 \left(s_1 s_1^* + s_2 s_2^* + s_3 s_1 s_3^* \right), \\ x_2 = s_2 \left(s_1 s_1^* + s_2 s_2^* + s_3 s_1 s_3^* \right), \\ x_3 = s_3 s_1, \\ x_4 = s_3 s_2 \left(s_1 s_1^* + s_2 s_1 s_3^* + s_3 s_3 s_3^* \right), \\ x_5 = s_3 s_3 \left(s_1 s_1^* + s_2 s_1 s_3^* + s_3 s_3 s_3^* \right). \end{cases}$$

In this case, we have a polynomial *-homomorphism from \mathcal{O}_A to \mathcal{O}_3 with coefficient 1.

Example 3.7 Let $A \in M_7(\{0,1\})$ be

Then the A-coordinate $\{(M_i, q_i, B_i)\}_{i=1}^7$ becomes as follows:

$$(M_i)_{i=1}^7 = (4, 4, 7, 4, 7, 4, 1),$$

$$(B_i)_{i=1}^7 = \left(\begin{array}{c} \{2,4,6,7\},\{1,3,5,6\},\{1,\ldots,7\},\{1,2,3,4\},\\ \{1,\ldots,7\},\{4,5,6,7\},\{1\}\end{array}\right)$$

and $\{q_i\}_{i=1}^7$ is taken as Definition 2.1. Since $\{M_i\}_{i=1}^7 = \{1, 4, 7\} \subset \{3k + 1 : k \geq 0\}$, there is a homomorphism from \mathcal{O}_A to \mathcal{O}_4 . Let s_1, \ldots, s_4 be generators of \mathcal{O}_4 . Put

$$u_i \equiv s_i \quad (i = 1, 2, 3), \quad u_{3+i} \equiv s_4 s_i \quad (i = 1, 2, 3, 4).$$

Then polynomial generators of \mathcal{O}_A in \mathcal{O}_4 are given as follows:

$$\begin{cases} x_1 = s_1(s_1s_2^* + s_2s_1^*s_4^* + s_3s_3^*s_4^* + s_4(s_4^*)^2), \\ x_2 = s_2(s_1s_1^* + s_2s_3^* + s_3s_2s_4^* + s_4(s_4^*)^2), \\ x_3 = s_3, \\ x_4 = s_4s_1(s_1s_1^* + s_2s_2^* + s_3s_3^* + s_4s_1^*s_4^*), \\ x_5 = s_4s_2, \\ x_6 = s_4s_3(s_1s_1^*s_4^* + s_2s_2^*s_4^* + s_3s_3^*s_4^* + s_4(s_4^*)^2) = s_4s_3s_4^*, \\ x_7 = s_4^2s_1s_1^*. \end{cases}$$

Acknowledgement: We would like to thank Prof.Matsumoto for his nice explanation of Cuntz-Krieger algebra ([4]) for us.

References

- M.Abe and K.Kawamura, Recursive Fermion System in Cuntz Algebra. II — Endomorphism, Automorphism and Branching of Representation —, preprint, RIMS-1362,(2002)
- [2] J.Cuntz and W.Krieger, A class of C^{*}-algebra and topological Markov chains, Invent.Math., 56 (1980), 251-268.
- [3] E.Kirchberg and N.C.Phillips, Embedding of exact C*-algebra in the Cuntz algebra O₂, J.Reine Angew.Math. 525 (2000), 17-53.
- [4] K.Matsumoto, The Cuntz algebra and the Cuntz-Krieger algebra from the viewpoint of symbolic dynamical system, RIMS workshop: Representations of Cuntz algebras on fractal sets and their application for mathematical physics, 26-29, Nov. 2002.